JP2017177112A - Manufacturing method for spot-welded product and manufacturing device thereof - Google Patents

Manufacturing method for spot-welded product and manufacturing device thereof Download PDF

Info

Publication number
JP2017177112A
JP2017177112A JP2016063811A JP2016063811A JP2017177112A JP 2017177112 A JP2017177112 A JP 2017177112A JP 2016063811 A JP2016063811 A JP 2016063811A JP 2016063811 A JP2016063811 A JP 2016063811A JP 2017177112 A JP2017177112 A JP 2017177112A
Authority
JP
Japan
Prior art keywords
electrode
welded
truncated
spot
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063811A
Other languages
Japanese (ja)
Other versions
JP6519510B2 (en
Inventor
尚武 石▲崎▼
Naotake Ishizaki
尚武 石▲崎▼
庸平 庄司
Yohei Shoji
庸平 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016063811A priority Critical patent/JP6519510B2/en
Publication of JP2017177112A publication Critical patent/JP2017177112A/en
Application granted granted Critical
Publication of JP6519510B2 publication Critical patent/JP6519510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spot-welding technique for performing appropriate nugget formation.SOLUTION: A manufacturing method for a spot-welded product using a gun constituted of a pair of a first electrode and a second electrode, comprises: (i) a step for providing a laminate to be welded by laminating at least a part of two plates to be welded; (ii) a step for sandwiching the laminate to be welded between the first electrode and the second electrode; and (iii) a step for energizing between the first electrode and second electrode while pressing the laminate to be welded, with the first electrode and the second electrode. Since the laminate to be welded has at least two plates to be welded having respective plate thicknesses different from each other, the welding gun to be used comprises the first electrode and the second electrode having respective electric resistance different from each other.SELECTED DRAWING: Figure 1

Description

本発明は、スポット溶接に関する。より詳細には、本発明は、重ね合わせた鋼板などの被溶接板を電気抵抗発熱で溶融させて接合する抵抗スポット溶接によってスポット溶接物を製造する方法に関すると共に、かかるスポット溶接物を製造するための製造装置にも関する。   The present invention relates to spot welding. More specifically, the present invention relates to a method of manufacturing a spot welded product by resistance spot welding in which welded plates such as stacked steel plates are melted and joined by electric resistance heat generation, and for manufacturing such a spot welded product. Also related to manufacturing equipment.

自動車の車体は、鋼板同士を溶接することで一般に構成されている。かかる溶接には、従前よりスポット溶接が多く用いられている。自動車1台の製造を例にとると、接合すべき箇所の90%以上がスポット溶接で接合されているともいわれる。   An automobile body is generally configured by welding steel plates together. For such welding, spot welding has been used more frequently than before. Taking the production of one automobile as an example, it is said that 90% or more of the parts to be joined are joined by spot welding.

スポット溶接においては、重ね合わせた鋼板に対して電極間で局所的に通電して抵抗熱を発生させる。抵抗発熱により鋼板が溶融するので、最終的にはその溶融に起因して鋼板同士の接合がなされる。より具体的には、スポット溶接では、対を成す電極を備えた溶接ガンが一般的に用いられる。かかる対を成す電極で重ね合わせた鋼板を挟みこんで加圧力を与えながら電極間に電流を流す。これにより鋼板に抵抗発熱が生じ、鋼板が局所的に溶融するので、その部分が最終的に冷却固化して点状の溶接部が形成される。   In spot welding, resistance heat is generated by locally energizing the stacked steel plates between the electrodes. Since the steel plates are melted by the resistance heat generation, the steel plates are finally joined due to the melting. More specifically, in spot welding, a welding gun having a pair of electrodes is generally used. A current is passed between the electrodes while sandwiching the steel plates overlapped by the pair of electrodes and applying pressure. As a result, resistance heat is generated in the steel sheet, and the steel sheet is locally melted, so that the portion is finally cooled and solidified to form a dotted weld.

スポット溶接で形成される点状の溶接部は“ナゲット”と一般に称される。かかるナゲットは、抵抗発熱に起因した鋼板の溶融部分が冷却固化した部分に相当し、このナゲットの存在によって鋼板同士が所望に接合され、スポット溶接物が得られることになる。   A spot weld formed by spot welding is generally referred to as a “nugget”. Such a nugget corresponds to a portion where the melted portion of the steel plate due to resistance heat generation is cooled and solidified, and the presence of this nugget joins the steel plates as desired to obtain a spot welded product.

特開2001−179464号公報JP 2001-179464 A

本願発明者らは、スポット溶接のナゲット形成に関連する問題点に気付き、そのための対策を取る必要性を見出した。   The inventors of the present application have noticed a problem associated with spot welding nugget formation, and have found it necessary to take countermeasures therefor.

具体的には以下の問題があることを本願発明者は見出した。スポット溶接では鋼板同士の合わせ面にまで及ぶようにナゲットを形成する必要があるが、鋼板の板厚によっては合わせ面にナゲットが好適に形成されない虞がある。特定の理論に拘束されるわけではないが、これは、スポット溶接の溶接個所では互いに重ね合わせた鋼板の断面中心から発熱・溶融が開始されることに起因するものと考えられる。つまり、“厚板”および“薄板”と板厚の異なる鋼板同士を重ね合わせてスポット溶接する場合、“断面中心”から成長する溶融部のサイズに起因して厚板側の溶融径よりも薄板側の溶融径が小さくなってしまう場合があり、結果として厚板と薄板との合わせ面にナゲットが好適に形成されない虞がある(図11(a)および11(b)参照)。合わせ面にナゲットが及ぶように加圧力、電流値または通電時間などを調整し、発熱量を増やすことが考えられるものの、そうすると今度はスパッタが発生し易くなり、結果としてナゲットのバラツキによる強度品質への影響に留まらず、溶接痕が必要以上に深くなったり、ピンホールの発生頻度が増したりと外観の点でも品質低下を引き起こし易い。   Specifically, the present inventors have found that there are the following problems. In spot welding, it is necessary to form the nugget so as to reach the mating surfaces of the steel plates. However, depending on the thickness of the steel plates, the nuggets may not be suitably formed on the mating surfaces. Although not bound by a specific theory, this is considered to be due to the fact that heat generation / melting is started from the center of the cross section of the steel plates stacked on each other at the spot welding spot. In other words, when spot welding is performed by superimposing “thick plate” and “thin plate” steel plates with different plate thicknesses, the plate is thinner than the melt diameter on the thick plate side due to the size of the molten part growing from the “cross-sectional center”. As a result, the nugget may not be suitably formed on the mating surface of the thick plate and the thin plate (see FIGS. 11A and 11B). Although it is possible to increase the heat generation amount by adjusting the pressure, current value or energization time so that the nugget reaches the mating surface, this will make it easier for spatter to occur, resulting in strength quality due to variations in the nugget. In addition to the above-mentioned effects, it is easy to cause deterioration in quality in terms of appearance, such as welding marks becoming deeper than necessary and the frequency of occurrence of pinholes increasing.

本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、特に好適なナゲット形成に資するスポット溶接技術を提供することである。   The present invention has been made in view of such circumstances. That is, the main object of the present invention is to provide a spot welding technique that contributes to particularly suitable nugget formation.

本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記目的の達成を試みた。その結果、上記主たる目的が達成されたスポット溶接物の製造方法の発明に至ると共に、それを実施するための製造装置の発明にも至った。   The inventor of the present application tried to achieve the above object by addressing in a new direction instead of responding on the extension of the prior art. As a result, the present invention has led to an invention of a method for manufacturing a spot welded article in which the above-mentioned main object has been achieved, and an invention of a manufacturing apparatus for carrying out the invention.

本発明の製造方法の発明は、対を成す第1電極と第2電極とから構成される溶接ガンを用いてスポット溶接物を製造する方法に関し、
(i)少なくとも2枚の被溶接板を少なくとも部分的に重ね合わせることによって被溶接積層体を得る工程、
(ii)第1電極および第2電極で被溶接積層体を挟み込む工程、ならびに
(iii)第1電極および第2電極で被溶接積層体を加圧しながら第1電極および第2電極との間の通電を行う工程
を含んで成り、
被溶接積層体では少なくとも2枚の被溶接板の板厚が互いに異なっており、第1電極および第2電極の通電抵抗が互いに異なる溶接ガンを用いることを特徴とする。
The invention of the manufacturing method of the present invention relates to a method of manufacturing a spot welded article using a welding gun composed of a pair of first electrode and second electrode,
(I) a step of obtaining a welded laminate by at least partially overlapping at least two welded plates;
(Ii) sandwiching the welded laminate with the first electrode and the second electrode, and (iii) between the first electrode and the second electrode while pressurizing the welded laminate with the first electrode and the second electrode Comprising a step of conducting electricity,
In the welded laminate, at least two welded plates have different plate thicknesses, and welding guns having different current resistances of the first electrode and the second electrode are used.

また、本発明の製造装置の発明は、板厚が互いに異なる被溶接板から成るスポット溶接物を製造するための装置に関している。かかる本発明の製造装置は、対を成す第1電極と第2電極とから構成される溶接ガンを少なくとも有して成り、第1電極および第2電極における通電抵抗が互いに異なることを特徴とする。   Moreover, the invention of the manufacturing apparatus of the present invention relates to an apparatus for manufacturing a spot welded object composed of welded plates having different plate thicknesses. Such a manufacturing apparatus of the present invention has at least a welding gun composed of a first electrode and a second electrode forming a pair, and the conduction resistances of the first electrode and the second electrode are different from each other. .

本発明では、スポット溶接時の溶融部(特に“溶融開始ポイント”)を好適に偏移させることが可能となる。したがって、板厚が互いに異なる被溶接板であってもそれらの合わせ面にまで及ぶようにナゲットを好適に形成できる。特に、溶接痕などの溶接物の外観にも考慮しつつ、異なる板厚の合わせ面にまで及ぶようにナゲットを好適に形成できる。   In the present invention, it is possible to favorably shift the melted part (particularly the “melting start point”) during spot welding. Accordingly, the nuggets can be suitably formed so as to extend to their mating surfaces even if the plates have different thicknesses. In particular, the nugget can be suitably formed so as to extend to the mating surfaces of different plate thicknesses while also taking into account the appearance of the weldment such as weld marks.

本発明の概念を示した断面図(図1(a):2枚の被溶接板、図1(b):3枚の被溶接板)Sectional drawing showing the concept of the present invention (FIG. 1 (a): two welded plates, FIG. 1 (b): three welded plates) 本発明の概念を示した断面図および斜視図Sectional view and perspective view showing the concept of the present invention 本発明の製造方法の通電時の態様を模式的に示した断面図(図3(a):2枚の被溶接板、図3(b):3枚の被溶接板)Sectional drawing which showed the aspect at the time of electricity supply of the manufacturing method of this invention typically (FIG.3 (a): Two to-be-welded plates, FIG.3 (b): Three to-be-welded plates) 被溶接積層体に形成される溶融部/ナゲットを模式的に示した断面図Sectional drawing schematically showing the melted part / nugget formed in the welded laminate 本発明の製造方法の経時的な態様を模式的に示した断面図(図5(a):工程(i)、図5(b):工程(ii)、図5(c):工程(iii))Sectional drawing (FIG. 5 (a): process (i), FIG.5 (b): process (ii), FIG.5 (c): process (iii)) which showed the time-dependent aspect of the manufacturing method of this invention. )) 被溶接積層体にめり込みやすい電極先端形状の態様を模式的に示した断面図Sectional drawing which showed the aspect of the electrode tip shape which is easy to sink into a to-be-welded laminated body 被溶接積層体にめり込みにくい電極先端形状の態様を模式的に示した断面図Sectional drawing which showed the aspect of the electrode tip shape which is hard to dig into a to-be-welded laminated body 本発明の製造装置の態様を模式的に示した断面図Sectional drawing which showed the aspect of the manufacturing apparatus of this invention typically [ナゲット比の確認試験]の結果を示したグラフGraph showing the result of [Nugget Ratio Confirmation Test] [圧痕低減の観点に基づく好適な電極切頭面径]の結果Results of [Preferred electrode truncated surface diameter based on reduction of indentation] 従来技術の概念を示した断面図(図11(a):2枚の被溶接板、図11(b):3枚の被溶接板)Sectional drawing which showed the concept of a prior art (FIG. 11 (a): Two to-be-welded plates, FIG.11 (b): Three to-be-welded plates)

以下では、図面を参照して本発明の一実施形態に係る「スポット溶接物の製造方法」および「スポット溶接物の製造装置」をより詳細に説明する。図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。   Hereinafter, a “spot welded article manufacturing method” and a “spot welded article manufacturing apparatus” according to an embodiment of the present invention will be described in more detail with reference to the drawings. Various elements in the drawings are merely schematically and exemplarily shown for understanding of the present invention, and the appearance, dimensional ratio, and the like may be different from the actual ones.

本明細書において「スポット溶接物」といった用語は、いわゆるスポット溶接(抵抗スポット溶接)によって得られる溶接物、即ち、電気抵抗による発熱(即ち、ジュール熱)を利用して互いに溶接された物を指している。したがって、本発明において「スポット溶接物」は、広義には、溶接ガンを用いてスポット溶接された少なくとも2枚の被溶接板のことを意味しており、狭義には、通電抵抗が互いに異なる第1電極と第2電極とを備えた溶接ガンによってスポット溶接された「板厚が互いに異なる少なくとも2枚の被溶接板」のことを意味している。   In the present specification, the term “spot weld” refers to a weld obtained by so-called spot welding (resistance spot welding), that is, welded to each other using heat generated by electric resistance (ie, Joule heat). ing. Accordingly, in the present invention, the “spot welded product” means, in a broad sense, at least two plates to be welded that are spot-welded using a welding gun. It means “at least two plates to be welded having different plate thicknesses” spot-welded by a welding gun having one electrode and a second electrode.

本明細書で直接的または間接的に説明される“上下”の方向は、製造時にスポット溶接される被溶接板の重合せに基づいており、少なくとも2枚の被溶接板が重ね合わされる方向(すなわち、重合せで得られる被溶接積層体の積層方向)が上下方向に相当する。本発明に係る典型的な態様では、被溶接板同士が全体として水平状態で重ね合わされることが多く、それゆえ、典型的には「鉛直下向き」が「下方向」に相当し、その反対側が「上方向」に相当する。   The “up and down” direction described directly or indirectly in the present specification is based on the superposition of the welded plates spot welded at the time of manufacture, and the direction in which at least two welded plates are superimposed ( That is, the lamination direction of the laminate to be welded obtained by polymerization corresponds to the vertical direction. In a typical aspect according to the present invention, the plates to be welded are often overlapped in a horizontal state as a whole. Therefore, typically, “vertical downward” corresponds to “downward”, and the opposite side is Corresponds to “upward”.

[本発明の製造方法]
本発明に係る製造方法は、対を成す第1電極と第2電極とから構成される溶接ガンを用いてスポット溶接物を製造する方法である。具体的には、本発明のスポット溶接物の製造方法は、
(i)少なくとも2枚の被溶接板を少なくとも部分的に重ね合わせて被溶接積層体を得る工程、
(ii)第1電極および第2電極で被溶接積層体を挟み込む工程、ならびに
(iii)第1電極および第2電極で被溶接積層体を加圧しながら第1電極および第2電極との間の通電を行う工程
を含んで成り、
被溶接積層体では少なくとも2枚の被溶接板の板厚が互いに異なっており、第1電極および第2電極の通電抵抗が互いに異なる溶接ガンが用いられる。
[Production method of the present invention]
The manufacturing method according to the present invention is a method for manufacturing a spot welded article using a welding gun including a first electrode and a second electrode forming a pair. Specifically, the method for producing a spot welded product of the present invention includes:
(I) a step of at least partially overlapping at least two plates to be welded to obtain a welded laminate,
(Ii) sandwiching the welded laminate with the first electrode and the second electrode, and (iii) between the first electrode and the second electrode while pressurizing the welded laminate with the first electrode and the second electrode Comprising a step of conducting electricity,
In the laminate to be welded, welding guns are used in which the plate thicknesses of at least two to-be-welded plates are different from each other and the energization resistances of the first electrode and the second electrode are different from each other.

本発明の製造方法では、板厚が互いに異なる被溶接板から成る被溶接積層体をスポット溶接するところ、そのような板厚に違いに鑑みて通電抵抗が互いに異なる第1電極および第2電極から成る溶接ガンを用いる。このような特徴に起因して、板厚が互いに異なる被溶接板から成る被溶接積層体であっても好適にスポット溶接することができる。より具体的には、板厚が異なる被溶接板の互いの合わせ面(界面)にまでナゲットを好適に形成することができる。   In the manufacturing method of the present invention, when a welded laminate comprising welded plates having different plate thicknesses is spot welded, the first electrode and the second electrode having different energization resistances in view of the difference in such plate thicknesses. Use a welding gun consisting of: Due to such characteristics, even a welded laminate comprising welded plates having different thicknesses can be suitably spot welded. More specifically, the nugget can be suitably formed up to the mating surfaces (interfaces) of the welded plates having different plate thicknesses.

ナゲットの好適な形成のために、本発明の製造方法は、被溶接積層体に生じる溶融部の形成位置を制御している。特に、本発明の工程(iii)の通電に際して、被溶接積層体に生じる溶融部の形成開始位置を制御している。換言すれば、図1(a)および1(b)に示すように、互いに異なる通電抵抗に起因して、第1電極12および第2電極16のうち通電抵抗が相対的に大きい電極側に溶融部70を偏移させる。   In order to suitably form the nugget, the production method of the present invention controls the formation position of the melted portion generated in the welded laminate. In particular, at the time of energization in the step (iii) of the present invention, the formation start position of the melted portion generated in the welded laminate is controlled. In other words, as shown in FIGS. 1 (a) and 1 (b), the first electrode 12 and the second electrode 16 melt on the electrode side having a relatively large conduction resistance due to different conduction resistances. The part 70 is shifted.

図11(a)および11(b)を参照して説明したように、従来技術において“厚板”および“薄板”と板厚の異なる鋼板同士を重ね合わせてスポット溶接する場合、“断面中心”から成長する溶融部に起因して厚板側の溶融径よりも薄板側の溶融径が小さくなってしまい、薄板側に溶融部が十分に及ばない虞もある。つまり、厚板と薄板との合わせ面にナゲットが好適に形成されない虞がある。合わせ面にナゲットが好適に及ぶように加圧力、電流値または通電時間などを調整し、発熱量を増やすことが考えられるものの、そうすると今度はスパッタが発生し易くなり、ナゲットのバラツキによる強度品質への影響に留まらず、溶接痕が必要以上に深くなったり、ピンホールの発生頻度が増したりと外観の点でも品質低下を引き起こし易い。   As described with reference to FIGS. 11 (a) and 11 (b), in the conventional technique, when “thick plate” and “thin plate” and spot-welded steel plates having different thicknesses are overlapped and spot welded, “cross-sectional center” Therefore, the melt diameter on the thin plate side becomes smaller than the melt diameter on the thick plate side due to the melted portion growing from the thick plate side, and there is a possibility that the melt portion does not reach the thin plate side sufficiently. That is, the nugget may not be suitably formed on the mating surface of the thick plate and the thin plate. Although it may be possible to increase the heat generation by adjusting the applied pressure, current value, or energization time so that the nugget is suitably applied to the mating surfaces, this will make it easier for spatter to occur and improve the strength quality due to variations in the nugget. In addition to the above-mentioned effects, it is easy to cause deterioration in quality in terms of appearance, such as welding marks becoming deeper than necessary and the frequency of occurrence of pinholes increasing.

本発明では、通電抵抗が互いに異なる第1電極および第2電極から成る溶接ガンを用い、それによって、工程(iii)の通電に際して通電抵抗が相対的に大きい電極側へと溶融部を偏移させている。特に好ましくは、そのような通電抵抗が互いに異なる第1電極12および第2電極16を用いることによって、板厚が互いに異なる被溶接板同士の合わせ面55にまで十分に及ぶように溶融部70を偏移させる(図1(a)および(b)参照)。これにより、薄板23と厚板27(27A,27B)との合わせ面55にナゲットが好適に形成される。特に圧痕などが抑制された状態で厚板23と薄板27(27A,27B)との合わせ面55にナゲットが好適に形成されることになる。   In the present invention, a welding gun comprising a first electrode and a second electrode having different energization resistances is used, thereby shifting the melted portion to the electrode side having a relatively large energization resistance during energization in the step (iii). ing. Particularly preferably, by using the first electrode 12 and the second electrode 16 having such different energization resistances, the fusion zone 70 is provided so as to sufficiently reach the mating surface 55 of the welded plates having different plate thicknesses. Shift (see FIGS. 1A and 1B). Thereby, a nugget is suitably formed on the mating surface 55 of the thin plate 23 and the thick plate 27 (27A, 27B). In particular, the nugget is suitably formed on the mating surface 55 of the thick plate 23 and the thin plate 27 (27A, 27B) in a state where the indentation or the like is suppressed.

ここで、本明細書で用いる「通電抵抗が異なる」とは、溶接ガンの対を成す第1電極および第2電極のスポット溶接時における通電抵抗が互いに異なることを指している。したがって、本発明における「通電抵抗が互いに異なる」とは、広義には、工程(iii)における通電電流の流れにくさを第1電極と第2電極との間で意図的に変えることを意味しており、狭義には、通電路において第1電極と第2電極との間で電気抵抗が互い異なっていることを意味している。これは、特に通電電流、通電時間および電極加圧力などのスポット溶接条件が実質的に同一であるとした場合の通電路において第1電極と第2電極との間で電気抵抗が互い異なっていることを意味している。あくまでも例示にすぎないが、本発明では、例えばスポット溶接時に被溶接積層体と接触することになる電極先端面における電気抵抗値(通電抵抗値)が第1電極および第2電極とで互いに異なっていてよい(後述する“切頭形状”の電極の場合、切頭面における電気抵抗値(通電抵抗値)が第1電極および第2電極とで互いに異なっていてよい)。   As used herein, “different energization resistances” means that the energization resistances at the time of spot welding of the first electrode and the second electrode forming a pair of welding guns are different from each other. Therefore, “the energization resistances are different from each other” in the present invention broadly means that the difficulty of the energization current flow in the step (iii) is intentionally changed between the first electrode and the second electrode. In a narrow sense, it means that the electric resistance is different between the first electrode and the second electrode in the current path. This is because, in particular, the electrical resistance is different between the first electrode and the second electrode in the energization path when the spot welding conditions such as energization current, energization time, and electrode pressing force are substantially the same. It means that. Although it is only an example to the last, in this invention, the electrical resistance value (energization resistance value) in the electrode front end surface which contacts a to-be-welded laminated body at the time of spot welding, for example is mutually different by the 1st electrode and the 2nd electrode. (In the case of a “truncated” electrode described later, the electric resistance value (energization resistance value) on the truncated surface may be different between the first electrode and the second electrode).

溶接ガンの第1電極および第2電極の材質は、良好な熱伝導性および電気伝導性が一般に求められ、更には好ましくは高温変形耐性および耐摩耗性なども求められる。それゆえ、第1電極および第2電極の材質は、一般的に銅および/または銅合金であり得る。特に限定するわけではないが、硬銅、カドミウム銅、ジルコニウム銅、クロム銅、クロムジルコニウム銅、低ベリリウム銅、高ベリリウム銅、アルミナ分散銅(アルミナ分散強化銅)などが第1電極および第2電極の材質として具体的に用いられ得る。   The materials for the first electrode and the second electrode of the welding gun are generally required to have good thermal conductivity and electrical conductivity, and more preferably high temperature deformation resistance and wear resistance. Therefore, the material of the first electrode and the second electrode can generally be copper and / or a copper alloy. Although it does not necessarily limit, hard copper, cadmium copper, zirconium copper, chromium copper, chromium zirconium copper, low beryllium copper, high beryllium copper, alumina dispersion copper (alumina dispersion strengthened copper), etc. are the first electrode and the second electrode. It can be specifically used as a material for the above.

本発明において「通電抵抗が互いに異なる」は、電極材質の相違で達成したり、あるいは、電極先端形状の相違で達成したりすることが好ましい。つまり、溶接ガンを構成している対の第1電極と第2電極との間で材質を変えたり、および/または、電極先端形状を変えたりすることが好ましい。   In the present invention, “different energization resistances” are preferably achieved by a difference in electrode material or by a difference in electrode tip shape. That is, it is preferable to change the material between the pair of first electrode and second electrode constituting the welding gun and / or change the electrode tip shape.

電極材質の相違に基づく場合、第1電極および第2電極の一方と他方との間で材質を変えることになる。具体的には「第1電極および第2電極の一方の電極材質の導電率(または電気抵抗率)」と「第1電極および第2電極の他方の電極材質の導電率(または電気抵抗率)」とが互い異なるようにすることが好ましい。あくまでも例示にすぎないが、第1電極および第2電極の一方の電極材質を“アルミナ分散銅”を含んで成るものとし、第1電極および第2電極の他方の電極材質を“クロム銅”または“クロムジルコニウム銅”としてよい。   When based on the difference in electrode material, the material is changed between one and the other of the first electrode and the second electrode. Specifically, “conductivity (or electrical resistivity) of one electrode material of the first electrode and the second electrode” and “conductivity (or electrical resistivity) of the other electrode material of the first electrode and the second electrode” Are preferably different from each other. For illustration purposes only, one electrode material of the first electrode and the second electrode includes “alumina-dispersed copper”, and the other electrode material of the first electrode and the second electrode is “chrome copper” or “Chromium zirconium copper” may be used.

一方、電極先端形状の相違に基づく場合、第1電極および第2電極の一方と他方との間で電極先端形状を変えることになる。具体的には、「第1電極および第2電極の一方の電極最先端部分・電極最先端面」と「第1電極および第2電極の他方の電極最先端部分・電極最先端面」とが互い異なるようにすることが好ましい。   On the other hand, when based on the difference in electrode tip shape, the electrode tip shape is changed between one of the first electrode and the second electrode and the other. Specifically, “one electrode cutting edge portion / electrode cutting edge surface of one of the first electrode and second electrode” and “the other electrode cutting edge portion / electrode cutting edge surface of the first electrode and the second electrode” are It is preferable to make them different from each other.

溶接ガンにおいて対の第1電極12および第2電極16の各々が切頭形状を有する場合、第1電極12の切頭面積と第2電極16の切頭面積とが互いに異なることが好ましい(図2参照)。これは、第1電極および第2電極の切頭面積の一方が他方より大きいこと又は小さいことを意味している。つまり、第1電極12の切頭面積をS第1電極とし、第2電極16の切頭面積をS第2電極とすると、S第1電極>S第2電極またはS第1電極<S第2電極となることが好ましい(即ち、S第1電極=S第2電極またはS第1電極≒S第2電極とはなっていない)。 In the welding gun, when each of the pair of first electrode 12 and second electrode 16 has a truncated shape, the truncated area of the first electrode 12 and the truncated area of the second electrode 16 are preferably different from each other (see FIG. 2). This means that one of the truncated areas of the first electrode and the second electrode is larger or smaller than the other. In other words, the truncated area of the first electrode 12 and S first electrode and the truncated area of the second electrode 16 and S second electrode, S the first electrode> S second electrode or S first electrode <S No. It is preferable that there are two electrodes (that is, S first electrode = S second electrode or S first electrode≈S second electrode is not satisfied).

あくまでも例示にすぎないが、第1電極および第2電極の切頭面積の一方が他方よりも1.3倍〜7.5倍程度となっていてよい。つまり、ある好適な態様では、第1電極12および第2電極16との間の切頭面積比につき、相対的に小さい切頭面積に対する相対的に大きい切頭面積の比が1.3〜7.5程度となっている。これは、第1電極および第2電極の各々の切頭形状が切頭円錐形状である場合(すなわち、電極先端部分が円錐台状となっている場合)、第1電極および第2電極の切頭面(すなわち、円形状の切頭面)の径比が約1.16〜約2.67となっていることに相当する。換言すれば、図2に示すような第1電極12および第2電極16の円形状の切頭面につき、「相対的に小さい径D小径」に対する「相対的に大きい径D大径」の比、即ち、D大径/D小径の値が約1.16〜約2.67となることが好ましい。 For illustration purposes only, one of the truncated areas of the first electrode and the second electrode may be about 1.3 to 7.5 times the other. That is, in a preferable aspect, the ratio of the relatively large truncated area to the relatively small truncated area is 1.3 to 7 with respect to the truncated area ratio between the first electrode 12 and the second electrode 16. .5 or so. This is because when the truncated shape of each of the first electrode and the second electrode is a truncated cone shape (that is, when the tip of the electrode has a truncated cone shape), the first electrode and the second electrode are truncated. This corresponds to a diameter ratio of the head surface (that is, a circular truncated surface) of about 1.16 to about 2.67. In other words, the ratio of “relatively large diameter D large diameter ” to “relatively small diameter D small diameter ” with respect to the circular truncated surfaces of the first electrode 12 and the second electrode 16 as shown in FIG. That is, the value of D large diameter / D small diameter is preferably about 1.16 to about 2.67.

このように切頭面積(切頭面径)が異なる場合、“切頭面積(切頭面径)が小さい電極”は“切頭面積(切頭面径)が大きい電極”よりも通電抵抗が大きくなり得る。本発明の製造方法においては、対を成す2つの電極のうち、通電抵抗がより大きい電極側寄りに溶融起点が移動することになり、即ち、通電抵抗がより小さい電極側から離れる方向に溶融起点が移動することになる(図1(a)および1(b)ならびに図3(a)および3(b)参照)。特定の理論に拘束されるわけではないが、これは、図3(a)および3(b)で示される如く通電定常時の温度分布においてピーク温度が生じる箇所(以下、「ピーク温度ポイント」とも称する)が第1電極と第2電極との中間ポイントからずれるからであり、特にピーク温度ポイントが通電抵抗のより大きい電極側にシフトするからであるといえる。   In this way, when the truncated area (truncated surface diameter) is different, the “electrode with a small truncated area (truncated surface diameter)” has a higher conduction resistance than the “electrode with a large truncated area (truncated surface diameter)”. Can be bigger. In the manufacturing method of the present invention, the melting start point moves closer to the electrode side having a larger energization resistance among the two electrodes forming a pair, that is, the melting start point in a direction away from the electrode side having a smaller energization resistance. Will move (see FIGS. 1 (a) and 1 (b) and FIGS. 3 (a) and 3 (b)). Although not limited by a specific theory, this is because the peak temperature occurs in the temperature distribution during steady energization as shown in FIGS. 3 (a) and 3 (b) (hereinafter referred to as “peak temperature point”). This is because the peak temperature point shifts to the electrode side having a larger energization resistance, particularly from the intermediate point between the first electrode and the second electrode.

従って、図1(a)および1(b)に示すように“薄板23”と“厚板27(27A,27B)”と異なる被溶接板から成る被溶接積層体50’をスポット溶接する際、薄板23側に通電抵抗のより大きい電極12を位置付ける一方、厚板27側に通電抵抗のより小さい電極16を位置付けて通電を行うことが好ましい。かかる場合、薄板23側に溶融起点が移動することなり、結果として“薄板”および“厚板”と板厚が異なる被溶接板の互いの合わせ面55にまでナゲットを好適に形成することができる。換言すれば、第1電極および第2電極のうち通電抵抗が相対的に大きい電極を板厚が相対的に小さい被溶接板の近位に配置する一方、通電抵抗が相対的に小さい電極を板厚が相対的に大きい被溶接板の近位に配置すると、板厚が異なる被溶接板の互いの合わせ面にまでナゲットを好適に形成することができる。ちなみに、仮に通電抵抗が同じ電極対を用いた場合において「板厚が異なる被溶接板の互いの合わせ面」にまでナゲット形成を行うには、通電時間を長くすればよいが、そうすると今度はスパッタが発生し易くなってしまい、溶接強度および外観の点で溶接物の品質低下につながり得る。この点、本発明に従えば、そのような不都合なスパッタの発生をより抑制した状態で一定の通電電流下にて「板厚が異なる被溶接板の合わせ面」にまでナゲットを形成できる。   Accordingly, as shown in FIGS. 1 (a) and 1 (b), when spot-welding a laminate 50 ′ to be welded, which is a welded plate different from “thin plate 23” and “thick plate 27 (27A, 27B)”, It is preferable that the electrode 12 having a larger energization resistance is positioned on the thin plate 23 side while the electrode 16 having a smaller energization resistance is positioned on the thick plate 27 side to perform energization. In this case, the melting start point moves to the thin plate 23 side, and as a result, the nugget can be suitably formed up to the mating surfaces 55 of the welded plates having different plate thicknesses from the “thin plate” and the “thick plate”. . In other words, among the first electrode and the second electrode, an electrode having a relatively large energization resistance is disposed in the vicinity of a welded plate having a relatively small plate thickness, while an electrode having a relatively small energization resistance is disposed on the plate. If it arrange | positions in the proximal of the to-be-welded board with comparatively large thickness, a nugget can be suitably formed even in the mutual mating surface of the to-be-welded board from which board thickness differs. By the way, if an electrode pair with the same energization resistance is used, the nugget formation can be made longer in order to form the nugget up to `` the mutual mating surfaces of the welded plates with different plate thicknesses ''. Is likely to occur, which may lead to deterioration of the quality of the welded material in terms of welding strength and appearance. In this regard, according to the present invention, the nugget can be formed up to “the mating surfaces of the plates to be welded having different plate thicknesses” under a constant energization current in a state in which the occurrence of such an undesirable spatter is further suppressed.

本発明の技術思想は、対向する電極の通電抵抗値が異なる溶接ガンを用い(例えば上下異型電極を適用し)、電気抵抗率(または導電率)が同等であるものの板厚が異なる被溶接板同士をスポット溶接するに際して、被溶接積層体の厚み方向の溶融位置を通電抵抗値が大きい電極側へと偏移させるといったものである。特定の理論に拘束されるわけではないが、通電路における体積と抵抗値との関係をR=ρ×L/A(R:抵抗値、ρ:電気抵抗率、L:通電路長、A:通電路断面積)と定義付けた場合、被溶接積層体の断面で厚み方向に区間設定すると区間毎の発熱量は通電路径が小さい側で大きく、通電路径が大きい側で小さくなると考えられることが関係するものと推測される。本発明は、特に複数の被溶接板(例えば3枚以上の被溶接板)を溶接する場合に有利となり得る。そのような複数の被溶接板の互いの合わせ面にまでナゲットを好適に形成することができ、所望の溶接物を得ることができるからである。例えば、被溶接積層体を構成する被溶接板が3枚であり、そのうち少なくとも2枚の板厚が互いに異なっていてよい。かかる場合であっても、被溶接板の互いの合わせ面にまでナゲットを好適に形成することができ、所望の溶接物を得ることができる。   The technical idea of the present invention is to use welding guns with different resistance values of opposing electrodes (for example, applying upper and lower atypical electrodes), and to-be-welded plates with different electrical thicknesses (or electrical conductivity) but different plate thicknesses. When spot-welding each other, the melting position in the thickness direction of the laminate to be welded is shifted to the electrode side having a large energization resistance value. Although not bound by a specific theory, the relationship between the volume and the resistance value in the current path is expressed by R = ρ × L / A (R: resistance value, ρ: electrical resistivity, L: current path length, A: If the section is set in the thickness direction in the cross section of the laminate to be welded, the amount of heat generated in each section may be larger on the side where the current path diameter is smaller and smaller on the side where the current path diameter is larger. Presumed to be related. The present invention can be particularly advantageous when welding a plurality of plates to be welded (for example, three or more plates to be welded). This is because the nugget can be suitably formed up to the mating surfaces of such a plurality of plates to be welded, and a desired weld can be obtained. For example, the number of welded plates constituting the welded laminate may be three, and at least two of them may have different thicknesses. Even in such a case, the nugget can be suitably formed up to the mating surfaces of the welded plates, and a desired weld can be obtained.

より具体的な態様に基づいて説明する。本発明に従えば、図4に示すように、3枚の被溶接板のそれぞれの板厚が異なる場合であっても、被溶接板の互いの合わせ面にまでナゲットを好適に形成することができる。図4に示されるように薄板23と2種類の厚板27A,27Bとから構成される被溶接積層体50’の場合を例に挙げると、図示するように薄板23側に通電抵抗が相対的に大きい電極12を配置して、厚板27A,27B側に通電抵抗が相対的に小さい電極16を配置することが好ましい。これにより、通電時に薄板23側に溶融起点を移動させることができ、被溶接板の互いの合わせ面にまでナゲット70を好適に形成できる。   This will be described based on a more specific aspect. According to the present invention, as shown in FIG. 4, the nuggets can be suitably formed on the mating surfaces of the welded plates even when the thicknesses of the three welded plates are different. it can. As shown in FIG. 4, in the case of a welded laminate 50 ′ composed of a thin plate 23 and two types of thick plates 27 </ b> A and 27 </ b> B, an energization resistance is relative to the thin plate 23 side as illustrated. It is preferable that the large electrode 12 is disposed on the thick plate 27A, 27B side, and the electrode 16 having a relatively small conduction resistance is disposed on the thick plate 27A, 27B side. Thereby, the melting start point can be moved to the thin plate 23 side when energized, and the nugget 70 can be suitably formed up to the mating surfaces of the welded plates.

本明細書においていう「ナゲットを好適に形成する」とは、例えば被溶接板同士の合わせ面におけるナゲット径が所定の範囲にあることを指している。あくまでも例示にすぎないが、被溶接板が3枚の場合を例に取ると、2つの合わせ面における互いのナゲット径が大きく異ならないことを意味しており、1つ例示すると厚板側の合わせ面におけるナゲット径L厚板に対する薄板側の合わせ面におけるナゲット径L薄板の比(L薄板/L厚板)が0.8〜1.1の範囲にあることを意味している(各電極を半分割する平面で切り取った断面図が示される図4を参照のこと)。 “Nugget is suitably formed” as used in this specification indicates that the nugget diameter at the mating surface between the welded plates is within a predetermined range. This is only an example, but taking the case of three welded plates as an example means that the nugget diameters of the two mating surfaces are not significantly different from each other. This means that the ratio (L thin plate / L thick plate ) of the nugget diameter L thin plate on the mating surface on the thin plate side to the nugget diameter L thick plate on the surface is in the range of 0.8 to 1.1 (each electrode is (See FIG. 4 where a cross-sectional view cut in a half-divided plane is shown).

以下においては、図5を参照しながら本発明の一実施形態に係る製造方法を経時的に説明する。   Hereinafter, a manufacturing method according to an embodiment of the present invention will be described over time with reference to FIG.

本発明の実施に際しては、まず工程(i)を実施する。すなわち、少なくとも2枚の被溶接板を少なくとも部分的に重ね合わせて被溶接積層体を得る。具体的には、図5(a)に示すように、例えば3枚の被溶接板として薄板23および2種類の厚板27A,27Bをスポット溶接する場合、それらが互いに積層するように重ね合わせて被溶接積層体50’を得る。図示する態様では、薄板23が外側に位置するようにその薄板と2種類の厚板27A,27Bとを互いに重ね合わせて被溶接積層体50’を得ている。   In carrying out the present invention, step (i) is first carried out. That is, at least two plates to be welded are at least partially overlapped to obtain a welded laminate. Specifically, as shown in FIG. 5A, for example, when spot welding a thin plate 23 and two kinds of thick plates 27A and 27B as three welded plates, they are overlapped so that they are stacked on each other. A welded laminate 50 ′ is obtained. In the illustrated embodiment, the thin plate 23 and the two types of thick plates 27A and 27B are overlapped with each other so that the thin plate 23 is positioned on the outer side to obtain a welded laminate 50 '.

なお、本明細書にいう「被溶接板」とは、スポット溶接される板状部材のことを指しており、特には板厚がそれぞれ異なる板状部材のことを指している。スポット溶接は、被溶接板と電極との接触で通電路を確保する必要があるので、被溶接板は、電気伝導性を有することが好ましく、それゆえ、例えば金属材を含んで成る板状部材であることが好ましい。ある好適な1つの態様では、被溶接板は金属板である。また、例えば自動車製造におけるスポット溶接を例にとれば、被溶接板は鋼板に相当し得る。鋼板の鋼材自体は、特に限定されず、炭素鋼、合金鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼などであってよい。また、代表的な鋼板の種類でいうと、被溶接板としての鋼板は、冷間圧延鋼板(SPC材)、熱延鋼板、熱間圧延軟鋼板(SPH材)、電気亜鉛めっき鋼板(SEC材、SEH材)、溶融亜鉛めっき鋼板(SGC材、SGH材)、溶融アルミめっき鋼板、塗装電気めっき鋼板、ステンレス鋼板(SUS材)、アルミ板、銅板などであってよい。   The “welded plate” in this specification refers to a plate-like member to be spot-welded, and particularly refers to plate-like members having different plate thicknesses. In spot welding, since it is necessary to secure a current path by contact between the plate to be welded and the electrode, it is preferable that the plate to be welded has electrical conductivity. Therefore, for example, a plate-like member comprising a metal material It is preferable that In one preferable embodiment, the welded plate is a metal plate. For example, when spot welding in automobile manufacture is taken as an example, the welded plate may correspond to a steel plate. The steel material itself of the steel plate is not particularly limited, and may be carbon steel, alloy steel, nickel chromium steel, nickel chromium molybdenum steel, chromium steel, chromium molybdenum steel, manganese steel, or the like. In terms of typical steel plate types, steel plates as welded plates include cold rolled steel plates (SPC materials), hot rolled steel plates, hot rolled mild steel plates (SPH materials), electrogalvanized steel plates (SEC materials). , SEH material), hot dip galvanized steel plate (SGC material, SGH material), hot dip galvanized steel plate, painted electroplated steel plate, stainless steel plate (SUS material), aluminum plate, copper plate and the like.

本発明では、被溶接積層体を構成する少なくとも2枚の被溶接板は互いに板厚が異なっている。例えば、2つの被溶接板をスポット溶接に付す場合、一方の被溶接板が“薄板”となっており、他方の被溶接板が“厚板”となっている。また、3つの被溶接板をスポット溶接に付す場合では、そのうちの1つが“薄板”となっており、他の2つの被溶接板が“厚板”となっていてよい(2つの厚板は互いに板厚が異なっていてもよく、あるいは、同じであってもよい)。あくまでも例示にすぎないが、一方の被溶接板の板厚が他方の被溶接板の板厚よりも少なくとも約10%小さい場合(“約10%”は「一方の被溶接板」の板厚を基準とする)、かかる「一方の被溶接板」を“薄板”とみなし、「他方の被溶接板」を“厚板”とみなしてよい。また、別の判断指標の1つにすぎないが、例えば板厚が1.0mmを基準に、それ未満の板厚の被溶接板を“薄板”とみなし、それ以上の板厚の被溶接板を“厚板”とみなしてよい。これにつき、3つの被溶接板をスポット溶接に付す場合を1つ例示すると、例えば3つの被溶接板のうちの1つが“薄板”として約0.7mmの板厚を有し、他の2つの被溶接板が“厚板”として約1.6mmの板厚および約1.2mmの板厚を有している。   In the present invention, at least two welded plates constituting the welded laminate have different plate thicknesses. For example, when two welded plates are subjected to spot welding, one welded plate is a “thin plate” and the other welded plate is a “thick plate”. In addition, when three welded plates are subjected to spot welding, one of them is a “thin plate” and the other two welded plates may be “thick plates” (the two thick plates are The thickness may be different from each other or the same. This is merely an example, but when the thickness of one welded plate is at least about 10% smaller than the thickness of the other welded plate (“about 10%” is the thickness of “one welded plate”). Such “one plate to be welded” may be regarded as “thin plate”, and “the other plate to be welded” may be regarded as “thick plate”. Moreover, although it is only one of the other judgment indexes, for example, a plate having a thickness less than 1.0 mm is regarded as a “thin plate” on the basis of a plate thickness of 1.0 mm, and a plate having a thickness greater than that is considered. May be regarded as a “thick plate”. For example, one case where three welded plates are subjected to spot welding is illustrated. For example, one of the three welded plates has a plate thickness of about 0.7 mm as a “thin plate”, and the other two The to-be-welded plate has a plate thickness of about 1.6 mm and a plate thickness of about 1.2 mm as a “thick plate”.

工程(i)に引き続いて、工程(ii)を実施する。すなわち、第1電極12および第2電極16で被溶接積層体50’を挟み込む。図5(b)に示すように、第1電極12および第2電極16が被溶接積層体50’の対向する外面にそれぞれ当接するように溶接ガンで被溶接積層体を挟み込むことが好ましい。このようにすると、通電路を好適に確保できる。つまり、次の工程(iii)において好適な通電経路が形成されることになり、ジュール熱を被溶接積層体に発生させることができる。図示する態様から分かるように、工程(ii)においては第1電極12と第2電極16とは被溶接積層体50’を介して互いに対向するような位置関係を有していることが好ましい(つまり、第1電極の軸と第2電極の軸とを互いに整合させる、より具体的にはそれらを一致させることが好ましい)。   Subsequent to step (i), step (ii) is performed. That is, the welded laminate 50 ′ is sandwiched between the first electrode 12 and the second electrode 16. As shown in FIG. 5B, it is preferable to sandwich the welded laminate with a welding gun so that the first electrode 12 and the second electrode 16 abut against the opposing outer surfaces of the welded laminate 50 '. If it does in this way, an energization way can be secured suitably. That is, a suitable energization path is formed in the next step (iii), and Joule heat can be generated in the welded laminate. As can be seen from the illustrated embodiment, in the step (ii), it is preferable that the first electrode 12 and the second electrode 16 have a positional relationship such that they face each other via the welded laminate 50 ′ ( That is, it is preferable that the axis of the first electrode and the axis of the second electrode are aligned with each other, more specifically, they are aligned.

“薄板23”および“厚板27”と異なる被溶接板から成る被溶接積層体をスポット溶接する際、薄板側に通電抵抗のより大きい電極を位置付ける一方、厚板側に通電抵抗のより小さい電極を位置付けることが好ましい。図5(b)に示すように薄板23が外側に位置するように薄板と2種類の厚板27(27A,27B)とを互いに重ね合わせて被溶接積層体50’とする場合では、薄板23に接するように通電抵抗のより大きい電極を位置付ける一方、厚板27に接するように(図示する態様では、厚板27Aに接するように)通電抵抗のより小さい電極を位置付けることが好ましい。   When spot-welding a laminate to be welded consisting of a plate to be welded different from “thin plate 23” and “thick plate 27”, an electrode having a higher current resistance is positioned on the thin plate side, while an electrode having a lower current resistance on the thick plate side. Is preferably located. As shown in FIG. 5B, in the case where the thin plate 23 and the two types of thick plates 27 (27A, 27B) are overlapped with each other so that the thin plate 23 is positioned outside, the thin plate 23 is formed. It is preferable to position an electrode having a smaller energization resistance so as to be in contact with the thick plate 27 (in the illustrated embodiment, so as to be in contact with the thick plate 27A).

例えば溶接ガンにおいて第1電極および第2電極の各々が切頭形状を有し、第1電極の切頭面積と第2電極の切頭面積とが互いに異なる場合、第1電極および第2電極のうち切頭面積が相対的に小さい電極を薄板側に位置付け(上記の3枚の被溶接板では薄板23に接するように位置付け)、切頭面積が相対的に大きい電極を厚板側に位置付ける(上記の3枚の被溶接板では厚板27に接するように位置付ける)ことが好ましい。これは、第1電極および第2電極の切頭形状が切頭円錐形状である場合、第1電極および第2電極のうち切頭面の径が相対的に小さい電極を薄板側に位置付け(上記の3枚の被溶接板では薄板23に接するように第1電極12を位置付け)、切頭面の径が相対的大きい電極を厚板側に位置付ける(上記の3枚の被溶接板では厚板27と接するように第2電極16を位置付ける)ことが好ましいことに相当する。なお、第1電極および第2電極の切頭形状は、特に切頭円錐形状に特に限定されるものでなく、例えば切頭四角錐状、切頭円柱状などの形状であってもよい。また、このような溶接ガン電極は、電極先端部と電極胴部とが一体化して成る“一体型”に特に限定されず、電極先端部を取り替えることができる“キャップ型”であってもよい。“キャップ型”の場合、電極チップが消耗した際の廃棄部品をより少なくすることができる。   For example, in the welding gun, each of the first electrode and the second electrode has a truncated shape, and when the truncated area of the first electrode and the truncated area of the second electrode are different from each other, the first electrode and the second electrode Among them, an electrode having a relatively small truncated area is positioned on the thin plate side (positioned so as to be in contact with the thin plate 23 in the above three welded plates), and an electrode having a relatively large truncated area is positioned on the thick plate side ( The above three welded plates are preferably positioned so as to contact the thick plate 27). This is because, when the truncated shape of the first electrode and the second electrode is a truncated conical shape, an electrode having a relatively small truncated surface diameter is positioned on the thin plate side among the first electrode and the second electrode (see above). In the three to-be-welded plates, the first electrode 12 is positioned so as to be in contact with the thin plate 23), and the electrode having a relatively large truncated surface is positioned on the thick plate side (in the above three to-be-welded plates, the thick plate It is preferable that the second electrode 16 is positioned so as to be in contact with 27). The truncated shapes of the first electrode and the second electrode are not particularly limited to a truncated cone shape, and may be, for example, a truncated quadrangular pyramid shape or a truncated cylindrical shape. Further, such a welding gun electrode is not particularly limited to an “integrated type” in which the electrode tip and the electrode body are integrated, and may be a “cap type” in which the electrode tip can be replaced. . In the case of the “cap type”, it is possible to reduce the number of discarded parts when the electrode tip is consumed.

工程(ii)に引き続いて、工程(iii)を実施する。すなわち、第1電極12および第2電極16で被溶接積層体50’を加圧しながら第1電極12および第2電極16との間の通電を行う。これにより、被溶接積層体50’にジュール熱を発生させることができ、溶融部70を形成することができる(図5(c)参照)。   Subsequent to step (ii), step (iii) is performed. That is, the first electrode 12 and the second electrode 16 are energized between the first electrode 12 and the second electrode 16 while pressurizing the welded laminate 50 ′. Thereby, Joule heat can be generated in the welded laminate 50 ′, and the melted portion 70 can be formed (see FIG. 5C).

かかる通電時における電流値、通電時間、加圧力などは、好適なナゲット形成に資するのであれば特に制限があるものでなく、例えば常套的なスポット溶接で採用されているものであってよい。あくまでも例示にすぎないが、例えば、通電の電流値は、5kA〜30kAの範囲であってよい。このような通電電流は交流電流または直流電流のいずれであってもよい。すなわち、通電電流の電源は、交流式(例えば、単相交流式または三相低周波式など)または直流式(例えば、単相整流式、三相整流式またはインバータ式など)のいずれかでよい。同様にあくまでも例示にすぎないが、電極によって被溶接積層体に加えられる圧力(加圧力)は、例えば1〜20kN程度であってよい。典型的には、被溶接板・被溶接積層体の室温強さが強いほど、また、熱膨張率が大きいほど、加圧力を大きくすることが好ましい。更にいえば、かかる通電に際しては、第1電極および第2電極の各々を水冷に付すことが好ましい。より具体的には、第1電極12および第2電極16の各内部に冷却水を流すことが好ましい。より好適に被溶接積層体にジュール熱を発生させることができ、溶融部が形成され易くなるからである。   The current value, energization time, applied pressure, and the like during energization are not particularly limited as long as they contribute to suitable nugget formation, and may be employed, for example, in conventional spot welding. For example, the current value of energization may be in the range of 5 kA to 30 kA. Such an energizing current may be either an alternating current or a direct current. That is, the power source of the energizing current may be either an AC type (for example, a single-phase AC type or a three-phase low frequency type) or a DC type (for example, a single-phase rectification type, a three-phase rectification type, or an inverter type). . Similarly, although it is only an illustration, the pressure (pressing force) applied to the welded laminate by the electrode may be, for example, about 1 to 20 kN. Typically, the stronger the room temperature strength of the welded plate / welded laminate, and the greater the coefficient of thermal expansion, the greater the applied pressure. Furthermore, it is preferable to subject each of the first electrode and the second electrode to water cooling when energizing. More specifically, it is preferable to flow cooling water inside each of the first electrode 12 and the second electrode 16. This is because Joule heat can be generated in the welded laminate more preferably, and a melted portion is easily formed.

工程(iii)の通電時には、好ましくは通電定常時の温度分布においてピーク温度ポイントが第1電極と第2電極との中間ポイントからずれ、特に通電抵抗のより大きい電極側にシフトし得る(図3(a)および3(b)参照)。これは、工程(iii)の被溶接積層体に生じる溶融部の形成開始位置が制御されることを意味している。より具体的には、互いに異なる通電抵抗に起因して第1電極および第2電極のうち通電抵抗が相対的に大きい電極側へと(図示される態様では第1電極12により近づくように)溶融部70が偏移する(図5(c)参照)。これにより、“薄板”および“厚板”と板厚が異なる被溶接板の互いの合わせ面にまでナゲットを好適に形成されるようになる。上述の如く薄板23が外側に位置するように当該薄板23と2種類の厚板27(27A,27B)とを互いに重ね合わせて被溶接積層体50’とした場合では、薄板23側に溶融起点を移動させることができるので、薄板側に位置する被溶接板の合わせ面(即ち、薄板23と厚板27との界面)にまでナゲットを好適に形成できる。なお、継続して通電を行うと溶融部は成長していくものの、過度な成長はスパッタ発生につながるので、薄板側に位置する被溶接板の合わせ面にまで溶融部が好適に及んだ時点で通電を終了することが好ましい。   At the time of energization in the step (iii), the peak temperature point is preferably deviated from an intermediate point between the first electrode and the second electrode in the temperature distribution at the time of steady energization, and can be shifted particularly to the electrode side having a larger energization resistance (FIG. 3). (See (a) and 3 (b)). This means that the formation start position of the melted portion generated in the laminate to be welded in step (iii) is controlled. More specifically, the first electrode and the second electrode are melted toward the electrode side having a relatively large energization resistance due to different energization resistances (to approach the first electrode 12 in the illustrated embodiment). The part 70 shifts (see FIG. 5C). Thus, the nugget is suitably formed even on the mating surfaces of the welded plates having different thicknesses from the “thin plate” and the “thick plate”. As described above, when the thin plate 23 and the two kinds of thick plates 27 (27A, 27B) are overlapped with each other so that the thin plate 23 is located outside, the welded laminate 50 ′ is formed on the thin plate 23 side. Therefore, the nugget can be suitably formed up to the mating surface of the welded plate located on the thin plate side (that is, the interface between the thin plate 23 and the thick plate 27). In addition, when energization is continued, the molten part grows, but excessive growth leads to spatter generation, so the molten part suitably reaches the mating surface of the welded plates located on the thin plate side. It is preferable to end the energization.

以上の如く説明した工程から分かるように、本発明の1つの好適な態様は、溶接ガンの電極先端形状を工夫することでジュール熱/溶融の起点を板組みによって変化させて溶融径のバランスを最適化しており、そして、好ましくはその際の溶接痕などの外観上の問題も考慮してそれらを特に不都合のないように抑制している。   As can be seen from the process described above, one preferred aspect of the present invention is to devise the shape of the electrode tip of the welding gun, thereby changing the starting point of Joule heat / melting according to the plate assembly to balance the melt diameter. They are optimized, and are preferably suppressed so as not to be particularly inconvenient in consideration of appearance problems such as welding marks.

上記においては本発明の理解のために典型的な実施形態を説明したが、本発明の製造方法は、種々の形態で具現化できる。   In the above, typical embodiments have been described for understanding the present invention. However, the manufacturing method of the present invention can be embodied in various forms.

(圧痕低減の観点に基づく好適な電極切頭面径)
溶接ガンの第1電極および第2電極の切頭形状が切頭円錐形状である場合、第1電極および第2電極の切頭面は円形となり得る(図2参照)。すなわち、第1電極および第2電極は円形状切頭面を有することになる。かかる場合、第1電極と第2電極との間で円形状切頭面の径寸法が異なることが好ましく、一方の電極が他方の電極よりも径寸法が大きくまたは小さくなっていることが好ましい。
(Suitable electrode truncated surface diameter based on indentation reduction viewpoint)
When the truncated shape of the first electrode and the second electrode of the welding gun is a truncated cone shape, the truncated surfaces of the first electrode and the second electrode can be circular (see FIG. 2). That is, the first electrode and the second electrode have a circular truncated surface. In such a case, it is preferable that the diameter dimension of the circular truncated surface be different between the first electrode and the second electrode, and it is preferable that one electrode has a larger or smaller diameter dimension than the other electrode.

例えば、第1電極が相対的に小さい径寸法を有し、第2電極が相対的に大きい径寸法を有する場合、第1電極における円形状切頭面の径寸法が約6mm(φ6)であるのに対して、第2電極における円形状切頭面の径寸法が約7mm(φ7)以上であることが好ましく、更には約7mm〜約16mm(φ7〜φ16)、例えば約8mm〜約16mm(φ8〜φ16)であることがより好ましい。具体的には、第1電極および第2電極の双方ともに電極胴部自体は同じサイズであってよく、例えばその電極胴部の径寸法が双方の電極とも16mm(φ16)〜20mm(φ20)である場合、第1電極における円形状切頭面の径寸法が好ましくは約6mm(φ6)であり、第2電極における円形状切頭面の径寸法が好ましくは約7mm〜約16mm(φ7〜φ16)、例えば約8mm〜約16mm(φ8〜φ16)となっている。このような態様においては、板厚が互いに異なる被溶接板同士の合わせ面に好適にナゲットを形成できるだけでなく、圧痕(溶融金属が電極に押されることに起因して形成される板表面の局所的な窪み)が効果的に減じられた溶接物を得ることができる(後述する実施例を参照のこと)。特に、径寸法の大きい電極は、圧痕抑制の効果が大きいので、かかる径寸法の相対的に大きい電極(図2でいえば第2電極16)を被溶接積層体の外面に位置付けることによって、溶接物の見栄え向上をより効果的に図ることができる。つまり、接合強度の点だけでなく、外観の点でもより好適なスポット溶接を行うことが可能となる。   For example, when the first electrode has a relatively small diameter and the second electrode has a relatively large diameter, the diameter of the circular truncated surface of the first electrode is about 6 mm (φ6). In contrast, the diameter of the circular truncated surface of the second electrode is preferably about 7 mm (φ7) or more, more preferably about 7 mm to about 16 mm (φ7 to φ16), for example, about 8 mm to about 16 mm ( More preferably, it is φ8 to φ16). Specifically, the electrode body itself may be the same size for both the first electrode and the second electrode. For example, the diameter of the electrode body is 16 mm (φ16) to 20 mm (φ20) for both electrodes. In some cases, the diameter of the circular truncated surface of the first electrode is preferably about 6 mm (φ6), and the diameter of the circular truncated surface of the second electrode is preferably about 7 mm to about 16 mm (φ7 to φ16). ), For example, about 8 mm to about 16 mm (φ8 to φ16). In such an embodiment, not only can nuggets be suitably formed on the mating surfaces of the welded plates having different plate thicknesses, but also indentations (local surface of the plate formed due to the molten metal being pushed by the electrodes) Welds with effectively reduced dents) (see examples below). In particular, since an electrode having a large diameter size has a large effect of suppressing indentation, the electrode having a relatively large diameter size (second electrode 16 in FIG. 2) is positioned on the outer surface of the laminate to be welded. The appearance of things can be improved more effectively. That is, it is possible to perform spot welding more suitable not only in terms of bonding strength but also in terms of appearance.

従来技術において圧痕の低減には銅製の平板(以下「銅板」とも称する)を用いることがある。具体的には電極と被溶接積層体との間に銅板を挟みこんでスポット溶接を行うことがある。この銅板を用いる場合、銅板の表面状態(銅板の摩耗状態など)に起因して溶接および外観品質の低下の招く虞があるので、銅板表面を定期的に研摩したり、仕上げ工程で銅板に起因した品質低下がないかを確認したりする必要があり、結果としてライン稼働率の低下を招く虞がある。また、そもそも銅板は、その形状に起因して特定箇所にしか使用できない場合なども考えられる(例えば車体治具内で特定箇所にしか使用できない)。この点、本発明に従って少なくとも一方の電極における円形状切頭面の径寸法を約7mm(φ7)以上、好ましくは約8mm(φ8)以上とすると、圧痕がより減じられた溶接物を得ることができるので、銅板の必要性が減じられ、結果として効率の良いスポット溶接を行うことが可能となる。   In the prior art, a copper flat plate (hereinafter also referred to as “copper plate”) may be used to reduce the indentation. Specifically, spot welding may be performed by sandwiching a copper plate between the electrode and the laminate to be welded. When this copper plate is used, there is a risk of welding and appearance quality deterioration due to the surface state of the copper plate (such as the wear state of the copper plate). Therefore, the copper plate surface is periodically polished or caused by the copper plate in the finishing process. It is necessary to confirm whether there is any deterioration in quality, and as a result, the line operation rate may be reduced. In addition, there may be a case where the copper plate can be used only at a specific location due to its shape (for example, it can be used only at a specific location within the body jig). In this regard, according to the present invention, when the diameter of the circular truncated surface of at least one of the electrodes is about 7 mm (φ7) or more, preferably about 8 mm (φ8) or more, a weld with reduced indentation can be obtained. Therefore, the need for a copper plate is reduced, and as a result, efficient spot welding can be performed.

(電極肩部の好適形状)
“電極肩部の好適形状”の態様は、溶接痕を特により効率良く抑制できる電極先端形状に基づいている。かかる態様においては、第1電極および第2電極の少なくとも一方につき電極先端肩部と切頭面との境界が角張っていない。
(Preferred shape of electrode shoulder)
The aspect of “the preferred shape of the electrode shoulder” is based on the shape of the electrode tip that can suppress the welding trace particularly efficiently. In such an embodiment, the boundary between the electrode tip shoulder and the truncated surface is not angular for at least one of the first electrode and the second electrode.

例えば、図6に示される電極先端形状では、電極が被溶接積層体の外面に対して“角度がつくように”接した通電状態となる場合(即ち、電極の軸と被溶接積層体の外面とが成す角度が直角とならない場合)、電極が被溶接積層体にめり込みやすくなり、結果として非所望の溶接痕が生じる虞がある。これは、先端が“平面”となる切頭形状の電極において好ましくは考慮する事項である(換言すれば、切頭形状の電極を用いた場合は電極と被溶接積層体との接触状態のバラツキの影響を受けやすいといえる)。   For example, in the electrode tip shape shown in FIG. 6, when the electrode is in an energized state in contact with the outer surface of the laminate to be welded “at an angle” (that is, the electrode shaft and the outer surface of the laminate to be welded) When the angle formed between the electrodes is not a right angle), the electrode is likely to be embedded in the welded laminate, and as a result, undesired welding marks may be generated. This is a matter that is preferably taken into consideration in a truncated electrode whose tip is “planar” (in other words, when a truncated electrode is used, the contact state between the electrode and the laminate to be welded varies. Can be said to be easily affected by

この点、本発明に従って図7に示される電極先端形状にすると、上記“非所望の溶接痕”の発生をより減じた溶接が可能となる。具体的には、図7に示される電極先端形状では、第1電極および第2電極の少なくとも一方の電極において電極先端肩部と切頭面との境界が角張っていない、即ち、電極先端肩部と切頭面とが互いに滑らかな面を成すように連続している。従って、電極が被溶接積層体の外面に対して“角度がつくように”接した通電状態(即ち、電極の軸と被溶接積層体の外面とが成す角度が直角とならない状態)となったとしても、電極が被溶接積層体にめり込みにくくなり、結果として非所望の溶接痕を抑制できる。これは、本発明では切頭形状の電極であっても電極と被溶接積層体との接触状態のバラツキの影響を受けにくくなることを意味している。また、溶接痕は特殊な環境下でサビ発生の要因となり得るので、図7に示される電極先端形状は溶接物のサビ低減につながり得る。   In this regard, when the electrode tip shape shown in FIG. 7 is used according to the present invention, welding with reduced generation of the “undesired welding traces” becomes possible. Specifically, in the electrode tip shape shown in FIG. 7, the boundary between the electrode tip shoulder and the truncated surface is not square in at least one of the first electrode and the second electrode, that is, the electrode tip shoulder. And the truncated surface are continuous so as to form a smooth surface. Therefore, the electrode was brought into contact with the outer surface of the laminate to be welded “angled” (that is, the angle formed between the electrode axis and the outer surface of the laminate to be welded was not a right angle). However, it becomes difficult for the electrode to sink into the welded laminate, and as a result, undesired welding marks can be suppressed. This means that even in the case of a truncated electrode in the present invention, it is less likely to be affected by variations in the contact state between the electrode and the welded laminate. In addition, since welding marks can cause rust under special circumstances, the electrode tip shape shown in FIG. 7 can lead to rust reduction of the welded product.

本発明における図7の電極先端形状について詳述しておく。図7の電極はその電極先端肩部と切頭面との境界が角張っておらず、即ち、電極先端肩部と切頭面とが互いに滑らかな面を成すように連続している。これは、電極をその軸方向に沿って二分割した断面(電極先端断面)でとらえてみると、かかる電極が図7に示す如くの輪郭形状を有していることを意味している。具体的にいえば、電極先端の肩部輪郭を成す円弧の中心が「切頭面端(切頭面の最周縁)を通って電極軸と平行となるライン」上に位置することが好ましく、更には、そのような肩部輪郭を成す円弧の中心角が90°となっていることが好ましい(図7の上側図参照)。これに対して、図6の電極先端形状(即ち“めり込みやすい形状”)では、電極先端の肩部輪郭を成す円弧の中心が、電極軸上に位置し、それゆえ、「切頭面端を通って電極軸と平行となるライン」上には位置しておらず、また、肩部輪郭を成す円弧の中心角が90°となっていない(図6の上側図参照)。   The electrode tip shape of FIG. 7 in the present invention will be described in detail. In the electrode of FIG. 7, the boundary between the electrode tip shoulder and the truncated surface is not angular, that is, the electrode tip shoulder and the truncated surface are continuous so as to form a smooth surface. This means that the electrode has a contour shape as shown in FIG. 7 when viewed in a cross section (electrode tip cross section) divided into two along the axial direction of the electrode. Specifically, it is preferable that the center of the arc that forms the shoulder contour of the electrode tip is located on the “line parallel to the electrode axis through the truncated surface edge (the outermost periphery of the truncated surface)”, Furthermore, it is preferable that the central angle of the circular arc that forms such a shoulder contour is 90 ° (see the upper diagram in FIG. 7). On the other hand, in the electrode tip shape of FIG. 6 (that is, the “easy shape”), the center of the arc that forms the shoulder contour of the electrode tip is located on the electrode axis. It is not located on the “line passing through and parallel to the electrode axis”, and the central angle of the arc forming the shoulder contour is not 90 ° (see the upper diagram in FIG. 6).

あくまでも例示にすぎないが、具体的な寸法でもって詳述する。本発明においては、例えば、電極胴部の径が約16mm(φ16)であって、切頭面径が約8mmである場合、その電極先端肩部のRは約4mmとなっていてよい。ここで、図7に示すように、電極先端肩部の輪郭を成す円弧の中心は「切頭面端を通って電極軸と平行となるライン」上に位置していると共に、その円弧の中心角が約90°となっている。なお、この例示は切頭面径が約8mmの場合であるが、切頭面径がそれよりも大きくなれば、電極先端肩部のR(および電極胴部)もそれに伴って大きくすることが一般に好ましいことになる。従って、そのような大径の切頭面径の場合なども考慮すると、電極先端肩部のRは4mm以上となることが好ましいといえる。   Although it is only an example to the last, it explains in full detail by a specific dimension. In the present invention, for example, when the diameter of the electrode body is about 16 mm (φ16) and the truncated surface diameter is about 8 mm, the R of the electrode tip shoulder may be about 4 mm. Here, as shown in FIG. 7, the center of the arc that forms the contour of the electrode tip shoulder is located on the “line that is parallel to the electrode axis through the end of the truncated surface” and the center of the arc. The angle is about 90 °. In this example, the truncated surface diameter is about 8 mm. However, if the truncated surface diameter is larger than that, R (and the electrode body) of the shoulder portion of the electrode tip may be increased accordingly. Generally preferred. Therefore, considering such a large truncated face diameter, it can be said that R of the electrode shoulder is preferably 4 mm or more.

[本発明の製造装置]
次に、スポット溶接物の製造装置について説明する。本発明の製造装置は、上述のスポット溶接物の製造に好適な装置である。すなわち、板厚が互いに異なる被溶接板から構成されるスポット溶接物を製造するための装置である。かかる製造装置は、図8に示すように、対を成す第1電極12と第2電極16とから構成される溶接ガンを少なくとも有して成るところ、第1電極12および第2電極16における通電抵抗が互いに異なっている。
[Production apparatus of the present invention]
Next, the manufacturing apparatus of a spot weldment is demonstrated. The manufacturing apparatus of this invention is an apparatus suitable for manufacture of the above-mentioned spot weldment. That is, it is an apparatus for manufacturing a spot welded object composed of welded plates having different plate thicknesses. As shown in FIG. 8, the manufacturing apparatus includes at least a welding gun including a first electrode 12 and a second electrode 16 that form a pair, and the first electrode 12 and the second electrode 16 are energized. The resistances are different from each other.

ここでいう「通電抵抗が互いに異なる」とは、上述した如く、広義には、通電電流の流れにくさが第1電極と第2電極とで意図的に変わっていることを意味しており、狭義には、通電路において第1電極と第2電極とで電気抵抗が互い異なっていることを意味している。ここで、本発明の製造装置では、溶接ガンの第1電極と第2電極との間で材質が変わっていたり、および/または、電極先端形状が変わっていたりする(図8には“電極先端形状が互いに異なる態様”が特に示されている)。   As used herein, “the energization resistances are different from each other” means, in a broad sense, that the difficulty of flowing the energization current is intentionally changed between the first electrode and the second electrode. In a narrow sense, it means that the electric resistance is different between the first electrode and the second electrode in the energization path. Here, in the manufacturing apparatus of the present invention, the material is changed between the first electrode and the second electrode of the welding gun and / or the electrode tip shape is changed (see “electrode tip in FIG. 8). "Aspects of different shapes" are specifically shown).

本発明の製造装置は、溶接ガンの対向する対の電極が互いに異なる通電抵抗値を有しており、電気抵抗率が同等であるものの板厚が異なる被溶接板同士をスポット溶接するに際して、被溶接積層体の厚み方向の溶融部位置を通電抵抗値が大きい電極側へと偏移させることができる。これにより、本発明の製造装置では、複数の被溶接板の互いの合わせ面にまでナゲットを好適に形成することができ、所望の溶接物を得ることができる。例えば、被溶接積層体を構成する被溶接板が3枚であり、そのうち少なくとも2枚の板厚が互いに異なっている場合であっても、被溶接板の互いの合わせ面にまでナゲットを好適に形成することができ、所望の溶接物が得られることになる。   In the manufacturing apparatus of the present invention, the opposing pair of electrodes of the welding gun have different energization resistance values, and when the welded plates having the same electrical resistivity but different plate thicknesses are spot-welded to each other, The position of the melted portion in the thickness direction of the welded laminate can be shifted to the electrode side having a large energization resistance value. Thereby, in the manufacturing apparatus of this invention, a nugget can be suitably formed even to the mutual mating surface of a several to-be-welded board, and a desired weldment can be obtained. For example, even when the number of plates to be welded constituting the welded laminate is three and at least two of the plates have different thicknesses, the nugget is suitably applied to the mating surfaces of the plates to be welded. The desired weldment can be obtained.

本発明の製造装置は、被溶接積層体を介した電極間の通電のため、電源に接続されて使用される。電源自体は、常套的なスポット溶接装置に用いられているものと同様であってよい。つまり、特に制限されるわけではないが、本発明の製造装置の電源は、交流式または直流式のいずれかであってよい。交流式の電源の場合、単相交流式または三相低周波式であってよい。単相交流式は、商用周波数の電流を用いるものである。一方、三相低周波式は、商用周波数の電流を例えば10〜20Hz程度の低周波数電流に変えたものであり、これにより回路のインピーダンスが低下し、大電流の供給が容易となる。また、直流式の場合、単相整流式、三相整流式またはインバータ式であってよい。単相整流式は、単相交流式の溶接機の二次側に整流器を挿入したものであり、入力kVAの低減に寄与し得る。三相整流式は、単相整流式の電源を3台一体化または個別に3台組み合わせて三相全波整流の形としたものであり、大電流が容易になり、また、電流の脈動を効果的に減らすことが可能である。そして、インバータ式は、三相交流電源を直流化した後、スイッチング素子などを用いて例えば600〜1000Hz程度の中周波電流に変換し、溶接トランスに供給し、二次回路で整流した後溶接部に直流電流を供給する方式である。   The manufacturing apparatus of the present invention is used by being connected to a power source for energization between electrodes via a welded laminate. The power supply itself may be similar to that used in conventional spot welding equipment. That is, although not particularly limited, the power source of the manufacturing apparatus of the present invention may be either an AC type or a DC type. In the case of an AC type power supply, it may be a single phase AC type or a three phase low frequency type. The single-phase AC type uses a commercial frequency current. On the other hand, the three-phase low-frequency system is obtained by changing the commercial frequency current to a low-frequency current of, for example, about 10 to 20 Hz, thereby reducing the impedance of the circuit and facilitating the supply of a large current. In the case of a direct current type, it may be a single phase rectification type, a three phase rectification type, or an inverter type. The single-phase rectification type is a type in which a rectifier is inserted on the secondary side of a single-phase AC type welding machine, and can contribute to a reduction in input kVA. The three-phase rectification type is a three-phase full-wave rectification type that combines three single-phase rectification type power supplies or combines three individually, making large currents easier and reducing current pulsation. It can be effectively reduced. The inverter type converts the three-phase AC power source into DC, converts it into a medium frequency current of about 600 to 1000 Hz, for example, using a switching element, supplies it to a welding transformer, and rectifies it in a secondary circuit before welding. In this method, a direct current is supplied to the battery.

本発明の製造装置は、「第1電極12および第2電極16における通電抵抗が互いに異なる」といったガン電極に特に存しており、それゆえ、その他の部分は常套的なスポット溶接装置に用いられているものと同様であってよい(但し、あくまでも本発明の製造装置は、板厚が互いに異なる被溶接板同士をスポット溶接するための装置である点に留意されたい)。換言すれば、本発明の製造装置は、電極以外、常套的なスポット溶接機と同様の加圧・通電部、電源部、電力制御部および接続用のケーブル類などから構成されていてよい。また、本発明の製造装置は、その全体として捉えた装置タイプにつき、“定置形スポット溶接機”、“卓上形スポット溶接機”、“ポータブルスポット溶接機”または“マルチスポット溶接機”のいずれのタイプであってもよい。   The manufacturing apparatus of the present invention is particularly present in a gun electrode such that “the current-carrying resistances of the first electrode 12 and the second electrode 16 are different from each other”, and therefore the other parts are used in a conventional spot welding apparatus. (However, it should be noted that the manufacturing apparatus of the present invention is an apparatus for spot-welding plates to be welded with different plate thicknesses). In other words, the manufacturing apparatus of the present invention may be composed of a pressurizing / energizing unit, a power source unit, a power control unit, and cables for connection similar to those of a conventional spot welder, other than electrodes. In addition, the manufacturing apparatus of the present invention can be any one of “stationary spot welder”, “desktop spot welder”, “portable spot welder” or “multi-spot welder” for the device type as a whole. It may be a type.

以下では、本発明の製造装置の特徴となる「通電抵抗が互いに異なる電極」について詳述しておく。   In the following, “electrodes having different energization resistances” which are features of the manufacturing apparatus of the present invention will be described in detail.

通電抵抗の互いの相違が“電極材質の相違”で達成されている本発明の装置は、例えば「第1電極および第2電極の一方の電極材質の導電率」と「第1電極および第2電極の他方の電極材質の導電率」とが互い異なった溶接ガンを好ましくは有している。あくまでも例示にすぎないが、第1電極および第2電極の一方が“アルミナ分散銅”を含んで成る電極材質となり、それらの他方が“クロム銅”または“クロムジルコニウム銅”を含んで成る電極材質から成っていてよい。   The device of the present invention in which the difference in current resistance is achieved by “difference in electrode material” is, for example, “conductivity of one electrode material of the first electrode and the second electrode” and “first electrode and second electrode”. It preferably has welding guns that differ from each other in “conductivity of the other electrode material of the electrode”. Although it is only an example to the last, one of the first electrode and the second electrode is an electrode material including “alumina-dispersed copper”, and the other is an electrode material including “chromium copper” or “chromium zirconium copper”. It may consist of

また、通電抵抗の互いの相違が“電極先端形状の相違”で達成されている本発明の装置は、第1電極および第2電極の最先端面につき一方が他方より大きい又はより小さい溶接ガンを好ましくは有している。ある好適な態様では、第1電極および第2電極の各々が切頭形状を有し、第1電極の切頭面積と第2電極の切頭面積とが互いに異なっている(即ち、平電極形状の場合、先端面の面積が互いに異なっている)。   In addition, the apparatus of the present invention in which the difference between the energization resistances is achieved by the “difference in electrode tip shape” is such that one of the first electrode and the second electrode has a welding gun that is larger or smaller than the other. Preferably it has. In a preferred aspect, each of the first electrode and the second electrode has a truncated shape, and the truncated area of the first electrode and the truncated area of the second electrode are different from each other (that is, a flat electrode shape). In this case, the areas of the tip faces are different from each other).

例えば、第1電極および第2電極の切頭面積の一方が他方よりも1.3倍〜7.5倍程度であってよい。ここで、本発明の製造装置において第1電極および第2電極の切頭形状が切頭円錐形状であってよい(図2および図8参照)。つまり、円錐状または円柱状の電極における最先端部分が電極径方向に平行な面で切り取られて得られた形状を第1電極12および第2電極16が有していてよい。かかる場合、第1電極12および第2電極16の切頭面(すなわち、円形状の切頭面)の径比が約1.16〜約2.67であることが好ましい。より具体的には、図2に示すように第1電極12および第2電極16の円形状切頭面のうちサイズが相対的に小さい側の径D小径に対するサイズが相対的に大きい側の径D大径の比(即ち、D大径/D小径の値)が約1.16〜約2.26であることが好ましい。これによって、通電定常時の温度分布にてピーク温度ポイントが第1電極と第2電極との中間ポイントから好適にずれるようになり、被溶接積層体に生じる溶融部の形成開始位置がより好適に制御され得る。つまり、板厚が異なる被溶接板の互いの合わせ面にまでナゲットを好適に形成できる。 For example, one of the truncated areas of the first electrode and the second electrode may be about 1.3 to 7.5 times the other. Here, in the manufacturing apparatus of the present invention, the truncated shape of the first electrode and the second electrode may be a truncated cone shape (see FIGS. 2 and 8). That is, the first electrode 12 and the second electrode 16 may have a shape obtained by cutting the most distal portion of the conical or columnar electrode along a plane parallel to the electrode radial direction. In such a case, it is preferable that the diameter ratio of the truncated surfaces (that is, circular truncated surfaces) of the first electrode 12 and the second electrode 16 is about 1.16 to about 2.67. More specifically, as shown in FIG. 2, the diameter of the first electrode 12 and the second electrode 16 on the side having a relatively large size relative to the small diameter D on the side having a relatively small size among the circular truncated surfaces. It is preferable that the ratio of D large diameter (that is, the value of D large diameter / D small diameter ) is about 1.16 to about 2.26. As a result, the peak temperature point is suitably shifted from the intermediate point between the first electrode and the second electrode in the temperature distribution at the time of steady energization, and the formation start position of the melted portion generated in the welded laminate is more preferably Can be controlled. That is, the nugget can be suitably formed up to the mating surfaces of the welded plates having different plate thicknesses.

本発明の製造装置において、溶接ガンは溶接痕をより効果的に抑制できる電極形状を有していることが好ましい。例えば、第1電極12および第2電極16の少なくとも一方は、図7に示される如くの電極先端形状を有していることが好ましい。つまり、上記の「電極肩部の好適形状」で説明した如く、電極先端肩部と切頭面との境界が角張っていない、即ち、電極先端肩部と切頭面とが互いに滑らかな面を成すように連続した電極となっていることが好ましい。これによって、電極が被溶接積層体の外面に対して“角度がつくように”接した通電状態(即ち、電極の軸と被溶接積層体の外面とが成す角度が直角とならない状態)になったとしても、電極が被溶接積層体に対してめり込みにくくなり、結果として溶接痕をより効果的に抑制できるようになる(図7参照)。   In the manufacturing apparatus of the present invention, the welding gun preferably has an electrode shape that can more effectively suppress welding marks. For example, it is preferable that at least one of the first electrode 12 and the second electrode 16 has an electrode tip shape as shown in FIG. That is, as explained in the above “preferred shape of the electrode shoulder”, the boundary between the electrode tip shoulder and the truncated surface is not angular, that is, the electrode tip shoulder and the truncated surface are smooth surfaces. It is preferable that the electrode is a continuous electrode. This results in an energized state where the electrode is in contact with the outer surface of the welded laminate so as to form an angle (ie, the angle formed by the electrode shaft and the outer surface of the welded laminate is not a right angle). Even so, it becomes difficult for the electrode to sink into the welded laminate, and as a result, the welding marks can be more effectively suppressed (see FIG. 7).

本発明の製造装置における電極のより詳細な事項、更なる具体的な態様、または使用時の態様などその他の事項は、上述の[本発明の製造方法]で説明しているので、重複を避けるために説明を省略する。   Other details such as more detailed matters, further specific aspects, or aspects at the time of use of the electrodes in the production apparatus of the present invention have been described in the above [Production method of the present invention], so that duplication is avoided. Therefore, explanation is omitted.

以上、本発明の実施態様について説明してきたが、本発明の適用範囲における典型例を示したに過ぎない。したがって、本発明は、上記の実施形態に限定されず、種々の変更がなされ得ることは当業者に容易に理解されよう。   The embodiments of the present invention have been described above, but only typical examples within the scope of the present invention are shown. Therefore, it will be easily understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various modifications can be made.

例えば、上記においては、“抵抗スポット溶接”によって溶接物を得る態様を中心に説明してきたが、本発明はかかる態様に限定されない。例えば、被溶接板表面の溶接箇所となる部分に突起を設ける“プロジェクション溶接”、スポット溶接の電極をローラー状にした“シーム溶接”、更には、接合面にろう材を設置して抵抗発熱でろう付けを行う“抵抗ろう付け”の態様などであってもよい。   For example, in the above, description has been made centering on an aspect of obtaining a welded material by “resistance spot welding”, but the present invention is not limited to such an aspect. For example, “projection welding” where projections are provided on the welded portion of the surface of the welded plate, “seam welding” where the spot welding electrode is made into a roller shape, and brazing material is installed on the joint surface to generate resistance heat. A mode of “resistance brazing” in which brazing is performed may be used.

本発明に関連する実施例を説明する。   Examples relating to the present invention will be described.

[ナゲット比の確認試験]
本発明に従って通電抵抗の互いに異なる電極を用いて板厚の異なる被溶接板をスポット溶接した際の効果を確認すべく以下の実証試験を行った。
[Confirmation test of nugget ratio]
In order to confirm the effect when spot-welding plates to be welded having different plate thicknesses using electrodes having different energization resistances according to the present invention, the following demonstration test was conducted.

(溶接ガン電極)
第1電極(小切頭径)
全体形状:切頭円錐形状
切頭径:6mm(φ6)
材質:銅合金(クロム銅)

第2電極(小〜大切頭径)
全体形状:切頭円錐形状
切頭径:(1)6mm(φ6)、(2)7mm(φ7)、(3)8mm(φ8)、(4)10mm(φ10)、(5)12mm(φ12)、(6)16mm(φ16)
材質:銅合金(クロム銅)

(通電条件)
・電流値:8.0kA、8.5kA、9.0kA
・加圧力:3.43kN
・通電時間:20cycle

(被溶接板)
・鋼板3枚(材質:全てSGC材)
・板厚:薄板(0.7mm)、第1厚板(1.6mm)、第2厚板(1.2mm)
(Welding gun electrode)
First electrode (small truncated diameter)
Overall shape: truncated cone shape, truncated diameter: 6 mm (φ6)
Material: Copper alloy (chromium copper)

Second electrode (small to important head diameter)
Overall shape: truncated cone shape truncated diameter: (1) 6 mm (φ6), (2) 7 mm (φ7), (3) 8 mm (φ8), (4) 10 mm (φ10), (5) 12 mm (φ12) , (6) 16mm (φ16)
Material: Copper alloy (chromium copper)

(Conduction conditions)
・ Current values: 8.0 kA, 8.5 kA, 9.0 kA
・ Pressure: 3.43kN
・ Energization time: 20 cycles

(Welded plate)
・ Three steel plates (Material: All SGC materials)
・ Thickness: thin plate (0.7mm), first thick plate (1.6mm), second thick plate (1.2mm)

第1厚板を真ん中にして3枚の被溶接板を重ね合わせて被溶接積層体を得た。次いで、薄板側に第1電極(小切頭径)を位置付ける一方、厚板側に第2電極(小〜大切頭径)を位置付ける形態で被溶接積層体を電極で挟み込んだ。そして、上記の条件下にて加圧および通電を行うことによってナゲットを形成してスポット溶接物を得た。   Three welded plates were stacked with the first thick plate in the middle to obtain a welded laminate. Next, the laminate to be welded was sandwiched between the electrodes in such a manner that the first electrode (small truncated diameter) was positioned on the thin plate side and the second electrode (small to important head diameter) was positioned on the thick plate side. And a nugget was formed by performing pressurization and energization under the above-mentioned conditions, and a spot weld was obtained.

大切頭径の第2電極の切頭径および通電電流値をパラメータとして変えることによって同様にナゲット形成を行い、スポット溶接物を得た。   Nugget formation was performed in the same manner by changing the truncated diameter of the second electrode having the important head diameter and the energization current value as parameters, and a spot weld was obtained.

得られたスポット溶接物につき被溶接板の界面に形成されたナゲットの寸法を目視確認した。そして、スポット溶接時における溶融部の偏移を評価するための指標、即ち、好適なナゲット形成を評価するための指標として「薄板側の界面におけるナゲット径÷厚板側の界面におけるナゲット径」を算出した。結果をグラフとして表したものを図9に示す。   The size of the nugget formed at the interface of the plate to be welded with respect to the obtained spot welded product was visually confirmed. And, as an index for evaluating the shift of the melted part at the time of spot welding, that is, an index for evaluating suitable nugget formation, “nugget diameter at the thin plate side interface ÷ nugget diameter at the thick plate side interface” Calculated. FIG. 9 shows the result as a graph.

図9のグラフから分かるように、本発明に従ったスポット溶接ではナゲットを好適に形成できることが確認された。つまり、従前の如く通電抵抗が同一の電極の場合と比べると、本発明に従った通電抵抗の互いに異なる電極は、板厚の互いに異なる被溶接板であってもそれらの合わせ面にまで十分に及ぶようにナゲットを形成できることが確認された。より具体的にいえば、切頭径6mmの第1電極に対して切頭径7mm〜16mmの第2電極を用いた溶接ガン(即ち、第1電極の円形状切頭面径に対する第2電極の円形状切頭面径の比が約1.16〜約2.67)となる場合では特に効果的なナゲット形成ができることが分かった。   As can be seen from the graph of FIG. 9, it was confirmed that the nugget can be suitably formed by spot welding according to the present invention. That is, as compared with the case of the electrodes having the same current resistance as before, the electrodes having different current resistances according to the present invention are sufficiently connected to their mating surfaces even if the plates have different plate thicknesses. It was confirmed that a nugget can be formed. More specifically, a welding gun using a second electrode having a truncated diameter of 7 mm to 16 mm with respect to a first electrode having a truncated diameter of 6 mm (that is, the second electrode corresponding to the circular truncated surface diameter of the first electrode). It has been found that particularly effective nugget formation can be achieved when the ratio of the circular truncated face diameter is about 1.16 to about 2.67).

[圧痕低減の観点に基づく好適な電極切頭面径]
電極切頭面径の大径化による圧痕の影響を確認すべく以下の実証試験を行った。
[Preferred electrode truncated surface diameter based on reduction in indentation]
In order to confirm the influence of the indentation due to the increase in the diameter of the electrode truncated surface, the following demonstration test was conducted.

(溶接ガン電極)
第1電極(小切頭径)
全体形状:切頭円錐形状
切頭径:6mm(φ6)
材質:銅合金(クロム銅)

第2電極(小〜大切頭径)
全体形状:切頭円錐形状
切頭径:6mm(φ6)、7mm(φ7)、8mm(φ8)、9mm(φ9)
材質:銅合金(クロム銅)

(通電条件)
・電流値:8.0kA、9.0kA
・加圧力:2.45kN
・通電時間:15cycle

(供試板)
・鋼板(材質:SGC材)
・板厚: 0.7mmおよび0.9mmの重ね
(Welding gun electrode)
First electrode (small truncated diameter)
Overall shape: truncated cone shape, truncated diameter: 6 mm (φ6)
Material: Copper alloy (chromium copper)

Second electrode (small to important head diameter)
Overall shape: truncated cone shape truncated diameter: 6 mm (φ6), 7 mm (φ7), 8 mm (φ8), 9 mm (φ9)
Material: Copper alloy (chromium copper)

(Conduction conditions)
・ Current value: 8.0 kA, 9.0 kA
・ Pressure: 2.45kN
・ Energization time: 15cycle

(Test plate)
・ Steel (Material: SGC material)
・ Thickness: 0.7mm and 0.9mm overlap

供試板につき、上記条件下で加圧および通電を行うことによってスポット溶接試験を行った。試験後に供試板を目視確認することによって圧痕サイズを求めた。結果を図10に示す。   A spot welding test was performed on the test plate by applying pressure and energization under the above conditions. The indentation size was determined by visually checking the test plate after the test. The results are shown in FIG.

図10の結果から分かるように、ガン電極における円形状切頭面径が、約7mm(φ7)以上、好ましくは約8mm(φ8)以上、特にいえば約8mm〜約16mm(図10からはφ8〜φ9程度)となると、圧痕がより減じられた溶接物を得ることができることが確認された。   As can be seen from the results of FIG. 10, the circular truncated face diameter of the gun electrode is about 7 mm (φ7) or more, preferably about 8 mm (φ8) or more, and particularly about 8 mm to about 16 mm (from FIG. It was confirmed that a welded product having a reduced indentation can be obtained.

本発明の製造方法および製造装置は、例えば自動車の車体製造に用いることができ、より具体的には鋼板同士の溶接に用いることができる。特に、本発明では、板厚が大小異なる2つ以上の鋼板同士の溶接に特に好適に対応できるので、その利用価値は高いといえる。   The production method and production apparatus of the present invention can be used, for example, for the production of automobile bodies, and more specifically, can be used for welding steel plates. In particular, in the present invention, it can be particularly suitably applied to the welding of two or more steel plates having different thicknesses, so that the utility value can be said to be high.

また、本発明は、特に自動車製造の分野にのみ限ることはなく、溶接が必要とされる他の製造業分野で利用することができる。あくまでも例示にすぎないが、例えば自動二輪、トラック、トラクター、造船、大型容器製造、高層ビル鉄骨、各種金属製品・電化製品などの種々の製造業分野で本発明を利用できる。   Further, the present invention is not limited to the field of automobile manufacture, and can be used in other manufacturing industries where welding is required. The present invention can be used in various fields of manufacturing such as motorcycles, trucks, tractors, shipbuilding, large-scale container manufacturing, high-rise building steel frames, various metal products / electrical appliances, and the like.

10 電極
12 第1電極
16 第2電極
20 被溶接板
23 板厚がより小さい被溶接板(薄板)
27 板厚がより大きい被溶接板(厚板)
27A 第1厚板
27B 第2厚板
50’ 被溶接積層体
50 スポット溶接物
55 被溶接板同士の合わせ面(界面)
70 溶融部/ナゲット
DESCRIPTION OF SYMBOLS 10 Electrode 12 1st electrode 16 2nd electrode 20 Plate to be welded 23 Plate to be welded (thin plate) with smaller plate thickness
27 Plate to be welded (thick plate) with larger plate thickness
27A 1st thick plate 27B 2nd thick plate 50 'welded laminated body 50 spot welded object 55 mating surface (interface) of welded plates
70 Melting Zone / Nugget

Claims (13)

対を成す第1電極と第2電極とから構成される溶接ガンを用いてスポット溶接物を製造する方法であって、
(i)少なくとも2枚の被溶接板を少なくとも部分的に重ね合わせて被溶接積層体を得る工程、
(ii)前記第1電極および前記第2電極で前記被溶接積層体を挟み込む工程、ならびに
(iii)前記第1電極および前記第2電極で前記被溶接積層体を加圧しながら該第1電極および該第2電極との間の通電を行う工程
を含んで成り、
前記被溶接積層体では前記少なくとも2枚の被溶接板の板厚が互いに異なっており、前記第1電極および前記第2電極の通電抵抗が互いに異なる前記溶接ガンを用いることを特徴とする、スポット溶接物の製造方法。
A method of manufacturing a spot weld using a welding gun composed of a first electrode and a second electrode forming a pair,
(I) a step of at least partially overlapping at least two plates to be welded to obtain a welded laminate,
(Ii) sandwiching the welded laminate with the first electrode and the second electrode; and (iii) pressing the first laminate while pressing the welded laminate with the first electrode and the second electrode. Comprising a step of conducting electricity between the second electrode,
In the welded laminate, the at least two welded plates have different plate thicknesses, and the welding guns having different current resistances of the first electrode and the second electrode are used. Manufacturing method of weldments.
前記工程(iii)では、前記被溶接積層体に生じる溶融部の形成位置を制御しており、前記互いに異なる前記通電抵抗に起因して、前記第1電極および前記第2電極のうち該通電抵抗が相対的に大きい電極側に該溶融部を偏移させることを特徴とする、請求項1に記載のスポット溶接物の製造方法。 In the step (iii), the formation position of the melted portion generated in the laminate to be welded is controlled, and the conduction resistance of the first electrode and the second electrode is caused by the different conduction resistances. 2. The method for manufacturing a spot welded product according to claim 1, wherein the melted portion is shifted to the electrode side having a relatively large diameter. 前記板厚が互いに異なる前記被溶接板同士の合わせ面にまで前記溶融部が及ぶように該溶融部を偏移させることを特徴とする、請求項1または2に記載のスポット溶接方法。 3. The spot welding method according to claim 1, wherein the melted portion is shifted so that the melted portion reaches the mating surfaces of the welded plates having different plate thicknesses. 前記第1電極および前記第2電極の各々が切頭形状を有しており、該第1電極の切頭面積と該第2電極の切頭面積とが互いに異なる前記溶接ガンを用いることを特徴とする、請求項1〜3のいずれかに記載のスポット溶接物の製造方法。 Each of the first electrode and the second electrode has a truncated shape, and the welding gun is used in which the truncated area of the first electrode and the truncated area of the second electrode are different from each other. The manufacturing method of the spot welded material in any one of Claims 1-3. 前記第1電極および前記第2電極との間の切頭面積比であって、相対的に小さい切頭面積に対する相対的に大きい切頭面積の比が1.3〜7.5となる前記溶接ガンを用いることを特徴とする、請求項4に記載のスポット溶接物の製造方法。 The ratio of the truncated area between the first electrode and the second electrode, wherein the ratio of the relatively large truncated area to the relatively small truncated area is 1.3 to 7.5. The method for manufacturing a spot welded article according to claim 4, wherein a gun is used. 前記切頭形状が切頭円錐形状であることを特徴とする、請求項4または5に記載のスポット溶接物の製造方法。 6. The method for manufacturing a spot welded product according to claim 4, wherein the truncated shape is a truncated cone shape. 前記第1電極および前記第2電極の少なくとも一方にて電極先端肩部と切頭面との境界が角張っていない前記溶接ガンを用いることを特徴とする、請求項4〜6のいずれかに記載のスポット溶接物の製造方法。 7. The welding gun according to claim 4, wherein at least one of the first electrode and the second electrode uses the welding gun in which a boundary between an electrode tip shoulder and a truncated surface is not square. Manufacturing method for spot welds. 前記被溶接板が3枚であり、そのうち少なくとも2枚の板厚が互いに異なることを特徴とする、請求項1〜7のいずれかに記載のスポット溶接物の製造方法。 The method of manufacturing a spot welded product according to any one of claims 1 to 7, wherein the number of plates to be welded is three, and at least two of the plates have different thicknesses. 前記工程(ii)では、前記第1電極および前記第2電極のうち前記通電抵抗が相対的に大きい電極を板厚が相対的に小さい前記被溶接板の近位に配置する一方、該通電抵抗が相対的に小さい電極を板厚が相対的に大きい前記被溶接板の近位に配置することを特徴とする、請求項1〜8のいずれかに記載のスポット溶接物の製造方法。 In the step (ii), an electrode having a relatively large conduction resistance among the first electrode and the second electrode is disposed in the vicinity of the plate to be welded having a relatively small plate thickness. The method for manufacturing a spot welded product according to any one of claims 1 to 8, wherein an electrode having a relatively small thickness is disposed in the vicinity of the welded plate having a relatively large plate thickness. 板厚が互いに異なる被溶接板から構成されるスポット溶接物を製造するための装置であって、
対を成す第1電極と第2電極とから構成される溶接ガンを少なくとも有して成り、該第1電極および該第2電極における通電抵抗が互いに異なることを特徴とする、スポット溶接物の製造装置。
An apparatus for manufacturing a spot welded article composed of welded plates having different plate thicknesses,
A spot welded product characterized in that it comprises at least a welding gun composed of a first electrode and a second electrode forming a pair, and the energization resistances of the first electrode and the second electrode are different from each other. apparatus.
前記第1電極および前記第2電極の各々が切頭形状を有しており、該第1電極の切頭面積と該第2電極の切頭面積とが互いに異なっていることを特徴とする、請求項10に記載のスポット溶接物の製造装置。 Each of the first electrode and the second electrode has a truncated shape, and the truncated area of the first electrode and the truncated area of the second electrode are different from each other, The spot welded product manufacturing apparatus according to claim 10. 前記切頭形状が切頭円錐形状であることを特徴とする、請求項11に記載のスポット溶接物の製造装置。 12. The spot welded article manufacturing apparatus according to claim 11, wherein the truncated shape is a truncated cone shape. 前記第1電極および前記第2電極の少なくとも一方において電極先端肩部と切頭面との境界が角張っていないことを特徴とする、請求項11または12に記載のスポット溶接物の製造装置。 The spot welded article manufacturing apparatus according to claim 11 or 12, wherein a boundary between an electrode tip shoulder portion and a truncated surface is not square in at least one of the first electrode and the second electrode.
JP2016063811A 2016-03-28 2016-03-28 Method of manufacturing spot welds and manufacturing apparatus therefor Expired - Fee Related JP6519510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063811A JP6519510B2 (en) 2016-03-28 2016-03-28 Method of manufacturing spot welds and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063811A JP6519510B2 (en) 2016-03-28 2016-03-28 Method of manufacturing spot welds and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2017177112A true JP2017177112A (en) 2017-10-05
JP6519510B2 JP6519510B2 (en) 2019-05-29

Family

ID=60004652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063811A Expired - Fee Related JP6519510B2 (en) 2016-03-28 2016-03-28 Method of manufacturing spot welds and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP6519510B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014535A (en) * 2018-10-10 2018-12-18 安徽巨自动化装备有限公司 A kind of spot welding method for not uniform thickness aluminium sheet
CN113714613A (en) * 2021-08-20 2021-11-30 首钢集团有限公司 Resistance spot welding device and method
WO2024056980A1 (en) * 2022-09-16 2024-03-21 Gaming Engineering Spot welding method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363086A (en) * 1964-11-12 1968-01-09 Mc Donnell Douglas Corp Resistance spot welding of columbium alloy
JP2003164975A (en) * 2001-11-30 2003-06-10 Kawasaki Steel Corp Spot welding method for high tensile strength galvanized steel sheet
JP2003251468A (en) * 2002-03-05 2003-09-09 Honda Motor Co Ltd Spot welding method
JP2006055898A (en) * 2004-08-23 2006-03-02 Jfe Steel Kk Resistance spot welding method
JP2006095549A (en) * 2004-09-28 2006-04-13 Nisshin Steel Co Ltd ELECTRODE FOR SPOT WELDING OF STEEL PLATE PLATED WITH Mg COMPONENT-CONTAINING ZINC-BASED ALLOY
JP2008106324A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp High strength steel sheet for lap resistance welding, and lap welding joint
JP2008161877A (en) * 2006-12-27 2008-07-17 Nippon Steel Corp Lap resistance spot welding method
JP2013173155A (en) * 2012-02-24 2013-09-05 Nisshin Steel Co Ltd Spot welding method of steel plate having different plate thickness
JP2014205156A (en) * 2013-04-11 2014-10-30 新日鐵住金株式会社 Method for manufacturing joined body, resistance spot welding apparatus, and composite electrode used for the same
US20140367368A1 (en) * 2013-06-14 2014-12-18 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
WO2015037652A1 (en) * 2013-09-12 2015-03-19 新日鐵住金株式会社 Resistance spot welding method and welded structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363086A (en) * 1964-11-12 1968-01-09 Mc Donnell Douglas Corp Resistance spot welding of columbium alloy
JP2003164975A (en) * 2001-11-30 2003-06-10 Kawasaki Steel Corp Spot welding method for high tensile strength galvanized steel sheet
JP2003251468A (en) * 2002-03-05 2003-09-09 Honda Motor Co Ltd Spot welding method
JP2006055898A (en) * 2004-08-23 2006-03-02 Jfe Steel Kk Resistance spot welding method
JP2006095549A (en) * 2004-09-28 2006-04-13 Nisshin Steel Co Ltd ELECTRODE FOR SPOT WELDING OF STEEL PLATE PLATED WITH Mg COMPONENT-CONTAINING ZINC-BASED ALLOY
JP2008106324A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp High strength steel sheet for lap resistance welding, and lap welding joint
JP2008161877A (en) * 2006-12-27 2008-07-17 Nippon Steel Corp Lap resistance spot welding method
JP2013173155A (en) * 2012-02-24 2013-09-05 Nisshin Steel Co Ltd Spot welding method of steel plate having different plate thickness
JP2014205156A (en) * 2013-04-11 2014-10-30 新日鐵住金株式会社 Method for manufacturing joined body, resistance spot welding apparatus, and composite electrode used for the same
US20140367368A1 (en) * 2013-06-14 2014-12-18 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
WO2015037652A1 (en) * 2013-09-12 2015-03-19 新日鐵住金株式会社 Resistance spot welding method and welded structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014535A (en) * 2018-10-10 2018-12-18 安徽巨自动化装备有限公司 A kind of spot welding method for not uniform thickness aluminium sheet
CN113714613A (en) * 2021-08-20 2021-11-30 首钢集团有限公司 Resistance spot welding device and method
WO2024056980A1 (en) * 2022-09-16 2024-03-21 Gaming Engineering Spot welding method
FR3139742A1 (en) * 2022-09-16 2024-03-22 Gaming Engineering Spot welding process

Also Published As

Publication number Publication date
JP6519510B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6108030B2 (en) Resistance spot welding method
JP5999293B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
KR101404288B1 (en) Spot Welding Machine with Auxiliary Heating Electrode and Spot Welding Method using the Electrodes
WO2015049998A1 (en) Resistance spot welding method
WO2017212916A1 (en) Resistance spot welding method
JP6471841B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6519510B2 (en) Method of manufacturing spot welds and manufacturing apparatus therefor
KR102127991B1 (en) Resistance spot welding method and welded structure
CN102821904A (en) Method of controlling indentation depth of electrode into metal substrate during welding
WO2003018245A1 (en) Conductive heat seam welding
WO2019160141A1 (en) Resistance spot welding method and method for manufacturing welded member
JP6406297B2 (en) Method for manufacturing spot weldment and manufacturing apparatus therefor
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP6418224B2 (en) Method of manufacturing spot welded material and spot welding electrode
JP6123904B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP7197405B2 (en) Resistance spot welding device and resistance spot welding method
JPWO2020004117A1 (en) Resistance spot welding method and welding member manufacturing method
JP5873402B2 (en) Spot welding electrode tips
JPWO2017212916A1 (en) Resistance spot welding method
JP2024008814A (en) Spot welding method for aluminum or aluminum alloy material, and weld joint
JP2021074748A (en) Resistance welding method of welded object having insulative coat
JPWO2020004115A1 (en) Resistance spot welding method and welding member manufacturing method
Wasnik et al. Buck Converter Topology for Superior Performance Application in Spot Welding
KR20140031012A (en) Welding apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees