JP2017176676A - Fiber sheet for medical use - Google Patents

Fiber sheet for medical use Download PDF

Info

Publication number
JP2017176676A
JP2017176676A JP2016071742A JP2016071742A JP2017176676A JP 2017176676 A JP2017176676 A JP 2017176676A JP 2016071742 A JP2016071742 A JP 2016071742A JP 2016071742 A JP2016071742 A JP 2016071742A JP 2017176676 A JP2017176676 A JP 2017176676A
Authority
JP
Japan
Prior art keywords
fibers
sheet
long
fiber sheet
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016071742A
Other languages
Japanese (ja)
Other versions
JP6685163B2 (en
Inventor
俊樹 早乙女
Toshiki Saotome
俊樹 早乙女
福田 泰弘
Yasuhiro Fukuda
泰弘 福田
剛士 山本
Takeshi Yamamoto
剛士 山本
史典 岩城
Fuminori Iwaki
史典 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Keori KK
Ambic Co Ltd
Japan Wool Textile Co Ltd
Original Assignee
Nippon Keori KK
Ambic Co Ltd
Japan Wool Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Keori KK, Ambic Co Ltd, Japan Wool Textile Co Ltd filed Critical Nippon Keori KK
Priority to JP2016071742A priority Critical patent/JP6685163B2/en
Publication of JP2017176676A publication Critical patent/JP2017176676A/en
Application granted granted Critical
Publication of JP6685163B2 publication Critical patent/JP6685163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber sheet for medical use which has biocompatibility, a low density and a high bending resistance.SOLUTION: A fiber sheet for medical use of the present invention is made of a biocompatible long-fibered unwoven fabric. As for long fibers, diameters of the long fibers vary in a length direction or fibers having different diameters are mixed, and the sheet has 5-60 mN of a bending resistance measured in accordance with JIS L 1096(2010) A method. A thickness of the sheet is preferably 0.4-10.0 mm and an apparent density under no-load condition is preferably 0.01-0.30 g/cm. This long-fibered unwoven fabric can be manufactured by a melt-blown method.SELECTED DRAWING: Figure 1

Description

本発明は生体に好適な医療用繊維シートに関する。   The present invention relates to a medical fiber sheet suitable for a living body.

医療用繊維シートは、有孔度や比表面積の高さから、医療用途として、薬剤の保持、唾液や血液等の体液の吸収あるいは保持、生体外での細胞培養の足場、生体内での組織再生足場材等に有用である。医療用途に用いる繊維シートは、繊維が脱落すると異物混入のリスクが高く、衛生的に好ましくないため、長繊維からなる不織布がよく、一般的な長繊維の不織布製造方法としては、スパンボンド法・メルトブロー法・フラッシュ紡糸法、エレクトロスピニング法等の不織布が考えられる。従来法として、スパンボンド法を用いた不織布を医療用シートとすることが特許文献1〜2に提案されている。特許文献3には複合繊維を分割し、ニードルパンチ又は水流交絡させて医療用繊維シートとすることが提案されている。   The medical fiber sheet is used for medical purposes because of its high porosity and specific surface area, for the retention of drugs, absorption or retention of bodily fluids such as saliva and blood, scaffolds for cell culture in vitro, and tissues in vivo. Useful for recycled scaffolding materials. The fiber sheet used for medical purposes has a high risk of contamination when the fibers fall off, and is not hygienic. Therefore, a nonwoven fabric made of long fibers is preferable. Nonwoven fabrics such as a melt blow method, a flash spinning method, and an electrospinning method are conceivable. As a conventional method, Patent Documents 1 and 2 propose using a nonwoven fabric using a spunbond method as a medical sheet. Patent Document 3 proposes that a composite fiber is divided and needle punched or hydroentangled to form a medical fiber sheet.

特開2011−174193号公報JP 2011-174193 A 特開2008−213284号公報JP 2008-213284 A 特開2006−289728号公報JP 2006-289728 A

しかし、前記のような従来技術は、低密度でかつ剛軟度の高い繊維シートにするには未だ十分ではなく、さらなる改善が求められていた。   However, the prior art as described above is not yet sufficient for a fiber sheet having a low density and a high bending resistance, and further improvement has been demanded.

本発明は、前記従来の問題を解決するため、生体適合性があり、低密度でかつ剛軟度の高い医療用繊維シートを提供する。   In order to solve the above-described conventional problems, the present invention provides a medical fiber sheet that is biocompatible, has a low density, and a high bending resistance.

本発明の医療用繊維シートは、生体適合性の長繊維不織布で構成される医療用繊維シートであって、前記長繊維は長さ方向で直径が変化しているか又は直径の異なる繊維が混在しており、前記シートは、JIS L 1096(2010)A法で測定される剛軟度が5〜60mNであることを特徴とする。   The medical fiber sheet of the present invention is a medical fiber sheet composed of a biocompatible long-fiber nonwoven fabric, and the long fibers have different diameters in the length direction or a mixture of fibers having different diameters. The sheet has a bending resistance of 5 to 60 mN measured by JIS L 1096 (2010) A method.

本発明の医療用繊維シートは、生体適合性の長繊維不織布で構成されているため、繊維が脱落する等の異物混入のリスクが低く、長繊維は長さ方向で直径が変化していることにより嵩高く低密度であり、かつ剛軟度が高く腰のある医療用繊維シートとなる。   Since the medical fiber sheet of the present invention is composed of a biocompatible long-fiber nonwoven fabric, the risk of foreign matter contamination such as fiber dropping off is low, and the diameter of the long fiber changes in the length direction. Therefore, the medical fiber sheet is bulky and has a low density and has a high bending resistance and a low stiffness.

図1は本発明の一実施例で得られた長繊維不織布の走査型電子顕微鏡(SEM,日立走査型顕微鏡S−2600N,倍率500倍)の写真である。FIG. 1 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, magnification 500 times) of a long-fiber nonwoven fabric obtained in an example of the present invention. 図2は本発明の一実施例で得られた長繊維不織布(縦80mm、横80mm、厚さ8mm)の写真である。FIG. 2 is a photograph of the long fiber nonwoven fabric (length 80 mm, width 80 mm, thickness 8 mm) obtained in one example of the present invention. 図3Aは本発明の一実施例で使用する紡糸機の模式的説明図、図3Bは同紡糸機の紡糸口金の部分の模式的説明図である。FIG. 3A is a schematic explanatory view of a spinning machine used in one embodiment of the present invention, and FIG. 3B is a schematic explanatory view of a spinneret portion of the spinning machine.

本発明は、長繊維で構成される不織布である。長繊維はメルトブロー法で製造できる。本発明で用いるメルトブロー法は、無溶媒のポリマーを溶融紡糸し、繊維油剤などを用いずに乾式でダイレクトに不織布が得られることから、衛生的である。この長繊維は非分割繊維であり、溶融紡糸後に分割などの化学的処理あるいは物理的処理はされていない。また、この不織布は溶融紡糸後に繊維を堆積させるときに繊維同士が互いに絡んで一体化されている。また繊維を堆積させる際の捕集距離をかえることで、容易に密度を変えることができる。   The present invention is a nonwoven fabric composed of long fibers. Long fibers can be produced by the melt blow method. The melt-blowing method used in the present invention is hygienic because a solventless polymer is melt-spun and a non-woven fabric can be directly obtained in a dry manner without using a fiber oil. These long fibers are non-divided fibers, and are not subjected to chemical treatment or physical treatment such as division after melt spinning. Further, when the fibers are deposited after melt spinning, the nonwoven fabric is entangled with each other and integrated. Further, the density can be easily changed by changing the collection distance when the fibers are deposited.

本発明の繊維シートは、生体適合性の長繊維不織布で構成される。前記不織布を構成する長繊維は長さ方向で直径が変化している場合は、直径が1.7〜95.7μmの範囲で変化しているのが好ましい。さらに好ましくは長さ方向で直径が1.7〜60μmの範囲で変化している。長さ方向で繊維直径が変化していることにより嵩高となる。また、繊維の太い部分はへたりにくく腰を強くし、繊維の細い部分は液体吸収性を高くできる。前記シートは、JIS L 1096(2010)A法で測定される剛軟度が5〜60mNであることにより、剛軟度が高く腰のある医療用繊維シートとなる。   The fiber sheet of the present invention is composed of a biocompatible long fiber nonwoven fabric. When the diameter of the long fibers constituting the nonwoven fabric is changed in the length direction, the diameter is preferably changed in the range of 1.7 to 95.7 μm. More preferably, the diameter varies in the range of 1.7 to 60 μm in the length direction. It becomes bulky because the fiber diameter changes in the length direction. Moreover, the thick part of the fiber is hard to sag and strengthens the waist, and the thin part of the fiber can increase the liquid absorbency. The said sheet | seat becomes a medical fiber sheet with a high bending resistance and a waist | waistness by the bending resistance measured by JISL1096 (2010) A method being 5-60mN.

前記シートの厚みは0.4〜10.0mmであるのが好ましく、さらに好ましい厚みは0.5〜8.0mmである。シートの厚みが前記の範囲であれば、医療用として様々な分野に使用できる。また、シートの無荷重状態における見掛け密度が0.01〜0.30が好ましく、さらに好ましい同見掛け密度は0.020〜0.220g/cm3である。これにより、低密度でかつ嵩高い医療用繊維シートとなる。 The thickness of the sheet is preferably 0.4 to 10.0 mm, and more preferably 0.5 to 8.0 mm. If the thickness of the sheet is in the above range, it can be used in various fields for medical purposes. Further, the apparent density of the sheet in an unloaded state is preferably 0.01 to 0.30, and more preferably the apparent density is 0.020 to 0.220 g / cm 3 . Thereby, it becomes a low-density and bulky medical fiber sheet.

前記シートは、荷重0.7kPaを掛けたときの厚さH1と1.0kPaを掛けたときの厚さH2の圧縮変化率(100−{(H2/H1)×100})が、1〜15%であるのが好ましい。圧縮変化率が少ないことは寸法安定性が良いことを意味し、生体に適用するのに都合が良い。   The sheet has a compression change rate (100 − {(H 2 / H 1) × 100}) of the thickness H 2 when multiplied by a thickness H 1 when a load of 0.7 kPa is applied and 1.0 kPa (1−15). % Is preferred. A low compression change rate means that the dimensional stability is good and is convenient for application to a living body.

前記シートは、荷重0.7kPaを掛けたときの厚さH1と単位面積当たりの質量(g/m2)Mとの比(H1/M)が0.0045を超え0.050以下であるのが好ましい。これにより嵩高性を高くできる。 The sheet has a ratio (H1 / M) of a thickness H1 and a mass per unit area (g / m 2 ) M when a load of 0.7 kPa is applied to more than 0.0045 and not more than 0.050. Is preferred. Thereby, bulkiness can be made high.

前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上であり、より好ましくは4倍以上である。メルトブロー法で製造される繊維は、繊度は不均一であるが繊度分布中心で60μm以下が好ましく、より好ましくは15.0μm以下である。繊度分布中心は、走査型電子顕微鏡(SEM)による倍率500倍の写真により観察し、測定数50個の計測による中心値である。不織布内で太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートを形成できる。また、繊度の細い繊維は液体吸収性を高くできる。   The long fibers include relatively thick fibers and relatively thin fibers, and the fine fiber distribution center of the thick fibers is more than twice the fine fiber distribution center, more preferably four times. That's it. The fibers produced by the melt blow method have non-uniform fineness, but the fineness distribution center is preferably 60 μm or less, more preferably 15.0 μm or less. The fineness distribution center is a central value obtained by measuring 50 measurements with a scanning electron microscope (SEM) at a magnification of 500 times. The thick fiber in the nonwoven fabric becomes a skeleton and can prevent sag and form a bulky and highly shape-retaining sheet. In addition, fine fibers can increase liquid absorbency.

前記生体適合性の長繊維不織布を構成する樹脂は、ポリウレタン、ポリグリコール酸、ポリ−L−乳酸、ポリ−D−乳酸及びポリカプロラクトン、ポリジオキサノン、ポリエチレングリコール、ポリトリメチレンカーボネート、ポリエーテルエーテルケトンおよびこれらの共重合体から選ばれる少なくとも一つの熱可塑性樹脂が好ましい。前記樹脂は生体適合性があるとされている。生体内における吸収期間は、ポリグリコール酸は約2週間、ポリ乳酸は約6月、ポリカプロラクトンは約1〜2年と言われているが、ポリマーブレンド、分子量の調整などにより生体内における吸収期間は調整できる。   Resins constituting the biocompatible long fiber nonwoven fabric include polyurethane, polyglycolic acid, poly-L-lactic acid, poly-D-lactic acid and polycaprolactone, polydioxanone, polyethylene glycol, polytrimethylene carbonate, polyether ether ketone and At least one thermoplastic resin selected from these copolymers is preferred. The resin is said to be biocompatible. The absorption period in vivo is said to be about 2 weeks for polyglycolic acid, about 6 months for polylactic acid, and about 1 to 2 years for polycaprolactone. Can be adjusted.

生体吸収性が要求されない医療用繊維シートの場合は、例えば、ポリエステルまたはその共重合体もしくはこれらの混合物などの熱可塑性樹脂、具体的には、ポリエチレンテレフタレート( P E T ) 、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、またイソフタル酸やフタル酸等の重合物、ポリアミド(ナイロン)またはその共重合体もしくはこれらの混合物であってもよく、またポリオレフィンまたはその共重合体もしくはこれらの混合物であってもよい。例えば、ポリエチレン、ポリプロピレン、α − オレフィン、エチレンなどをランダム共重合したポリプロピレンなどであってもよい。またポリエステル系樹脂またはポリアミド系樹脂、オレフィン類の樹脂を混合した樹脂からなってもよい。その他、ポリ塩化ビニル、ポリビニルアルコールなども使用できる。   In the case of a medical fiber sheet that does not require bioabsorbability, for example, a thermoplastic resin such as polyester or a copolymer thereof or a mixture thereof, specifically, polyethylene terephthalate (PET), polybutylene terephthalate, poly It may be trimethylene terephthalate, a polymer such as isophthalic acid or phthalic acid, polyamide (nylon) or a copolymer thereof or a mixture thereof, or a polyolefin or a copolymer thereof or a mixture thereof. . For example, polypropylene obtained by random copolymerization of polyethylene, polypropylene, α-olefin, ethylene, or the like may be used. Further, it may be made of a resin in which a polyester resin, a polyamide resin, or an olefin resin is mixed. In addition, polyvinyl chloride, polyvinyl alcohol, and the like can be used.

本発明の長繊維不織布の単位面積当たりの質量(目付)は10〜10000g/m2が好ましく、さらに好ましくは100〜1000g/m2である。 The mass (unit weight) per unit area of the long-fiber nonwoven fabric of the present invention is preferably 10 to 10000 g / m 2 , more preferably 100 to 1000 g / m 2 .

次に長繊維不織布の製造方法について説明する。本発明の長繊維不織布は、ポリマーを紡糸口金から溶融押し出しし、圧力流体によって前記押し出された繊維を吹き飛ばし、前記吹き飛ばされた繊維をシート状に形成することにより得られる。この方法はメルトブロー法という。圧力流体によって押し出された溶融状態の繊維を吹き飛ばしてシート状に形成するため、繊維の長さ方向の太さ(直径)はランダムに変化し、一定とはならない。すなわち、圧空によって高速に紡糸することで本発明の長繊維が得られる。   Next, the manufacturing method of a long-fiber nonwoven fabric is demonstrated. The long fiber nonwoven fabric of the present invention can be obtained by melt-extruding a polymer from a spinneret, blowing off the extruded fiber with a pressure fluid, and forming the blown fiber into a sheet. This method is called a melt blow method. Since the melted fibers extruded by the pressure fluid are blown off to form a sheet, the length (diameter) of the fibers in the length direction changes randomly and is not constant. That is, the long fiber of the present invention can be obtained by spinning at high speed with compressed air.

紡糸口金は複数とし、太さの異なる繊維を押し出すか、あるいは押し出し量を一定とし圧空量を変えても良い。これにより同様に太い繊維と細い繊維が得られる。細い繊維と太い繊維の割合は質量比で、細い繊維:太い繊維=90〜20:10〜80が好ましく、80〜30:20〜70がさらに好ましく、70〜50:30〜50がいっそう好ましい。細い繊維と太い繊維の割合は、細い繊維が多いほど液保持量が増加するが、へたりを防止して嵩高で保形性の高いシートの骨格となる太い繊維の割合が少なくなるので、嵩高性、形状の確保が難しくなる。   A plurality of spinnerets may be used to extrude fibers having different thicknesses, or the extrusion amount may be constant and the amount of compressed air may be changed. Thereby, thick fibers and thin fibers can be obtained. The ratio of thin fibers to thick fibers is a mass ratio, preferably thin fibers: thick fibers = 90-20: 10-80, more preferably 80-30: 20-70, and even more preferably 70-50: 30-50. The ratio of thin fibers to thick fibers increases as the amount of thin fibers increases, but the liquid retention increases, but the ratio of thick fibers that prevent sag and become a bulky and highly shape-retaining sheet skeleton decreases. It is difficult to secure the properties and shape.

次に図面を用いて説明する。図1は本発明の一実施例で得られた長繊維不織布の走査型電子顕微鏡(SEM,日立走査型顕微鏡S−2600N,倍率500倍)の写真である。不織布を構成する長繊維は長さ方向で直径が変化していること及び/又は直径の異なる繊維が混在していることが分かる。図2は本発明の一実施例で得られた長繊維不織布(縦80mm、横80mm、厚さ8mm)の写真である。   Next, it demonstrates using drawing. FIG. 1 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, magnification 500 times) of a long-fiber nonwoven fabric obtained in an example of the present invention. It can be seen that the long fibers constituting the non-woven fabric have a diameter changing in the length direction and / or a mixture of fibers having different diameters. FIG. 2 is a photograph of the long fiber nonwoven fabric (length 80 mm, width 80 mm, thickness 8 mm) obtained in one example of the present invention.

図3Aは本発明の一実施例で使用する不織布製造装置11の模式的説明図、図3B-Dは同装置の紡糸口金の部分の模式的説明図である。基台1の上に溶融押し出し機2が据え付けられており、ホッパー3からポリマーチップを矢印4の方向に供給する。押し出し機2で溶融押し出しされたポリマーはダイノーズ(紡糸口金)5から押し出され、ダイノーズ(紡糸口金)5の近傍に形成されているガスロット6からの放射状に放出した圧空によって前方に吹き飛ばされ、次に空気抵抗によりカルマン渦状に繊維が絡み合って繊維束を形成し、繊維集合体8になる。図3Aにおける矢印7はルーツブロアからの圧空供給方向を示す。前方に吹き飛ばされた繊維集合体8は巻き取りローラ9上でシート状になり巻き取られる。10は巻き取られた長繊維不織布である。巻き取りローラ9の代わりに金属ネットを配置しても良い。圧空供給方向は、ポリマーの性状によって、ダイノズルの前方だけではなく、直行、斜め前方45度など紡糸に最適な角度を設定する。一例として図3B-Dに示すように、ガスロット6a,6b,6c,6dは1個もしくは複数個配置してもよい。   FIG. 3A is a schematic explanatory view of the nonwoven fabric manufacturing apparatus 11 used in one embodiment of the present invention, and FIGS. 3B-D are schematic explanatory views of a spinneret portion of the apparatus. A melt extruder 2 is installed on the base 1, and polymer chips are supplied from the hopper 3 in the direction of arrow 4. The polymer melt-extruded by the extruder 2 is extruded from a die nose (spinneret) 5 and blown forward by pressurized air discharged radially from a gas slot 6 formed in the vicinity of the dienose (spinneret) 5. Fibers are entangled in a Karman vortex by air resistance to form a fiber bundle, thereby forming a fiber assembly 8. An arrow 7 in FIG. 3A indicates the direction of pressure air supply from the roots blower. The fiber assembly 8 blown forward is turned into a sheet on the take-up roller 9 and taken up. Reference numeral 10 denotes a wound long fiber nonwoven fabric. A metal net may be disposed in place of the take-up roller 9. The pressure supply direction is set not only to the front of the die nozzle but also to an optimum angle for spinning such as straight and 45 degrees obliquely forward depending on the properties of the polymer. As an example, as shown in FIGS. 3B-D, one or a plurality of gas slots 6a, 6b, 6c, 6d may be arranged.

以下、実施例を用いてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, more specific description will be made using examples. In addition, this invention is not limited to the following Example.

測定方法は下記のとおりである。
<繊維直径>
走査型電子顕微鏡(SEM,日立走査型顕微鏡S−2600N,倍率500倍)の写真から測定した。
<厚さ>
尾崎製作所製大型スナップゲージK−7型、面積20cm2の測定子を使用し、荷重0.7kPa,1.0kPaで10点測定した。
<剛軟度>
東洋製機製作所社製のガーレ式剛軟度試験機を使用し、JIS L 1096(2010)A法に従って、曲げに対する硬さを測定した。
<圧縮変化率>
長繊維不織布シートに荷重0.7kPaを掛けたときの厚さH1と1.0kPaを掛けたときの厚さH2の圧縮変化率(100−{(H2/H1)×100})を測定した。
<その他>
JIS又は業界の規定する測定方法に従って測定した。
The measuring method is as follows.
<Fiber diameter>
It was measured from a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, magnification 500 times).
<Thickness>
Using a large snap gauge K-7 type manufactured by Ozaki Seisakusho and an area of 20 cm 2 , measurements were made at 10 points with a load of 0.7 kPa and 1.0 kPa.
<Bending softness>
The hardness against bending was measured according to JIS L 1096 (2010) A method using a Gurley type bending resistance tester manufactured by Toyo Seisakusho Co., Ltd.
<Compression change rate>
The compression change rate (100 − {(H 2 / H 1) × 100}) of the thickness H 2 when a thickness H 1 when a load of 0.7 kPa is applied to a long-fiber nonwoven fabric sheet and 1.0 kPa is measured.
<Others>
The measurement was performed according to a measurement method defined by JIS or industry.

(実施例1)
生体適合性を有するポリウレタンとしてLubrizol社製、商品名"Pellethane"(米国class VI適合品)を使用し、図3に示す不織布製造装置を使用して不織布を製造した。紡糸温度は215℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は40g/分、0.4Mpaの圧搾空気を直径1mmの細孔からダイノーズに噴射し、距離30cm離れた巻き取りローラ9で長繊維不織布10を巻き取った。得られた不織布を構成する長繊維は長さ方向に直径34.8〜95.7μmで変化していた。得られた長繊維不織布の物性は表1にまとめて示す。
Example 1
As a polyurethane having biocompatibility, a product name “Pellethane” (US class VI compatible product) manufactured by Lubrizol was used, and a nonwoven fabric was manufactured using the nonwoven fabric manufacturing apparatus shown in FIG. The spinning temperature is 215 ° C., the amount of extrusion from the polymer die nose (spinneret) 5 is 40 g / min, 0.4 Mpa of compressed air is sprayed from the pores having a diameter of 1 mm to the die nose, and the winding roller 9 is 30 cm away. The long fiber nonwoven fabric 10 was wound up. The long fibers constituting the obtained nonwoven fabric varied in the length direction from 34.8 to 95.7 μm in diameter. The physical properties of the obtained long fiber nonwoven fabric are summarized in Table 1.

(実施例2)
生体適合性を有するポリ−L−乳酸として、重量平均分子量10万の樹脂を使用し、図3に示す不織布製造装置を使用して不織布を製造した。紡糸温度は240℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は30g/分、0.4Mpaの圧搾空気を直径1mmの細孔からダイノーズに噴射し、距離30cm離れた巻き取りローラ9で長繊維不織布10を巻き取った。得られた不織布を構成する長繊維は長さ方向に直径6.1〜29.6μmで変化していた。得られた長繊維不織布の物性は表1にまとめて示す。
(Example 2)
As poly-L-lactic acid having biocompatibility, a resin having a weight average molecular weight of 100,000 was used, and a nonwoven fabric was manufactured using the nonwoven fabric manufacturing apparatus shown in FIG. The spinning temperature is 240 ° C., the extrusion amount of the polymer from the die nose (spinneret) 5 is 30 g / min, 0.4 Mpa of compressed air is sprayed from the pores having a diameter of 1 mm to the die nose, and the winding roller 9 is 30 cm away. The long fiber nonwoven fabric 10 was wound up. The long fibers constituting the obtained nonwoven fabric varied in the length direction at a diameter of 6.1 to 29.6 μm. The physical properties of the obtained long fiber nonwoven fabric are summarized in Table 1.

(実施例3)
生体適合性を有するポリ−L−乳酸として、重量平均分子量10万の樹脂を使用し、図3に示す不織布製造装置を使用して不織布を製造した。紡糸温度は240℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は30g/分、0.4Mpaの圧搾空気を直径1mmの細孔からダイノーズに噴射し、距離60cm離れた巻き取りローラ9で長繊維不織布10を巻き取った。得られた不織布を構成する長繊維は長さ方向に直径1.7〜20.5μmで変化していた。得られた長繊維不織布の物性は表1にまとめて示す。
(Example 3)
As poly-L-lactic acid having biocompatibility, a resin having a weight average molecular weight of 100,000 was used, and a nonwoven fabric was manufactured using the nonwoven fabric manufacturing apparatus shown in FIG. The spinning temperature is 240 ° C., the amount of polymer extruded from the die nose (spinneret) 5 is 30 g / min, 0.4 Mpa of compressed air is sprayed from the pores having a diameter of 1 mm to the die nose, and the winding roller 9 is 60 cm away. The long fiber nonwoven fabric 10 was wound up. The long fibers constituting the obtained nonwoven fabric varied in the length direction at a diameter of 1.7 to 20.5 μm. The physical properties of the obtained long fiber nonwoven fabric are summarized in Table 1.

(比較例1)
市販のコットン製の脱脂綿の物性を表1にまとめて示す。
(Comparative Example 1)
Table 1 summarizes the physical properties of commercially available cotton absorbent cotton.

表1から明らかなとおり、実施例1〜3の長繊維不織布シートは、嵩高く低密度であり、かつ剛軟度が高く腰のある医療用繊維シートであることが確認できた。   As is clear from Table 1, it was confirmed that the long-fiber nonwoven fabric sheets of Examples 1 to 3 were bulky and low-density, and were medical fiber sheets having high stiffness and high stiffness.

1 基台
2 溶融押し出し機
3 ホッパー
4 ポリマーチップ供給方向
5 紡糸口金
6,6a〜6d ガスロット
7 圧空供給方向
8 繊維集合体
9 巻き取りローラ
10 巻き取られた長繊維不織布
11 不織布製造装置
DESCRIPTION OF SYMBOLS 1 Base 2 Melt extruder 3 Hopper 4 Polymer chip supply direction 5 Spinneret 6, 6a-6d Gas slot 7 Air pressure supply direction 8 Fiber assembly 9 Winding roller 10 Long-fiber nonwoven fabric wound up 11 Nonwoven fabric manufacturing apparatus

Claims (7)

生体適合性の長繊維不織布で構成される医療用繊維シートであって、
前記長繊維は長さ方向で直径が変化しているか又は直径の異なる繊維が混在しており、
前記シートは、JIS L 1096(2010)A法で測定される剛軟度が5〜60mNであることを特徴とする医療用繊維シート。
A medical fiber sheet composed of a biocompatible long-fiber nonwoven fabric,
The long fibers are mixed with fibers having different diameters or different diameters in the length direction,
The said sheet | seat is 5-60 mN of bending resistance measured by JISL1096 (2010) A method, The medical fiber sheet characterized by the above-mentioned.
前記長繊維は長さ方向で直径が変化している場合は、直径が1.7〜95.7μmの範囲で変化している請求項1に記載の医療用繊維シート。   The medical fiber sheet according to claim 1, wherein when the diameter of the long fibers changes in the length direction, the diameter changes in a range of 1.7 to 95.7 µm. 前記シートの厚みは0.4〜10.0mmであり、かつ前記シートの無荷重状態における見掛け密度が0.01〜0.30g/cm3である請求項1又は2に記載の医療用繊維シート。 The medical fiber sheet according to claim 1 or 2, wherein the thickness of the sheet is 0.4 to 10.0 mm, and the apparent density of the sheet in an unloaded state is 0.01 to 0.30 g / cm 3. . 前記シートに荷重0.7kPaを掛けたときの厚さH1と1.0kPaを掛けたときの厚さH2の圧縮変化率(100−{(H2/H1)×100})が、1〜15%である請求項1〜3のいずれかに記載の医療用繊維シート。   The compression change rate (100 − {(H 2 / H 1) × 100}) of the thickness H 2 when the thickness H 1 is applied to the sheet with a load of 0.7 kPa and 1.0 kPa is 1 to 15%. The medical fiber sheet according to any one of claims 1 to 3. 前記シートに荷重0.7kPaを掛けたときの厚さH1と単位面積当たりの質量(g/m2)Mとの比(H1/M)が0.0045を超え0.050以下である請求項1〜4のいずれかに記載の医療用繊維シート。 A ratio (H1 / M) of a thickness H1 and a mass per unit area (g / m 2 ) M when a load of 0.7 kPa is applied to the sheet is more than 0.0045 and not more than 0.050. The medical fiber sheet in any one of 1-4. 前記直径の異なる繊維が混在している場合は、相対的に繊度の太い長繊維と相対的に繊度の細い長繊維を含み、前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上である請求項1〜5のいずれかに記載の医療用繊維シート。   In the case where fibers having different diameters are mixed, it includes long fibers with relatively large fineness and long fibers with relatively thin fineness, and the fineness distribution center of the thick fibers is the fineness distribution center of the thin fibers. It is 2 times or more, The medical fiber sheet in any one of Claims 1-5. 前記生体適合性の長繊維不織布を構成する樹脂は、ポリウレタン、ポリグリコール酸、ポリ−L−乳酸、ポリ−D−乳酸及びポリカプロラクトン、ポリジオキサノン、ポリエチレングリコール、ポリトリメチレンカーボネート、ポリエーテルエーテルケトンおよびこれらの共重合体から選ばれる少なくとも一つの熱可塑性樹脂である請求項1〜6のいずれかに記載の医療用繊維シート。   Resins constituting the biocompatible long fiber nonwoven fabric include polyurethane, polyglycolic acid, poly-L-lactic acid, poly-D-lactic acid and polycaprolactone, polydioxanone, polyethylene glycol, polytrimethylene carbonate, polyether ether ketone and The medical fiber sheet according to any one of claims 1 to 6, which is at least one thermoplastic resin selected from these copolymers.
JP2016071742A 2016-03-31 2016-03-31 Method for manufacturing medical fiber sheet Expired - Fee Related JP6685163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071742A JP6685163B2 (en) 2016-03-31 2016-03-31 Method for manufacturing medical fiber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071742A JP6685163B2 (en) 2016-03-31 2016-03-31 Method for manufacturing medical fiber sheet

Publications (2)

Publication Number Publication Date
JP2017176676A true JP2017176676A (en) 2017-10-05
JP6685163B2 JP6685163B2 (en) 2020-04-22

Family

ID=60008047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071742A Expired - Fee Related JP6685163B2 (en) 2016-03-31 2016-03-31 Method for manufacturing medical fiber sheet

Country Status (1)

Country Link
JP (1) JP6685163B2 (en)

Also Published As

Publication number Publication date
JP6685163B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
DK3004438T3 (en) Heat-bondable conjugate fiber with excellent softness and nonwoven fabric utilizing this
KR102439981B1 (en) Absorbent article containing a nonwoven web formed from porous polyolefin fibers
JP5676287B2 (en) A flexible and extensible nonwoven web containing multicomponent fibers with high melt flow rate
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
JP2012528955A (en) Structured fiber web
JP2007100243A (en) Sea-island type conjugate fiber for ultrafine fiber with high toughness
JP2004532939A (en) Stretchable fibers and nonwovens made from large denier splittable fibers
JP2002522648A (en) Method and apparatus for thermally bonded high elongation nonwoven fabric
JP2013256739A (en) Nonwoven fabric for mask and mask
TWI428484B (en) Split-type composite fiber containing polyacetal, fiber formed body using the same, and product
KR102256324B1 (en) Heat-sealable composite fiber and non-woven fabric using the same
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
KR101960236B1 (en) Method for forming porous fibers
JP2005048350A (en) Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same
ES2950034T3 (en) Multicomponent spontaneous crimping fibers and methods for preparing the same
JPWO2009063889A1 (en) Eccentric hollow composite long fiber, long fiber nonwoven fabric comprising the same, and use thereof
JP2006219807A5 (en)
JP6685163B2 (en) Method for manufacturing medical fiber sheet
JP6484948B2 (en) Sea-island composite fiber
JP2012092466A (en) Wet-laid nonwoven fabric and textile product
JP2009120975A (en) Blended filament nonwoven fabric
TWI822865B (en) Spunbond nonwoven fabric
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP2005513279A (en) Fiber with high elongation and low denier formed by spinning with high extrusion ratio
JP2007284834A (en) Sheet-shaped material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees