JP2017186178A - Deformation predicting method in producing sanitary ware - Google Patents

Deformation predicting method in producing sanitary ware Download PDF

Info

Publication number
JP2017186178A
JP2017186178A JP2016073726A JP2016073726A JP2017186178A JP 2017186178 A JP2017186178 A JP 2017186178A JP 2016073726 A JP2016073726 A JP 2016073726A JP 2016073726 A JP2016073726 A JP 2016073726A JP 2017186178 A JP2017186178 A JP 2017186178A
Authority
JP
Japan
Prior art keywords
deformation
test
time
sanitary ware
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016073726A
Other languages
Japanese (ja)
Other versions
JP6571580B2 (en
Inventor
俊幸 斉藤
Toshiyuki Saito
俊幸 斉藤
博人 進
Hiroto Shin
博人 進
学 梅田
Manabu Umeda
学 梅田
泰広 勝田
Yasuhiro Katsuta
泰広 勝田
成志朗 松原
Seishiro Matsubara
成志朗 松原
賢二郎 寺田
Kenjiro Terada
賢二郎 寺田
佳 生出
Kai Oide
佳 生出
康子 三原
Yasuko Mihara
康子 三原
卓哉 小林
Takuya Kobayashi
卓哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2016073726A priority Critical patent/JP6571580B2/en
Publication of JP2017186178A publication Critical patent/JP2017186178A/en
Application granted granted Critical
Publication of JP6571580B2 publication Critical patent/JP6571580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deformation predicting method in producing sanitary ware, capable of accurately predicting deformation in a drying step and a firing step.SOLUTION: A deformation predicting method in producing sanitary ware produced through a drying step and a firing step includes: performing in deformation prediction in the drying step, a first test for acquiring a relation between a time course and a shrinkage amount using a test piece, a second test for obtaining a degree of elasticity of every moisture content of the test piece, and a third test for obtaining a creep in every moisture content of the test piece; performing simulation using a heat conduction analysis, on the basis of the results of the first test, the second test, and the third test, so as to obtain a relation between a moisture change and a shrinkage ratio of non-machine strain; performing simulation so as to obtain a relation between a moisture change and creep deformation and elastic deformation of non-machine strain due to a visco-plastic material; and obtaining changes over time of dry shrinkage/deformation, considering a physical property change based on a moisture change from the simulation results so as to specify the shape when the drying step is completed.SELECTED DRAWING: Figure 9

Description

本発明は、衛生陶器の製造時の変形予測方法に関する。   The present invention relates to a deformation prediction method at the time of manufacturing sanitary ware.

従来、大便器、小便器、洗面器、手洗い器等の衛生陶器は、原料となる泥漿を石膏型あるいは樹脂型を用いて鋳込み成形・接合し、所定の形状に成形した後、20℃〜110℃で製品内部の水分を蒸発させる乾燥工程、千数百℃で製品を焼結させる焼成工程を経て製造される。   Conventionally, sanitary ware such as urinals, urinals, wash basins, hand-washers, etc. are cast and molded using a gypsum mold or a resin mold, and then molded into a predetermined shape. It is manufactured through a drying process for evaporating water inside the product at ℃ and a firing process for sintering the product at several hundreds of ℃.

ここで、乾燥工程(乾燥過程)では、製品内部の水分の蒸発によって約3%の収縮変形が生じ、焼成工程(焼成過程)では、加熱による急激な緻密化によって約10%の収縮変形が生じる。さらに、これら乾燥工程や焼成工程では、製品の自重によるクリープ変形も生じる。   Here, in the drying process (drying process), about 3% shrinkage deformation occurs due to evaporation of moisture inside the product, and in the firing process (baking process), about 10% shrinkage deformation occurs due to rapid densification due to heating. . Further, in these drying and firing processes, creep deformation also occurs due to the weight of the product.

このように、衛生陶器は、製造時の変形が複雑で製品の完成後の精確な形状を捉えることが難しい。このため、従来では、例えば、経験などに基づく熟練技術者の技量に頼って変形を予測し、完成後に所望の製品形状になるように、また、亀裂等の欠損が発生しないように、乾燥工程、焼成工程の前に製品形状の調整等を行っている。   As described above, sanitary ware has a complicated deformation at the time of manufacture, and it is difficult to capture an accurate shape after the product is completed. For this reason, conventionally, for example, a drying process is performed so that deformation is predicted by relying on the skill of a skilled engineer based on experience, etc., so that a desired product shape is obtained after completion, and cracks and other defects do not occur. The product shape is adjusted before the firing process.

一方、予め、衛生陶器の素地に対して実験を行い、乾燥工程や焼成工程の各工程における所定の時間区分毎の変形特性を求めておき、これに基づき、有限要素法などの汎用構造解析プログラムを用いて時間区分毎にシミュレーションを行い、発生する変形を予測する手法も提案、実用化されている(例えば、特許文献1参照)。   On the other hand, a general structural analysis program such as the finite element method is used based on this by conducting experiments on sanitary ware bases in advance to obtain deformation characteristics for each predetermined time segment in each step of the drying process and firing process. A technique for predicting the deformation that occurs by performing a simulation for each time segment using the method has been proposed and put into practical use (see, for example, Patent Document 1).

特開2002−187763号公報JP 2002-187863 A

しかしながら、上記従来の衛生陶器の製造時の変形予測方法においては、図18に示すように、乾燥工程や焼成工程の各工程における所定の時間区分毎に求めた変形特性に基づいて予測を行うようにしている。このため、乾燥工程では製品の部位によって乾燥スピードが異なるが、このような不均質な材料特性変化が考慮されていない。また、焼成工程では、密度変化率と温度で変わる材料特性変化が全く考慮されていない。   However, in the conventional method for predicting deformation at the time of manufacturing sanitary ware, as shown in FIG. 18, the prediction is performed based on the deformation characteristics obtained for each predetermined time segment in each process of the drying process and the firing process. I have to. For this reason, in the drying process, the drying speed varies depending on the part of the product, but such inhomogeneous material property change is not taken into consideration. In the firing process, changes in material properties that change with density change rate and temperature are not considered at all.

これにより、従来の衛生陶器の製造時の変形予測方法を用いたとしても、十分な精度をもって乾燥工程、焼成工程における製品の変形予測を行うことはできない。また、この予測方法を用いて亀裂発生を予測のための応力評価を行うことも不可能である。   Thereby, even if the deformation | transformation prediction method at the time of manufacture of the conventional sanitary ware is used, the deformation | transformation prediction of the product in a drying process and a baking process cannot be performed with sufficient precision. In addition, it is impossible to perform stress evaluation for predicting crack generation using this prediction method.

本発明は、上記事情に鑑み、乾燥工程や焼成工程での変形を精度よく予測することを可能にする衛生陶器の製造時の変形予測方法を提供することを目的とする。   An object of this invention is to provide the deformation | transformation prediction method at the time of manufacture of the sanitary ware which makes it possible to predict the deformation | transformation in a drying process or a baking process with sufficient precision in view of the said situation.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の衛生陶器の製造時の変形予測方法は、乾燥工程と焼成工程を経て製造される衛生陶器の製造時の変形を予測する方法であって、乾燥工程に対する変形予測では、衛生陶器の原料の試験体を用いて時間経過と収縮量の関係を取得する第1試験と、衛生陶器の原料の試験体の含水率毎の弾性率を求める第2試験と、衛生陶器の原料の試験体の含水率毎のクリープを求める第3試験とを行い、前記第1試験と前記第2試験と前記第3試験の結果を基にし、熱伝導解析を用いたシミュレーションを行って水分変化と非機械ひずみの収縮率の関係を求めるとともに、シミュレーションを行って水分変化と粘塑性材料による非機械ひずみのクリープ変形及び弾性変形の関係を求め、これらシミュレーション結果から水分変化に基づく物性変化を考慮した乾燥収縮・変形の経時変化を求め、乾燥工程完了時の形状を特定するようにしたことを特徴とする。   The method for predicting deformation at the time of manufacturing sanitary ware according to the present invention is a method for predicting deformation at the time of manufacturing sanitary ware manufactured through a drying process and a firing process. The first test to obtain the relationship between the passage of time and the amount of shrinkage using the test specimens, the second test to obtain the elastic modulus for each moisture content of the sanitary ware raw material test specimen, and the sanitary ware raw material test specimen A third test for obtaining a creep for each moisture content is performed, and based on the results of the first test, the second test, and the third test, a simulation using a heat conduction analysis is performed to determine moisture change and non-mechanical strain. In addition to determining the relationship between the shrinkage rate and the simulation, the relationship between the moisture change and the creep and elastic deformation of non-mechanical strain due to the viscoplastic material is determined, and the physical property change based on the moisture change is considered from these simulation results. Seeking the drying shrinkage-aging deformation, characterized in that so as to identify the shape of the drying process is complete.

また、本発明の衛生陶器の製造時の変形予測方法においては、前記第2試験の結果から、下記の式(1)を用いて乾燥工程時の水分量に依存した弾性特性を同定することが望ましい。   Moreover, in the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this invention, the elastic characteristic depending on the moisture content at the time of a drying process can be identified using the following formula | equation (1) from the result of the said 2nd test. desirable.

ここで、式(1)は水分濃度依存の弾性率構成則であり、E(γ)は水分量依存の弾性率、γは水分濃度、H、W、Eは係数である。 Here, the equation (1) is a moisture concentration-dependent elastic modulus constitutive law, E (γ m ) is a moisture content-dependent elastic modulus, γ m is a water concentration, and H E , W E , and E C are coefficients. .

さらに、本発明の衛生陶器の製造時の変形予測方法においては、前記第3試験の結果から、下記の式(2)を用いて水分濃度依存のクリープ特性を求めるとともに、同定解析を行って式(2)の係数を同定することが望ましい。   Furthermore, in the deformation prediction method at the time of manufacture of the sanitary ware of the present invention, the creep characteristic depending on the moisture concentration is obtained from the result of the third test using the following formula (2), and the identification analysis is performed to obtain the formula. It is desirable to identify the coefficient of (2).

ここで、γは水分濃度、Δγはクリープひずみ、σeqはvon−Misesの相当応力、tは時間、C、C、C、XA、f、W、γは係数である。 Here, γ m is moisture concentration, Δγ is creep strain, σ eq is von Mises equivalent stress, t is time, C 1 , C 2 , C 3 , XA, f c , W c , and γ c are coefficients. is there.

また、本発明の衛生陶器の製造時の変形予測方法において、焼成工程に対する変形予測では、乾燥工程後の原料の焼成工程での挙動を弾性変形とクリープ変形と熱膨張/収縮変形と焼結現象に伴なう変形の4つの変形要因に分け、各変形要因の時間と温度と原料の密度変化の関係を試験によって求め、該試験結果を基にしてシミュレーションを行い、原料の密度変化を考慮した変形の経時変化を求め、焼成工程完了時の形状を特定するようにした。   In the method for predicting deformation during the manufacture of sanitary ware according to the present invention, in the deformation prediction for the firing process, the behavior in the firing process of the raw material after the drying process is represented by elastic deformation, creep deformation, thermal expansion / contraction deformation, and sintering phenomenon. It is divided into four deformation factors of deformation accompanying the above, and the relationship between the time and temperature of each deformation factor and the density change of the raw material is obtained by a test, a simulation is performed based on the test result, and the density change of the raw material is considered. The change with time of deformation was obtained, and the shape when the firing process was completed was specified.

さらに、本発明の衛生陶器の製造時の変形予測方法においては、クリープ変形速度の時間発展を、クリープ乗数γ(上に・)vpと流れベクトルN=s/||s||を用いた下記の式(3)の流れ則に従って求め、クリープ乗数は、相当応力σeq、時間t、温度T、相対密度ρrelの依存性を加味した下記の式(4)を用いて求めるようにした。 Furthermore, in the method for predicting deformation at the time of manufacturing sanitary ware according to the present invention, the time evolution of the creep deformation rate is expressed as follows using the creep multiplier γ (above) vp and the flow vector N = s / || s || The creep multiplier was obtained using the following equation (4) in consideration of the dependence of the equivalent stress σ eq , time t, temperature T, and relative density ρ rel .

ここで、dvpはクリープ変形速度テンソル、s は偏差応力、δhは変位、C、C、C、C、T、Wはそれぞれクリープパラメータ(係数)、Tはクリープ変形が生じ始める基準温度である。 Where d vp is the creep deformation rate tensor, s is the deviation stress, δh is the displacement, C 1 , C 2 , C 3 , C 4 , T 0 , W are the creep parameters (coefficients), and T 0 is the creep deformation. It is the reference temperature that begins to occur.

本発明の衛生陶器の製造時の変形予測方法においては、乾燥工程で、第1試験、第2試験、第3試験に基づいて係数の同定を行い、変形予測を行うことによって、高精度で優れた変形予測を行うことが可能になる。   In the deformation prediction method at the time of manufacturing the sanitary ware according to the present invention, the coefficient is identified based on the first test, the second test, and the third test in the drying process, and the deformation is predicted. It is possible to perform deformation prediction.

また、本発明の衛生陶器の製造時の変形予測方法においては、焼成工程で、材料(原料)の全体的な挙動を、弾性、クリープ、熱膨張(収縮)、焼結現象の4つの要因に分解して考えて変形予測を行うことによって、非常に優れた変形予測を行うことが可能になる。   Moreover, in the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this invention, the whole behavior of material (raw material) is made into four factors, elasticity, creep, thermal expansion (contraction), and a sintering phenomenon in a baking process. It is possible to perform very good deformation prediction by performing the deformation prediction considering the decomposition.

本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第1試験を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the 1st test performed for the deformation | transformation prediction by a drying process. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第2試験を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the 2nd test performed for the deformation | transformation prediction by a drying process. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第2試験の結果を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the result of the 2nd test performed for the deformation | transformation prediction by a drying process. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第2試験の結果から得た弾性率と水分量の関係(特性曲線の一例)を示す図である。In the deformation prediction method at the time of manufacture of sanitary ware according to an embodiment of the present invention, the relationship between elastic modulus and water content (an example of a characteristic curve) obtained from the result of the second test performed for deformation prediction by the drying process is as follows. FIG. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第3試験を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the 3rd test performed for the deformation | transformation prediction by a drying process. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、乾燥工程による変形予測のために行う第3試験の結果から得た時間と変形量の関係及び同定解析結果を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the relationship between the time obtained from the result of the 3rd test performed for the deformation | transformation prediction by a drying process, and a deformation | transformation amount, and an identification analysis result. is there. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、熱伝導解析を用いたシミュレーション(非定常伝熱解析)の解析モデルを示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the analysis model of the simulation (unsteady heat transfer analysis) using heat conduction analysis. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、水分濃度に応じた変形解析を用いたシミュレーション(非定常静的解析)の解析モデルを示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the analysis model of the simulation (unsteady static analysis) using the deformation | transformation analysis according to moisture concentration. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法による変形予測結果の一例を示す図である。It is a figure which shows an example of the deformation | transformation prediction result by the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法の優位性を確認するために行った実験の寸法測定箇所を示す図である。It is a figure which shows the dimension measurement location of the experiment conducted in order to confirm the predominance of the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法の優位性を確認するために行った実験結果を示す図であり、実機の測定寸法と予測結果を比較した図である。It is a figure which shows the experimental result performed in order to confirm the predominance of the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, and is the figure which compared the measurement dimension and prediction result of an actual machine. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法の焼成工程における時間に対する温度と相対密度の変化を示す図である。It is a figure which shows the change of the temperature and the relative density with respect to time in the baking process of the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、焼成工程のヒートカーブと得られた軸方向変位量を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the heat curve of the baking process, and the obtained amount of axial displacement. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、焼結域の緻密化速度と相対密度の関係を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the relationship between the densification speed | rate of a sintered area, and a relative density. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法において、焼成工程での終局相対密度と各等温工程における設定温度の関係を示す図である。In the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention, it is a figure which shows the relationship between the ultimate relative density in a baking process, and the preset temperature in each isothermal process. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法の焼結工程におけるln[ρ(T)−ρrel(δh)]とln[|ε(上に・)s(T,δh)|]の関係を示す図である。In [[rho] [ infinity] (T)-[rho] rel ([delta] h)] and ln [| [epsilon] (above) s (T, T) in the sintering step of the deformation prediction method during the manufacture of sanitary ware according to an embodiment of the present invention. It is a figure which shows the relationship of (delta h) |]. 本発明の一実施形態に係る衛生陶器の製造時の変形予測方法の焼結工程におけるΩ(T)/3とn(T)の関係を示す図である。It is a figure which shows the relationship of (omega) (T) / 3 and n (T) in the sintering process of the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning one Embodiment of this invention. 従来の衛生陶器の製造時の変形予測方法を示す図である。It is a figure which shows the deformation | transformation prediction method at the time of manufacture of the conventional sanitary ware.

以下、図1から図17を参照し、本発明の一実施形態に係る衛生陶器の製造時の変形予測方法について説明する。   Hereinafter, with reference to FIG. 1 to FIG. 17, a deformation prediction method at the time of manufacturing a sanitary ware according to an embodiment of the present invention will be described.

はじめに、大便器、小便器、洗面器、手洗い器等の衛生陶器(セラミックス製陶器製品)は、原料となる泥漿(原料)を石膏型あるいは樹脂型を用いて所定の形状に成形した後、20℃〜110℃で製品内部の水分を蒸発させる乾燥工程、千数百℃で製品を焼結させる焼成工程を経て製造される。   First, sanitary ware (ceramic ceramic products) such as urinals, urinals, wash basins, hand-washers, etc., is formed by forming slurry (raw material) as a raw material into a predetermined shape using a plaster mold or a resin mold. Manufactured through a drying process for evaporating the water inside the product at a temperature of from 110 ° C. to 110 ° C. and a baking process for sintering the product at a few hundreds of degrees C.

そして、この乾燥工程では、製品内部の水分の蒸発によって約3%の収縮変形が生じ、焼成工程では、加熱による急激な緻密化によって約10%の収縮変形が生じる。さらに、これら乾燥工程や焼成工程では、製品の自重によるクリープ変形も生じる。このため、型を用いて所定の形状に成形しても、収縮変形やクリープ変形によって精度よく所望の形状の製品が製造できないケースが多々ある。   In this drying process, about 3% shrinkage deformation occurs due to evaporation of moisture inside the product, and in the baking process, about 10% shrinkage deformation occurs due to rapid densification by heating. Further, in these drying and firing processes, creep deformation also occurs due to the weight of the product. For this reason, there are many cases in which a product having a desired shape cannot be manufactured with high accuracy by shrinkage deformation or creep deformation even if it is molded into a predetermined shape using a mold.

本実施形態の衛生陶器の製造時の変形予測方法は、このような乾燥工程や焼成工程における陶器製品の変形を精度よく予想し、ひいては精度よく且つ亀裂等の欠損を生じさせずに所望の製品形状の完成品を製造できるようにするための方法に関するものである。   The method for predicting deformation at the time of manufacturing sanitary ware according to the present embodiment accurately predicts deformation of the pottery product in such a drying process and firing process, and as a result, the desired product without causing defects such as cracks. It relates to a method for making it possible to produce a finished product of shape.

具体的に、本実施形態の衛生陶器の製造時の変形予測方法では、衛生陶器の製造工程における乾燥工程と焼成工程での変形挙動を明らかにし、CAE(有限要素法)を用いて予測を行う。   Specifically, in the deformation prediction method at the time of manufacturing sanitary ware according to the present embodiment, the deformation behavior in the drying process and the firing process in the manufacturing process of sanitary ware is clarified and prediction is performed using CAE (finite element method). .

そして、本実施形態の衛生陶器の製造時の変形予測方法は次のように利用する。
まず、型設計を行い、CAE用いた本実施形態の衛生陶器の製造時の変形予測方法によって乾燥工程、焼成工程での変形予測を行い、この予測に基づいて型を修正し、修正後の型を用いて製品を製造する。これにより、乾燥工程と焼成工程でそれぞれ変形が生じたとしても、この変形が考慮されているため、精度よく、且つ亀裂等の欠損が生じることのない所望の形状の衛生陶器の完成品を好適に製造できることになる。
And the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment is utilized as follows.
First, mold design is performed, deformation prediction in the drying process and firing process is performed by the deformation prediction method at the time of manufacturing the sanitary ware of the present embodiment using CAE, the mold is corrected based on this prediction, and the corrected mold Is used to manufacture products. As a result, even if deformation occurs in the drying process and the firing process, since the deformation is taken into account, a finished product of a sanitary ware having a desired shape with high accuracy and no defects such as cracks is preferable. Can be manufactured.

<乾燥工程時の変形予測>
より具体的に、乾燥工程時の変形予測方法から説明する。
<Prediction of deformation during drying process>
More specifically, the deformation prediction method during the drying process will be described.

本実施形態では、原材料と水分と解膠剤(分散剤)を混合した泥漿(原料)を、型を用いて所定の形状に成形し、乾燥工程で乾燥処理する。   In the present embodiment, a slurry (raw material) obtained by mixing raw materials, moisture, and a peptizer (dispersant) is formed into a predetermined shape using a mold and dried in a drying step.

そして、本実施形態の衛生陶器の製造時の変形予測方法では、この泥漿の水分が蒸発して減少していく乾燥工程における1)水分量(含水率)減少による収縮、2)水分量に依存した弾性、3)水分量に依存したクリープの3つの現象について、予め実験(第1試験、第2試験、第3試験)を行い、各現象の材料特性のデータを取得する。   And in the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment, in the drying process in which the water | moisture content of this slurry evaporates and decreases, 1) The shrinkage | contraction by a water content (moisture content) reduction | decrease, 2) It depends on a water content Experiments (first test, second test, third test) are performed in advance on the three phenomena of creep that depend on the amount of moisture and 3) moisture content, and data of material characteristics of each phenomenon is acquired.

[水分量(含水率)減少による収縮に関する実験:第1試験]
本実施形態において、1)水分量減少による収縮率の測定では、試験体の時間経過と長手方向の収縮量の関係、時間経過と質量の関係を取得する。例えば、図1に示すように、100×10×10mmの直方体で初期含水率が約18%の試験体10を用い、試験体10の両端の変位をレーザーセンサ1で経時的に測定するとともに、試験体10の質量変化を電子秤2で経時的に測定する。
[Experiment on shrinkage due to water content (water content) reduction: first test]
In this embodiment, 1) In the measurement of the shrinkage rate due to the decrease in the amount of water, the relationship between the passage of time and the amount of shrinkage in the longitudinal direction and the relationship between passage of time and mass are obtained. For example, as shown in FIG. 1, using a test body 10 having a rectangular parallelepiped of 100 × 10 × 10 mm and an initial moisture content of about 18%, the displacement of both ends of the test body 10 is measured with the laser sensor 1 over time, The mass change of the test body 10 is measured with the electronic balance 2 over time.

そして、本実施形態では、実験結果から、水蒸気拡散速度を示す式(5)を式(6)のように線形近似し、実験結果からA、Bを同定する。このように式(5)を式(6)のように線形近似することによって、水分濃度Cの減少により表面拡散率Dが∞に発散することを防ぐことが可能になる。
なお、Qは水蒸気拡散速度(g/sec・mm)、Cは水分濃度(g/mm)、C∞は平衡水分濃度(g/mm)、Dsurfは表面拡散率(mm/sec)である。
In this embodiment, equation (5) indicating the water vapor diffusion rate is linearly approximated as equation (6) from the experimental result, and A and B are identified from the experimental result. Thus, by linearly approximating Equation (5) as Equation (6), it is possible to prevent the surface diffusivity D from divergence to ∞ due to the decrease in the moisture concentration C.
Q is the water vapor diffusion rate (g / sec · mm 2 ), C is the water concentration (g / mm 3 ), C∞ is the equilibrium water concentration (g / mm 3 ), and D surf is the surface diffusivity (mm / sec). ).

例えば、実験結果から、A=−5.3282E−1、B=2.8287E−4などのようにAとBを同定することができる。   For example, A and B can be identified from the experimental results such as A = −5.3282E−1, B = 2.8287E-4, and the like.

これにより、水分量と収縮率の変化よって水分量依存の収縮率を求めることができる。言い換えれば、試験体の温度度変化に対する熱膨張率を水分濃度に対する収縮率で、収縮変形の構成側を求めることができる。また、水分量の時間変化よって、表面からの蒸発スピードを求めることが可能になる。   Thereby, the shrinkage rate dependent on the amount of water can be obtained from the change in the amount of water and the shrinkage rate. In other words, the constituent side of the shrinkage deformation can be obtained from the coefficient of thermal expansion with respect to the change in the temperature degree of the specimen as the shrinkage ratio with respect to the moisture concentration. In addition, the evaporation speed from the surface can be obtained by changing the moisture amount with time.

[水分量に依存した弾性に関する実験:第2試験]
次に、本実施形態において、2)水分量依存の弾性率の測定では、例えば、115×15×10mmの直方体の試験体10を用いて行う。ここでは含水率が19.5%、18.9%、17.6%、15.8%の4つの試験体10を用いた。
[Experiment on elasticity depending on moisture content: second test]
Next, in this embodiment, 2) the measurement of the moisture amount-dependent elastic modulus is performed using, for example, a rectangular parallelepiped test body 10 of 115 × 15 × 10 mm. Here, four specimens 10 having a moisture content of 19.5%, 18.9%, 17.6%, and 15.8% were used.

また、例えば、図2に示すように、試験体10を100mmスパンで支持しつつ中央に荷重を掛ける3点曲げ試験装置3を用いて試験を行い、弾性率を測定する。また、3点曲げ試験では、ロードセル4によって押込速度を1.5mm/minで試験体10の中央を押し込み、中央鉛直方向変位量と荷重の関係を測定する。
すなわち、3点曲げ試験装置3を用いて、含水率毎のクリープ試験を実施する。
For example, as shown in FIG. 2, a test is performed using a three-point bending test apparatus 3 that applies a load to the center while supporting the test body 10 with a span of 100 mm, and the elastic modulus is measured. In the three-point bending test, the center of the test body 10 is pushed by the load cell 4 at a pushing speed of 1.5 mm / min, and the relationship between the center vertical direction displacement and the load is measured.
That is, a creep test for each moisture content is performed using the three-point bending test apparatus 3.

そして、図3に示すような試験結果から(変形初期における傾きから)弾性率を求め、水分量依存の弾性率(E(γ))の式である式(7)を用いて水分量に依存した弾性特性を同定する(図4参照)。式(7)は、水分濃度依存の弾性率構成則であり、γは水分濃度(g/mm)、H、W、Eは係数である。 Then, the elastic modulus is obtained from the test results as shown in FIG. 3 (from the inclination at the initial stage of deformation), and the water content is calculated using the equation (7), which is an equation of the water content-dependent elastic modulus (E (γ m )). The dependent elastic properties are identified (see FIG. 4). Expression (7) is a constitutive law of elastic modulus depending on the water concentration, γ m is the water concentration (g / mm 3 ), and H E , W E , and E C are coefficients.

これにより、例えば図4に示すように、弾性率と水分量の関係(特性曲線)を得ることができる。   Thereby, for example, as shown in FIG. 4, the relationship (characteristic curve) between the elastic modulus and the moisture content can be obtained.

[水分量に依存したクリープに関する実験:第3試験]
本実施形態において、3)水分量依存のクリープ特性の測定では、例えば、221×33.5×6.5mmの直方体の試験体10を用いて行う。また、ここでは含水率が17.3%、14.6%、11.7%、9.1%の4つの試験体を用いた。さらに、この水分量依存のクリープ特性の測定では、例えば、図5に示すように、試験体10を180mmスパンで支持しつつ中央の時刻歴鉛直変位をレーザーセンサ5で測定する。
[Experiment on creep depending on moisture content: Third test]
In the present embodiment, 3) the measurement of moisture content-dependent creep characteristics is performed using, for example, a rectangular parallelepiped test body 10 of 221 × 33.5 × 6.5 mm. In addition, four specimens having a moisture content of 17.3%, 14.6%, 11.7%, and 9.1% were used here. Further, in the measurement of the moisture content-dependent creep characteristics, for example, as shown in FIG. 5, the center time history vertical displacement is measured by the laser sensor 5 while supporting the test body 10 with a span of 180 mm.

そして、本実施形態の衛生陶器の製造時の変形予測方法では、式(8)に上記の試験結果を当てはめ、この式(8)を用いて弾性率及び水分濃度依存のクリープ特性を求める。
なお、式(8)において、Δγはクリープひずみ、σeqは相当応力、tは時間である。また、C、C、C、XA、f、W、γは係数である。また、式(8)はNorton則をもとに、前述の弾性率のケース同様、ある水分濃度を境に急激に特性が変化することを表現するため、双曲線関数を用いた構成式となっている。
And in the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment, said test result is applied to Formula (8), and an elastic modulus and a moisture concentration dependence creep characteristic are calculated | required using this Formula (8).
In equation (8), Δγ is creep strain, σ eq is equivalent stress, and t is time. C 1 , C 2 , C 3 , XA, f c , W c , and γ c are coefficients. Also, equation (8) is a constitutive equation using a hyperbolic function based on Norton's law in order to express that the characteristic changes suddenly at a certain moisture concentration as in the case of the elastic modulus described above. Yes.

そして、図6に示すように、各含水率の試験結果に対してDE(Differential Evolution)による同定解析を実施し、同定解析を回して誤差を最小化し、クリープ発展則の式(8)の各係数を同定する。   Then, as shown in FIG. 6, identification analysis by DE (Differential Evolution) is performed on the test results of each moisture content, the identification analysis is turned to minimize errors, and each of the equations (8) of the creep evolution law Identify coefficients.

本実施形態の衛生陶器の製造時の変形予測方法では、上記の第1試験と第2試験と第3試験の結果を基にし、まず、図7に示すように、水分濃度の時間変化を計算するとともに熱伝導解析を用いたシミュレーション(非定常伝熱解析)を行って、製品の乾燥工程時の表面からの水分蒸発スピードを熱伝導率で表し、さらに水分変化と非機械ひずみの収縮率の関係を求める。   In the method for predicting deformation during the manufacture of sanitary ware according to the present embodiment, based on the results of the first test, the second test, and the third test, first, as shown in FIG. At the same time, a simulation using heat conduction analysis (unsteady heat transfer analysis) is performed to express the water evaporation speed from the surface during the drying process of the product in terms of heat conductivity, and the change rate of moisture change and non-mechanical strain Seeking a relationship.

また、図8に示すように、水分濃度に応じた変形解析を用いたシミュレーション(非定常静的解析)を行って、製品の乾燥工程時の水分変化と粘塑性材料による非機械ひずみのクリープ変形及び弾性変形の関係を求める。   In addition, as shown in FIG. 8, a simulation (unsteady static analysis) using a deformation analysis according to the moisture concentration is performed, and the water deformation during the product drying process and the non-mechanical strain creep deformation due to the viscoplastic material. And the relationship of elastic deformation.

これらシミュレーション結果によって、図9に示すように、第1試験と第2試験と第3試験の結果に基づく、水分量減少による収縮変形、弾性変形、クリープ変形を足し合わせた乾燥工程時の時間と総変形量を得ることができる。すなわち、水分変化に基づく物性変化を考慮した乾燥収縮・変形の経時変化を求めることができ、乾燥工程完了時の形状を精度よく特定/予測することが可能になる。   Based on these simulation results, as shown in FIG. 9, the time during the drying process based on the results of the first test, the second test, and the third test, which is the sum of shrinkage deformation, elastic deformation, and creep deformation due to a decrease in the amount of water, The total deformation can be obtained. That is, it is possible to obtain a change with time in drying shrinkage / deformation in consideration of a change in physical properties based on a change in moisture, and it becomes possible to accurately identify / predict the shape when the drying process is completed.

ここで、本実施形態の衛生陶器の製造時の変形予測方法を用いて水洗大便器の変形予測を行い、実機との比較を行った結果について説明する。   Here, the deformation | transformation prediction of the flush toilet is performed using the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment, and the result of having compared with the actual machine is demonstrated.

まず、製品の水洗大便器(衛生陶器/原料)の寸法測定箇所を図10に示す。   First, the dimension measurement location of the flush toilet (sanitary ware / raw material) of the product is shown in FIG.

そして、図11は、各測定箇所における本実施形態の衛生陶器の製造時の変形予測方法と実機の計測結果を比較した結果であり、この結果から、本実施形態の衛生陶器の製造時の変形予測方法を用いた予測結果は、実機に対し、測定箇所7点の平均測定誤差が0.74%程度で納まることが確認された。   And FIG. 11 is the result of having compared the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment in each measurement location, and the measurement result of an actual machine, From this result, the deformation | transformation at the time of manufacture of the sanitary ware of this embodiment is carried out. As a result of the prediction using the prediction method, it was confirmed that the average measurement error at the seven measurement points was about 0.74% with respect to the actual machine.

したがって、本実施形態の衛生陶器の製造時の変形予測方法によれば、乾燥工程で、上記のように第1試験、第2試験、第3試験に基づいて係数の同定を行い、変形予測を行うことによって、高精度で優れた変形予測を行うことが可能になる。   Therefore, according to the deformation prediction method at the time of manufacturing the sanitary ware of the present embodiment, the coefficient is identified based on the first test, the second test, and the third test as described above in the drying process, and the deformation prediction is performed. This makes it possible to perform excellent deformation prediction with high accuracy.

<焼成工程時の変形予測>
次に、本実施形態の焼成工程時の変形予測方法について説明する。
<Deformation prediction during firing process>
Next, a deformation prediction method during the firing process of the present embodiment will be described.

焼成工程では、加熱による急激な鰍密化によって乾燥工程後の製品がさらに約10%程度の収縮変形が生じる。また、製品の自重によるクリープ変形も大きいことから、その変形予測をさらに複雑化させるばかりでなく、製品内部の残留応力によって局所的に亀裂等の欠損が発生することもある。   In the baking process, the product after the drying process is further contracted by about 10% due to rapid densification by heating. Further, since the creep deformation due to the weight of the product is large, not only the deformation prediction is further complicated, but also a defect such as a crack may occur locally due to the residual stress inside the product.

これに対し、本実施形態では、焼成工程における製品の変形を数値的に予測する。このとき、材料の焼成工程における材料特性を再現可能な材料構成則とそのパラメータの同定手法を確立して予測を行うこととした。   On the other hand, in this embodiment, the deformation of the product in the baking process is numerically predicted. At this time, the material constitutive law capable of reproducing the material characteristics in the material firing step and the identification method of the parameters were established and predicted.

具体的には、乾燥工程とほぼ同様にして、焼成工程における変形を予測可能な構成則を構築する。   Specifically, a constitutive law capable of predicting deformation in the firing process is constructed in substantially the same manner as the drying process.

まず、焼結域における急激な収縮変形に対しては緻密化速度式を用いた非機械線形として扱い、有限変形理論の枠組みでクリープ構成則を定式化する。そして、STC試験(Stairway Thermal Cycle試験)を実施して焼結ひずみに関する材料パラメータを同定する。   First, rapid shrinkage deformation in the sintering zone is treated as non-mechanical linear using the densification rate equation, and the creep constitutive law is formulated in the framework of finite deformation theory. Then, an STC test (Stairway Thermal Cycle test) is performed to identify material parameters related to sintering strain.

次に、材料の弾性特性は、従来では行われていない試験体の3点曲げ試験を焼成過程で実行し、各温度域における得られた応力ひずみ曲線の接線から温度依存の弾性特性を決定する。   Next, as for the elastic properties of the material, a three-point bending test of a specimen that has not been performed conventionally is performed in the firing process, and the temperature-dependent elastic properties are determined from the tangents of the obtained stress-strain curves in each temperature range. .

さらに、熱膨張・収縮特性やクリープ特性はそれぞれ別々の試験を行い、メタヒューリスティクスによる最適化手法を用いてそれらの材料パラメータを決定する(パラメータを同定する)。   Furthermore, thermal expansion / contraction characteristics and creep characteristics are tested separately, and the material parameters are determined (identified parameters) using an optimization method based on metaheuristics.

[焼成工程における力学現象]
ここで、焼成工程における力学現象について説明する。
[Mechanical phenomena in the firing process]
Here, a mechanical phenomenon in the firing process will be described.

まず、図12に焼成工程における時間に対する温度と相対密度の変化を示す。なお、相対密度とは、現在の密度を焼成試験が完了した段階の密度で除することによって得られる密度の代替的な指標として用いられる無次元量である。   First, FIG. 12 shows changes in temperature and relative density with respect to time in the firing step. The relative density is a dimensionless quantity used as an alternative index of density obtained by dividing the current density by the density at the stage where the firing test is completed.

このとき、陶器は図中上部の矢印で示す3つの領域でそれぞれ異なる力学挙動を示す。   At this time, the pottery exhibits different dynamic behaviors in the three regions indicated by the arrows at the top of the figure.

第一の領域R1である焼成開始段階では温度増加に対して材料の熱膨張変形が生じし、膨張変形によって体積が増加する影響で密度が減少する。   In the firing start stage, which is the first region R1, thermal expansion deformation of the material occurs as the temperature increases, and the density decreases due to the effect of the volume increase due to expansion deformation.

第二の領域R2では高温状態の焼結域に到達し、材料の急激な収縮変形が生じる。これが材料の焼結現象であり、この領域で急激な轍密化が生じる。また同時に、この領域では高温状態であるためクリープ変形も支配的であり、全体として他の領域よりも非常に大きな変形となって現れる。   In the second region R2, the high temperature state of the sintered region is reached, and rapid shrinkage deformation of the material occurs. This is a material sintering phenomenon, and rapid densification occurs in this region. At the same time, creep deformation is dominant because it is in a high temperature state in this region, and as a whole, it appears as a much larger deformation than other regions.

その後、第三の領域R3に達すると焼結が終了し、温度の低下に伴い熱収縮変形が生ずるため密度が少しずつ上昇してゆく。   Thereafter, when reaching the third region R3, the sintering is completed, and heat shrinkage deformation occurs as the temperature decreases, so that the density gradually increases.

そして、本願発明者らは、このような焼成工程における材料(原料)の全体的な挙動を、弾性、クリープ、熱膨張(収縮)、焼結現象の4つの要因に分解して考えることを見出した。すなわち、セラミック材料の焼成工程における主な変形要因は、温度増加に対する急激な収縮変形特性とクリープ変形特性であり、これらの要因は時間と温度や密度変化に対して強い依存性を有していることを見出し、これに基づき、焼成工程における変形予測が行えると考えた。   The inventors of the present application have found that the overall behavior of the material (raw material) in such a firing process is considered to be decomposed into four factors of elasticity, creep, thermal expansion (shrinkage), and sintering phenomenon. It was. That is, the main deformation factors in the firing process of the ceramic material are rapid shrinkage deformation characteristics and creep deformation characteristics with respect to temperature increase, and these factors have strong dependence on time, temperature and density change. Based on this, it was thought that deformation prediction in the firing process could be performed.

[運動学的変数の設定]
これを実現するために、まず、本実施形態では、運動学的変数の設定を行う。
全変形勾配Fを次の式(9)のように乗算分解する。Fmiは非機械変形勾配、Fは機械変形勾配である。
[Setting kinematic variables]
In order to realize this, first, in this embodiment, kinematic variables are set.
The total deformation gradient F is multiplied and decomposed as in the following equation (9). F mi is a non-mechanical deformation gradient, and F m is a mechanical deformation gradient.

imは等方的な体積膨張として発展すると仮定し、式(10)のように定義する。ε、εはそれぞれ熱膨張ひずみと焼結ひずみである。 It is assumed that F im develops as isotropic volume expansion and is defined as in equation (10). ε t and ε s are thermal expansion strain and sintering strain, respectively.

次に、機械変形の発展を記述するために、式(11)のような機械変形速度テンソルdを弾性変形速度テンソルdとクリープ変形速度テンソルdvpに加算分解する。 Next, to describe the development of mechanical deformation, the addition degrades the elastic deformation rate tensor d e and creep deformation rate tensor d vp mechanical deformation rate tensor d m of Equation (11).

[相対密度]
次に、焼成工程における材料挙動はその密度変化に強く依存する。このため、本実施形態では、計測方向の長さがhのサンプルに対する熱機械分析(従来用いられていなかった熱機械分析:以下、TMAという)を行うことを前提として、そのような構成則の密度依存性を考慮するために相対密度を導入する。
[Relative density]
Next, the material behavior in the firing process strongly depends on the density change. For this reason, in this embodiment, on the premise that a thermomechanical analysis (thermomechanical analysis not conventionally used: hereinafter referred to as TMA) is performed on a sample having a measurement direction length of h, Relative density is introduced to consider density dependence.

質量密度として定義した焼成前段階、すなわち、初期配置の密度ρを参照して、焼成工程で連続的に変化する現配置の密度を、TMAに使用するサンプル長さから次の式(12)のように表す。ここで、Jはヤコビアンであり、焼成工程における変形に等方性を仮定すると、試験体試験前長さhと変位δhを用いて次の式(13)で算出される。 With reference to the pre-firing stage defined as mass density, ie, the initial arrangement density ρ s , the density of the current arrangement, which continuously changes in the firing process, is calculated from the sample length used for TMA by the following equation (12): It expresses like this. Here, J is a Jacobian, and is calculated by the following equation (13) using the pre-test specimen length h s and the displacement δh, assuming isotropic deformation in the firing step.

そして、式(13)を式(12)に代入すると密度が変位量の関数として次の式(14)で与えられる。   Then, when the equation (13) is substituted into the equation (12), the density is given by the following equation (14) as a function of the displacement amount.

一般に、材料構成則に密度の影響を考慮する際には、ひずみのような無次元量が望ましいため、次の式(15)で定義される相対密度ρrelを導入する。ρは焼成後の密度であり、試験終了後の室温環境下におけるサンプルの長さhに対して次の式(16)で算出する。 In general, when considering the influence of density on the material constitutive law, a dimensionless quantity such as strain is desirable, and therefore a relative density ρ rel defined by the following equation (15) is introduced. ρ f is the density after firing, and is calculated by the following equation (16) with respect to the length h f of the sample in the room temperature environment after the end of the test.

相対密度は式(15)に示すようにサンプルの計測軸方向の寸法変化に依存するため、温度の履歴(あるいはヒートカーブ)やその速度に間接的に影響されながら変化する。したがって、異なるヒートカーブや昇温速度のデータを用いる場合には毎回、相対密度を算出する必要がある。なお、試験終了後には相対密度は必ず100%となる。   Since the relative density depends on the dimensional change in the measurement axis direction of the sample as shown in Equation (15), it changes while being indirectly influenced by the temperature history (or heat curve) and its speed. Therefore, it is necessary to calculate the relative density every time when data of different heat curves and temperature rising rates are used. The relative density is always 100% after the test is completed.

[非機械変形]
非機械変形である熱膨張ひずみと焼結時間変化率との間には次の式(17)に示す比例関係が成り立つものとする。ここで、αは熱膨張係数である。また、熱膨張域と熱収縮域では熱膨張量が異なることを想定して、それぞれで異なる熱膨張係数を使用する。
[Non-mechanical deformation]
It is assumed that the proportional relationship shown in the following equation (17) holds between the thermal expansion strain, which is non-mechanical deformation, and the rate of change in sintering time. Here, α T is a thermal expansion coefficient. Further, assuming that the thermal expansion amount is different between the thermal expansion region and the thermal contraction region, different thermal expansion coefficients are used.

次に、焼結ひずみの時間変化率は、密度の相対的な時間変化率を意味する緻密化速度ρ(上に・)/ρを用いて次の式(18)のように表す。ここで、式(18)の負号は密度増加に対して焼結ひずみが収縮量として算出されることを意味する。そして、この緻密化速度には、次の式(19)のような関係式を用いる。ρ rel(T)は材料がある温度Tの等温環境下で最終的に落ち着く際の相対密度である終局相対密度、Ω(T)、n(T)は温度依存の材料パラメータである。 Next, the time change rate of the sintering strain is expressed by the following equation (18) using the densification rate ρ (upward) / ρ which means the relative time change rate of the density. Here, the negative sign in equation (18) means that the sintering strain is calculated as the shrinkage with respect to the density increase. For this densification rate, the following relational expression (19) is used. ρ rel (T) is an ultimate relative density which is a relative density when the material finally settles in an isothermal environment at a certain temperature T, and Ω (T) and n (T) are temperature-dependent material parameters.

式(19)を式(18)に代入することで、最終的に焼結ひずみの時開発展則は次の式(20)となる。   By substituting equation (19) into equation (18), the final development law at the time of sintering strain becomes the following equation (20).

なお、本実施形態では、焼結変形は焼結域のみで発展する量であり熱膨張変形に対して支配的であることから、焼結域では焼結ひずみの発展のみを考慮し、熱膨張域と熱収縮域では熱膨張ひずみ発展のみを考慮することにした。   In this embodiment, since the sintering deformation is an amount that develops only in the sintering region and is dominant with respect to the thermal expansion deformation, only the development of the sintering strain is considered in the sintering region, and the thermal expansion is considered. In the region and heat shrinkage region, only the thermal expansion strain development was considered.

[機械変形]
次に、機械変形において、弾性変形速度テンソルdに対し応力速度σ(上に▽)=σ(上に・)−wσ+σwを用いた亜弾性構成則の式(21)を用いる。
[Mechanical deformation]
Next, the mechanical deformation, stress rate sigma to elastic deformation rate tensor d e (above ▽) = sigma Equation nitrous elastic constitutive law with -wσ + σw (· above) (21) is used.

ここで、焼成工程では等方的な弾性変形を仮定するが温度に依存して剛性が変化することを考慮するため、ヤング率に対して温度依存性を付与した。ただし、ポアソン比は定数として与える。   Here, in the firing process, isotropic elastic deformation is assumed, but in order to take into account that the stiffness changes depending on the temperature, temperature dependence is imparted to the Young's modulus. However, the Poisson's ratio is given as a constant.

一方、クリープ変形速度の時間発展はクリープ乗数γ(上に・)vpと流れベクトルN=s/||s||を用いた次の式(22)の流れ則に従うものとする。   On the other hand, the time evolution of the creep deformation rate is assumed to follow the flow law of the following equation (22) using the creep multiplier γ (upper) vp and the flow vector N = s / || s ||.

ここで、s は偏差応力である。また、乾燥工程と同様、このクリープ乗数には金属材料に対して一般的に用いられている初期・定常クリープ現象を表現可能なNorton則を採用し、von−Misesの相当応力σeq=√(3/2×s:s : s)、時間t、温度T、相対密度ρrelの依存性をすべて加味した次の式(23)を用いる。 Where s is the deviation stress. Similarly to the drying step, Norton's law that can express the initial and steady creep phenomenon generally used for metal materials is adopted for this creep multiplier, and von-Miss equivalent stress σ eq = √ ( 3/2 × s: s: s), time t, temperature T, and the following equation (23) that takes into account all the dependencies of relative density ρ rel are used.

ここで、C、C、C、C、T、Wはそれぞれクリープパラメータ(係数)である。温度項にはクリープ変形が生じ始める基準温度T以降の高温域で支配的にクリープが進展することを考慮して双曲線正接関数を用いた。また、相対密度項にはArrhenius則の相対密度項を転用した。 Here, C 1 , C 2 , C 3 , C 4 , T 0 , and W are creep parameters (coefficients), respectively. A hyperbolic tangent function was used as the temperature term in consideration of the fact that creep progresses predominantly in a high temperature range after the reference temperature T 0 where creep deformation starts to occur. Moreover, the relative density term of Arrhenius rule was diverted to the relative density term.

[非機械変形に関する材料パラメータの同定]
次に、非機械変形に関する材料パラメータの同定について説明する。
[Identification of material parameters for non-mechanical deformation]
Next, identification of material parameters relating to non-mechanical deformation will be described.

[焼結ひずみの時間発展則]
焼結ひずみの時間発展則に関するパラメータは、STC試験(特殊な焼成試験)から同定した。
[Time evolution of sintering strain]
Parameters related to the time evolution law of the sintering strain were identified from the STC test (special firing test).

STC試験の方法は、焼結域において一定の間隔で等温状態を保ちながら温度を階段状に変化させるものである。このような焼成試験では、線形的な温度変化を設定する場合に比べて材料の瞬間的な等温状態や温度上昇の影響が緩和される。このため、材料内部の特異な温度摂動が計測に反映されにくく、焼結時の精確な密度変化を計測可能であり、焼結ひずみの時間発展則の関数形を同定するための情報量が少なくて済むといった利点がある。   The STC test method changes the temperature stepwise while maintaining an isothermal state at regular intervals in the sintering zone. In such a firing test, the effects of an instantaneous isothermal state of the material and a temperature increase are alleviated as compared with the case where a linear temperature change is set. For this reason, unique temperature perturbations inside the material are difficult to be reflected in the measurement, accurate density changes during sintering can be measured, and there is little information to identify the functional form of the time evolution law of sintering strain There is an advantage that it can be done.

そして、本実施形態では、BC泥漿を石膏型を用いて成形・乾燥した後、寸法が高さ 20mm×縦4.5mm×横4.5mmの試験体10を制作し、試験体10の上面に荷重98Nの負荷を与えながらTMA試験装置を用いてSTC試験を行った。   And in this embodiment, after shaping | molding and drying BC slurry using a gypsum mold, the test body 10 whose dimensions are 20 mm in height x 4.5 mm in length x 4.5 mm in width is produced, and on the upper surface of the test body 10 An STC test was performed using a TMA test apparatus while applying a load of 98 N.

図13に、ヒートカーブと得られた軸方向変位量を示す。
焼結域の温度水準900degまでは約94minで線形的に加熱した後、図中で示すように温度900degから30deg毎に10minの等温域を設けてTMA試験を行った。これにより得られた試験体高さ方向の軸方向変位量は図中の破線で示した。
FIG. 13 shows the heat curve and the obtained axial displacement.
After linearly heating at about 94 min up to a temperature level of 900 deg in the sintering zone, a TMA test was performed with an isothermal zone of 10 min every 30 deg from temperature 900 deg as shown in the figure. The amount of axial displacement in the height direction of the specimen obtained in this way is indicated by a broken line in the figure.

以降、これを用いて緻密化速度のパラメータをそれぞれ決定していく。   Thereafter, the parameter of the densification rate is determined using this.

まず、この焼成試験から得られた試験体軸方向変位から緻密化速度を算出するために、焼結ひずみ速度が試験体の軸方向ひずみεzの時間変化率と等価であると仮定し、次の式(24)とする。軸方向ひずみは次の式(25)の対数ひずみで定義する。   First, in order to calculate the densification rate from the axial displacement of the specimen obtained from this firing test, it is assumed that the sintering strain rate is equivalent to the time change rate of the axial strain εz of the specimen. It is set as Formula (24). The axial strain is defined by the logarithmic strain of the following equation (25).

そして、この式(25)と図13から時間増分Δtごとの時刻でのεzを定めて前進差分によりε(上に・)s=ε(上に・)zを算出すれば、式(18)、式(26)より各時刻の緻密化速度が算定される。   Then, if εz at the time for each time increment Δt is determined from this equation (25) and FIG. 13 and ε (up) s = ε (up) ・ z is calculated from the forward difference, equation (18) The densification rate at each time is calculated from Equation (26).

このようにして算出した焼結域の緻密化速度と相対密度の関係を図14に示す。   FIG. 14 shows the relationship between the densification rate of the sintered area calculated in this way and the relative density.

このように求めた図14から、各等温工程において緻密化速度が低下している様子を確認することができる。そして、本実施形態では、それぞれの低下曲線を相対密度軸方向へ引き伸ばして交点(図14中の破線参照)、すなわち、式(18)における終局相対密度の値を求める。   From FIG. 14 obtained in this way, it can be confirmed that the densification rate is decreasing in each isothermal step. In the present embodiment, each decrease curve is stretched in the direction of the relative density axis, and the intersection (see the broken line in FIG. 14), that is, the value of the ultimate relative density in Expression (18) is obtained.

こうして求めた終局相対密度と各等温工程における設定温度の関係を図15に示す。   FIG. 15 shows the relationship between the ultimate relative density thus determined and the set temperature in each isothermal process.

焼結による緻密化が原因で、図15では1000deg以降で終局相対密度が急激に増大する様子が確認できる。最小二乗法を用い、この関係を双曲線正接関数で近似すると次の式(27)のようになる。なお、式(27)中のa、b、c、dは定数である。   Due to densification by sintering, it can be seen in FIG. 15 that the ultimate relative density increases rapidly after 1000 deg. When this relation is approximated by a hyperbolic tangent function using the method of least squares, the following equation (27) is obtained. In the formula (27), a, b, c, and d are constants.

次に、焼結ひずみの時間発展則の式(18)における残り二つのパラメータn(T)、Ω(T)を同定するために、次の式(28)のように、焼結ひずみの時間発展則の式(18)の両辺に絶対値と自然対数をとる。   Next, in order to identify the remaining two parameters n (T) and Ω (T) in the equation (18) of the time evolution law of sintering strain, the time of sintering strain is expressed as in the following equation (28). The absolute value and the natural logarithm are taken on both sides of the equation (18) of the evolution law.

そして、式(27)、式(28)(図14、図15)を用いて各温度域におけるln[ρ(T)−ρrel(δh)]とln[|ε(上に・)s(T,δh)|]を算出し、これらの関係を表すと図16のようになる。 Then, using equations (27) and (28) (FIGS. 14 and 15), ln [ρ (T) −ρ rel (δh)] and ln [| ε (above) s in each temperature range. FIG. 16 shows the relationship between (T, δh) |] calculated.

式(28)におけるΩ(T)/3とn(T)は、それぞれこの図の切片と傾きであるため、各温度域のプロットを線形近似してこれらを算出する。得られたn(T)とΩ(T)を図17に示す。このプロット点を用いて最小二乗法により2つの関数形を式(29)、式(30)として同定した。
なお、式(29)、式(30)中のa、b、c、d、e、f、g、h、i、j、k、l、m、n、p、q、r、u、v、w、x、y、zは定数である。
Since Ω (T) / 3 and n (T) in equation (28) are the intercept and slope of this figure, respectively, they are calculated by linearly approximating plots in each temperature range. The obtained n (T) and Ω (T) are shown in FIG. Using this plot point, two function forms were identified as Equation (29) and Equation (30) by the method of least squares.
It should be noted that a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, u, v in formula (29) and formula (30). , W, x, y, z are constants.

これにより、焼結ひずみの時間発展則に関する全てのパラメータ(係数)を同定したことになる(同定することができる)。  As a result, all parameters (coefficients) relating to the time evolution law of sintering strain have been identified (can be identified).

[熱膨張係数]
次に、熱膨張係数は、メタヒューリスティクスの一手法である差分進化法を用いた数値解析によって同定すればよい。
[Thermal expansion coefficient]
Next, the thermal expansion coefficient may be identified by numerical analysis using a differential evolution method that is one method of metaheuristics.

例えば、まず異なる同定対象のパラメータを有する各粒子に対して実験と同じ条件でCAE(有限要素解析)を行う。算出された物理量を実験値と比較することによって誤差の計算を行い、誤差が最小となるような粒子を探す。   For example, first, CAE (finite element analysis) is performed on each particle having different identification target parameters under the same conditions as in the experiment. An error is calculated by comparing the calculated physical quantity with an experimental value, and a particle that minimizes the error is searched for.

そして、熱膨張係数については TMA試験装置を用いた無載荷状態での試験体の焼成試験の結果を用いて同定する。   And about a thermal expansion coefficient, it identifies using the result of the baking test of the test body in a no-load state using a TMA test device.

したがって、本実施形態の衛生陶器の製造時の変形予測方法においては、乾燥工程で、上記のように第1試験、第2試験、第3試験に基づいて係数の同定を行い、変形予測を行うことによって、非常に優れた変形予測を行うことが可能になる。   Therefore, in the deformation prediction method at the time of manufacturing the sanitary ware according to the present embodiment, the coefficient is identified based on the first test, the second test, and the third test in the drying process, and the deformation is predicted. This makes it possible to perform very good deformation prediction.

また、本実施形態の衛生陶器の製造時の変形予測方法においては、焼成工程で、材料(原料)の全体的な挙動を、弾性、クリープ、熱膨張(収縮)、焼結現象の4つの要因に分解して考えて変形予測を行うことによって、非常に優れた変形予測を行うことが可能になる。   Moreover, in the deformation | transformation prediction method at the time of manufacture of the sanitary ware of this embodiment, four factors of elasticity, creep, thermal expansion (shrinkage), and a sintering phenomenon are considered as the overall behavior of the material (raw material) in the firing process. It is possible to perform very good deformation prediction by performing the deformation prediction considering the above.

そして、本実施形態の衛生陶器の製造時の変形予測方法によれば、例えば水洗大便器を製造する場合など、従来のように経験などに基づく熟練技術者の技量に頼って変形を予測し、修正/調整を行う場合と比較し、6か月以上もの長期の製造期間短縮(歩掛り削減)を図ることが可能になる。   And according to the deformation prediction method at the time of manufacturing the sanitary ware of the present embodiment, for example, when manufacturing a flush toilet, predict deformation according to the skill of a skilled engineer based on experience as in the past, Compared to the case of correction / adjustment, it is possible to shorten the manufacturing period (yield reduction) for a long period of 6 months or more.

以上、本発明に係る衛生陶器の製造時の変形予測方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one embodiment of the deformation | transformation prediction method at the time of manufacture of the sanitary ware concerning this invention was described, this invention is not limited to said one embodiment, It can change suitably in the range which does not deviate from the meaning. It is.

1 レーザーセンサ
2 電子秤
3 3点曲げ試験装置
4 ロードセル
5 レーザーセンサ
10 試験体
DESCRIPTION OF SYMBOLS 1 Laser sensor 2 Electronic scale 3 Three-point bending test apparatus 4 Load cell 5 Laser sensor 10 Test body

Claims (5)

乾燥工程と焼成工程を経て製造される衛生陶器の製造時の変形を予測する方法であって、
乾燥工程に対する変形予測では、衛生陶器の原料の試験体を用いて時間経過と収縮量の関係を取得する第1試験と、衛生陶器の原料の試験体の含水率毎の弾性率を求める第2試験と、衛生陶器の原料の試験体の含水率毎のクリープを求める第3試験とを行い、
前記第1試験と前記第2試験と前記第3試験の結果を基にし、熱伝導解析を用いたシミュレーションを行って水分変化と非機械ひずみの収縮率の関係を求めるとともに、シミュレーションを行って水分変化と粘塑性材料による非機械ひずみのクリープ変形及び弾性変形の関係を求め、これらシミュレーション結果から水分変化に基づく物性変化を考慮した乾燥収縮・変形の経時変化を求め、乾燥工程完了時の形状を特定するようにしたことを特徴とする衛生陶器の製造時の変形予測方法。
A method for predicting deformation during the manufacture of sanitary ware manufactured through a drying process and a firing process,
In the deformation prediction for the drying process, the first test for obtaining the relationship between the passage of time and the shrinkage amount using the sanitary ware raw material specimen, and the second for obtaining the elastic modulus for each moisture content of the sanitary ware raw material specimen. The test and the third test to find the creep for each moisture content of the sanitary ware raw material specimen,
Based on the results of the first test, the second test, and the third test, a simulation using heat conduction analysis is performed to obtain the relationship between the moisture change and the non-mechanical strain shrinkage rate, and the simulation is performed to determine the moisture content. The relationship between the change and the creep deformation and elastic deformation of non-mechanical strain due to the viscoplastic material is obtained. A method for predicting deformation during the manufacture of sanitary ware characterized by being specified.
請求項1記載の衛生陶器の製造時の変形予測方法において、
前記第2試験の結果から、下記の式(1)を用いて乾燥工程時の水分量に依存した弾性特性を同定する衛生陶器の製造時の変形予測方法。
ここで、式(1)は水分濃度依存の弾性率構成則であり、E(γ)は水分量依存の弾性率、γは水分濃度、H、W、Eは係数である。
In the deformation prediction method at the time of manufacture of the sanitary ware according to claim 1,
A method for predicting deformation during the manufacture of sanitary ware, wherein elastic properties depending on the amount of water during the drying process are identified from the results of the second test using the following formula (1).
Here, the equation (1) is a moisture concentration-dependent elastic modulus constitutive law, E (γ m ) is a moisture content-dependent elastic modulus, γ m is a water concentration, and H E , W E , and E C are coefficients. .
請求項1または請求項2に記載の衛生陶器の製造時の変形予測方法において、
前記第3試験の結果から、下記の式(2)を用いて水分濃度依存のクリープ特性を求めるとともに、同定解析を行って式(2)の係数を同定する衛生陶器の製造時の変形予測方法。
ここで、γは水分濃度、Δγはクリープひずみ、σeqはvon−Misesの相当応力、tは時間、C、C、C、XA、f、W、γは係数である。
In the deformation | transformation prediction method at the time of manufacture of the sanitary ware of Claim 1 or Claim 2,
From the results of the third test, the creep characteristics depending on the moisture concentration are obtained using the following formula (2), and the deformation prediction method at the time of manufacturing sanitary ware is performed by performing identification analysis to identify the coefficient of formula (2) .
Here, γ m is moisture concentration, Δγ is creep strain, σ eq is von Mises equivalent stress, t is time, C 1 , C 2 , C 3 , XA, f c , W c , and γ c are coefficients. is there.
請求項1から請求項3のいずれか一項に記載の衛生陶器の製造時の変形予測方法において、
焼成工程に対する変形予測では、乾燥工程後の原料の焼成工程での挙動を弾性変形とクリープ変形と熱膨張/収縮変形と焼結現象に伴なう変形の4つの変形要因に分け、各変形要因の時間と温度と原料の密度変化の関係を試験によって求め、該試験結果を基にしてシミュレーションを行い、原料の密度変化を考慮した変形の経時変化を求め、焼成工程完了時の形状を特定するようにしたことを特徴とする衛生陶器の製造時の変形予測方法。
In the deformation prediction method at the time of manufacture of sanitary ware according to any one of claims 1 to 3,
In the deformation prediction for the firing process, the behavior of the raw material after the drying process in the firing process is divided into four deformation factors: elastic deformation, creep deformation, thermal expansion / contraction deformation, and deformation accompanying the sintering phenomenon. The relationship between the time, temperature, and density change of the raw material is obtained by testing, and simulation is performed based on the test result, the change with time of deformation considering the density change of the raw material is obtained, and the shape at the completion of the firing process is specified. A method for predicting deformation during the manufacture of sanitary ware characterized by the above.
請求項4記載の衛生陶器の製造時の変形予測方法において、
クリープ変形速度の時間発展を、クリープ乗数γ(上に・)vpと流れベクトルN=s/||s||を用いた下記の式(3)の流れ則に従って求め、クリープ乗数は、相当応力σeq、時間t、温度T、相対密度ρrelの依存性を加味した下記の式(4)を用いて求めるようにした衛生陶器の製造時の変形予測方法。
ここで、dvpはクリープ変形速度テンソル、s は偏差応力、δhは変位、C、C、C、C、T、Wはそれぞれクリープパラメータ(係数)、Tはクリープ変形が生じ始める基準温度である。
In the deformation | transformation prediction method at the time of manufacture of the sanitary ware of Claim 4,
The time evolution of the creep deformation rate is obtained in accordance with the flow law of the following equation (3) using the creep multiplier γ (upper) vp and the flow vector N = s / || s ||. A deformation prediction method at the time of manufacturing sanitary ware, which is obtained by using the following formula (4) in consideration of the dependence of σ eq , time t, temperature T, and relative density ρ rel .
Where d vp is the creep deformation rate tensor, s is the deviation stress, δh is the displacement, C 1 , C 2 , C 3 , C 4 , T 0 , W are the creep parameters (coefficients), and T 0 is the creep deformation. It is the reference temperature that begins to occur.
JP2016073726A 2016-03-31 2016-03-31 Deformation prediction method when manufacturing sanitary ware Active JP6571580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016073726A JP6571580B2 (en) 2016-03-31 2016-03-31 Deformation prediction method when manufacturing sanitary ware

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016073726A JP6571580B2 (en) 2016-03-31 2016-03-31 Deformation prediction method when manufacturing sanitary ware

Publications (2)

Publication Number Publication Date
JP2017186178A true JP2017186178A (en) 2017-10-12
JP6571580B2 JP6571580B2 (en) 2019-09-04

Family

ID=60044628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016073726A Active JP6571580B2 (en) 2016-03-31 2016-03-31 Deformation prediction method when manufacturing sanitary ware

Country Status (1)

Country Link
JP (1) JP6571580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931448A (en) * 2018-05-07 2018-12-04 华南理工大学 A kind of prediction technique of high chrome Material Thermodynamics response and spleen tissue extracts damage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931448A (en) * 2018-05-07 2018-12-04 华南理工大学 A kind of prediction technique of high chrome Material Thermodynamics response and spleen tissue extracts damage
CN108931448B (en) * 2018-05-07 2021-08-10 华南理工大学 Prediction method for thermodynamic response and fatigue-creep damage of high-chromium steel material

Also Published As

Publication number Publication date
JP6571580B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
Feng et al. Hygric properties of porous building materials (III): Impact factors and data processing methods of the capillary absorption test
Malag et al. Problems determining of the mechanical properties of metallic materials from the tensile test in the aspect of numerical calculations of the technological processes
JP6345183B2 (en) A method for identifying time-delayed changes in temperature-dependent or stress-dependent physical quantities of glass or glass-ceramics
Khalili et al. Numerical simulation of drying ceramic using finite element and machine vision
CN109030197A (en) A kind of concrete fractional order compression strength model considering warm and humid coupling
CN110702886A (en) Method for inverting parameters of mass concrete material
Zach et al. Technology of concrete with low generation of hydration heat
Hasatani et al. -VISCOELASTIC STRAIN-STRESS AND HEAT/MOISTURE TRANSFER
de Miranda et al. Ceramic sanitary wares: Prediction of the deformed shape after the production process
JP6571580B2 (en) Deformation prediction method when manufacturing sanitary ware
CN110705131B (en) Method for predicting service life of mechanical component based on high cycle fatigue of machined surface layer
Vinkler et al. Drying concrete: experimental and numerical modeling
Zhou et al. Internal relative humidity distribution in concrete considering self-desiccation at early ages
Zhang et al. Characterization of moisture diffusion in cured concrete slabs at early ages
CN112784407B (en) Cementing material temperature stress calculation method considering asphalt thermal reversible aging phenomenon
JP2006010420A (en) Estimation method of expansion stress of expansive concrete
Liewald et al. New criterion for prediction of the wrinkle formation in deep drawing process
Korniliev et al. Modeling and analysis of the efficiency of the convective drying of capillary-porous bodies with ultrasound
Hwang et al. Determination of the flow stress and thermal properties of ceramic powder feedstock in ceramic injection molding
JP3881759B2 (en) Method for simulating ceramic manufacturing process, and method for designing ceramic member using the same
Matsubara et al. A set of constitutive functions for dried body to predict entire deformation process of ceramic products during firing
Deniz et al. Prediction of elastic moduli development of cement mortars using early age measurements
Bene et al. Numerical modeling and experimental characterization of the pyroplasticity in ceramic materials during sintering
JP7438753B2 (en) Generation device, generation system, control method for generation device, ceramic product manufacturing system, and ceramic product manufacturing method
JP7290564B2 (en) Shrinkage rate prediction device, shrinkage rate prediction system, shrinkage rate prediction device control method, ceramic product manufacturing method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6571580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350