JP2017183164A - Manufacturing method for reinforcement type electrolyte membrane - Google Patents

Manufacturing method for reinforcement type electrolyte membrane Download PDF

Info

Publication number
JP2017183164A
JP2017183164A JP2016070985A JP2016070985A JP2017183164A JP 2017183164 A JP2017183164 A JP 2017183164A JP 2016070985 A JP2016070985 A JP 2016070985A JP 2016070985 A JP2016070985 A JP 2016070985A JP 2017183164 A JP2017183164 A JP 2017183164A
Authority
JP
Japan
Prior art keywords
base material
reinforcing layer
electrolyte
composite film
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016070985A
Other languages
Japanese (ja)
Inventor
角谷 聡
Satoshi Sumiya
聡 角谷
慎也 竹下
Shinya Takeshita
慎也 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016070985A priority Critical patent/JP2017183164A/en
Publication of JP2017183164A publication Critical patent/JP2017183164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce intensity gradient relaying on its direction in reinforcement type electrolyte membrane.SOLUTION: A manufacturing method for a reinforcement type electrolyte membrane comprises: (a) a step in which a first composite membrane in which a fist reinforcement layer base material is in contact with one face of a first electrolyte base material and a second composite membrane in which a second reinforcement base material is in contact with one face of a second electrolyte base material are bonded such that the first reinforcement layer base material and the second reinforcement layer base material are in contact with each other; and (b) a step in which the first reinforcement layer base material is impregnated with the first electrolyte base material in the first composite membrane and the second reinforcement layer base material is impregnated with the second electrolyte base bacterial in the second composite membrane. The first reinforcement layer base material and the second reinforcement layer base material respectively have maximum elastic modulus directions. The step (a) includes the step of bonding the first composite membrane and the second composite membrane such that the maximum elastic modulus direction of the first reinforcement layer base material and the maximum elastic modulus direction of the second reinforcement layer base material intersect each other.SELECTED DRAWING: Figure 2

Description

本発明は、補強型電解質膜の製造方法に関する。   The present invention relates to a method for producing a reinforced electrolyte membrane.

燃料電池に用いられる電解質膜は、燃料電池内部の湿潤状態に応じて膨張または収縮を繰り返すことにより、寸法が大きく変化する。また、燃料電池の発電と停止とを繰り返すことにより、電解質膜が劣化し、強度が低下するおそれがある。そのため、電解質膜と平行に多孔質な補強層を設けた構成の補強型電解質膜が知られている。補強型電解質膜の補強層として、吸湿および吸水しない材料、例えばポリテトラフルオロエチレン(PTFE)を用いることによって、電解質膜の膨張または収縮による寸法変化を緩和でき、電解質膜の寸法安定性および機械的強度の向上を図ることができる。補強型電解質膜の製造工程において、電解質膜や補強層の帯状部材を搬送方向に沿って搬送する際に、かかる帯状部材に搬送方向の引張応力が付与されることにより、幅方向に収縮変形してしまう、いわゆるネックインが生じる場合がある。ネックインが生じると、帯状部材の強度の低下や搬送方向と幅方向の強度比が所望した値から外れてしまうことにより、補強型電解質膜や、それを用いた燃料電池の耐久性が低下してしまうおそれがある。特許文献1には、補強型電解質膜の製造方法として、ネックインの発生を抑制するために補強層の帯状部材の表面に帯状のバックシートを配置して搬送し、搬送中の電解質膜や補強層を保護する技術が開示されている。   The electrolyte membrane used in the fuel cell changes greatly in size by repeatedly expanding or contracting according to the wet state inside the fuel cell. Further, by repeatedly generating and stopping the fuel cell, the electrolyte membrane may deteriorate and the strength may decrease. Therefore, a reinforced electrolyte membrane having a configuration in which a porous reinforcing layer is provided in parallel with the electrolyte membrane is known. By using a material that does not absorb moisture or absorb water, such as polytetrafluoroethylene (PTFE), as a reinforcing layer of the reinforced electrolyte membrane, the dimensional change due to expansion or contraction of the electrolyte membrane can be alleviated, and the dimensional stability and mechanical properties of the electrolyte membrane can be reduced. The strength can be improved. In the manufacturing process of a reinforced electrolyte membrane, when the strip member of the electrolyte membrane or the reinforcing layer is transported along the transport direction, the strip member is contracted and deformed in the width direction by applying a tensile stress in the transport direction. So-called neck-in may occur. When neck-in occurs, the strength of the band-shaped member decreases and the strength ratio between the transport direction and the width direction deviates from the desired value, thereby reducing the durability of the reinforced electrolyte membrane and the fuel cell using the same. There is a risk that. In Patent Document 1, as a method for manufacturing a reinforced electrolyte membrane, in order to suppress the occurrence of neck-in, a belt-like back sheet is disposed on the surface of a belt-like member of a reinforcing layer and conveyed, and the electrolyte membrane or reinforcement being conveyed is conveyed. Techniques for protecting the layers are disclosed.

特開2014−229433号公報JP 2014-229433 A

一般に、補強型電解質膜の製造工程において、補強層の基となる帯状部材は、搬送方向および幅方向へそれぞれ延伸が行われる。この補強層の基となる帯状部材は、その特性上、延伸する方向に強度が増す。しかし、搬送方向や幅方向といった延伸される方向とは異なる方向には、強度の増加が図られないため、補強型電解質膜の強度特性として、方向に依存する強度勾配が生じ得る。このような強度勾配が生じた場合、膨張および収縮等による電解質膜の寸法変化が発生した際に、強度の低い方向(一般には延伸方向とは異なる方向)に電解質膜の裂けなどの損傷が生じ、耐久性が低下するという問題がある。そこで、帯状部材の搬送制御(延伸制御)によって様々な方向の強度を増加させて強度勾配の低減を図った場合、複雑な搬送制御が必要となるために製造装置が高額となり、補強型電解質膜の製造コストが増大するという問題がある。このため、補強型電解質膜における方向に依存する強度勾配を低減しつつ、補強型電解質膜の製造コストの増大を抑制可能な技術が望まれている。   Generally, in the manufacturing process of the reinforced electrolyte membrane, the band-shaped member that is the base of the reinforcing layer is stretched in the transport direction and the width direction, respectively. Due to the characteristics of the belt-like member that is the basis of the reinforcing layer, the strength increases in the extending direction. However, since the strength cannot be increased in a direction different from the extending direction, such as the transport direction and the width direction, a strength gradient depending on the direction can occur as the strength characteristic of the reinforced electrolyte membrane. When such a strength gradient occurs, damage such as tearing of the electrolyte membrane occurs in the direction of lower strength (generally different from the stretching direction) when a dimensional change of the electrolyte membrane occurs due to expansion or contraction. There is a problem that durability is lowered. Therefore, when the strength gradient in various directions is increased by reducing the strength gradient in the belt-shaped member conveyance control (stretching control), complicated conveyance control is required, so the manufacturing apparatus becomes expensive and the reinforced electrolyte membrane There is a problem that the manufacturing cost of the device increases. For this reason, there is a demand for a technique that can suppress an increase in the manufacturing cost of the reinforced electrolyte membrane while reducing the strength gradient depending on the direction in the reinforced electrolyte membrane.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一実施形態によれば、補強型電解質膜の製造方法が提供される。この補強型電解質膜の製造方法は、補強層と前記補強層を挟む一対の電解質層とを有する補強型電解質膜の製造方法であって、(a)一方の前記電解質層の基材である第1の電解質基材の一方の面に、前記補強層の基材であって前記補強層よりも厚さが小さな第1の補強層基材が接している第1の複合膜と、他方の前記電解質層の基材である第2の電解質基材の一方の面に、前記補強層の基材であって前記補強層よりも厚さが小さな第2の補強層基材が接している第2の複合膜と、を、前記第1の補強層基材と前記第2の補強層基材とが接するように貼り合わせる工程と;(b)前記第1の複合膜において、前記第1の電解質基材を前記第1の補強層基材に含浸させ、前記第2の複合膜において、前記第2の電解質基材を前記第2の補強層基材に含浸させる工程と;を備え;前記第1の補強層基材と前記第2の補強層基材とは、それぞれ引張弾性率の大きさが他の方向に比べて大きな弾性率最大方向を有し;前記工程(a)は、前記第1の補強層基材の前記弾性率最大方向と前記第2の補強層基材の前記弾性率最大方向とが互いに交わるように、前記第1の複合膜と前記第2の複合膜とを貼り合わせる工程を含む。   (1) According to one embodiment of the present invention, a method for producing a reinforced electrolyte membrane is provided. This method of manufacturing a reinforced electrolyte membrane is a method of manufacturing a reinforced electrolyte membrane having a reinforced layer and a pair of electrolyte layers sandwiching the reinforced layer, wherein (a) a base material for one of the electrolyte layers. A first composite membrane in which a first reinforcing layer base material that is a base material of the reinforcing layer and is smaller in thickness than the reinforcing layer is in contact with one surface of one electrolyte base material; A second reinforcing layer base material that is a base material of the reinforcing layer and has a smaller thickness than the reinforcing layer is in contact with one surface of a second electrolyte base material that is a base material of the electrolyte layer. Bonding the composite film with the first reinforcing layer base material and the second reinforcing layer base material in contact with each other; (b) in the first composite film, the first electrolyte A base material is impregnated into the first reinforcing layer base material, and in the second composite film, the second electrolyte base material is replaced with the second reinforcing layer base material. The first reinforcing layer base material and the second reinforcing layer base material each have a maximum elastic modulus direction in which the tensile elastic modulus is larger than the other directions. And the step (a) includes the first composite so that the maximum elastic modulus direction of the first reinforcing layer base material and the maximum elastic modulus direction of the second reinforcing layer base material intersect each other. A step of bonding the film and the second composite film together.

この形態の補強型電解質膜の製造方法によれば、第1の複合膜と第2の複合膜とを、第1の補強層基材と第2の補強層基材とを接するように貼り合わせる工程(a)において、第1の補強層基材の弾性率最大方向と第2の補強層基材の弾性率最大方向とが互いに交わるように貼り合わせるので、補強層において弾性率が最大となる方向が一方向に限定されることを抑制でき、補強型電解質膜における方向に依存する強度勾配を低減できる。加えて、第1の補強層基材と第2の補強層基材とを貼り合わせる際の方向を制御することにより、方向に依存する強度勾配を容易に低減できるので、補強型電解質膜の製造コストの増大を抑制できる。   According to the method for manufacturing a reinforced electrolyte membrane of this embodiment, the first composite membrane and the second composite membrane are bonded together so that the first reinforcement layer substrate and the second reinforcement layer substrate are in contact with each other. In the step (a), since the maximum elastic modulus direction of the first reinforcing layer substrate and the maximum elastic modulus direction of the second reinforcing layer substrate are bonded to each other, the elastic modulus is maximized in the reinforcing layer. The direction can be suppressed from being limited to one direction, and the strength gradient depending on the direction in the reinforced electrolyte membrane can be reduced. In addition, since the strength gradient depending on the direction can be easily reduced by controlling the direction when the first reinforcing layer base material and the second reinforcing layer base material are bonded together, it is possible to manufacture the reinforced electrolyte membrane. Increase in cost can be suppressed.

本発明は、種々の形態で実現することも可能である。例えば、補強型電解質膜を備える膜電極接合体、その膜電極接合体を備える燃料電池、その燃料電池を搭載した車両、膜電極接合体の製造方法、燃料電池の製造方法、車両の製造方法の形態においても実現できる。   The present invention can be realized in various forms. For example, a membrane electrode assembly including a reinforced electrolyte membrane, a fuel cell including the membrane electrode assembly, a vehicle equipped with the fuel cell, a method of manufacturing a membrane electrode assembly, a method of manufacturing a fuel cell, and a method of manufacturing a vehicle It can also be realized in the form.

本発明の一実施形態としての補強型電解質膜の製造方法により製造された補強型電解質膜を示す斜視図である。1 is a perspective view showing a reinforced electrolyte membrane manufactured by a method for manufacturing a reinforced electrolyte membrane as one embodiment of the present invention. FIG. 補強型電解質膜60の製造方法を示す工程図である。6 is a process diagram illustrating a method for manufacturing a reinforced electrolyte membrane 60. FIG. 工程P115の実行後の第1の複合膜141と第2の複合膜142を模式的に示す説明図である。It is explanatory drawing which shows typically the 1st composite film 141 and the 2nd composite film 142 after execution of process P115. 工程P120の実行後の第1の複合膜と第2の複合膜を模式的に示す説明図である。It is explanatory drawing which shows typically the 1st composite film and 2nd composite film after execution of process P120. 工程P125の実行時の第1の複合膜41と第2の複合膜42の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the 1st composite film 41 and the 2nd composite film 42 at the time of execution of process P125. 工程P130の実行後の補強型電解質膜前駆体50を模式的に示す説明図である。It is explanatory drawing which shows typically the reinforcement type electrolyte membrane precursor 50 after execution of process P130. 第1実施例の試料1および第1比較例の試料2の寸法変化率を測定した結果を示す説明図である。It is explanatory drawing which shows the result of having measured the dimensional change rate of the sample 1 of 1st Example, and the sample 2 of a 1st comparative example. 第2実施例の試料3および比較例の試料4を用いた補強型電解質膜の耐久性を評価した結果を示す説明図である。It is explanatory drawing which shows the result of having evaluated the durability of the reinforcement type electrolyte membrane using the sample 3 of 2nd Example, and the sample 4 of a comparative example.

A.実施形態:
A1.補強型電解質膜の構成:
図1は、本発明の一実施形態としての補強型電解質膜の製造方法により製造された補強型電解質膜を示す斜視図である。補強型電解質膜60は、補強層20と、補強層20を挟む一対の電解質層(第1の電解質層11および第2の電解質層12)と、が一体化した構成を有する。補強型電解質膜60は、例えば、車両に搭載される燃料電池の膜電極接合体に用いられる。補強層20は、電解質膜の裂けや損傷を抑制するために電解質膜に組み込まれている。補強層20は、ポリテトラフルオロエチレン(PTFE)等を延伸して形成される。補強層20は、多孔質体であり、細孔を有する。
A. Embodiment:
A1. Configuration of reinforced electrolyte membrane:
FIG. 1 is a perspective view showing a reinforced electrolyte membrane manufactured by a method for manufacturing a reinforced electrolyte membrane according to an embodiment of the present invention. The reinforced electrolyte membrane 60 has a configuration in which the reinforcing layer 20 and a pair of electrolyte layers (the first electrolyte layer 11 and the second electrolyte layer 12) sandwiching the reinforcing layer 20 are integrated. The reinforced electrolyte membrane 60 is used for, for example, a membrane electrode assembly of a fuel cell mounted on a vehicle. The reinforcing layer 20 is incorporated in the electrolyte membrane in order to suppress tearing and damage of the electrolyte membrane. The reinforcing layer 20 is formed by stretching polytetrafluoroethylene (PTFE) or the like. The reinforcing layer 20 is a porous body and has pores.

第1の電解質層11は、補強層20の一方の面に対面するように配置されている。第2の電解質層12は、補強層20の他方の面に対面するように配置されている。第1の電解質層11および第2の電解質層12は、いずれも良好なプロトン伝導性を示すフッ素系のイオン交換樹脂膜である。第1の電解質層11および第2の電解質層12を構成する樹脂の一部が補強層20の細孔に含浸することにより、補強層20と第1の電解質層11および第2の電解質層とは、互いに接合されて一体化している。   The first electrolyte layer 11 is disposed so as to face one surface of the reinforcing layer 20. The second electrolyte layer 12 is disposed so as to face the other surface of the reinforcing layer 20. The first electrolyte layer 11 and the second electrolyte layer 12 are both fluorine-based ion exchange resin membranes that exhibit good proton conductivity. A part of the resin constituting the first electrolyte layer 11 and the second electrolyte layer 12 is impregnated into the pores of the reinforcement layer 20, whereby the reinforcement layer 20, the first electrolyte layer 11, and the second electrolyte layer are Are joined together and integrated.

A2.補強型電解質膜60の製造方法:
図2は、補強型電解質膜60の製造方法を示す工程図である。まず、補強型電解質膜60を製造するための各種材料が準備される(工程P105)。後述するように、補強型電解質膜60は、2つの複合膜(後述の第1の複合膜41および第2の複合膜42)を貼り合わせて作成される。これら2つの複合膜は、いずれも、補強層20の基材(以下、「補強層基材」とも呼ぶ)と、電解質層の基材(以下、「電解質基材」とも呼ぶ)とが貼り合わされた構成を有する。そこで、工程P105では、補強層基材と電解質基材とが準備される。電解質基材は、押出法により作製できる。なお、補強層基材の厚さは、補強層20の厚さよりも小さく(薄く)、およそ1/2である。本実施形態では、補強層基材および電解質基材は、いずれもロール状に巻かれた状態で用意される。そして、図示しない製造装置が備える供給ローラに、補強層基材と電解質基材とがそれぞれセットされる。
A2. Manufacturing method of reinforced electrolyte membrane 60:
FIG. 2 is a process diagram showing a method for manufacturing the reinforced electrolyte membrane 60. First, various materials for manufacturing the reinforced electrolyte membrane 60 are prepared (process P105). As will be described later, the reinforced electrolyte membrane 60 is formed by bonding two composite membranes (a first composite membrane 41 and a second composite membrane 42 described later). In both of these two composite membranes, the base material of the reinforcing layer 20 (hereinafter also referred to as “reinforcing layer base material”) and the base material of the electrolyte layer (hereinafter also referred to as “electrolyte base material”) are bonded together. Have a configuration. Therefore, in step P105, a reinforcing layer base material and an electrolyte base material are prepared. The electrolyte substrate can be produced by an extrusion method. In addition, the thickness of the reinforcing layer base is smaller (thinner) than the thickness of the reinforcing layer 20 and is approximately ½. In the present embodiment, the reinforcing layer base material and the electrolyte base material are both prepared in a rolled state. And a reinforcement layer base material and an electrolyte base material are each set to the supply roller with which the manufacturing apparatus which is not shown in figure is equipped.

補強層基材を図示しない供給ローラから繰り出しながら幅方向に延伸させる(工程P110)。本実施形態において幅方向とは、ロール状に巻かれた状態の補強層基材における長手方向と直交する方向、換言すると短手方向であって、補強層基材の繰り出し方向(搬送方向)と直交する方向である。図示しない製造装置では、補強層基材の幅方向の端部を搬送ローラで把持しつつ搬送方向下流側に搬送し、また、補強層基材の幅方向の端部を、拡幅ローラで把持しつつ幅方向に補強層基材を拡幅する。このとき、搬送方向には負荷をかけないようにして、搬送方向への延伸が行われないようにする。したがって、補強層基材には、搬送方向よりも幅方向に、より大きな力が加えられる。このため、延伸後の補強層基材において、膜材の幅方向の引張弾性率の大きさは、膜材の搬送方向を含む他の任意の方向の引張弾性率よりも大きくなることとなる。以降の説明では、膜材における引張弾性率の大きさが他の方向に比べて大きくなる方向を弾性率最大方向EMDと呼ぶ。本実施形態では、上述のように、弾性率最大方向EMDは、幅方向と一致している。なお、本工程P110では、2つの複合膜用に2つの補強層基材がそれぞれ延伸される。   The reinforcing layer base material is stretched in the width direction while being fed out from a supply roller (not shown) (process P110). In the present embodiment, the width direction is a direction orthogonal to the longitudinal direction of the reinforcing layer base material wound in a roll shape, in other words, a short direction, and a feeding direction (conveying direction) of the reinforcing layer base material. The directions are orthogonal. In a manufacturing apparatus (not shown), the end portion in the width direction of the reinforcing layer base material is transported downstream in the transport direction while being gripped by the transport roller, and the end portion in the width direction of the reinforcing layer base material is gripped by the widening roller. While expanding the reinforcing layer base material in the width direction. At this time, a load is not applied in the transport direction so that stretching in the transport direction is not performed. Therefore, a greater force is applied to the reinforcing layer base material in the width direction than in the transport direction. For this reason, in the reinforced layer base material after stretching, the tensile elastic modulus in the width direction of the film material is larger than the tensile elastic modulus in any other direction including the conveying direction of the film material. In the following description, the direction in which the magnitude of the tensile elastic modulus in the film material is larger than that in other directions is referred to as the maximum elastic modulus direction EMD. In the present embodiment, as described above, the elastic modulus maximum direction EMD coincides with the width direction. In addition, in this process P110, two reinforcement layer base materials are each extended | stretched for two composite films.

工程P110で延伸された2つの補強層基材に対して電解質基材をそれぞれ貼り合わせて2つの複合膜を得る(工程P115)。この工程P115は、2つの補強層基材を搬送しながら実行される。このときの搬送方向は、工程P110における搬送方向と一致している。すなわち、工程P115は、工程P110により補強層基材が拡幅されながら搬送されたその先において、同じ方向に補強層基材を搬送しながら実行される。以降では、2つの複合膜を、第1の複合膜(後述の第1の複合膜141)、および第2の複合膜(後述の第2の複合膜142)と呼ぶ。また、第1の複合膜に用いられる補強層基材および電解質基材を、第1の補強層基材(後述の第1の補強層基材121)および第1の電解質基材(後述の第1の電解質基材131)と呼ぶ。同様に、第2の複合膜に用いられる補強層基材および電解質基材を、第2の補強層基材(後述の第2の補強層基材122)および第2の電解質基材(後述の第2の電解質基材132)と呼ぶ。第1の電解質基材は、後の工程を経て、上述の第1の電解質層11となる。また、第2の電解質基材は、後の工程を経て、上述の第2の電解質層12となる。   The electrolyte base material is bonded to the two reinforcing layer base materials stretched in the process P110 to obtain two composite films (process P115). This process P115 is performed while conveying the two reinforcing layer base materials. The transport direction at this time coincides with the transport direction in the process P110. That is, the process P115 is performed while the reinforcement layer base material is conveyed in the same direction after the reinforcement layer base material is conveyed while being widened in the process P110. Hereinafter, the two composite films are referred to as a first composite film (first composite film 141 described later) and a second composite film (second composite film 142 described later). Further, the reinforcing layer base material and the electrolyte base material used for the first composite film are the same as the first reinforcing layer base material (first reinforcing layer base material 121 described later) and the first electrolyte base material (described below). 1 electrolyte substrate 131). Similarly, the reinforcing layer base material and the electrolyte base material used for the second composite membrane are used as a second reinforcing layer base material (second reinforcing layer base material 122 described later) and a second electrolyte base material (described later). This is referred to as a second electrolyte substrate 132). The first electrolyte base material becomes the above-described first electrolyte layer 11 through a later step. Further, the second electrolyte base material becomes the above-described second electrolyte layer 12 through a subsequent process.

図3は、工程P115の実行後の第1の複合膜141と第2の複合膜142を模式的に示す説明図である。X軸は、第1の複合膜141の搬送方向と一致する。Y軸は、第1の複合膜141の幅方向と一致する。また、+Z方向は、鉛直上方を示す。図3に示すように、工程P115では、第1の補強層基材121と第2の補強層基材122とで、電解質基材が貼り合わせられる面が互いに異なる。具体的には、第1の補強層基材121の上方側の面(+Z方向の面)に第1の電解質基材131が貼り合わせられ、第2の補強層基材122の下方側の面(−Z方向の面)に第2の電解質基材132が貼り合わせされる。したがって、工程P115の実行後の2つの複合膜は互いに上下反転した構成を有する。また、図3に示すように、第1の複合膜141の搬送方向と第2の複合膜142の搬送方向とは、互いに直交している。また、第1の複合膜141は、第2の複合膜142に対してより上方において搬送される。   FIG. 3 is an explanatory diagram schematically showing the first composite film 141 and the second composite film 142 after the execution of the process P115. The X axis coincides with the transport direction of the first composite film 141. The Y axis coincides with the width direction of the first composite film 141. Further, the + Z direction indicates a vertically upward direction. As shown in FIG. 3, in step P115, the first reinforcing layer base 121 and the second reinforcing layer base 122 have different surfaces on which the electrolyte base is bonded. Specifically, the first electrolyte substrate 131 is bonded to the upper surface (the surface in the + Z direction) of the first reinforcing layer substrate 121, and the lower surface of the second reinforcing layer substrate 122. The second electrolyte base material 132 is bonded to the (surface in the -Z direction). Therefore, the two composite films after the execution of the process P115 have a configuration in which they are turned upside down. Further, as shown in FIG. 3, the transport direction of the first composite film 141 and the transport direction of the second composite film 142 are orthogonal to each other. In addition, the first composite film 141 is transported higher than the second composite film 142.

図2に示すように、第1の複合膜141と第2の複合膜142とをそれぞれ所定の大きさに裁断する(工程P120)。なお、以降では、工程P120で切断後の第1の複合膜、第2の複合膜も、それぞれ複合膜と呼ぶ。第1の複合膜141および第2の複合膜142は、いずれも幅方向に沿って裁断される。このとき切断後の各複合膜141、142の搬送方向の長さが、各複合膜141、142の幅とほぼ等しくなるように裁断される。   As shown in FIG. 2, the first composite film 141 and the second composite film 142 are each cut into a predetermined size (process P120). Hereinafter, the first composite film and the second composite film after being cut in step P120 are also referred to as composite films, respectively. Both the first composite film 141 and the second composite film 142 are cut along the width direction. At this time, the composite films 141 and 142 after cutting are cut so that the lengths in the transport direction are substantially equal to the widths of the composite films 141 and 142.

図4は、工程P120の実行後の第1の複合膜と第2の複合膜を模式的に示す説明図である。図4に示すように、切断後の第1の複合膜(以下「第1の複合膜41」と呼ぶ)の平面視形状は、略正方形である。同様に、切断後の第2の複合膜(以下「第2の複合膜42」と呼ぶ)の平面視形状は、略正方形である。上述のように、第1の複合膜141の搬送方向と第2の複合膜142の搬送方向とは、互いに直交しているので、第1の複合膜141の搬送方向と第2の複合膜142の幅方向とは一致するとともに、第1の複合膜141の幅方向と第2の複合膜142の搬送方向とは一致する。   FIG. 4 is an explanatory diagram schematically showing the first composite film and the second composite film after the execution of the process P120. As shown in FIG. 4, the planar view shape of the cut first composite film (hereinafter referred to as “first composite film 41”) is substantially square. Similarly, the shape of the second composite film after cutting (hereinafter referred to as “second composite film 42”) in plan view is substantially square. As described above, since the transport direction of the first composite film 141 and the transport direction of the second composite film 142 are orthogonal to each other, the transport direction of the first composite film 141 and the second composite film 142 are the same. The width direction of the first composite film 141 coincides with the transport direction of the second composite film 142.

図2に示すように、第1の複合膜41と第2の複合膜42とを貼り合わせる(工程P125)。図5は、工程P125の実行時の第1の複合膜41と第2の複合膜42の様子を模式的に示す説明図である。図5に示すように、工程P125では、第1の複合膜41の第1の補強層基材121と第2の複合膜42の第2の補強層基材122とが接するように第1の複合膜41と第2の複合膜42とが貼り合わされる。ここで、上述のように、第1の複合膜41の弾性率最大方向EMDは、第1の複合膜141の幅方向、すなわちY軸と平行な方向であり、第2の複合膜42の弾性率最大方向EMDは、第2の複合膜142の幅方向、すなわちX軸と平行な方向であるので、工程P125により、それぞれの弾性率最大方向EMDが互いに直交するように貼り合わされる。以降の説明では、第1の複合膜41と第2の複合膜42とが貼り合わされたものを補強型電解質膜前駆体50と呼ぶ。なお、本実施形態では、上述の工程P120と工程P125とは、ほぼ同時に実行される。すなわち、図3に示す2つの複合膜141、142が上下に交差する箇所で裁断(工程P120)と貼り合わせ(工程P125)とが実行される。   As shown in FIG. 2, the 1st composite film 41 and the 2nd composite film 42 are bonded together (process P125). FIG. 5 is an explanatory view schematically showing the state of the first composite film 41 and the second composite film 42 when the process P125 is executed. As shown in FIG. 5, in the process P125, the first reinforcing layer base material 121 of the first composite film 41 and the second reinforcing layer base material 122 of the second composite film 42 are in contact with each other. The composite film 41 and the second composite film 42 are bonded together. Here, as described above, the elastic modulus maximum direction EMD of the first composite film 41 is the width direction of the first composite film 141, that is, the direction parallel to the Y axis, and the elasticity of the second composite film 42. Since the maximum modulus direction EMD is the width direction of the second composite film 142, that is, the direction parallel to the X axis, the maximum modulus of elasticity direction EMD is bonded so as to be orthogonal to each other in step P125. In the following description, a structure in which the first composite film 41 and the second composite film 42 are bonded together is referred to as a reinforced electrolyte film precursor 50. In the present embodiment, the above-described process P120 and process P125 are performed almost simultaneously. That is, cutting (process P120) and bonding (process P125) are performed at a location where the two composite films 141 and 142 shown in FIG.

図2に示すように、補強型電解質膜前駆体50に対し、厚さ方向(Z軸方向)に熱圧が付与される(工程P130)。図6は、工程P130の実行後の補強型電解質膜前駆体50を模式的に示す説明図である。図6に示すように、補強型電解質膜前駆体50において第1の電解質基材131の+Z方向から−Z方向に熱圧が付与されるとともに、第2の電解質基材132の−Z方向から+Z方向に熱圧が付与される。これにより、第1の複合膜41において第1の電解質基材131が第1の補強層基材121中へ含浸する。同様に、第2の複合膜42において第2の電解質基材132が第2の補強層基材122中へ含浸する。また、熱圧により、第1の補強層基材121と第2の補強層基材122とは接合され一つの層となる。このようにして、補強型電解質膜前駆体50において、第1の電解質基材131、第2の電解質基材132、第1の補強層基材121および第2の補強層基材122とは一体化することとなる。   As shown in FIG. 2, a hot pressure is applied to the reinforced electrolyte membrane precursor 50 in the thickness direction (Z-axis direction) (step P130). FIG. 6 is an explanatory view schematically showing the reinforced electrolyte membrane precursor 50 after the execution of the process P130. As shown in FIG. 6, in the reinforced electrolyte membrane precursor 50, heat pressure is applied from the + Z direction of the first electrolyte base 131 to the −Z direction, and from the −Z direction of the second electrolyte base 132. Hot pressure is applied in the + Z direction. As a result, the first electrolyte base material 131 is impregnated into the first reinforcing layer base material 121 in the first composite film 41. Similarly, in the second composite membrane 42, the second electrolyte base material 132 is impregnated into the second reinforcing layer base material 122. In addition, the first reinforcing layer base 121 and the second reinforcing layer base 122 are joined to form one layer by heat pressure. Thus, in the reinforced electrolyte membrane precursor 50, the first electrolyte base 131, the second electrolyte base 132, the first reinforcing layer base 121, and the second reinforcing layer base 122 are integrated. Will be.

図2に示すように、補強型電解質膜前駆体50に対して加水分解処理を施す(工程P135)。具体的には、補強型電解質膜前駆体50をアルカリ溶液に漬浸させ、電解質ポリマーが有する側鎖端末である−SO2F基を−SO3Na基に変性させる。補強型電解質膜前駆体50を純水で水洗した後に、酸性溶液に漬浸させて、−SO3Na基を−SO3H基へと変性させる。これにより、補強型電解質膜前駆体50の電解質ポリマーにプロトン伝導性が付与され、補強型電解質膜60が完成する。このとき、図6に示す補強型電解質膜前駆体50の第1の電解質基材131は、補強型電解質膜60の第1の電解質層11と成る。同様に、補強型電解質膜前駆体50の第2の電解質基材132は、補強型電解質膜60の第2の電解質層12に、補強型電解質膜前駆体50の第1の補強層基材121は、補強型電解質膜60の補強層20に、補強型電解質膜前駆体50の第2の補強層基材122は、補強型電解質膜60の補強層20に、それぞれ成る。 As shown in FIG. 2, hydrolysis treatment is performed on the reinforced electrolyte membrane precursor 50 (process P135). Specifically, the reinforced electrolyte membrane precursor 50 is immersed in an alkaline solution, and the —SO 2 F group, which is a side chain terminal of the electrolyte polymer, is modified to —SO 3 Na group. The reinforced electrolyte membrane precursor 50 is washed with pure water and then immersed in an acidic solution to denature —SO 3 Na groups into —SO 3 H groups. Thereby, proton conductivity is imparted to the electrolyte polymer of the reinforced electrolyte membrane precursor 50, and the reinforced electrolyte membrane 60 is completed. At this time, the first electrolyte base 131 of the reinforced electrolyte membrane precursor 50 shown in FIG. 6 becomes the first electrolyte layer 11 of the reinforced electrolyte membrane 60. Similarly, the second electrolyte substrate 132 of the reinforced electrolyte membrane precursor 50 is formed on the second electrolyte layer 12 of the reinforced electrolyte membrane 60 and the first reinforcing layer substrate 121 of the reinforced electrolyte membrane precursor 50. Are formed in the reinforcing layer 20 of the reinforcing electrolyte membrane 60 and the second reinforcing layer base material 122 of the reinforcing electrolyte membrane precursor 50 is formed in the reinforcing layer 20 of the reinforcing electrolyte membrane 60, respectively.

以上説明した本実施形態における補強型電解質膜60の製造方法によれば、第1の複合膜41と第2の複合膜42とを貼り合わせる際に、第1の補強層基材121の弾性率最大方向EMDと第2の補強層基材122の弾性率最大方向EMDとが互いに直交するように貼り合わせるので、補強層20において弾性率が最大となる方向が一方向に限定されることを抑制でき、補強型電解質膜60における方向に依存する強度勾配を低減できる。また、第1の補強層基材121と第2の補強層基材122とを貼り合わせる際の方向を制御することにより、方向に依存する強度勾配を容易に低減できるので、補強型電解質膜60の製造コストの増大を抑制できる。加えて、第1の複合膜41と第2の複合膜42とを貼り合わせた後、熱圧を付与することにより、第1の複合膜41において第1の電解質基材131が第1の補強層基材121中へ含浸し、第2の複合膜42において第2の電解質基材132が第2の補強層基材122中へ含浸し、補強型電解質膜前駆体50において第1の補強層基材121と第2の補強層基材122とが一体化するので、より強度の高い補強型電解質膜60を得ることができる。   According to the manufacturing method of the reinforced electrolyte membrane 60 in the present embodiment described above, the elastic modulus of the first reinforcing layer base 121 is obtained when the first composite membrane 41 and the second composite membrane 42 are bonded together. Since the maximum direction EMD and the maximum elastic modulus direction EMD of the second reinforcing layer base material 122 are bonded so as to be orthogonal to each other, the direction in which the elastic modulus is maximum in the reinforcing layer 20 is limited to one direction. The strength gradient depending on the direction in the reinforced electrolyte membrane 60 can be reduced. In addition, since the strength gradient depending on the direction can be easily reduced by controlling the direction in which the first reinforcing layer base 121 and the second reinforcing layer base 122 are bonded together, the reinforced electrolyte membrane 60 can be reduced. An increase in manufacturing cost can be suppressed. In addition, after the first composite film 41 and the second composite film 42 are bonded to each other, the first electrolyte base 131 in the first composite film 41 is subjected to the first reinforcement by applying heat pressure. Impregnation into the layer base material 121, the second electrolyte base material 132 impregnates into the second reinforcing layer base material 122 in the second composite membrane 42, and the first reinforcing layer in the reinforced electrolyte membrane precursor 50. Since the base material 121 and the second reinforcing layer base material 122 are integrated, a reinforced electrolyte membrane 60 with higher strength can be obtained.

B.実施例
B1.第1実施例
上述した実施形態に基づき、補強型電解質膜(試料1)を製造した。また、比較例として補強型電解質膜(試料2)を製造した。そしてこれら2つの補強型電解質膜について寸法変化率を測定した。
B. Example B1. First Example A reinforced electrolyte membrane (Sample 1) was manufactured based on the embodiment described above. In addition, a reinforced electrolyte membrane (Sample 2) was produced as a comparative example. The dimensional change rate was measured for these two reinforced electrolyte membranes.

第1実施例としての試料1は、以下のように製造された。
[1]工程P105において、200℃で押出製膜法にて4μmの電解質基材を製造した。また、気孔率60%、厚み3μmのポリテトラフルオロエチレン(PTFE)の多孔質膜材を補強層基材として製造した。
[2]工程P115において、[1]で製造した電解質基材と補強層基材とを貼り合わせて2つの複合膜141、142を製造した。
[3]工程P125において、第1の複合膜141の補強層基材と、第2の複合膜142の補強層基材を、第1の複合膜141の搬送方向と第2の複合膜142の幅方向とが直交するように配置した後に貼り合わせて補強型電解質膜前駆体50を作製し、230℃の温度で2MPaの圧力を補強型電解質膜前駆体50に加えた。
[4]工程P135において、[3]で製造した補強型電解質膜前駆体50を水酸化ナトリウム(NaOH)溶液、硝酸(HNO)にそれぞれ浸漬し、厚み約10μmの補強型電解質膜60を製造した。
Sample 1 as the first example was manufactured as follows.
[1] In Step P105, an electrolyte base material of 4 μm was manufactured by an extrusion film forming method at 200 ° C. Further, a porous membrane material of polytetrafluoroethylene (PTFE) having a porosity of 60% and a thickness of 3 μm was produced as a reinforcing layer substrate.
[2] In Step P115, the electrolyte base material and the reinforcing layer base material manufactured in [1] were bonded together to manufacture two composite films 141 and 142.
[3] In step P125, the reinforcing layer base material of the first composite film 141 and the reinforcing layer base material of the second composite film 142 are connected to the transport direction of the first composite film 141 and the second composite film 142. The reinforced electrolyte membrane precursor 50 was prepared by arranging it so as to be orthogonal to the width direction, and a pressure of 2 MPa was applied to the reinforced electrolyte membrane precursor 50 at a temperature of 230 ° C.
[4] In step P135, the reinforced electrolyte membrane precursor 50 manufactured in [3] is immersed in a sodium hydroxide (NaOH) solution and nitric acid (HNO 3 ), respectively, to manufacture a reinforced electrolyte membrane 60 having a thickness of about 10 μm. did.

比較例としての試料2は、上述した[3](工程P125)において、第1の複合膜141と第2の複合膜142が互いに搬送方向が同じ方向となるように配置した以外は、第1実施例の試料1と同じ手順で製造した。   Sample 2 as a comparative example is the same as that in [3] (process P125) described above except that the first composite film 141 and the second composite film 142 are arranged so that the transport directions are the same. Manufactured in the same procedure as Sample 1 of the Example.

図7は、第1実施例の試料1および第1比較例の試料2の寸法変化率を測定した結果を示す説明図である。寸法変化率は以下のように測定した。すなわち、60mm×60mmの補強型電解質膜60を用意し、湿潤環境下に所定時間置いた後、補強型電解質膜60を乾燥させ、その後、搬送方向、幅方向の寸法を測定し、その割合を算出した。「湿潤環境に置いた」とは、80℃の熱水中に漬浸したことをいい、「乾燥」とは、80℃にて乾燥を行ったことをいう。図7では、試料1について、第1の複合膜141の搬送方向かつ第2の複合膜142の幅方向の寸法変化率と、第1の複合膜141の幅方向かつ第2の複合膜142の搬送方向の寸法変化率とを示す。また、試料2について、搬送方向の寸法変化率と、幅方向の寸法変化率とを示す。   FIG. 7 is an explanatory diagram showing the results of measuring the dimensional change rate of the sample 1 of the first example and the sample 2 of the first comparative example. The dimensional change rate was measured as follows. That is, a reinforced electrolyte membrane 60 of 60 mm × 60 mm is prepared and placed in a wet environment for a predetermined time, and then the reinforced electrolyte membrane 60 is dried. Thereafter, the dimensions in the transport direction and the width direction are measured, and the ratio is determined. Calculated. “Placed in a humid environment” means soaking in hot water at 80 ° C., and “Drying” means drying at 80 ° C. In FIG. 7, the dimensional change rate in the transport direction of the first composite film 141 and the width direction of the second composite film 142 and the width direction of the first composite film 141 and the second composite film 142 of the sample 1 are shown. The dimensional change rate in the conveyance direction is shown. Moreover, about the sample 2, the dimensional change rate of a conveyance direction and the dimensional change rate of the width direction are shown.

図7に示すように、第1比較例の試料2において、搬送方向の寸法変化率と幅方向の寸法変化率とは大きく異なる。具体的には、試料2の幅方向の寸法変化率は、試料2の搬送方向の寸法変化率に比べておよそ6%程度大きい。これに対して、第1実施例の試料1においては、第1の複合膜141の搬送方向(かつ第2の複合膜142の幅方向)の寸法変化率と、第1の複合膜141の幅方向(かつ第2の複合膜142の搬送方向)の寸法変化率とは、大きな差が無い。具体的には、第1の複合膜141の搬送方向(かつ第2の複合膜142の幅方向)の寸法変化率は、第1の複合膜141の幅方向(かつ第2の複合膜142の搬送方向)の寸法変化率に比べておよそ0.5%小さい。したがって、試料1における方向に依存する強度勾配は、試料2における方向に依存する強度勾配に比べて低いといえる。これは、第1の複合膜141と、第2の複合膜142とを貼り合わせる際に、それぞれの補強層基材の弾性率最大方向EMDが互いに直交するように貼り合わせられたことによるものと推測される。   As shown in FIG. 7, in the sample 2 of the first comparative example, the dimensional change rate in the transport direction and the dimensional change rate in the width direction are greatly different. Specifically, the dimensional change rate in the width direction of the sample 2 is about 6% larger than the dimensional change rate in the transport direction of the sample 2. In contrast, in the sample 1 of the first embodiment, the dimensional change rate in the transport direction of the first composite film 141 (and the width direction of the second composite film 142) and the width of the first composite film 141 There is no significant difference from the dimensional change rate in the direction (and the transport direction of the second composite film 142). Specifically, the dimensional change rate in the transport direction of the first composite film 141 (and the width direction of the second composite film 142) is equal to the width direction of the first composite film 141 (and the second composite film 142). About 0.5% smaller than the dimensional change rate in the conveyance direction). Therefore, it can be said that the intensity gradient depending on the direction in the sample 1 is lower than the intensity gradient depending on the direction in the sample 2. This is because, when the first composite film 141 and the second composite film 142 are bonded together, the maximum elastic modulus direction EMD of each reinforcing layer base material is bonded so as to be orthogonal to each other. Guessed.

B2.第2実施例
上述した第1実施例と同じ方法により、補強型電解質膜(試料3)を製造した。また、第2比較例として上述した第1比較例と同じ方法により、補強型電解質膜(試料4)を製造した。次に、試料3および試料4を用いて膜電極接合体を製造し、さらにそれらの膜電極接合体を用いて燃料電池セルを製造した。そして、各燃料電池セルを発電させ、セル発電による補強型電解質膜の耐久性評価を行い、その耐久性を評価した。
B2. Second Example A reinforced electrolyte membrane (sample 3) was produced by the same method as in the first example. In addition, a reinforced electrolyte membrane (sample 4) was manufactured by the same method as the first comparative example described above as the second comparative example. Next, a membrane electrode assembly was manufactured using Sample 3 and Sample 4, and a fuel cell was manufactured using these membrane electrode assemblies. And each fuel cell was made to generate electric power, durability evaluation of the reinforced type electrolyte membrane by cell power generation was performed, and the durability was evaluated.

図8は、第2実施例の試料3および第2比較例の試料4を用いた補強型電解質膜の耐久性を評価した結果を示す説明図である。耐久性は以下のように測定(評価)した。すなわち、乾燥状態と湿潤状態を一定のサイクル(サイクルタイム100秒)で繰り返し、電解質膜の破損による電極間のガスリークが発生するまでのサイクル数を計測し、サイクル数が大きい程、耐久性が高いと評価した。   FIG. 8 is an explanatory diagram showing the results of evaluating the durability of the reinforced electrolyte membrane using the sample 3 of the second example and the sample 4 of the second comparative example. Durability was measured (evaluated) as follows. That is, the dry state and the wet state are repeated with a constant cycle (cycle time 100 seconds), and the number of cycles until gas leakage between the electrodes due to breakage of the electrolyte membrane is measured. The larger the number of cycles, the higher the durability. It was evaluated.

図8に示すように、第2実施例の試料3は、第2比較例の試料4と比べ、電解質膜の破損による電極間のガスリークが発生するまのでサイクル数が大きく、耐久性がより高いと評価された。これは、第2実施例の試料3として、強度勾配が低減された補強型電解質膜を用いることによって、強度の低い方向が一方向に限定されることを回避したため、電解質膜の膨張および収縮等による電解質膜の寸法変化が発生した際に、一方向に応力が集中することが抑制され、電解質膜の裂けなどの損傷の発生が抑制されたためであると推測される。   As shown in FIG. 8, the sample 3 of the second example has a larger number of cycles and higher durability until the gas leak between the electrodes due to breakage of the electrolyte membrane occurs compared to the sample 4 of the second comparative example. It was evaluated. This is because the sample 3 of the second embodiment uses a reinforced electrolyte membrane with a reduced strength gradient, thereby avoiding that the direction of low strength is limited to one direction. It is presumed that the stress concentration in one direction was restrained when the dimensional change of the electrolyte membrane due to the occurrence of severance occurred, and the occurrence of damage such as tearing of the electrolyte membrane was restrained.

C.変形例
C1.変形例1
上記実施形態および実施例では、補強型電解質膜60の補強層20は、第1の補強層基材121および第2の補強層基材122の積層された2つの基材により形成されていたが、本発明はこれに限定されない。例えば、積層されたN個(Nは3以上の整数)の基材により形成されてもよい。この場合、N個の基材を互いに弾性率最大方向EMDが交わるように積層する(貼り合わせる)ことにより、より強度の高い補強型電解質膜60を得ることができる。
C. Modification C1. Modification 1
In the above-described embodiment and examples, the reinforcing layer 20 of the reinforced electrolyte membrane 60 is formed of two substrates in which the first reinforcing layer substrate 121 and the second reinforcing layer substrate 122 are stacked. However, the present invention is not limited to this. For example, you may form by the laminated | stacked N piece (N is an integer greater than or equal to 3) base material. In this case, the reinforced electrolyte membrane 60 with higher strength can be obtained by laminating (bonding) the N base materials so that the elastic modulus maximum directions EMD cross each other.

C2.変形例2
上記実施形態および実施例では、第1の補強層基材121と第2の補強層基材122とが、それぞれの幅方向が互いに直交するように配置されていたが、本発明はこれに限定されない。直交以外の任意の角度で交差して貼り合わされてもよい。また、一方の補強層基材の弾性率最大方向EMDが幅方向と一致し、他方の補強層基材の弾性率最大方向EMDが搬送方向と一致する場合には、一方の補強層基材の幅方向と他方の補強層基材の搬送方向とが直交するように、すなわち、2つの補強層基材の幅方向が互いに平行となるように2つの複合膜同士を貼り合わせてもよい。すなわち、一般には、第1の補強層基材の弾性率最大方向と第2の補強層基材の弾性率最大方向とが互いに交わるように、第1の複合膜と第2の複合膜とを貼り合わせる工程を、本発明の補強型電解質膜の製造方法に用いてもよい。このような構成においても、実施形態と同様の効果を奏する。
C2. Modification 2
In the embodiment and examples described above, the first reinforcing layer base 121 and the second reinforcing layer base 122 are arranged so that the respective width directions are orthogonal to each other, but the present invention is limited to this. Not. The crossing may be performed at an arbitrary angle other than orthogonal. In addition, when the maximum elastic modulus direction EMD of one reinforcing layer base material matches the width direction and the maximum elastic modulus direction EMD of the other reinforcing layer base material matches the transport direction, The two composite membranes may be bonded together so that the width direction and the conveyance direction of the other reinforcing layer base material are orthogonal, that is, the width directions of the two reinforcing layer base materials are parallel to each other. That is, generally, the first composite film and the second composite film are made so that the maximum elastic modulus direction of the first reinforcing layer base material and the maximum elastic modulus direction of the second reinforcing layer base material intersect each other. The step of bonding may be used in the method for producing a reinforced electrolyte membrane of the present invention. Even in such a configuration, the same effects as in the embodiment can be obtained.

C3.変形例3
上記実施形態および実施例では、第1の補強層基材121と第2の補強層基材122とをそれぞれの幅方向にのみ延伸していたが、本発明はこれに限定されない。幅方向に延伸するとともに、搬送方向にも延伸してもよい。例えば、第1の補強層基材121と第2の補強層基材122とをそれぞれ搬送方向に一定の負荷をかけながら搬送することにより、第1の補強層基材121と第2の補強層基材122とを、搬送方向に延伸してもよい。この構成において、第1の補強層基材121と第2の補強層基材122に対して、幅方向よりも搬送方向により大きな力が加えられ、いずれの補強層基材121、122においても弾性率最大方向EMDが搬送方向と一致する場合が生じ得る。この場合、第1の補強層基材121の搬送方向と第2の補強層基材122の搬送方向とが互いに交わるように、第1の複合膜と第2の複合膜とを貼り合わせることにより、実施形態と同様の効果を奏する。
C3. Modification 3
In the said embodiment and Example, although the 1st reinforcement layer base material 121 and the 2nd reinforcement layer base material 122 were extended | stretched only to each width direction, this invention is not limited to this. While extending | stretching to the width direction, you may extend | stretch also to a conveyance direction. For example, the first reinforcing layer base 121 and the second reinforcing layer 122 are transported while applying a certain load in the transport direction to the first reinforcing layer base 121 and the second reinforcing layer base 122, respectively. The substrate 122 may be stretched in the transport direction. In this configuration, a greater force is applied to the first reinforcing layer base 121 and the second reinforcing layer base 122 in the transport direction than in the width direction, and both the reinforcing layer bases 121 and 122 are elastic. A case where the maximum rate direction EMD coincides with the transport direction may occur. In this case, by bonding the first composite film and the second composite film so that the transport direction of the first reinforcing layer base material 121 and the transport direction of the second reinforcing layer base material 122 cross each other. The same effects as in the embodiment are achieved.

C4.変形例4
上記実施形態および実施例において、図2に示す、工程P115、工程P125に代えて、以下の処理を行ってもよい。工程P110の実行後、延伸された第1の補強層基材121と第2の補強層基材122とを工程P120と同様にしてそれぞれ裁断する。そして、裁断した第1の補強層基材121と第2の補強層基材122とをそれぞれの弾性率最大方向EMDとが互いに交わるように貼り合わせる。その後、別で延伸しておいた電解質基材を、第1の補強層基材121における露出面と、第2の補強層基材122における露出面とにそれぞれ貼り合わせた後、工程P130、工程P135を実行してもよい。この構成において、工程P130の実行後に、各補強層基材121、122の露出面と電解質基材との貼り合わせを行ってもよい。このような構成においても実施形態と同様の効果を奏する。
C4. Modification 4
In the above-described embodiment and example, the following processing may be performed instead of the process P115 and the process P125 shown in FIG. After the execution of the process P110, the stretched first reinforcing layer base material 121 and the second reinforcing layer base material 122 are respectively cut in the same manner as in the process P120. Then, the cut first reinforcing layer base material 121 and second reinforcing layer base material 122 are bonded together so that the respective elastic modulus maximum directions EMD intersect each other. Thereafter, the electrolyte base material that has been separately stretched is bonded to the exposed surface of the first reinforcing layer base material 121 and the exposed surface of the second reinforcing layer base material 122, and then the process P130, the process P135 may be executed. In this configuration, after the execution of the process P130, the exposed surfaces of the reinforcing layer base materials 121 and 122 may be bonded to the electrolyte base material. Even in such a configuration, the same effects as in the embodiment can be obtained.

本発明は、上述の実施形態および変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments and modifications, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

11…第1の電解質層
12…第2の電解質層
20…補強層
41…第1の複合膜
42…第2の複合膜
50…補強型電解質膜前駆体
60…補強型電解質膜
121…第1の補強層基材
122…第2の補強層基材
131…第1の電解質基材
132…第2の電解質基材
141…第1の複合膜
142…第2の複合膜
EMD…弾性率最大方向
DESCRIPTION OF SYMBOLS 11 ... 1st electrolyte layer 12 ... 2nd electrolyte layer 20 ... Reinforcement layer 41 ... 1st composite film 42 ... 2nd composite film 50 ... Reinforcement type electrolyte membrane precursor 60 ... Reinforcement type electrolyte membrane 121 ... 1st Reinforcing layer base material 122 ... Second reinforcing layer base material 131 ... First electrolyte base material 132 ... Second electrolyte base material 141 ... First composite film 142 ... Second composite film EMD ... Elastic modulus maximum direction

Claims (1)

補強層と前記補強層を挟む一対の電解質層とを有する補強型電解質膜の製造方法であって、
(a)一方の前記電解質層の基材である第1の電解質基材の一方の面に、前記補強層の基材であって前記補強層よりも厚さが小さな第1の補強層基材が接している第1の複合膜と、他方の前記電解質層の基材である第2の電解質基材の一方の面に、前記補強層の基材であって前記補強層よりも厚さが小さな第2の補強層基材が接している第2の複合膜と、を、前記第1の補強層基材と前記第2の補強層基材とが接するように貼り合わせる工程と、
(b)前記第1の複合膜において、前記第1の電解質基材を前記第1の補強層基材に含浸させ、前記第2の複合膜において、前記第2の電解質基材を前記第2の補強層基材に含浸させる工程と、
を備え、
前記第1の補強層基材と前記第2の補強層基材とは、それぞれ引張弾性率の大きさが他の方向に比べて大きな弾性率最大方向を有し、
前記工程(a)は、前記第1の補強層基材の前記弾性率最大方向と前記第2の補強層基材の前記弾性率最大方向とが互いに交わるように、前記第1の複合膜と前記第2の複合膜とを貼り合わせる工程を含む、
補強型電解質膜の製造方法。
A method for producing a reinforced electrolyte membrane comprising a reinforcing layer and a pair of electrolyte layers sandwiching the reinforcing layer,
(A) A first reinforcing layer base material that is a base material of the reinforcing layer and has a thickness smaller than that of the reinforcing layer on one surface of the first electrolyte base material that is a base material of the one electrolyte layer On one surface of the first composite membrane that is in contact with the second electrolyte base material that is the base material of the other electrolyte layer, the thickness of the base material of the reinforcing layer is smaller than that of the reinforcing layer. Bonding the second composite film in contact with the small second reinforcing layer base material so that the first reinforcing layer base material and the second reinforcing layer base material are in contact with each other;
(B) In the first composite membrane, the first electrolyte base material is impregnated in the first reinforcing layer base material, and in the second composite membrane, the second electrolyte base material is replaced with the second electrolyte base material. Impregnating the reinforcing layer base of
With
The first reinforcing layer base material and the second reinforcing layer base material each have a maximum elastic modulus direction in which the magnitude of the tensile elastic modulus is larger than the other directions,
In the step (a), the first composite film and the first composite layer so that the elastic modulus maximum direction of the first reinforcing layer base material and the elastic modulus maximum direction of the second reinforcing layer base material intersect each other. Including the step of bonding the second composite film,
A method for producing a reinforced electrolyte membrane.
JP2016070985A 2016-03-31 2016-03-31 Manufacturing method for reinforcement type electrolyte membrane Pending JP2017183164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070985A JP2017183164A (en) 2016-03-31 2016-03-31 Manufacturing method for reinforcement type electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070985A JP2017183164A (en) 2016-03-31 2016-03-31 Manufacturing method for reinforcement type electrolyte membrane

Publications (1)

Publication Number Publication Date
JP2017183164A true JP2017183164A (en) 2017-10-05

Family

ID=60006256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070985A Pending JP2017183164A (en) 2016-03-31 2016-03-31 Manufacturing method for reinforcement type electrolyte membrane

Country Status (1)

Country Link
JP (1) JP2017183164A (en)

Similar Documents

Publication Publication Date Title
US12119520B2 (en) Membrane electrode assembly for fuel cells
JP2008277288A (en) Manufacturing device of composite polymer electrolyte membrane, manufacturing method of composite polymer electrolyte membrane, functional membrane, and fuel cell
JP2019114504A (en) Composite polymer electrolyte film
JP2018113123A (en) Method for manufacturing electrolyte membrane
JP5207582B2 (en) Manufacturing method of electrolyte membrane with little dimensional change
JP2014182999A (en) Electrode manufacturing method and electrode manufacturing apparatus
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2017183164A (en) Manufacturing method for reinforcement type electrolyte membrane
JP6451489B2 (en) Method for producing reinforced electrolyte membrane
JP5825238B2 (en) Fuel cell and fuel cell manufacturing method
US10403905B2 (en) Structures and preparation methods for catalyst coated membranes for fuel cells
JP5175430B2 (en) Manufacturing method of ion exchange membrane for fuel cell
JP2018122974A (en) Method and device for laminating belt-like components
JP2016096108A (en) Electrolyte film structure
JP4923627B2 (en) Method for producing reinforced electrolyte membrane
JP5838944B2 (en) Method for producing reinforcing membrane used for electrolyte membrane for fuel cell
JP2009016075A (en) Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same
JP5765307B2 (en) Manufacturing method of fuel cell
KR102659116B1 (en) Highly stretchable composite material, and super capacitor comprising of the same, method of fabricating of the same
JP2010212005A (en) Manufacturing method and manufacturing device of fuel cell electrode
JP6245165B2 (en) Reinforcing electrolyte membrane manufacturing method, sheet
JP2020027792A (en) Manufacturing apparatus for assembly of cells for fuel battery
JP2018137157A (en) Method for manufacturing electrolyte film structure
KR20180004575A (en) Wrinkle Structure for Membrane Electrode Assembly of Fuel Cell and Manufacturing Method Therefor
JP7255461B2 (en) Manufacturing method of membrane electrode gas diffusion layer assembly