JP2017179462A - Piston ring wire for internal combustion engine and piston ring for internal combustion engine - Google Patents
Piston ring wire for internal combustion engine and piston ring for internal combustion engine Download PDFInfo
- Publication number
- JP2017179462A JP2017179462A JP2016067758A JP2016067758A JP2017179462A JP 2017179462 A JP2017179462 A JP 2017179462A JP 2016067758 A JP2016067758 A JP 2016067758A JP 2016067758 A JP2016067758 A JP 2016067758A JP 2017179462 A JP2017179462 A JP 2017179462A
- Authority
- JP
- Japan
- Prior art keywords
- piston ring
- sulfide
- sample
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 15
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000005299 abrasion Methods 0.000 abstract description 6
- DXHPZXWIPWDXHJ-UHFFFAOYSA-N carbon monosulfide Chemical compound [S+]#[C-] DXHPZXWIPWDXHJ-UHFFFAOYSA-N 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 description 49
- 239000000463 material Substances 0.000 description 21
- 150000003568 thioethers Chemical class 0.000 description 21
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010723 turbine oil Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- -1 MnS Chemical compound 0.000 description 1
- 229910008458 Si—Cr Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
本発明は摺動面における十分な耐摩耗性を確保しながら、耐スカッフィング性を向上させた内燃機関用ピストンリング線材、及びそれから成形される内燃機関用ピストンリングに関するものである。 The present invention relates to a piston ring wire for an internal combustion engine with improved scuffing resistance while ensuring sufficient wear resistance on a sliding surface, and to a piston ring for an internal combustion engine molded therefrom.
内燃機関、特に自動車エンジンに使用されるピストンリングの素材は鋳鉄製から、鋼平線等の線材をリング状に加工して得られるスチールピストンリングへ移行している。この背景には内燃機関の軽量化、低燃料消費化、高速化、高出力化等の要求に対応するためのリングの薄肉化と機械的強度向上の必要性があり、リング製造工程の大幅短縮の効果も移行の大きな理由になっている。 Piston rings used in internal combustion engines, particularly automobile engines, have been changed from cast iron to steel piston rings obtained by processing wires such as steel flat wires into a ring shape. Against this background, there is a need to reduce the ring thickness and increase mechanical strength in order to meet the demands for reducing the weight, fuel consumption, speed, and output of internal combustion engines, greatly reducing the ring manufacturing process. The effect is also a major reason for the transition.
スチールピストンリングへの移行は高負荷領域にあるトップリングやオイルリングにおいて先行し、材質としてはSi−Cr鋼や11〜17質量%Crのマルテンサイト系ステンレス鋼が用いられ、この種の素材にクロムメッキ、あるいは窒化処理を施したピストンリングも多用されている。一方、セカンドリングはトップリング及びオイルリングの補助的な役割を担うため、材質には高価なステンレス鋼までは必要とされず、また表面処理がされない素材状態で使われることが多い。但し、スチールピストンリングは鋳鉄ピストンリングよりも強度、耐疲労特性、耐摩耗特性に優れるものの、耐スカッフィング性に劣ることがセカンドリングでスチール化が進まない一要因になっている。 The transition to the steel piston ring precedes the top ring and oil ring in the high load region, and the material is Si-Cr steel or 11-17 mass% Cr martensitic stainless steel. Piston rings with chrome plating or nitriding treatment are also frequently used. On the other hand, since the second ring plays an auxiliary role of the top ring and the oil ring, the material is not required to be expensive stainless steel, and is often used in a material state that is not subjected to surface treatment. However, although steel piston rings have better strength, fatigue resistance, and wear resistance than cast iron piston rings, inferior scuffing resistance is one factor that prevents the second ring from becoming steel.
この問題に対し、出願人は0.3〜0.8質量%Cを基本とする低合金鋼に適正量のSを添加したことで、またこれにCaを複合添加したことで、耐スカッフィング性を発現するピストンリング材を提案している(特許文献1参照)。この例では鋼中にMnSといった硫化物(サルファイド)を存在させることで、Sが摩擦発熱によって摩擦面にin situなサルファイド膜を形成し、これが潤滑性能を向上させている。また鋼中の上記MnSは切削、または研削加工時に母材との間で応力集中源となり、切削エネルギーを低下させる効果もあることから、耐スカッフィング性と加工性を両立させることを可能にしている。 In response to this problem, the applicant added a proper amount of S to a low alloy steel based on 0.3 to 0.8% by mass C, and added Ca in combination to this, so that scuffing resistance was improved. Has been proposed (see Patent Document 1). In this example, sulfide (sulfide) such as MnS is present in the steel, so that S forms an in situ sulfide film on the friction surface due to frictional heat generation, which improves the lubrication performance. In addition, the MnS in the steel is a source of stress concentration with the base material during cutting or grinding, and has the effect of reducing the cutting energy, making it possible to achieve both scuffing resistance and workability. .
しかしながら、特許文献1では自己潤滑作用のある硫化物、特にMnSを鋼中に形成させることで、ピストンリングの全周面での耐スカッフィング性を向上させる一方、この硫化物は熱間加工により容易に展伸する特徴があるため、形態制御は容易ではない。またMnSは軟質な介在物であることから、ピストンリング材として必要な耐摩耗性への寄与度は高くない。 However, Patent Document 1 improves the scuffing resistance on the entire peripheral surface of the piston ring by forming a self-lubricating sulfide, particularly MnS, in the steel, while this sulfide is easily processed by hot working. Because of the characteristic of spreading, shape control is not easy. Further, since MnS is a soft inclusion, the contribution to the wear resistance required as a piston ring material is not high.
特許文献1に対し、TiとZrの少なくともいずれか一方を含ませた上で、Sとの特定の関係式を満たすことで、耐スカッフィング性と耐摩耗性を共に高めたピストンリング材を出願人は併せて提案している(特許文献2参照)。 Patent Document 1 includes a piston ring material that includes at least one of Ti and Zr and satisfies a specific relational expression with S to improve both scuffing resistance and wear resistance. Has also been proposed (see Patent Document 2).
特許文献2では0.3〜0.8質量%Cを基本とする低合金鋼にSを添加すると同時に、Mnよりも硫化物形成能の高いTi、もしくはZrを積極的に添加することで、熱間加工による形態変化の少ないTi、もしくはZrの硫化物や炭硫化物を形成できる結果、良好な耐摩耗性と耐スカッフィング性を同時に達成している(段落0007)。 In Patent Document 2, by adding S to a low alloy steel based on 0.3 to 0.8% by mass C, simultaneously adding Ti or Zr having a higher sulfide forming ability than Mn, As a result of the formation of Ti or Zr sulfide or carbon sulfide with little form change due to hot working, good wear resistance and scuffing resistance are simultaneously achieved (paragraph 0007).
一方、ピストンリングが装着されるピストンのリング溝がAl合金である場合、あるいはピストンリング自身がAlを含む合金である場合には、ピストンリングの表面にAlが凝着する可能性がある(特許文献3参照)。ピストンリングにAl凝着が発生すると、ガスシール性が失われることが想定される。 On the other hand, when the ring groove of the piston on which the piston ring is mounted is an Al alloy, or when the piston ring itself is an alloy containing Al, there is a possibility that Al adheres to the surface of the piston ring (patent) Reference 3). When Al adhesion occurs on the piston ring, it is assumed that the gas sealability is lost.
上記のことから、ピストンリング表面におけるAlの凝着によるスカッフィングを抑制するには、スカッフィングに対する抵抗力(耐スカッフィング性)を高めることが要求される。 From the above, in order to suppress the scuffing due to the adhesion of Al on the piston ring surface, it is required to increase the resistance to scuffing (scuffing resistance).
本発明は上記背景より、特許文献2より耐スカッフィング性の向上を目指すことで、Al凝着の抑制を図ることが可能な内燃機関用ピストンリング線材及び内燃機関用ピストンリングを提案するものである。 From the above background, the present invention proposes a piston ring wire for an internal combustion engine and a piston ring for an internal combustion engine capable of suppressing Al adhesion by aiming to improve scuffing resistance from Patent Document 2. .
請求項1に記載の発明の内燃機関用ピストンリング線材は、質量%で、C:0.50〜0.70%、Si:1.30〜1.50%、Mn:0.70〜0.90%、S:0.20〜0.30%、Ni:0.50〜0.70%、Cr:0.55〜0.75%、Cu:0.30〜0.50%、Al:0.30〜0.50%、Zr:0.30〜0.50%、残部がFe及び不可避的不純物からなり、
長さ方向に平行な金属面組織に存在する円相当径が50μm以下のZr硫化物とZr炭硫化物の少なくともいずれか一方の合計の個数が、前記金属面組織の面積当たりの個数密度で1000個/mm2以上であることを特徴とする。
The piston ring wire for an internal combustion engine according to the first aspect of the present invention is, in mass%, C: 0.50 to 0.70%, Si: 1.30 to 1.50%, Mn: 0.70 to 0.00. 90%, S: 0.20 to 0.30%, Ni: 0.50 to 0.70%, Cr: 0.55 to 0.75%, Cu: 0.30 to 0.50%, Al: 0 .30 to 0.50%, Zr: 0.30 to 0.50%, the balance consisting of Fe and inevitable impurities,
The total number of at least one of Zr sulfide and Zr carbosulfide having an equivalent circle diameter of 50 μm or less present in the metal surface structure parallel to the length direction is 1000 in terms of the number density per area of the metal surface structure. It is characterized by being at least 2 pieces / mm 2 .
請求項2に記載の発明の内燃機関用ピストンリングは請求項1に記載のピストンリング線材と同一の組成と同一の質量比を持ち、周長方向に平行な金属面組織に存在する円相当径が50μm以下のZr硫化物とZr炭硫化物の少なくともいずれか一方の合計の個数が、前記金属面組織の面積当たりの個数密度で1000個/mm2以上であることを特徴とする。 A piston ring for an internal combustion engine according to a second aspect of the present invention has the same composition and the same mass ratio as the piston ring wire according to the first aspect, and has an equivalent circular diameter existing in a metal surface structure parallel to the circumferential direction. The total number of at least one of Zr sulfide and Zr carbosulfide having a thickness of 50 μm or less is 1000 / mm 2 or more in terms of the number density per area of the metal surface structure.
本発明によれば、後述のように請求項に記載の要件を備えることで、特許文献2を超える高い耐スカッフィング性を得ることができるため、摺動面における十分な耐摩耗性を確保しながら、耐スカッフィング性を向上させた内燃機関用ピストンリングを提供することができる。 According to the present invention, by providing the requirements described in the claims as described later, high scuffing resistance exceeding Patent Document 2 can be obtained, so that sufficient wear resistance on the sliding surface is ensured. The piston ring for an internal combustion engine with improved scuffing resistance can be provided.
本発明(請求項1)のピストンリング線材は完成品であるピストンリングへの曲げ加工前の直線材であり、請求項1における「長さ方向」はピストンリング線材自身の長さ方向(材軸方向)を指す。ピストンリングはピストンリング線材を円環状に曲げ加工した後の製品であり、請求項2における「周長方向」はピストンリング線材の長さ方向を指す。「Zr硫化物とZr炭硫化物の少なくともいずれか一方」とは、Zr硫化物のみであることと、Zr炭硫化物のみであることの他、Zr硫化物とZr炭硫化物の双方が含まれることを言う。以下、「Zr硫化物とZr炭硫化物の少なくともいずれか一方」をZr硫化物等と言う。 The piston ring wire of the present invention (Claim 1) is a linear material before bending into a finished piston ring, and the “length direction” in Claim 1 is the length direction of the piston ring wire itself (material axis). Direction). The piston ring is a product after the piston ring wire is bent into an annular shape, and the “circumferential direction” in claim 2 refers to the length direction of the piston ring wire. “At least one of Zr sulfide and Zr carbosulfide” includes both Zr sulfide and Zr carbosulfide in addition to Zr sulfide only and Zr carbosulfide only. Say that. Hereinafter, “at least one of Zr sulfide and Zr carbon sulfide” is referred to as Zr sulfide or the like.
特許文献2に記載の通り、Cは合金中に炭化物を形成して耐スカッフィング性や耐摩耗性を高める他、一部が基地中に固溶することで、強度と疲労特性の向上に寄与する重要な元素である。これらの性能を発揮させる上では、0.3質量%(以下、単に%と表記)以上のCを必要とする。但し、0.8%を超えると鋼平線への加工性やリングへの加工性を困難にすることもあり、特に好ましい範囲が0.4〜0.7%であることを踏まえ(特許文献2)、本発明ではCを0.50〜0.70%に設定した。0.50〜0.70は0.50以上、0.70以下を意味する。以下、他の元素に関しても同じである。 As described in Patent Document 2, C contributes to the improvement of strength and fatigue characteristics by forming carbides in the alloy to increase scuffing resistance and wear resistance, and partly forming a solid solution in the base. It is an important element. In order to exhibit these performances, 0.3 mass% (hereinafter simply referred to as%) or more of C is required. However, if it exceeds 0.8%, the workability to the steel flat wire and the workability to the ring may be difficult, and based on the fact that the particularly preferable range is 0.4 to 0.7% (patent document) 2) In the present invention, C is set to 0.50 to 0.70%. 0.50 to 0.70 means 0.50 or more and 0.70 or less. Hereinafter, the same applies to other elements.
Siは脱酸剤としての機能を有する一方、特に低合金鋼中で重要な役割を果たす鋼の焼戻し軟化挙動に影響し、焼戻し軟化を防ぎ、耐熱強度を高める上では0.1%以上のSiを必要とする。但し、過度の添加は冷間加工性を低下させることもあり、特に好ましい範囲が1.0〜1.5%であることを踏まえ(特許文献2)、本発明ではSiを1.30〜1.50%に設定した。 While Si has a function as a deoxidizer, it affects the temper softening behavior of steel, which plays an important role especially in low alloy steels, prevents temper softening, and increases Si heat resistance by 0.1% or more. Need. However, excessive addition may decrease the cold workability, and based on the fact that a particularly preferable range is 1.0 to 1.5% (Patent Document 2), Si is 1.30 to 1 in the present invention. Set to 50%.
MnもSiと同様、脱酸剤として必要な元素であり、その効果を得る上では0.1%以上のMnを必要とする。但し、過度の添加は熱間における加工性を害することもあり、特に好ましい範囲が0.5〜1.0%であることを踏まえ(特許文献2)、本発明ではMnを0.70〜0.90%に設定した。 Mn is also an element necessary as a deoxidizing agent like Si, and 0.1% or more of Mn is required to obtain the effect. However, excessive addition may impair hot workability. Based on the fact that a particularly preferable range is 0.5 to 1.0% (Patent Document 2), Mn is 0.70 to 0 in the present invention. Set to 90%.
Sは添加によりZrと結合し、Zrの硫化物と炭硫化物を組織中に形成させることで、自己潤滑性を発現して耐スカッフィング性を向上させる働きをする上、切削性向上にも有効であり、これらの効果を得る上では0.01%以上のSを必要とする。但し、過度の添加は耐食性や冷間加工時の靭延性を劣化させる他、熱間加工性も低下させることもあり、好ましい範囲が0.1〜0.3%であることを踏まえ(特許文献2)、本発明ではSを0.20〜0.30%に設定した。 S combines with Zr when added to form Zr sulfides and carbon sulfides in the structure, thereby exhibiting self-lubricating properties and improving scuffing resistance, and also effective in improving machinability. In order to obtain these effects, 0.01% or more of S is required. However, excessive addition may deteriorate corrosion resistance and toughness during cold working, and may also reduce hot workability. Based on the preferable range of 0.1 to 0.3% (Patent Document) 2) In the present invention, S was set to 0.20 to 0.30%.
Niはピストンリングとして使用状態で衝撃的な荷重を受けたときの靭性を向上させる働きをし、この効果を得るには0.05%以上のNiを必要とする。但し、過度の添加は焼鈍状態での加工性の低下を招くこともあり、特に好ましい範囲が0.5〜1.0%であることを踏まえ(特許文献2)、本発明ではNiを0.50〜0.70%に設定した。 Ni serves to improve the toughness of the piston ring when subjected to an impact load in use, and 0.05% or more of Ni is required to obtain this effect. However, excessive addition may lead to a decrease in workability in the annealed state, and based on the fact that a particularly preferable range is 0.5 to 1.0% (Patent Document 2), in the present invention, Ni is set to be 0.00. It was set to 50 to 0.70%.
Crは一部がCと結合して炭化物を形成し耐摩耗性を高め、一部が基地に固溶して耐食性を高めることに加え、焼戻し軟化抵抗を高めることから、ピストンリングの耐熱ヘタリ性の向上や、焼入れ性を確保して十分な熱処理硬さを得るために必要である。これらの効果を得る上では0.1%以上のCrを必要とするが、過度の添加は熱伝導率を低下させる結果、摺動による接触面の昇温を助長し、耐スカッフィング性を害する。この他、炭化物量の増加、炭化物サイズの増大を招き、加工性を極端に低下させることもあり、特に好ましい範囲が0.4〜1.0%であることを踏まえ(特許文献2)、本発明ではCrを0.55〜0.75%に設定した。 Cr partly combines with C to form carbides to increase wear resistance, and partly dissolves in the base to increase corrosion resistance, and also increases resistance to temper softening. It is necessary to obtain sufficient heat treatment hardness by ensuring improvement and hardenability. In order to obtain these effects, 0.1% or more of Cr is required. However, excessive addition lowers the thermal conductivity. As a result, the temperature of the contact surface is increased by sliding, and the scuffing resistance is impaired. In addition, an increase in the amount of carbide and an increase in the size of the carbide may be caused, and the workability may be extremely reduced. Based on the fact that the particularly preferable range is 0.4 to 1.0% (Patent Document 2), this In the invention, Cr is set to 0.55 to 0.75%.
Cuは冷間加工時の靭性を向上させながら、耐食性も向上させる働きをする。この効果を得る上では0.1%以上のCuの添加が好ましい。但し、過度の添加は残留オーステナイト量を増大させ、焼戻し硬さの低下を招く他、熱間加工性を低下させることもあり、好ましい範囲が0.2〜0.6%であることを踏まえ(特許文献2)、本発明ではCuを0.30〜0.50%に設定した。 Cu functions to improve corrosion resistance while improving toughness during cold working. In order to obtain this effect, it is preferable to add 0.1% or more of Cu. However, excessive addition increases the amount of retained austenite, leading to a decrease in tempering hardness, and may also decrease hot workability, based on the preferable range of 0.2 to 0.6% ( In Patent Document 2), in the present invention, Cu is set to 0.30 to 0.50%.
AlはSi、Mnと同様に脱酸元素として有効である上、窒化硬さを上昇させる効果を持つ。この効果を得る上では0.1%以上のAlの添加が好ましい。但し、過度の添加はAlNの生成によって靭性、延性の著しい低下を招くこともあり、特に好ましい範囲が0.2〜0.5%であることを踏まえ(特許文献2)、本発明ではAlを0.30〜0.50%に設定した。 Al, as well as Si and Mn, is effective as a deoxidizing element and has the effect of increasing the nitriding hardness. In order to obtain this effect, 0.1% or more of Al is preferably added. However, excessive addition may cause a significant decrease in toughness and ductility due to the formation of AlN, and based on the fact that a particularly preferred range is 0.2 to 0.5% (Patent Document 2), Al is used in the present invention. It was set to 0.30 to 0.50%.
Zrは溶鋼中でSと結合して硫化物として晶出し、またより高温で安定な炭化物を形成した後、その一部がSと置換、または結合した炭硫化物としても晶出する。このZr硫化物やZr炭硫化物は内部に潤滑性のあるSを含むことで、自己潤滑剤として有効に働くばかりでなく、硬質な介在物でもあることから、炭化物のように耐摩耗性にも寄与する。またMnSに比し、熱間加工により展伸し難いため、形態制御が困難になることもない。 Zr combines with S in the molten steel to crystallize as a sulfide, and after forming a stable carbide at a higher temperature, a part of the Zr also crystallizes as a carbon sulfide that is substituted or bonded to S. This Zr sulfide or Zr carbon sulfide contains not only effective as a self-lubricating agent but also hard inclusions because it contains S having lubricity inside, so it is as wear resistant as carbide. Also contribute. Further, as compared with MnS, it is difficult to extend by hot working, so that shape control is not difficult.
更に上記のZr硫化物等は非常に安定であることから、調質熱処理を行っても形状変化し難く、組織制御が容易である。これらの効果を得る上では0.05%以上のZrを必要とする。但し、過度の添加は上記の効果が飽和するだけでなく、鋼中へ多量の酸化物や窒化物を残存させ、耐食性、靭性を著しく劣化させる一因となる。その上、靭性、延性の低下を招くこともあり、特に好ましい範囲が0.2〜0.8%であることを踏まえ(特許文献2)、本発明ではZrを0.30〜0.50%に設定した。 Furthermore, since the above Zr sulfides and the like are very stable, the shape hardly changes even if a tempering heat treatment is performed, and the structure control is easy. In order to obtain these effects, 0.05% or more of Zr is required. However, excessive addition not only saturates the above effects, but also causes a large amount of oxides and nitrides to remain in the steel, which causes a significant deterioration in corrosion resistance and toughness. In addition, the toughness and ductility may be reduced, and based on the fact that the particularly preferable range is 0.2 to 0.8% (Patent Document 2), Zr is 0.30 to 0.50% in the present invention. Set to.
本発明では各元素の質量比を以上の通りに設定した上で、この組成を有したピストンリング線材(またはピストンリング製品)の長さ(周長)方向に平行な金属面組織に存在するZr硫化物等の分布状態を調整することで、以下のようにピストンリング線材の摺動面における十分な耐摩耗性を確保しながら、耐スカッフィング性を向上させることができることの根拠を示せる段階に到達した。具体的に言えば、本発明では上記のZr硫化物等の中でも「円相当径が50μm以下」の大きさのZr硫化物等に限定(注目)した上で、更にその大きさの個数密度を調整することで、摺動面における耐摩耗性と耐スカッフィング性の向上を図ることを可能にした。 In the present invention, Zr present in the metal surface structure parallel to the length (circumferential length) direction of the piston ring wire (or piston ring product) having this composition after setting the mass ratio of each element as described above. By adjusting the distribution of sulfides, etc., we have reached the stage where we can show the basis for improving scuffing resistance while ensuring sufficient wear resistance on the sliding surface of the piston ring wire as follows: did. Specifically, in the present invention, among the above Zr sulfides, the Zr sulfide having a size of “equivalent circle diameter of 50 μm or less” is limited (attention), and the number density of the size is further reduced. By adjusting, it was possible to improve wear resistance and scuffing resistance on the sliding surface.
Zr硫化物等の中でも、円相当径が50μm以下のZr硫化物等は微細であることから、上記した金属面組織の基地(マトリックス)に全面に分散させ、且つほぼ均等に分布させることが可能である。よって個々のZr硫化物等が有する耐摩耗性や耐スカッフィング性の特性を上記の金属面組織の基地の全体に、くまなく付与することが可能であり、結果としてピストンリング自体に優れた耐摩耗性と耐スカッフィング性とが付与されることになる。 Among Zr sulfides, Zr sulfides with an equivalent circle diameter of 50 μm or less are fine, so they can be distributed over the entire surface of the metal surface structure (matrix) and distributed almost evenly. It is. Therefore, the wear resistance and scuffing resistance characteristics of individual Zr sulfides can be imparted to the entire base of the above metal surface structure, resulting in excellent wear resistance on the piston ring itself. And scuffing resistance are imparted.
このことから、耐摩耗性と耐スカッフィング性の優れた両特性が個々の金属面組織の間で、あるいは個々の製品としてのピストンリングの間でばらつくことが抑制されることにもなるため、製品としての各ピストンリング自体に安定した両特性を付与することが可能になる。上記の金属面組織に存在するZr硫化物等の「円相当径が50μm以下」は、Zr硫化物等の均一性向上の面から言えば、好ましくは「円相当径の最大値が50μm以下」である。 As a result, it is also possible to suppress the variation of both excellent wear resistance and scuffing resistance between individual metal surface structures or between piston rings as individual products. It is possible to give both stable characteristics to each piston ring itself. The “equivalent circle diameter of 50 μm or less” such as Zr sulfide existing in the metal surface structure is preferably “the maximum equivalent circle diameter is 50 μm or less” from the viewpoint of improving the uniformity of Zr sulfide. It is.
以上の点から、上記の金属面組織において、円相当径が50μm以下のZr硫化物等の個数が増えれば、その個々のZr硫化物等が金属面組織中の全面に密実に、且つ均等に分散することになるため、上記の効果が一層、確実に発揮されると言える。この観点と以下の試験結果を踏まえ、具体的には円相当径が50μm以下のZr硫化物等の個数を、上記した金属面組織の面積当たりの個数密度で「1000個/mm2以上」とすることで、摺動面における十分な耐摩耗性を確保しながら、特許文献2を超える程の高い耐スカッフィング性を得ることが可能である。50μm以下のZr硫化物等の面積当たりの個数密度は好ましくは「1500個/mm2以上」である。 From the above points, in the above metal surface structure, if the number of Zr sulfides having an equivalent circle diameter of 50 μm or less is increased, the individual Zr sulfides are densely and evenly distributed over the entire surface of the metal surface structure. Since it will disperse | distribute, it can be said that said effect is exhibited more reliably. Based on this viewpoint and the following test results, specifically, the number of Zr sulfides having an equivalent circle diameter of 50 μm or less is “1000 pieces / mm 2 or more” in terms of the number density per area of the metal surface structure described above. By doing so, it is possible to obtain scuffing resistance as high as exceeding Patent Document 2 while ensuring sufficient wear resistance on the sliding surface. The number density per area of Zr sulfide or the like of 50 μm or less is preferably “1500 pieces / mm 2 or more”.
Zr硫化物等の個数密度を測定する上記の金属面組織は、ピストンリング線材、またはピストンリングの「表面」とする。この場合、具体的にはピストンリング線材、またはピストンリングの「最表面」に研磨等を行い、最表面から内部に向かって0.5mm以上入った位置の「新生面」を出す。この新生面を「被験面」とし、この被験面を倍率1000倍の光学顕微鏡で観察すると共に、そのミクロ組織を撮影する。そして、その撮影したミクロ組織を画像処理することで、その画像に確認されるZr硫化物等の円相当径及び個数密度を求めることができる。このとき、上記の画像に確認されるZr硫化物等中、最大径が0.1μm未満のZr硫化物等を測定対象から除外する。上記の画像処理は、既存の画像処理ソフトを使って行うことができる。 The metal surface structure for measuring the number density of Zr sulfide or the like is the piston ring wire or the “surface” of the piston ring. In this case, specifically, the piston ring wire or the “outermost surface” of the piston ring is polished and the “new surface” at a position of 0.5 mm or more from the outermost surface toward the inside is provided. This new surface is taken as a “test surface”, and this test surface is observed with an optical microscope with a magnification of 1000 times and the microstructure is photographed. Then, by processing the photographed microstructure, the equivalent circle diameter and number density of Zr sulfide and the like confirmed in the image can be obtained. At this time, Zr sulfide having a maximum diameter of less than 0.1 μm in the Zr sulfide confirmed in the above image is excluded from the measurement target. The above image processing can be performed using existing image processing software.
本実施例では、本発明例及び比較例のピストンリング線材(または、ピストンリング)に相当する試験片を作製した。これら作製した試験片毎に特許文献2における耐摩耗試験と耐スカッフィング試験を実施し、試験片の耐摩耗性と耐スカッフィング性を評価した。 In this example, test pieces corresponding to the piston ring wires (or piston rings) of the present invention and comparative examples were produced. The abrasion resistance test and scuffing resistance test in Patent Document 2 were carried out for each of the prepared test specimens, and the abrasion resistance and scuffing resistance of the test specimens were evaluated.
まず、ピストンリング線材(または、ピストンリング)に相当する試験片の素材として、複数通りの質量比の組成に調整した溶湯を鋳造して得た試料No.1〜6のインゴットを準備した。試料No.1〜6の組成と質量比は以下の表1の通りであり(残部はFe及び不可避的不純物)、試料No.2のみが本発明の組成と各元素の比率の範囲を満たしている。試料No.1、3〜6は本発明の比較例である。 First, sample No. obtained by casting a molten metal adjusted to a composition having a plurality of mass ratios as a material of a test piece corresponding to a piston ring wire (or piston ring). 1-6 ingots were prepared. Sample No. Compositions and mass ratios of 1 to 6 are as shown in Table 1 below (the balance is Fe and inevitable impurities). Only 2 satisfies the range of the composition of the present invention and the ratio of each element. Sample No. 1 and 3 to 6 are comparative examples of the present invention.
試料No.1は試料No.2よりSの質量比が0.08%低い(約67%)点で試料No.2と相違し、試料No.3は試料No.2よりZrの質量比が2倍である点で試料No.2と相違する。試料No.4は、Zrの質量比が試料No.1の2.275倍である。試料No.1、5、6の主たる組成元素の質量比は同一であるが、これらは「製造(鋳造)条件」の違いによる「Zr硫化物等の分布」の点で相違しており、この相違に起因し、後述する図3〜図5に示す結果に違いが現れている。試料No.5、6では上記鋳造時の溶湯の凝固速度を試料No.1に比べ、遅くしている。これにより試験片の状態において試料No.5、6におけるZr硫化物等のサイズ(円相当径)は試料No.1のそれと比べ、大きくなっている。 Sample No. 1 is sample No. 1. 2 is 0.08% lower (about 67%) than the sample No. Unlike sample 2, sample no. 3 is sample No. 2 in that the mass ratio of Zr is twice that of Sample No. 2 and different. Sample No. No. 4 indicates that the mass ratio of Zr is Sample No. It is 2.275 times of 1. Sample No. Although the mass ratios of the main constituent elements 1, 5, and 6 are the same, they are different in terms of “distribution of Zr sulfides” due to differences in “manufacturing (casting) conditions”. However, a difference appears in the results shown in FIGS. Sample No. In Nos. 5 and 6, the solidification rate of the molten metal at the time of casting was measured as Sample No. It is slower than 1. Thereby, in the state of the test piece, the sample No. The size (equivalent circle diameter) of Zr sulfide and the like in Examples 5 and 6 is the same as that of Sample No. It is larger than that of 1.
耐摩耗試験に当たり、上記のインゴットへの熱間加工により得られた焼鈍材を焼入れした後、硬さが40HRCになるように焼戻しをして製造された熱処理材からφ8mm×20mmLの円柱試験片を作製し、この試験片を以下の条件に基づいて耐摩耗試験を行った。試験片としては試料No.1〜6毎に複数の試験片を作製し、複数の試験片の最大値と最小値、及び平均値を取っている。図6に往復動摩擦摩耗試験の模式図を示す。
荷重 :490N
速度 :0.25m/s
相手材 :JISねずみ鋳鉄(FC250)
摺動回数 :500回
潤滑油 :タービンオイル#100(注油:室温)
試験片硬さ:40HRC
In the wear resistance test, an annealed material obtained by hot working on the above ingot was quenched, and then a cylindrical test piece of φ8 mm × 20 mmL was prepared from the heat treated material manufactured by tempering so that the hardness was 40 HRC. The test piece was prepared and subjected to an abrasion resistance test based on the following conditions. As a test piece, Sample No. A plurality of test pieces are produced every 1 to 6, and the maximum value, the minimum value, and the average value of the plurality of test pieces are taken. FIG. 6 shows a schematic diagram of the reciprocating frictional wear test.
Load: 490N
Speed: 0.25m / s
Mating material: JIS gray cast iron (FC250)
Number of sliding times: 500 times Lubricating oil: Turbine oil # 100 (lubricating: room temperature)
Test piece hardness: 40 HRC
また耐スカッフィング試験としては高圧摩擦摩耗試験機を用い、以下の条件に基づいて高圧摩擦摩耗試験の試験を行った。この際、試験片として上記のインゴットへの熱間加工により得られた焼鈍材を焼入れした後、硬さが40HRC、または50HRCになるように焼戻しをして製造された熱処理材から5mm角×10mmLの角柱試験片を作製し、この試験片を以下の条件に基づいて耐スカッフィング試験を行った。図7に高圧摩擦摩耗試験の模式図を示す。
摩擦速度 :2m/s
摩擦面圧力:初期15kgf/cm2、1分毎に5kgf/cm2ずつ上昇
潤滑油 :タービンオイル#100(注油:室温)、初めの1分のみ注油
相手材 :JISアルミニウム合金鋳物(AC8A)
試験片硬さ:40HRC、50HRC
Further, as a scuffing resistance test, a high-pressure friction and wear tester was used, and a high-pressure friction and wear test was performed based on the following conditions. At this time, after quenching the annealed material obtained by hot working on the above ingot as a test piece, 5 mm square × 10 mm L from the heat treated material produced by tempering so that the hardness becomes 40 HRC or 50 HRC. A prismatic test piece was prepared, and the test piece was subjected to a scuffing resistance test based on the following conditions. FIG. 7 shows a schematic diagram of the high-pressure frictional wear test.
Friction speed: 2 m / s
Frictional surface pressure: Initial 15 kgf / cm 2 , rising by 5 kgf / cm 2 every minute Lubricating oil: Turbine oil # 100 (lubricating: room temperature), lubricating only for the first minute Partner material: JIS aluminum alloy casting (AC8A)
Test piece hardness: 40 HRC, 50 HRC
図1には、試験片1(試料No.1〜6)毎の、上記相手材2との摺動面となる長さ(周長)方向に平行な金属面組織における一定面積(視野面積:22494μm2)の領域内に確認されたZr硫化物等の円相当径の大きさ(μm)と、Zr硫化物等の合計個数を表す。なお、このときのZr硫化物等の円相当径および合計個数の測定要領は、上記の項目で述べた要領に従った。右の縦軸にZr硫化物等の円相当径(μm)を、左の縦軸に視野面積当たりのZr硫化物等の個数を取っている。図2−(a)〜(f)は各試料No.1〜6を光学顕微鏡で撮影したミクロ組織の写真である。 In FIG. 1, for each test piece 1 (sample Nos. 1 to 6), a fixed area (viewing area: visual field area) in the metal surface structure parallel to the length (peripheral length) direction serving as a sliding surface with the counterpart material 2 described above. 22494μm 2) of the circle equivalent diameter of Zr sulfides confirmed in a region size as the ([mu] m), representing the total number of such Zr sulfides. The measuring procedure for the equivalent circle diameter and the total number of Zr sulfides, etc. at this time was in accordance with the procedure described in the above item. The right vertical axis represents the equivalent circle diameter (μm) of Zr sulfide and the like, and the left vertical axis represents the number of Zr sulfide and the like per visual field area. 2 (a) to (f) show sample Nos. It is the photograph of the microstructure which imaged 1-6 with the optical microscope.
図3は耐摩耗試験の結果、各試験片(試料No.1〜4、6)に生じた相手材2の摺動方向の摩耗幅を示す。ここには試料No.5の結果を表示していない。 3 shows the wear width in the sliding direction of the mating member 2 generated in each test piece (Sample Nos. 1 to 4 and 6) as a result of the wear resistance test. Here, Sample No. The result of 5 is not displayed.
図3からは、試料No.2(本発明)の摩耗幅が最も小さく、平均して2.08mm程度、試料No.1、4の平均値は2.2mm程度、試料No.3、6の平均値はそれぞれ2.16mm、2.15mm程度であることが分かる。試料No.2の平均値2.08mmは同等の条件下での試験結果を示す特許文献2における図5の結果の平均値1.74mmより0.34程度、大きいながらも(約20%増)、図3から値が最も小さく、試験片毎のばらつきも小さい試料No.2が最も良好な結果を得ていると言える。 From FIG. No. 2 (invention) has the smallest wear width and averages about 2.08 mm. The average value of 1 and 4 is about 2.2 mm. It can be seen that the average values of 3 and 6 are about 2.16 mm and 2.15 mm, respectively. Sample No. Although the average value of 2.08 mm of 2 is about 0.34 larger than the average value of 1.74 mm of the result of FIG. 5 in Patent Document 2 showing the test results under the same conditions (about 20% increase), FIG. Sample No. with the smallest value and small variation from specimen to specimen. 2 is the best result.
図4、図5は耐スカッフィング試験による、各試験片1(試料No.1〜6)と相手材2(AC8A)との間に焼付きが生じたときの荷重(面圧)の測定結果を示す。図4は硬さが40HRCの場合、図5は50HRCの場合である。図4では試料No.5の測定を実施していない。 4 and 5 show the measurement results of the load (surface pressure) when seizure occurs between each test piece 1 (sample Nos. 1 to 6) and the counterpart material 2 (AC8A) by the scuffing resistance test. Show. 4 shows the case where the hardness is 40 HRC, and FIG. 5 shows the case where the hardness is 50 HRC. In FIG. The measurement of 5 is not carried out.
図4からは、40HRCの場合、試料No.2(本発明)の平均値が125kgf/cm2(≒12.3MPa(N/mm2))程度であり、最も大きいことが分かる。40HRCの場合、試料No.2の平均値は試料No.1、6の平均値より大きい試料No.3、4の平均値より5kgf/cm2(≒0.49MPa(N/mm2))程度、大きい。一方、図5から分かるように50HRCの場合には、試料No.3、4の平均値は試料No.2の平均値140kgf/cm2(≒13.7MPa(N/mm2))より15kgf/cm2(≒1.47MPa(N/mm2))以上、小さく、試料No.1の平均値よりも小さい。 From FIG. 4, in the case of 40HRC, the sample No. 2 (invention) has an average value of about 125 kgf / cm 2 (≈12.3 MPa (N / mm 2 )), which is the largest. In the case of 40HRC, the sample No. The average value of 2 indicates the sample No. Sample No. 1 larger than the average value of 1 and 6. It is about 5 kgf / cm 2 (≈0.49 MPa (N / mm 2 )) larger than the average value of 3 and 4. On the other hand, as can be seen from FIG. The average value of 3 and 4 is the sample No. 2 is smaller than the average value of 140 kgf / cm 2 (≈13.7 MPa (N / mm 2 )) by 15 kgf / cm 2 (≈1.47 MPa (N / mm 2 )). It is smaller than the average value of 1.
また図4によれば、試料No.2の平均値との対比では試料No.1、6の平均値が低く、100kgf/cm2(≒9.81MPa(N/mm2))程度であるのに対し、試料No.3、4の平均値は120kgf/cm2(≒11.8MPa(N/mm2))程度であるから、試料No.3、4は試料No.2と同等程度の結果を示しているように見える。しかしながら、図5によれば、試料No.3、4の平均値は試料No.1の平均値より低いため、総合的には試料No.3、4が試料No.2と同等程度の性能を発揮できるとは言い難い。 Further, according to FIG. In comparison with the average value of 2, sample no. The average values of 1 and 6 are low and about 100 kgf / cm 2 (≈9.81 MPa (N / mm 2 )), whereas the sample No. The average value of 3 and 4 is about 120 kgf / cm 2 (≈11.8 MPa (N / mm 2 )). 3 and 4 are sample Nos. It seems that the result is equivalent to 2. However, according to FIG. The average value of 3 and 4 is the sample No. Since it is lower than the average value of No. 1, the sample No. 3 and 4 are sample Nos. It is hard to say that the performance equivalent to 2 can be demonstrated.
50HRCの場合の試料No.2の平均値140kgf/cm2(≒13.7MPa(N/mm2))は同等の条件下での試験結果を示す特許文献2における図6の結果(黒棒)の平均値85.1の約1.65倍の大きさを示しており、この結果から、少なくとも試料No.2は特許文献2の試験体より65%程度、高い耐スカッフィング性を発揮していると言える。 Sample No. for 50HRC The average value of 140 kgf / cm 2 (≈13.7 MPa (N / mm 2 )) is equal to the average value 85.1 of the result of FIG. 6 (black bar) in Patent Document 2 showing the test results under equivalent conditions. This shows a size of about 1.65 times. It can be said that No. 2 exhibits high scuffing resistance by about 65% from the specimen of Patent Document 2.
更に図4によれば、試料No.1、6は最小値と最大値のばらつきが大きいため、試験片毎の性能の安定性が低い、あるいは性能の確実性に欠けると考えられる要因がある。図5によれば、試料No.3、4は最小値と最大値のばらつきが大きいため、やはり試験片毎の性能の安定性、または確実性が低いと考えられる。これに対し、試料No.2は図4、図5のいずれの結果からも、図3の結果と同様、最小値と最大値のばらつきが小さいか、ほとんどないため、試料No.1、3〜6との対比では試験片毎の性能の安定性、または確実性が高いと言える。 Furthermore, according to FIG. Since 1 and 6 have a large variation between the minimum value and the maximum value, there is a factor that is considered that the performance stability of each test piece is low or the certainty of the performance is lacking. According to FIG. 3 and 4 have a large variation between the minimum value and the maximum value, so it is considered that the performance stability or reliability of each test piece is low. In contrast, sample no. 2 is similar to the result of FIG. 3 from both the results of FIG. 4 and FIG. In comparison with 1, 3-6, it can be said that the stability or the certainty of the performance of each test piece is high.
これらの結果から、試料No.1〜6の内、試料はNo.2が硬さの違いに関係なく、特許文献2より高い耐スカッフィング性を獲得できる組成を示していると言える。 From these results, sample no. Samples No. 1-6 It can be said that 2 shows the composition which can acquire scuffing resistance higher than patent document 2 irrespective of the difference in hardness.
そこで、特許文献2の試験体より遙かに高い耐スカッフィング性を発揮した試料No.2のZr硫化物等の数値を見ると、図1に示すようにZr硫化物等の円相当径は最大で13μm程度、平均値が3μm程度である。視野面積当たりのZr硫化物等の個数は40個/22494μm2程度である。40個/22494μm2=40個/0.022494mm2=1778個/mm2である。 Therefore, sample No. 1 which exhibited scuffing resistance much higher than the specimen of Patent Document 2. As shown in FIG. 1, the circle equivalent diameter of the Zr sulfide 2 is about 13 μm at the maximum and the average value is about 3 μm. The number of Zr sulfides or the like per visual field area is about 40/22494 μm 2 . 40 pieces / 22494μm 2 = 40 pieces /0.022494mm 2 = 1778 pieces / mm 2.
一方、試料No.1のZr硫化物等の円相当径は最大で14μm程度、平均値が3μm程度であり、視野面積当たりのZr硫化物等の個数は27個/22494μm2程度=1200.3個/mm2程度である。試料No.3のZr硫化物等の円相当径は最大で9μm程度、平均値が4μm程度であり、視野面積当たりのZr硫化物等の個数は22個/22494μm2程度=978.0個/mm2程度である。試料No.4のZr硫化物等の円相当径は最大で10μm程度、平均値が6μm程度であり、視野面積当たりのZr硫化物等の個数は26個/22494μm2程度=1155.9個/mm2程度である。 On the other hand, sample No. The equivalent circle diameter of 1 Zr sulfide, etc. is about 14 μm at maximum, the average value is about 3 μm, and the number of Zr sulfide, etc. per visual field area is about 27/22494 μm 2 = about 1200.3 / mm 2 It is. Sample No. The maximum equivalent circle diameter of Zr sulfide 3 is about 9 μm, the average value is about 4 μm, and the number of Zr sulfides per visual field area is about 22/22494 μm 2 = 978.0 pieces / mm 2 It is. Sample No. The maximum equivalent circle diameter of Zr sulfide 4 is about 10 μm, the average value is about 6 μm, and the number of Zr sulfides per field area is about 26/22494 μm 2 = 1155.9 / mm 2 It is.
以上の結果から、試料No.2の質量比を基準としてピストンリング、もしくはその原形であるピストンリング線材の原料としての主たる合金の質量比に範囲を特定することが適切であると言える。ここで、試料No.2の質量比が最もよい、あるいは高い耐スカッフィング性を示す数値であると仮定すれば、その数値の少なくとも前後0.1%程度までは誤差の範囲内として中心となる数値と同等程度の結果が得られることは経験的に言えることである。 From the above results, Sample No. It can be said that it is appropriate to specify a range for the mass ratio of the main alloy as the raw material of the piston ring or the original piston ring wire rod based on the mass ratio of 2. Here, Sample No. Assuming that the mass ratio of 2 is the best or a value showing high scuffing resistance, at least about 0.1% before and after that value, a result comparable to the central value within the error range is obtained. What you get is empirical.
このことを整理すれば、主たる合金の質量比が請求項1、2の第1段落に記載の通りであることが特許文献2を超える高い耐スカッフィング性を得るための一つの条件であると結論付けられる。その上で、請求項1、2の第2段落に記載の要件が加味されることで、確実に特許文献2を超える高い耐スカッフィング性の効果を得ることができると言える。 To summarize this, it is concluded that the mass ratio of the main alloy as described in the first paragraph of claims 1 and 2 is one condition for obtaining high scuffing resistance exceeding Patent Document 2. Attached. In addition, by adding the requirements described in the second paragraphs of claims 1 and 2, it can be said that an effect of high scuffing resistance exceeding that of Patent Document 2 can be obtained with certainty.
第2段落に記載の要件は「長さ方向(周長方向)に平行な金属面組織に存在する円相当径が50μm以下のZr硫化物等の合計の個数が、金属面組織の面積当たりの個数密度で1000個/mm2以上であること」である。この要件にのみ着目すれば、試料No.2以外の試料No.1、4も本要件を満たしている。但し、前記の通り、試料No.1、4は試験片毎の性能の安定性、または確実性が低い可能性があるため、性能の安定性等の面からは試料No.1、4は除外されるべきことになる。結局、試料No.2のみが試験片毎の高い性能の安定性を持ちながら、特許文献2を超える高い耐スカッフィング性を得ることができることになる。Zr硫化物等の好ましい合計個数は試料No.2の結果に注目すれば、1500個/mm2以上であると言える。 The requirement described in the second paragraph is “the total number of Zr sulfides having a circle equivalent diameter of 50 μm or less existing in the metal surface structure parallel to the length direction (circumferential length direction) per area of the metal surface structure. The number density is 1000 / mm 2 or more. If attention is paid only to this requirement, the sample No. Sample numbers other than 2 1 and 4 also meet this requirement. However, as described above, the sample No. Nos. 1 and 4 may have low stability or certainty of performance for each test piece. 1, 4 should be excluded. Eventually, sample no. Only 2 can have high scuffing resistance exceeding Patent Document 2 while having high performance stability for each test piece. The preferred total number of Zr sulfides etc. is the sample No. If the result of 2 is noted, it can be said that it is 1500 / mm 2 or more.
試験片1であるピストンリング線材の耐スカッフィング性が高まることで、Alの凝着を抑制することが可能になると同時に、耐摩耗性の向上を図ることが可能になる。 By increasing the scuffing resistance of the piston ring wire that is the test piece 1, it is possible to suppress the adhesion of Al and to improve the wear resistance.
図3〜図5の結果から、主たる合金の質量比が一定範囲にあることの要件と、円相当径が50μm以下のZr硫化物とZr炭硫化物の少なくともいずれか一方の合計個数が金属面組織の面積当たり、1000個/mm2以上であることの要件を備えることで、試験片毎の高い性能の安定性を持ちながら、特許文献2を超える高い耐スカッフィング性を得ることができると言える。この結果、Alの凝着によるスカッフィングを抑制することができ、耐Al凝着性の向上を図ることができると言える。 From the results of FIG. 3 to FIG. 5, the requirement that the mass ratio of the main alloy be within a certain range and the total number of at least one of Zr sulfide and Zr carbonitride having an equivalent circle diameter of 50 μm or less are metal surfaces. By providing the requirement of 1000 pieces / mm 2 or more per area of tissue, it can be said that high scuffing resistance exceeding Patent Document 2 can be obtained while having high performance stability for each test piece. . As a result, it can be said that scuffing due to the adhesion of Al can be suppressed and the Al adhesion resistance can be improved.
1……試験片、
2……相手材、
3……タービンオイル。
1 ... Test piece,
2 ...
3 …… Turbine oil.
Claims (2)
長さ方向に平行な金属面組織に存在する円相当径が50μm以下のZr硫化物とZr炭硫化物の少なくともいずれか一方の合計の個数が、前記金属面組織の面積当たりの個数密度で1000個/mm2以上であることを特徴とする内燃機関用ピストンリング線材。 In mass%, C: 0.50 to 0.70%, Si: 1.30 to 1.50%, Mn: 0.70 to 0.90%, S: 0.20 to 0.30%, Ni: 0.50-0.70%, Cr: 0.55-0.75%, Cu: 0.30-0.50%, Al: 0.30-0.50%, Zr: 0.30-0. 50%, the balance consists of Fe and inevitable impurities,
The total number of at least one of Zr sulfide and Zr carbosulfide having an equivalent circle diameter of 50 μm or less present in the metal surface structure parallel to the length direction is 1000 in terms of the number density per area of the metal surface structure. Piston ring wire for an internal combustion engine, wherein the number is 1 / mm 2 or more.
周長方向に平行な金属面組織に存在する円相当径が50μm以下のZr硫化物とZr炭硫化物の少なくともいずれか一方の合計の個数が、前記金属面組織の面積当たりの個数密度で1000個/mm2以上であることを特徴とする内燃機関用ピストンリング。 In mass%, C: 0.50 to 0.70%, Si: 1.30 to 1.50%, Mn: 0.70 to 0.90%, S: 0.20 to 0.30%, Ni: 0.50-0.70%, Cr: 0.55-0.75%, Cu: 0.30-0.50%, Al: 0.30-0.50%, Zr: 0.30-0. 50%, the balance consists of Fe and inevitable impurities,
The total number of at least one of Zr sulfide and Zr carbosulfide having an equivalent circle diameter of 50 μm or less present in the metal surface structure parallel to the circumferential direction is 1000 in terms of number density per area of the metal surface structure. A piston ring for an internal combustion engine, wherein the number is 1 / mm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067758A JP6587570B2 (en) | 2016-03-30 | 2016-03-30 | Piston ring wire for internal combustion engine and piston ring for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067758A JP6587570B2 (en) | 2016-03-30 | 2016-03-30 | Piston ring wire for internal combustion engine and piston ring for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017179462A true JP2017179462A (en) | 2017-10-05 |
JP6587570B2 JP6587570B2 (en) | 2019-10-09 |
Family
ID=60005099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016067758A Active JP6587570B2 (en) | 2016-03-30 | 2016-03-30 | Piston ring wire for internal combustion engine and piston ring for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6587570B2 (en) |
-
2016
- 2016-03-30 JP JP2016067758A patent/JP6587570B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6587570B2 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5305179B2 (en) | Piston ring material for internal combustion engines | |
JP2009235561A (en) | Piston ring | |
JPWO2009069762A1 (en) | Piston ring steel and piston ring | |
JP6093866B2 (en) | High thermal conductivity piston ring for internal combustion engines | |
JP2018090900A (en) | Iron-based sintered allot valve seat for internal combustion engine having excellent wear resistance and assemblage of valve seat and valve | |
JP6139605B2 (en) | Piston ring and manufacturing method thereof | |
US6527879B2 (en) | Self-lubricating piston ring material for internal combustion engine and piston ring | |
JP5060083B2 (en) | Piston ring manufacturing method | |
WO2022219853A1 (en) | Oil ring wire | |
JP6424951B2 (en) | Sliding component and sliding structure | |
EP1063454A2 (en) | Self-lubricating piston ring material for internal combustion engine and piston ring | |
JP2015507081A (en) | Highly elastic wear-resistant gray cast iron for piston ring applications | |
JP6587570B2 (en) | Piston ring wire for internal combustion engine and piston ring for internal combustion engine | |
JP4616209B2 (en) | Piston ring steel with excellent seizure resistance, deformed wire for piston ring, and piston ring | |
JP6784869B2 (en) | piston ring | |
JP4066307B2 (en) | Piston ring material and piston ring for internal combustion engines having self-lubricating properties | |
JP2909456B2 (en) | Piston ring with excellent scuffing resistance | |
JP6422044B2 (en) | Sliding structure and sliding method of sliding structure | |
JP2020045557A (en) | Slide member | |
JPH01119646A (en) | Steel for piston ring | |
WO2022219854A1 (en) | Oil ring wire | |
JP2866868B2 (en) | Piston ring material | |
JPH03122257A (en) | Piston ring material | |
JP2001011577A (en) | Second ring material of piston for internal combustion engine | |
JPH1161344A (en) | Material for piston ring excellent in scuffing resistance and workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6587570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |