JP2017182962A - Slurry composition superior in viscosity for lithium ion secondary battery electrode - Google Patents

Slurry composition superior in viscosity for lithium ion secondary battery electrode Download PDF

Info

Publication number
JP2017182962A
JP2017182962A JP2016065257A JP2016065257A JP2017182962A JP 2017182962 A JP2017182962 A JP 2017182962A JP 2016065257 A JP2016065257 A JP 2016065257A JP 2016065257 A JP2016065257 A JP 2016065257A JP 2017182962 A JP2017182962 A JP 2017182962A
Authority
JP
Japan
Prior art keywords
slurry composition
mass
secondary battery
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016065257A
Other languages
Japanese (ja)
Other versions
JP6734093B2 (en
Inventor
大貴 池田
Daiki Ikeda
大貴 池田
祐作 原田
Yusaku Harada
祐作 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2016065257A priority Critical patent/JP6734093B2/en
Publication of JP2017182962A publication Critical patent/JP2017182962A/en
Application granted granted Critical
Publication of JP6734093B2 publication Critical patent/JP6734093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slurry composition for a lithium ion secondary battery electrode, which is superior in viscosity and suitability to coating.SOLUTION: A slurry composition for a lithium ion secondary battery electrode comprises an active material, a conducting agent, a binder, and a solvent. The conducting agent is carbon black of which the crystallization rate calculated from a crystal layer thickness Lc and an average primary particle diameter is 60% or more. In the slurry composition, blend ratios of the solid contents are as follows: 80-99.8 mass% for the active material; 0.1-10 mass% for the conducting agent; and 0.1-10 mass% for the binder. The slurry composition is 50-70 mass% in solid content concentration, and 10 Pa s or less in viscosity at a shear rate of 1 s. With the slurry composition, viscosities ηand ηfor arbitrary shear rates γand γ(γ<γ) satisfy η>ηin a range of the shear rate of 0.01-100 s.SELECTED DRAWING: Figure 1

Description

本発明は、粘度特性及び塗工性に優れたリチウムイオン二次電池電極用スラリー組成物及びそれを用いたリチウムイオン二次電池に関する。 The present invention relates to a slurry composition for a lithium ion secondary battery electrode excellent in viscosity characteristics and coatability, and a lithium ion secondary battery using the same.

リチウムイオン二次電池はスマートフォンやタブレット型パソコンなど小型電子機器の電源として幅広く用いられている。リチウムイオン二次電池は一般に、電極、セパレータ、電解質を含む電解液を備えて構成される。電極は、活物質、導電剤、バインダーなどを溶媒に分散させた電極スラリーを集電体用金属板上に塗工・乾燥させ、合材層とすることで製造される。 Lithium ion secondary batteries are widely used as power sources for small electronic devices such as smartphones and tablet computers. Generally, a lithium ion secondary battery includes an electrolyte solution including an electrode, a separator, and an electrolyte. An electrode is manufactured by coating and drying an electrode slurry in which an active material, a conductive agent, a binder, and the like are dispersed in a solvent on a metal plate for a current collector to form a composite layer.

導電剤の役割は、導電性の低い活物質に導電性を付与すること、充放電時に活物質が繰り返し膨張収縮して導電性が損なわれるのを防止することである。そのため、電極内で活物質と導電剤の分散状態が悪いと、局所的に導電性の劣る部分が現れ、活物質が有効に利用されずに放電容量が低下し、電池特性が低下する原因となる。すなわち、電池特性は活物質の化学組成や導電剤の導電性といった材料特性だけでなく、合材層中の材料の配合比率及び混合・分散状態、合材層の密度、空隙率といった構造的特性にも影響を受けるため、それらの最適化が必要となる。また、合材層の構造を最適な状態に維持しながら、安定的に電極を生産し続けるためには、電極スラリーの塗工むらや合材層厚みのばらつきを極限まで減少させる必要がある。 The role of the conductive agent is to impart conductivity to an active material having low conductivity, and to prevent the conductivity from being impaired due to repeated expansion and contraction of the active material during charging and discharging. Therefore, if the dispersion state of the active material and the conductive agent is poor in the electrode, a portion with poor conductivity appears locally, the active material is not effectively used, the discharge capacity is reduced, and the battery characteristics are reduced. Become. That is, the battery characteristics are not only the material characteristics such as the chemical composition of the active material and the conductivity of the conductive agent, but also the structural characteristics such as the compounding ratio and mixing / dispersing state of the material in the composite material layer, the density of the composite material layer, and the porosity. It is necessary to optimize them. Moreover, in order to continue producing electrodes stably while maintaining the structure of the composite layer in an optimum state, it is necessary to reduce the unevenness of the electrode slurry coating and the dispersion of the composite layer thickness to the utmost.

従来使用されている導電剤の比表面積は40〜70m/g程度であり、正極活物質の比表面積(0.2〜1.0m/g)と比べて非常に高い。例えば比表面積0.7m/gの正極活物質92質量%と、比表面積65m/gの導電剤8質量%を混合した場合、導電剤が占める表面積の比率は89%にも及ぶことになり、電極スラリーの塗工性には導電剤の特性が支配的であることがわかる。 The specific surface area of the conductive agent that is conventionally used is about 40~70m 2 / g, much higher than the specific surface area of the cathode active material (0.2~1.0m 2 / g). For example, when 92% by mass of the positive electrode active material having a specific surface area of 0.7 m 2 / g and 8% by mass of the conductive agent having a specific surface area of 65 m 2 / g are mixed, the ratio of the surface area occupied by the conductive agent reaches 89%. Thus, it can be seen that the properties of the conductive agent are dominant in the coatability of the electrode slurry.

近年、リチウムイオン二次電池のさらなる高容量化が求められており、合材層中の活物質の配合比率は増加し、逆に導電剤やバインダーの配合比率は減少する傾向にある。導電剤の配合比率が減少すると電極内での導電パスの形成が困難となり、電池特性が低下してしまう。そこで小粒径の導電剤を用いることで導電パスを維持する検討が行われている。しかしながら、小粒径化に伴い比表面積および吸液性が高くなり、電極スラリーの粘度が著しく上昇してしまうため、均一分散が困難となる。また、塗工時にむらが生じやすく、高性能な電極を安定的に生産することができないという問題があった。 In recent years, further increase in capacity of lithium ion secondary batteries has been demanded, and the blending ratio of the active material in the composite layer is increasing, and conversely, the blending ratio of the conductive agent and the binder tends to decrease. When the blending ratio of the conductive agent decreases, it becomes difficult to form a conductive path in the electrode, and the battery characteristics deteriorate. Therefore, studies have been made to maintain the conductive path by using a conductive agent having a small particle diameter. However, as the particle size is reduced, the specific surface area and liquid absorption are increased, and the viscosity of the electrode slurry is remarkably increased, so that uniform dispersion becomes difficult. In addition, there is a problem that unevenness is likely to occur during coating, and high-performance electrodes cannot be stably produced.

そこで電極スラリーの均一分散を目的として、特許文献1では高圧ジェットミルにより導電剤を分散させる試みが検討されている。しかしこの方法によると特殊な装置による処理が必要であり、また、サブミクロンオーダーにまで微細化されるため、導電剤の微細構造が変化し、導電性が低下するといった問題があった。特許文献2では活物質とバインダーからなる固形分材料の凝集状態を制御する検討がなされているが、導電剤の凝集状態は制御しておらず、小粒径の導電剤を用いる場合には目標とする電極スラリー特性を達成することが困難であった。また、特許文献3ではあらかじめ幅広い粒径分布を有する導電剤スラリーを調整することが検討されているが、導電剤の微細構造が解砕されない条件で処理しているため、凝集力が強い小粒径の導電剤の粒径分布を制御することはできなかった。 Therefore, for the purpose of uniformly dispersing the electrode slurry, Patent Document 1 studies an attempt to disperse the conductive agent using a high-pressure jet mill. However, according to this method, processing by a special apparatus is necessary, and since the structure is miniaturized to submicron order, there is a problem that the fine structure of the conductive agent is changed and the conductivity is lowered. In Patent Document 2, studies have been made to control the aggregation state of a solid material composed of an active material and a binder. However, the aggregation state of the conductive agent is not controlled, and the target is used when a conductive agent having a small particle size is used. It was difficult to achieve the electrode slurry characteristics. Further, in Patent Document 3, it is considered to prepare a conductive agent slurry having a wide particle size distribution in advance, but since the fine structure of the conductive agent is processed under the condition that the fine structure is not crushed, The particle size distribution of the conductive agent having a diameter could not be controlled.

特開2004−281096号公報JP 2004-289696 A 特許第5500395号公報Japanese Patent No. 5500395 特許第5561559号公報Japanese Patent No. 5561559

本発明の目的は、粘度特性及び塗工性に優れたリチウムイオン二次電池電極用スラリー組成物を提供することである。 The objective of this invention is providing the slurry composition for lithium ion secondary battery electrodes excellent in the viscosity characteristic and coating property.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)活物質、導電剤、バインダー、溶剤を含み、導電剤は結晶層厚みLcと平均一次粒子径から算出した結晶化率が60%以上のカーボンブラックであることを特徴とするリチウムイオン二次電池電極用スラリー組成物。
(2)固形分の配合比率が活物質80〜99.8質量%、導電剤0.1〜10質量%、バインダー0.1〜10質量%、固形分濃度が50〜70質量%であり、せん断速度1s−1における粘度が10Pa・s以下であり、せん断速度0.01〜100s−1の範囲における任意のせん断速度γ、γ(γ<γ)に対する粘度η、ηがη>ηを満たす、前記(1)に記載のスラリー組成物。
(3)前記(1)または(2)に記載のスラリー組成物を用いることを特徴とするリチウムイオン二次電池
The present invention employs the following means in order to solve the above problems.
(1) An active material, a conductive agent, a binder, and a solvent, wherein the conductive agent is carbon black having a crystallization rate calculated from the crystal layer thickness Lc and the average primary particle diameter of 60% or more. A slurry composition for a secondary battery electrode.
(2) The solid content is 80 to 99.8% by mass of the active material, 0.1 to 10% by mass of the conductive agent, 0.1 to 10% by mass of the binder, and the solid content concentration is 50 to 70% by mass, The viscosity at a shear rate of 1 s −1 is 10 Pa · s or less, and the viscosity η 1 , η 2 for any shear rate γ 1 , γ 212 ) in the range of a shear rate of 0.01 to 100 s −1. Satisfying η 1 > η 2. The slurry composition according to the above (1).
(3) A lithium ion secondary battery using the slurry composition according to (1) or (2).

本発明のリチウムイオン二次電池電極用スラリー組成物は粘度特性及び塗工性に優れているため、高性能なリチウムイオン二次電池を生産性良く提供することができる。 Since the slurry composition for a lithium ion secondary battery electrode of the present invention is excellent in viscosity characteristics and coatability, a high performance lithium ion secondary battery can be provided with high productivity.

せん断速度0.01〜100s−1の範囲における電極スラリー粘度の例Example of electrode slurry viscosity in the range of shear rate 0.01-100 s −1

本発明のリチウムイオン二次電池電極用スラリー組成物は、活物質、導電剤、バインダー、溶剤を含む。なお、目的に応じて分散剤や難燃剤などの添加剤を含有させることもできる。 The slurry composition for a lithium ion secondary battery electrode of the present invention includes an active material, a conductive agent, a binder, and a solvent. Depending on the purpose, additives such as a dispersant and a flame retardant can also be contained.

本発明のリチウムイオン二次電池電極用スラリー組成物に用いられる導電剤は、結晶層厚みLcと平均一次粒子径から算出した結晶化率が60%以上のカーボンブラックであることを特徴とする。ここで結晶化率とは、カーボンブラックの平均一次粒子径に対する表面結晶層の占める体積割合であり、式(1)によって求めることができる。 The conductive agent used in the slurry composition for a lithium ion secondary battery electrode of the present invention is carbon black having a crystallization rate calculated from the crystal layer thickness Lc and the average primary particle diameter of 60% or more. Here, the crystallization rate is a volume ratio of the surface crystal layer to the average primary particle diameter of carbon black, and can be obtained by the formula (1).

Figure 2017182962

ここでdはカーボンブラックの平均一次粒子径、Lcは結晶層厚みである。
Figure 2017182962

Here, d is the average primary particle diameter of carbon black, and Lc is the crystal layer thickness.

本発明者はリチウムイオン二次電池電極用スラリー組成物の粘度特性及び塗工性を改善するために鋭意検討を行った結果、導電剤であるカーボンブラックの結晶化率がこれらの特性に大きく影響することを見出した。すなわち、カーボンブラックの結晶化率が60%以上であると、カーボンブラックの微細構造の破壊が起こるような強いせん断を与えることなく均一分散した電極スラリーを作成することができ、これを用いたリチウムイオン二次電池の特性を大幅に向上させることができる。詳細なメカニズムは不明であるが、カーボンブラック粒子表面の結晶性が高くなることにより、溶剤との濡れ性に何らかの変化が生じたことが考えられる。カーボンブラックの結晶化率が60%未満であるとこの効果は発現せず電極スラリーの均一分散が困難となり、塗工時にむらが生じやすく、高性能な電極を安定的に生産することができない。 As a result of intensive studies to improve the viscosity characteristics and coating properties of the slurry composition for lithium ion secondary battery electrodes, the present inventor has found that the crystallization ratio of carbon black, which is a conductive agent, greatly affects these characteristics. I found out. That is, when the crystallization rate of carbon black is 60% or more, a uniformly dispersed electrode slurry can be prepared without giving strong shearing that causes destruction of the microstructure of the carbon black. The characteristics of the ion secondary battery can be greatly improved. Although the detailed mechanism is unknown, it is considered that some change occurred in the wettability with the solvent due to the high crystallinity on the surface of the carbon black particles. When the crystallization rate of carbon black is less than 60%, this effect is not exhibited, and it is difficult to uniformly disperse the electrode slurry, unevenness is likely to occur during coating, and high-performance electrodes cannot be stably produced.

本発明のリチウムイオン二次電池電極用スラリー組成物に導電剤として用いられるカーボンブラックの結晶層厚みLcはX線回折により求めることができる。具体的には、CuKα線を用い、測定範囲2θ=10〜40゜、スリット幅0.5゜の条件でX線回折を行う。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶子サイズLcを求めることができる。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。カーボンブラックの結晶層厚みLcはカーボンブラックの合成温度によって調整できる。また、合成後のカーボンブラックを不活性雰囲気中で加熱処理することによっても調整できる。 The crystal layer thickness Lc of carbon black used as a conductive agent in the slurry composition for a lithium ion secondary battery electrode of the present invention can be determined by X-ray diffraction. Specifically, X-ray diffraction is performed using CuKα rays under the conditions of a measurement range 2θ = 10 to 40 ° and a slit width of 0.5 °. Using the obtained (002) plane diffraction line, the crystallite size Lc can be obtained by the Scherrer equation: Lc (Å) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians). The crystal layer thickness Lc of carbon black can be adjusted by the synthesis temperature of carbon black. It can also be adjusted by heat-treating the synthesized carbon black in an inert atmosphere.

本発明のリチウムイオン二次電池電極用スラリー組成物に導電剤として用いられるカーボンブラックの平均一次粒子径は17nm以上、50nm未満であることが好ましく、36nm以下であることがより好ましく、27nm以下であることがさらに好ましい。従来の電極スラリーに用いられるカーボンブラックは結晶化率が60%未満であるため、平均一次粒子径が27nm以下になるとスラリー化が困難であった。一方、本発明に用いるカーボンブラックは結晶化率が60%以上であるため、平均一次粒子径が27nm以下であってもスラリー化することができる。このように小粒径のカーボンブラックの使用が可能となることにより、合材層における配合比率が低くても高い導電性を発揮することができる。一方、平均一次粒子径が17nm未満となると、比表面積が大幅に増加して、導電剤が溶剤又はバインダーを吸着する量が増加するため電極スラリーは増粘してしまい、均一な合材層を形成することが困難となる。カーボンブラックの平均一次粒子径は、透過型電子顕微鏡(TEM)の5万倍画像から100個のカーボンブラックの一次粒子径を測り、平均値を算出して求めることができる。カーボンブラックの一次粒子はアスペクト比が小さく真球に近い形状をしているが、完全な真球ではない。そこで、TEM画像における一次粒子の外周2点を結ぶ線分のうちで最大のものをカーボンブラックの一次粒子径とした。なお、カーボンブラックの一次粒子径は合成反応場の温度に大きく影響を受け、温度が高いほど一次粒子径は小さくなることが一般的に知られている。 The average primary particle size of carbon black used as a conductive agent in the slurry composition for a lithium ion secondary battery electrode of the present invention is preferably 17 nm or more and less than 50 nm, more preferably 36 nm or less, and 27 nm or less. More preferably it is. Since carbon black used in conventional electrode slurries has a crystallization rate of less than 60%, it is difficult to form a slurry when the average primary particle size is 27 nm or less. On the other hand, since the carbon black used in the present invention has a crystallization rate of 60% or more, it can be slurried even if the average primary particle size is 27 nm or less. Thus, by using carbon black having a small particle diameter, high conductivity can be exhibited even if the compounding ratio in the composite layer is low. On the other hand, when the average primary particle size is less than 17 nm, the specific surface area is greatly increased, and the amount of the conductive agent adsorbing the solvent or binder is increased, so that the electrode slurry is thickened, and a uniform mixture layer is formed. It becomes difficult to form. The average primary particle diameter of carbon black can be obtained by measuring the primary particle diameter of 100 carbon blacks from a 50,000-fold image obtained by a transmission electron microscope (TEM) and calculating the average value. The primary particles of carbon black have a small aspect ratio and a shape close to a true sphere, but are not perfect spheres. Therefore, the largest of the line segments connecting the two outer peripheral points of the primary particles in the TEM image is the primary particle diameter of carbon black. It is generally known that the primary particle size of carbon black is greatly influenced by the temperature of the synthesis reaction field, and the primary particle size decreases as the temperature increases.

本発明のリチウムイオン二次電池電極用スラリー組成物に導電剤として用いられるカーボンブラックの比表面積は40m/g以上、300m/g未満であることが好ましい。これは従来から導電剤に使用されているカーボンブラックの比表面積と比べて高いことが特徴である。比表面積が40m/g以上であると、合材層中で活物質との接触点が増加し、導電性を向上させることができる。比表面積が300m/g以上であると、導電剤が溶剤又はバインダーを吸着する量が増加するため電極スラリーは増粘してしまい、均一な合材層を形成することが困難となる。更には、本発明のカーボンブラックは表面の凹凸ないしは細孔、又は親水性の表面官能基が非常に少ないカーボンブラックであるため比表面積が300m/g以上であると電極スラリーでの分散が困難となる。一方で、300m/gを超える高比表面積のカーボンブラックにおいては、親水性の表面官能基が多く付与されていると電極スラリーへの高分散が可能となる場合もある。比表面積はJIS K6217−2に従ってBET法により測定することができる。カーボンブラックの比表面積は、一次粒子の小粒径化や中空化、粒子表面の多孔質化などにより高めることができ、必ずしも一次粒子径のみに依存するものではない。 The specific surface area of carbon black used as a conductive agent in the slurry composition for a lithium ion secondary battery electrode of the present invention is preferably 40 m 2 / g or more and less than 300 m 2 / g. This is characterized in that it is higher than the specific surface area of carbon black conventionally used for conductive agents. When the specific surface area is 40 m 2 / g or more, the number of contact points with the active material in the composite layer increases, and the conductivity can be improved. When the specific surface area is 300 m 2 / g or more, the amount of the conductive agent adsorbing the solvent or the binder increases, so that the electrode slurry is thickened and it is difficult to form a uniform mixture layer. Furthermore, since the carbon black of the present invention is a carbon black having very few surface irregularities or pores or hydrophilic surface functional groups, it is difficult to disperse in the electrode slurry when the specific surface area is 300 m 2 / g or more. It becomes. On the other hand, in carbon black having a high specific surface area exceeding 300 m 2 / g, when a large amount of hydrophilic surface functional groups are provided, high dispersion in the electrode slurry may be possible. The specific surface area can be measured by the BET method according to JIS K6217-2. The specific surface area of carbon black can be increased by reducing the primary particle size, making it hollow, making the particle surface porous, etc., and does not necessarily depend only on the primary particle size.

本発明に係るカーボンブラックの製造方法は特に限定されるものではなく、例えば、炭化水素などの原料ガスを反応炉の炉頂に設置されたノズルから供給し、熱分解反応及び又は部分燃焼反応によりカーボンブラックを製造し、反応炉下部に直結されたバグフィルターから捕集することができる。使用する原料ガスは特に限定されるものではなく、アセチレン、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエンなどのガス状炭化水素や、トルエン、ベンゼン、キシレン、ガソリン、灯油、軽油、重油などのオイル状炭化水素をガス化したものを使用することができる。またこれらの複数を混合して使用することもできる。中でも不純物が少ないアセチレンガスを使用することが好ましい。アセチレンガスの分解熱により反応炉内の温度が高くなるため、小粒径で結晶層厚みLcの大きいカーボンブラックが得られる。 The method for producing carbon black according to the present invention is not particularly limited. For example, a raw material gas such as a hydrocarbon is supplied from a nozzle installed at the top of the reactor and is subjected to a pyrolysis reaction and / or a partial combustion reaction. Carbon black can be produced and collected from a bag filter directly connected to the bottom of the reactor. The raw material gas to be used is not particularly limited, and gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene, and butadiene, and oils such as toluene, benzene, xylene, gasoline, kerosene, light oil, and heavy oil Gasified hydrocarbons can be used. A plurality of these can also be mixed and used. Among them, it is preferable to use acetylene gas with few impurities. Since the temperature in the reaction furnace increases due to the decomposition heat of the acetylene gas, carbon black having a small particle size and a large crystal layer thickness Lc can be obtained.

本発明のリチウムイオン二次電池電極用スラリー組成物の固形分配合比率は活物質80〜99.8質量%、導電剤0.1〜10質量%、バインダー0.1〜10質量%であることが好ましい。高結晶化率であるカーボンブラックを導電剤に用い、上記固形分配合とすることにより、電極スラリーの塗工性や導電性を損なうことなく合材層中の活物質の配合比率を高めることができ、リチウムイオン二次電池の高容量化が達成できる。また、高結晶化率で小粒径のカーボンブラックを用いることにより、同一の固形分配合であっても導電性を向上させることができ、リチウムイオン二次電池の高出力化が達成できる。
また、本発明のリチウムイオン二次電池電極用スラリー組成物の固形分濃度は50〜70質量%であることが好ましい。固形分濃度が70質量%を超えると電極スラリー混練時に強いせん断が加わるため、導電剤の一次凝集が破壊され、導電性が低下してしまう。また、乾燥工程においてひび割れが生じやすくなる。一方、固形分濃度が50質量%未満であると塗工後の乾燥工程で時間を要するため、生産性が低下してしまう。
The solid content blending ratio of the slurry composition for a lithium ion secondary battery electrode of the present invention is 80 to 99.8% by mass of the active material, 0.1 to 10% by mass of the conductive agent, and 0.1 to 10% by mass of the binder. Is preferred. By using carbon black, which has a high crystallization rate, as a conductive agent and using the above-mentioned solid content, it is possible to increase the mixing ratio of the active material in the composite layer without impairing the coating property and conductivity of the electrode slurry. The capacity of the lithium ion secondary battery can be increased. In addition, by using carbon black having a high crystallization ratio and a small particle size, the conductivity can be improved even with the same solid content, and high output of the lithium ion secondary battery can be achieved.
Moreover, it is preferable that solid content concentration of the slurry composition for lithium ion secondary battery electrodes of this invention is 50-70 mass%. When the solid content concentration exceeds 70% by mass, strong shearing is applied when the electrode slurry is kneaded, so that the primary aggregation of the conductive agent is destroyed and the conductivity is lowered. In addition, cracks are likely to occur in the drying process. On the other hand, if the solid content concentration is less than 50% by mass, the drying process after coating takes time, and the productivity is lowered.

本発明のリチウムイオン二次電池電極用スラリー組成物は、せん断速度1s−1における粘度が10Pa・s以下であることが好ましい。集電体への電極スラリー塗工方法にはドクターブレード法、ロールコーター法、ダイコーター法などがあるが、塗工速度は10〜50m/min程度が一般的である。この領域に相当するせん断速度1s−1における粘度が10Pa・s以下であると均一な塗工が可能となる。せん断速度1s−1における粘度は1Pa・s以上であることが好ましい。1Pa・s未満であると塗工後に活物質の沈降が起こりやすくなり、合材層の構造に偏りが生じてしまうおそれがある。電極スラリーの粘度はレオメーターによって測定することができる。なお本発明における粘度とは測定温度25℃における粘度とする。電極スラリーの粘度は活物質、導電剤、バインダーといった固形分の配合比率や、固形分濃度、分散条件、分散剤の添加、導電剤であるカーボンブラックの結晶化率などを変更することによって調整できる。 The slurry composition for lithium ion secondary battery electrodes of the present invention preferably has a viscosity at a shear rate of 1 s −1 of 10 Pa · s or less. The electrode slurry coating method on the current collector includes a doctor blade method, a roll coater method, a die coater method, etc., and the coating speed is generally about 10 to 50 m / min. If the viscosity at a shear rate of 1 s −1 corresponding to this region is 10 Pa · s or less, uniform coating is possible. The viscosity at a shear rate of 1 s −1 is preferably 1 Pa · s or higher. If it is less than 1 Pa · s, the active material tends to settle after coating, and the structure of the composite layer may be biased. The viscosity of the electrode slurry can be measured by a rheometer. The viscosity in the present invention is the viscosity at a measurement temperature of 25 ° C. The viscosity of the electrode slurry can be adjusted by changing the blending ratio of solids such as active material, conductive agent, binder, solid content concentration, dispersion conditions, addition of dispersant, crystallization rate of carbon black as a conductive agent, etc. .

本発明のリチウムイオン二次電池電極用スラリー組成物は、せん断速度0.01〜100s−1の範囲における任意のせん断速度γ、γ(γ<γ)に対する粘度η、ηがη>ηであることが好ましい。通常、電極スラリーの粘度はせん断速度の増加に対して単調に減少する傾向にある。したがってη>ηであると塗工時にはたらくせん断速度が変化しても流動特性が変化することがなく、安定した塗工が可能となる。η≦ηであると、せん断速度上昇時に粘度が上がる、またはせん断速度低下時に粘度が下がるといったように、通常とは異なる流動特性を示すため、安定した塗工が困難となる。詳細なメカニズムは不明であるが、カーボンブラック粒子表面の結晶性が高くなることにより、溶剤との濡れ性に何らかの変化が生じたため流動特性が向上したと考えられる。カーボンブラックの結晶化率が60%未満であると、溶剤との濡れ性が悪く粒子が凝集する等の現象が要因となってη≦ηを示し、電極スラリーの均一分散が困難となり、塗工時にむらが生じやすく、高性能な電極を安定的に生産することができない。 The slurry composition for a lithium ion secondary battery electrode of the present invention has viscosities η 1 and η 2 with respect to arbitrary shear rates γ 1 and γ 212 ) in the range of shear rates of 0.01 to 100 s −1. Is preferably η 1 > η 2 . Usually, the viscosity of the electrode slurry tends to monotonously decrease with increasing shear rate. Therefore, if η 1 > η 2 , the flow characteristics do not change even if the shear rate applied during coating changes, and stable coating is possible. When η 1 ≦ η 2 , since the viscosity increases when the shear rate is increased or the viscosity decreases when the shear rate is decreased, stable coating is difficult. Although the detailed mechanism is unknown, it is considered that the flow characteristics were improved because the crystallinity on the surface of the carbon black particles was increased, which caused some change in the wettability with the solvent. When the crystallization rate of carbon black is less than 60%, η 1 ≦ η 2 is exhibited due to a phenomenon such as poor wettability with a solvent and aggregation of particles, and uniform dispersion of the electrode slurry becomes difficult. Unevenness is likely to occur during coating, and high-performance electrodes cannot be stably produced.

本発明のリチウムイオン二次電池電極用スラリー組成物に用いられる活物質は特に限定されるものではないが、コバルト酸リチウムまたはニッケル・マンガン・コバルト酸リチウムであることが好ましい。また、活物質の平均粒子径は1〜20μmであることが好ましい。1μm未満であると電極スラリーが増粘してしまい、20μmを超えると平滑な電極を作製することが困難となる。 Although the active material used for the slurry composition for lithium ion secondary battery electrodes of the present invention is not particularly limited, lithium cobaltate or nickel / manganese / lithium cobaltate is preferable. Moreover, it is preferable that the average particle diameter of an active material is 1-20 micrometers. When the thickness is less than 1 μm, the electrode slurry is thickened, and when it exceeds 20 μm, it is difficult to produce a smooth electrode.

本発明のリチウムイオン二次電池電極用スラリー組成物に用いられるバインダーは特に限定されるものではなく、例えばポリエチレン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロース、セチルメチルセルロース、ポリビニルアルコール、四フッ化エチレン樹脂、ポリフッ化ビニリデン、ポリフッ化クロロプレンなどを使用することができる。また、これらをあらかじめ溶剤に溶解させたものを使用することもできる。 The binder used in the lithium ion secondary battery electrode slurry composition of the present invention is not particularly limited, for example, polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, polysulfide rubber, nitrocellulose, Cetylmethylcellulose, polyvinyl alcohol, tetrafluoroethylene resin, polyvinylidene fluoride, polychlorochloroprene, and the like can be used. Moreover, what melt | dissolved these in the solvent previously can also be used.

本発明のリチウムイオン二次電池電極用スラリー組成物に使用する溶剤は特に限定されるものではなく、例えばN−メチルピロリドンやエタノール、酢酸エチルなどを使用することができる。 The solvent used for the slurry composition for lithium ion secondary battery electrodes of the present invention is not particularly limited, and for example, N-methylpyrrolidone, ethanol, ethyl acetate, or the like can be used.

本発明のリチウムイオン二次電池電極用スラリー組成物作製時の混練方法は特に限定されるものではなく、例えばミキサー、ニーダー、分散機、ミル、自転公転式回転装置などの一般的な装置を使用することができる。 The kneading method at the time of preparing the slurry composition for the lithium ion secondary battery electrode of the present invention is not particularly limited, and for example, a general apparatus such as a mixer, a kneader, a disperser, a mill, a rotation and revolution type rotating apparatus is used. can do.

本発明のリチウムイオン二次電池は、例えば、本発明の電極スラリーを金属箔からなる集電体に塗工、その後乾燥して被着させることによって製造することができる。正極と負極とをセパレータを介して積層あるいは捲回して形成される電極群に電解液を浸漬することで二次電池を製造することができる。本発明の電極スラリーは小粒径、高比表面積の導電剤を含有しながらも優れた塗工性を有するため、優れた電池特性を発揮することができる。 The lithium ion secondary battery of the present invention can be produced, for example, by applying the electrode slurry of the present invention to a current collector made of a metal foil, and then drying and depositing the current collector. A secondary battery can be manufactured by immersing the electrolytic solution in an electrode group formed by laminating or winding a positive electrode and a negative electrode through a separator. Since the electrode slurry of the present invention has excellent coating properties while containing a conductive agent having a small particle size and a high specific surface area, it can exhibit excellent battery characteristics.

集電体は特に限定されるものではなく、金、銀、銅、白金、アルミニウム、鉄、ニッケル、クロム、マンガン、鉛、タングステン、チタン等、ないしはこれらを主成分とする合金の金属箔が使用される。正極にはアルミニウムを、負極には銅を用いることが好ましい。 The current collector is not particularly limited, and a metal foil of gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, or an alloy containing these as a main component is used. Is done. It is preferable to use aluminum for the positive electrode and copper for the negative electrode.

電解液は特に限定されるものではなく、リチウム塩を含む非水電解液またはイオン伝導ポリマーなどを使用することができる。リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートなどが挙げられる。また、非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム、ホウ四フッ化リチウム、トリフルオロメタンスルホン酸リチウムなどが挙げられる。 The electrolytic solution is not particularly limited, and a nonaqueous electrolytic solution containing lithium salt or an ion conductive polymer can be used. Examples of the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolytic solution containing a lithium salt include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. Examples of the lithium salt that can be dissolved in the non-aqueous solvent include lithium hexafluorophosphate, lithium borotetrafluoride, and lithium trifluoromethanesulfonate.

セパレータは特に限定されるものではなく、ポリエチレンやポリプロピレンなどの合成樹脂を使用することができる。電解液の保持性が良いことから多孔性フィルムを用いることが好ましい。 The separator is not particularly limited, and synthetic resins such as polyethylene and polypropylene can be used. It is preferable to use a porous film because the electrolyte retainability is good.

以下、実施例により本発明を詳細に説明する。しかし、本発明の範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the scope of the present invention is not limited to the following examples.

実施例1
カーボンブラック反応炉(炉長5m、炉直径0.5m)の炉頂に設置されたノズルからアセチレンガスを12m/h、酸素ガスを9m/h、水素ガスを0.5m/h噴霧し、アセチレンガスの熱分解及び燃焼反応を利用してカーボンブラックを製造した。このカーボンブラックを窒素雰囲気中1700℃で1時間加熱処理した。得られたカーボンブラックについて、以下の物性を測定した。評価結果を表1に示す。
(1)結晶層厚みLc:X線回折装置(Brucker社製「D8ADVANCE」)により、CuKα線を用いて測定範囲2θ=10〜40゜、スリット幅0.5゜の条件でX線回折を行った。測定角度の校正にはX線標準用シリコン(三津和化学薬品社製金属シリコン)を用いた。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶層厚みLcを求めた。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。
(2)平均一次粒子径:透過型電子顕微鏡(TEM)の5万倍画像より、100個のカーボンブラック一次粒子径を測り、平均値を算出した。
(3)結晶化率:カーボンブラックの平均一次粒子径に対する表面結晶層の占める体積割合であり、下式によって求めることができる。
(4)比表面積:JIS K 6217−2に従い測定した。
Example 1
Atomylene gas 12m 3 / h, oxygen gas 9m 3 / h, hydrogen gas 0.5m 3 / h sprayed from a nozzle installed at the top of a carbon black reactor (furnace length 5m, furnace diameter 0.5m) Then, carbon black was produced by utilizing thermal decomposition and combustion reaction of acetylene gas. This carbon black was heat-treated at 1700 ° C. for 1 hour in a nitrogen atmosphere. The obtained carbon black was measured for the following physical properties. The evaluation results are shown in Table 1.
(1) Crystal layer thickness Lc: Using an X-ray diffractometer (“D8ADVANCE” manufactured by Brucker), X-ray diffraction is performed using CuKα rays in a measurement range of 2θ = 10 to 40 ° and a slit width of 0.5 °. It was. For calibration of the measurement angle, silicon for X-ray standard (metal silicon manufactured by Mitsuwa Chemicals) was used. Using the diffraction line of the (002) plane obtained, the crystal layer thickness Lc was determined by Scherrer's formula: Lc (Å) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians).
(2) Average primary particle diameter: 100 primary particle diameters of carbon black were measured from a 50,000 times image of a transmission electron microscope (TEM), and an average value was calculated.
(3) Crystallization rate: The volume ratio of the surface crystal layer to the average primary particle diameter of carbon black, which can be determined by the following equation.
(4) Specific surface area: Measured according to JIS K 6217-2.

Figure 2017182962

ここでdはカーボンブラックの平均一次粒子径、Lcは結晶層厚みである。
Figure 2017182962

Here, d is the average primary particle diameter of carbon black, and Lc is the crystal layer thickness.

得られたカーボンブラック4質量部と活物質としてLiNi1/3Mn1/3Co1/3(日本化学工業社製「CELLSEED NMC Ni:Mn:Co=1:1:1」)92質量部、バインダーとしてポリフッ化ビニリデン(クレハ社製「クレハKFポリマーW#1100」)4質量部、溶剤としてN−メチルピロリドン(Aldrich社製)67質量部を脱泡混練機(日本精機製作所社製「NBK−1」)回転数1000rpmの条件で15分間混練し、固形分濃度60質量%の電極スラリーを作製した。この電極スラリーの25℃における粘度を粘弾性測定機(AntonPaar社製「MCR102」、φ30mm、角度3°のコーンプレート使用、ギャップ1mm)で評価した。せん断速度は0.01から100s−1へ変化させて測定した。せん断速度1s−1における粘度及び任意のせん断速度γ、γ(γ<γ)に対する粘度η、ηの関係を表1に示す。
また、電極スラリーの分散度をJIS K5600−2−5に従って粒ゲージ法により評価した。具体的には、粒ゲージ台上に電極スラリー0.5mlを滴下し、スクレーパーにてゲージ溝に薄く引き延ばし、ゲージ上に観察された最も大きい粒の粒径を測定した。測定を3回行い、平均値を測定値とした。評価結果を表1に示す。
4 parts by mass of the obtained carbon black and LiNi 1/3 Mn 1/3 Co 1/3 O 2 (“CELLSEED NMC Ni: Mn: Co = 1: 1: 1” manufactured by Nippon Chemical Industry Co., Ltd.) 92 mass 4 parts by weight of polyvinylidene fluoride (“Kureha KF Polymer W # 1100” manufactured by Kureha Co., Ltd.) as a binder and 67 parts by mass of N-methylpyrrolidone (manufactured by Aldrich) as a solvent, NBK-1 ") was kneaded for 15 minutes under the condition of a rotational speed of 1000 rpm to produce an electrode slurry having a solid content concentration of 60% by mass. The viscosity of this electrode slurry at 25 ° C. was evaluated with a viscoelasticity measuring device (“MCR102” manufactured by Anton Paar, φ30 mm, cone plate with an angle of 3 °, gap 1 mm). The shear rate was measured by changing from 0.01 to 100 s −1 . Table 1 shows the relationship between the viscosity η 1 and η 2 with respect to the viscosity at a shear rate of 1 s −1 and arbitrary shear rates γ 1 and γ 212 ).
Further, the degree of dispersion of the electrode slurry was evaluated by a particle gauge method according to JIS K5600-2-5. Specifically, 0.5 ml of electrode slurry was dropped on a particle gauge table, and was thinly stretched into a gauge groove with a scraper, and the particle size of the largest particle observed on the gauge was measured. Measurement was performed three times, and the average value was taken as the measured value. The evaluation results are shown in Table 1.

得られた電極スラリーを厚さ20μmのアルミニウム箔(集電体)上に塗工機(宝泉株式会社製「MINI−COATER MODEL:MC10」)を用いて塗工し、乾燥したものを、プレス、裁断して、正極を作製した。この正極の極板抵抗を交流インピーダンス法により評価した。具体的には、正極をSUS製三極式セルにセットして、インピーダンスアナライザー(東陽テクニカ社製「電気化学測定システム12608W型」、電極面積1.54cm、掃引周波数1MHz→1Hz、印加電圧10mV、測定温度20度)で電極の交流抵抗を測定した。評価結果を表1に示す。 The obtained electrode slurry was coated on an aluminum foil (current collector) having a thickness of 20 μm using a coating machine (“MINI-COATER MODEL: MC10” manufactured by Hosen Co., Ltd.), and the dried one was pressed. The positive electrode was produced by cutting. The electrode plate resistance of this positive electrode was evaluated by the AC impedance method. Specifically, the positive electrode is set in a SUS tripolar cell, and an impedance analyzer (“electrochemical measurement system 12608W type” manufactured by Toyo Technica Co., Ltd., electrode area 1.54 cm 2 , sweep frequency 1 MHz → 1 Hz, applied voltage 10 mV) The AC resistance of the electrode was measured at a measurement temperature of 20 degrees. The evaluation results are shown in Table 1.

正極に対する対極に金属リチウム(本城金属社製)を用い、これらを電気的に隔離するセパレータとしてポリオレフィン繊維製不織布を用いてコインセル(CR−2032型)を作製した。電解液にはエチレンカーボネート(Aldrich製)/ジメチルカーボネート(Aldrich製)を1/1の容積比で混合した溶液中に六フッ化リン酸リチウム(ステラケミファ社製)を1mol/L溶解させたものを用いた。電池の放電試験として、まず0.7mA/cmの電流密度、上限電圧5.0Vにて定電流・定電圧充電を行い、次いで0.7mA/cmの電流密度、下限電圧3.0Vにて定電流放電を行った際の放電容量を測定し、正極活物質量で除した容量密度(mAh/g)を初期容量とし、この容量(mAh)を1時間で充放電可能な電流値を「1C」とした。そして、出力特性の評価として、電流を0.2C、上限電圧を5.0Vとして定電流・定電圧充電を行った後、電流を3C、下限電圧を3.0Vとして定電流放電を行い、この際の放電容量を正極活物質量で除した値(mAh/g)を3C放電容量として算出した。評価結果を表1に示す。 Metallic lithium (manufactured by Honjo Metal Co., Ltd.) was used as the counter electrode with respect to the positive electrode, and a polyolefin cell non-woven fabric was used as a separator to electrically isolate them to produce a coin cell (CR-2032 type). In the electrolyte solution, 1 mol / L of lithium hexafluorophosphate (manufactured by Stella Chemifa) is dissolved in a solution in which ethylene carbonate (manufactured by Aldrich) / dimethyl carbonate (manufactured by Aldrich) is mixed at a volume ratio of 1/1. Was used. As a battery discharge test, first, constant current / constant voltage charging was performed at a current density of 0.7 mA / cm 2 and an upper limit voltage of 5.0 V, and then a current density of 0.7 mA / cm 2 and a lower limit voltage of 3.0 V were performed. The discharge capacity when performing constant current discharge was measured, and the capacity density (mAh / g) divided by the amount of the positive electrode active material was taken as the initial capacity, and this capacity (mAh) was determined as a current value that can be charged and discharged in 1 hour. “1C”. Then, as an evaluation of the output characteristics, after performing constant current / constant voltage charging with a current of 0.2 C and an upper limit voltage of 5.0 V, a constant current discharge was performed with a current of 3 C and a lower limit voltage of 3.0 V. The value (mAh / g) obtained by dividing the discharge capacity by the amount of the positive electrode active material was calculated as the 3C discharge capacity. The evaluation results are shown in Table 1.

比較例1
カーボンブラックを窒素雰囲気中1700℃で1時間加熱処理しないこと以外は実施例1と同様にして電極スラリーを得た。電極スラリーの粘度が高かったため、塗工することができなかった。評価結果を表1に示す。
Comparative Example 1
An electrode slurry was obtained in the same manner as in Example 1 except that carbon black was not heat-treated at 1700 ° C. for 1 hour in a nitrogen atmosphere. Since the viscosity of the electrode slurry was high, coating could not be performed. The evaluation results are shown in Table 1.

実施例2、比較例2
加熱処理温度を1900℃、1600℃に変更し、カーボンブラックの結晶層厚みLcを表1に示すように変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 2 and Comparative Example 2
An electrode slurry was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 1900 ° C. and 1600 ° C., and the crystal layer thickness Lc of carbon black was changed as shown in Table 1. The evaluation results are shown in Table 1.

実施例3〜6
溶媒の配合量を108質量部、100質量部、43質量部、39質量部、に変更し、電極スラリーの固形分濃度を表1に示すように変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Examples 3-6
Except that the blending amount of the solvent was changed to 108 parts by mass, 100 parts by mass, 43 parts by mass, 39 parts by mass, and the solid content concentration of the electrode slurry was changed as shown in Table 1, it was the same as Example 1. An electrode slurry was obtained. The evaluation results are shown in Table 1.

実施例7
脱泡混練機での電極スラリー分散条件を回転数800rpmで10分間混練に変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 7
An electrode slurry was obtained in the same manner as in Example 1 except that the electrode slurry dispersion condition in the defoaming kneader was changed to kneading for 10 minutes at 800 rpm. The evaluation results are shown in Table 1.

実施例8
合材層中の配合比率を活物質94質量部、カーボンブラック2質量部、バインダー4質量部に変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 8
An electrode slurry was obtained in the same manner as in Example 1 except that the mixing ratio in the mixture layer was changed to 94 parts by mass of the active material, 2 parts by mass of carbon black, and 4 parts by mass of the binder. The evaluation results are shown in Table 1.

実施例9
導電剤に市販のカーボンブラック(デンカ社製「デンカブラック粉状」)を窒素雰囲気中1700℃で1時間加熱処理したものを用い、合材層中の配合比率を活物質88質量部、カーボンブラック7質量部、バインダー5質量部に変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 9
Commercially available carbon black ("Denka Black powder" manufactured by Denka) was used as the conductive agent by heating at 1700 ° C for 1 hour in a nitrogen atmosphere, and the mixing ratio in the mixture layer was 88 parts by mass of active material, carbon black An electrode slurry was obtained in the same manner as in Example 1 except that the content was changed to 7 parts by mass and 5 parts by mass of the binder. The evaluation results are shown in Table 1.

実施例10
導電剤に市販のカーボンブラック(デンカ社製「デンカブラックHS−100」)を窒素雰囲気中1700℃で1時間加熱処理したものを用い、合材層中の配合比率を活物質82質量部、カーボンブラック10質量部、バインダー8質量部に変えたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 10
Commercially available carbon black ("Denka Black HS-100" manufactured by Denka) was used as the conductive agent by heating at 1700 ° C for 1 hour in a nitrogen atmosphere. The compounding ratio in the composite layer was 82 parts by mass of carbon, carbon An electrode slurry was obtained in the same manner as in Example 1 except that the amount was changed to 10 parts by mass of black and 8 parts by mass of binder. The evaluation results are shown in Table 1.

実施例11
導電剤に市販のカーボンブラック(デンカ社製「デンカブラックFX−35」)を窒素雰囲気中1700℃で1時間加熱処理したものを用いたこと以外は実施例1と同様にして電極スラリーを得た。評価結果を表1に示す。
Example 11
An electrode slurry was obtained in the same manner as in Example 1 except that a commercially available carbon black (“Denka Black FX-35” manufactured by Denka Co., Ltd.) was used which was heat-treated at 1700 ° C. for 1 hour in a nitrogen atmosphere. . The evaluation results are shown in Table 1.

比較例3
カーボンブラックを窒素雰囲気中1700℃で1時間加熱処理しないこと以外は実施例9と同様にして電極スラリーを得た。評価結果を表1に示す。
Comparative Example 3
An electrode slurry was obtained in the same manner as in Example 9 except that carbon black was not heat-treated at 1700 ° C. for 1 hour in a nitrogen atmosphere. The evaluation results are shown in Table 1.

Figure 2017182962

ここでdはカーボンブラックの平均一次粒子径、Lcは結晶層厚みである。
Figure 2017182962

Here, d is the average primary particle diameter of carbon black, and Lc is the crystal layer thickness.

表1の評価結果より、本発明のリチウムイオン二次電池電極用スラリー組成物は、導電剤に結晶層厚みLcと平均一次粒子径から算出した結晶化率が60%以上のカーボンブラックを用いているため、粘度特性及び塗工性に優れている。そのため、高性能なリチウムイオン二次電池を生産性良く提供することができる。 From the evaluation results of Table 1, the slurry composition for lithium ion secondary battery electrodes of the present invention uses carbon black having a crystallization rate calculated from the crystal layer thickness Lc and the average primary particle diameter of 60% or more as a conductive agent. Therefore, it has excellent viscosity characteristics and coatability. Therefore, a high-performance lithium ion secondary battery can be provided with high productivity.

本発明のリチウムイオン二次電池電極用スラリー組成物は、リチウムイオン二次電池の電極として利用することができる。

The slurry composition for lithium ion secondary battery electrodes of the present invention can be used as an electrode for lithium ion secondary batteries.

Claims (3)

活物質、導電剤、バインダー、溶剤を含み、導電剤が結晶層厚みLcと平均一次粒子径dから式(1)により算出した結晶化率が60%以上のカーボンブラックであることを特徴とするリチウムイオン二次電池電極用スラリー組成物。
Figure 2017182962

An active material, a conductive agent, a binder, and a solvent are included, and the conductive agent is carbon black having a crystallization rate calculated by the formula (1) from the crystal layer thickness Lc and the average primary particle diameter d of 60% or more. A slurry composition for a lithium ion secondary battery electrode.
Figure 2017182962

固形分の配合比率が活物質80〜99.8質量%、導電剤0.1〜10質量%、バインダー0.1〜10質量%、固形分濃度が50〜70質量%であり、せん断速度1s−1における粘度が10Pa・s以下であり、せん断速度0.01〜100s−1の範囲における任意のせん断速度γ、γ(γ<γ)に対する粘度η、ηがη>ηを満たす、請求項1に記載のスラリー組成物。 The solid content is 80 to 99.8% by mass of the active material, the conductive agent is 0.1 to 10% by mass, the binder is 0.1 to 10% by mass, the solid content is 50 to 70% by mass, and the shear rate is 1 s. The viscosity η 1 and η 2 for any shear rate γ 1 and γ 212 ) in the range of shear rate 0.01 to 100 s −1 is η 1. The slurry composition of claim 1, satisfying> η 2 . 請求項1または2に記載のスラリー組成物を用いることを特徴とするリチウムイオン二次電池。

A lithium ion secondary battery using the slurry composition according to claim 1.

JP2016065257A 2016-03-29 2016-03-29 Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics Active JP6734093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016065257A JP6734093B2 (en) 2016-03-29 2016-03-29 Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065257A JP6734093B2 (en) 2016-03-29 2016-03-29 Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020118436A Division JP7003190B2 (en) 2020-07-09 2020-07-09 Slurry composition for lithium ion secondary battery electrodes with excellent viscosity characteristics

Publications (2)

Publication Number Publication Date
JP2017182962A true JP2017182962A (en) 2017-10-05
JP6734093B2 JP6734093B2 (en) 2020-08-05

Family

ID=60008503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065257A Active JP6734093B2 (en) 2016-03-29 2016-03-29 Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics

Country Status (1)

Country Link
JP (1) JP6734093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525771A (en) * 2020-11-30 2021-03-19 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method
WO2022060019A1 (en) * 2020-09-21 2022-03-24 주식회사 엘지에너지솔루션 Cathode slurry for lithium-sulfur battery, cathode for lithium-sulfur battery manufactured using same, and lithium-sulfur battery comprising same
CN115090142A (en) * 2022-07-22 2022-09-23 郑州中科新兴产业技术研究院 Lithium-sulfur battery positive electrode material, slurry and homogenizing method thereof
CN116457428A (en) * 2020-12-04 2023-07-18 电化株式会社 Carbon black, slurry and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147158A (en) * 1993-09-30 1995-06-06 Sumitomo Chem Co Ltd Negative electrode for lithium secondary battery
JPH07307165A (en) * 1994-05-11 1995-11-21 Sumitomo Chem Co Ltd Lithium secondary battery
JP2013500556A (en) * 2009-07-25 2013-01-07 エボニック デグサ ゲーエムベーハー Electrode energy storage electrode coating method
JP2013025887A (en) * 2011-07-15 2013-02-04 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147158A (en) * 1993-09-30 1995-06-06 Sumitomo Chem Co Ltd Negative electrode for lithium secondary battery
JPH07307165A (en) * 1994-05-11 1995-11-21 Sumitomo Chem Co Ltd Lithium secondary battery
JP2013500556A (en) * 2009-07-25 2013-01-07 エボニック デグサ ゲーエムベーハー Electrode energy storage electrode coating method
JP2013025887A (en) * 2011-07-15 2013-02-04 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022060019A1 (en) * 2020-09-21 2022-03-24 주식회사 엘지에너지솔루션 Cathode slurry for lithium-sulfur battery, cathode for lithium-sulfur battery manufactured using same, and lithium-sulfur battery comprising same
CN112525771A (en) * 2020-11-30 2021-03-19 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method
CN112525771B (en) * 2020-11-30 2023-03-24 湖北亿纬动力有限公司 Battery slurry storage performance evaluation method
CN116457428A (en) * 2020-12-04 2023-07-18 电化株式会社 Carbon black, slurry and lithium ion secondary battery
CN115090142A (en) * 2022-07-22 2022-09-23 郑州中科新兴产业技术研究院 Lithium-sulfur battery positive electrode material, slurry and homogenizing method thereof

Also Published As

Publication number Publication date
JP6734093B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
TWI385843B (en) A silicon composite body and a method for manufacturing the same, and a negative electrode material for a nonaqueous electrolyte battery
JP6734093B2 (en) Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics
WO2016080539A1 (en) Carbon black and rechargeable battery using same
WO2006008930A1 (en) Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2005031899A1 (en) Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
ES2672305T3 (en) Conductive carbons for lithium-ion batteries
JP7003190B2 (en) Slurry composition for lithium ion secondary battery electrodes with excellent viscosity characteristics
KR20190045198A (en) Conductive composition for electrode and electrode, battery using same
JP2018088404A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015210959A (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6219981B2 (en) Carbon black having excellent slurry viscosity characteristics, slurry composition for lithium ion secondary battery electrode, and lithium ion secondary battery
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP2007053022A (en) Lithium secondary battery
JP6797294B2 (en) A method for producing a positive electrode slurry for a lithium secondary battery and a positive electrode for a lithium secondary battery manufactured by the method.
JP2018062545A (en) Carbon black composition and lithium secondary battery using the same
JP2018195586A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4053763B2 (en) Lithium ion secondary battery
JP2012049151A (en) Lithium secondary battery
JP6409319B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012004131A (en) Lithium secondary battery
JP2012221684A (en) Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
WO2023145543A1 (en) Carbon black, slurry and lithium ion secondary battery
JP2016126900A (en) Manufacturing method for secondary battery
US20240006615A1 (en) Carbon black, slurry, and lithium-ion secondary battery
EP4234637A1 (en) Carbon black, slurry, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6734093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250