JP2017175798A - Control unit of secondary battery - Google Patents

Control unit of secondary battery Download PDF

Info

Publication number
JP2017175798A
JP2017175798A JP2016060104A JP2016060104A JP2017175798A JP 2017175798 A JP2017175798 A JP 2017175798A JP 2016060104 A JP2016060104 A JP 2016060104A JP 2016060104 A JP2016060104 A JP 2016060104A JP 2017175798 A JP2017175798 A JP 2017175798A
Authority
JP
Japan
Prior art keywords
positive electrode
potential
negative electrode
current
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016060104A
Other languages
Japanese (ja)
Other versions
JP6504093B2 (en
Inventor
雅文 野瀬
Masafumi Nose
雅文 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016060104A priority Critical patent/JP6504093B2/en
Publication of JP2017175798A publication Critical patent/JP2017175798A/en
Application granted granted Critical
Publication of JP6504093B2 publication Critical patent/JP6504093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately suppress a site where current is concentrated from being locally deteriorated, in a secondary battery having, at the inside thereof, a structure where a positive electrode plate, a separator, and a negative electrode plate are stacked.SOLUTION: An ECU controls the charging/discharging of a battery cell having, at the inside thereof, a structure where a positive electrode plate, a separator, and a negative electrode plate are stacked. The ECU specifies a current concentration site at the inside of a battery cell using a charge/discharge current I and a current distribution estimation model during the charge/discharge of the battery cell, estimates a positive electrode potential VPat the current concentration site and a negative electrode potential VPat the current concentration site, and controls the charge/discharge current I such that the potential VPand the potential VPfall within a positive electrode protection range and a negative electrode protection range, respectively.SELECTED DRAWING: Figure 7

Description

本発明は、二次電池の充放電を制御する技術に関する。   The present invention relates to a technique for controlling charge / discharge of a secondary battery.

特許第5761378号公報(特許文献1)には、二次電池の充放電を制御するコントローラが開示されている。このコントローラは、二次電池の状態から正極電位および負極電位を推定し、推定された正極電位が正極保護範囲(正極下限電位以上かつ正極上限電位以下の範囲)内に収まり、かつ負極電位が負極保護範囲(負極下限電位以上かつ負極上限電位以下の範囲)内に収まるように、二次電池の充放電を制御する。これにより、正極材料および負極材料の劣化が抑制される。   Japanese Patent No. 576378 (Patent Document 1) discloses a controller that controls charging and discharging of a secondary battery. This controller estimates the positive electrode potential and the negative electrode potential from the state of the secondary battery, and the estimated positive electrode potential falls within the positive electrode protection range (the range between the positive electrode lower limit potential and the positive electrode upper limit potential), and the negative electrode potential is negative. Charging / discharging of the secondary battery is controlled so as to be within the protection range (a range of the negative electrode lower limit potential or higher and the negative electrode upper limit potential or lower). Thereby, deterioration of positive electrode material and negative electrode material is suppressed.

特許第5761378号公報Japanese Patent No. 576378

従来よりハイブリッド車両用の二次電池として広く採用されるニッケル水素電池に代表されるように、二次電池には、正極板、セパレータおよび負極板が積層される構造を内部に有するものが存在する。このような積層構造を有する二次電池においては、電池内部の抵抗バランスに応じて電極表面内の反応に偏り(ムラ)が生じる場合がある。電極表面内の反応に偏りが生じると、電池内部において電流が集中する部位が発生し、その部位が局所的に劣化することが懸念される。しかしながら、特許文献1にはこのような問題およびその対策について何ら開示されていない。   As represented by nickel-metal hydride batteries widely used as secondary batteries for hybrid vehicles, some secondary batteries have a structure in which a positive electrode plate, a separator, and a negative electrode plate are laminated. . In a secondary battery having such a laminated structure, the reaction within the electrode surface may be biased (uneven) depending on the resistance balance inside the battery. When the reaction in the electrode surface is biased, there is a concern that a region where current concentrates inside the battery and that the region is locally degraded. However, Patent Document 1 does not disclose any such problems and countermeasures.

本発明は、上述の課題を解決するためになされたものであって、その目的は、正極板、セパレータおよび負極板が積層される構造を内部に有する二次電池において、電流が集中する部位の局所的な劣化を適切に抑制することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a portion where current is concentrated in a secondary battery having a structure in which a positive electrode plate, a separator, and a negative electrode plate are laminated. It is to appropriately suppress local deterioration.

この発明に係る制御装置は、正極板、セパレータおよび負極板がこの順に積層される構造を内部に有する二次電池の制御装置であって、二次電池の充放電電流を検出する電流検出部と、充放電電流を制御する制御部とを備える。制御部は、二次電池の充放電中において、充放電電流を用いて、二次電池の内部を流れる電流を正極板および負極板の延在方向に並ぶ複数の領域ごとに算出し、複数の領域のうちから最大の電流が流れる最大領域を特定し、正極板の最大領域に含まれる部位である正極最大部位の電位が所定の正極保護範囲内に収まり、かつ負極板の最大領域に含まれる部位である負極最大部位の電位が所定の負極保護範囲内に収まるように、充放電電流を制御する。   A control device according to the present invention is a control device for a secondary battery having a structure in which a positive electrode plate, a separator, and a negative electrode plate are laminated in this order, and a current detection unit that detects a charge / discharge current of the secondary battery; And a control unit for controlling the charge / discharge current. During charging / discharging of the secondary battery, the control unit calculates a current flowing through the secondary battery for each of the plurality of regions arranged in the extending direction of the positive electrode plate and the negative electrode plate using the charge / discharge current, The maximum region in which the maximum current flows is identified from among the regions, and the potential of the positive electrode maximum portion, which is the portion included in the maximum region of the positive electrode plate, is within the predetermined positive electrode protection range and is included in the maximum region of the negative electrode plate The charge / discharge current is controlled so that the potential of the negative electrode maximum part, which is the part, falls within a predetermined negative electrode protection range.

上記構成によれば、制御部は、充放電電流を用いて、二次電池の内部を流れる電流を正極板および負極板の延在方向(電極板表面に沿う方向)に並ぶ複数の領域ごとに算出し、最大の電流が流れる最大領域を特定する。そして、制御部は、各極板の最大領域に含まれる部位(すなわち電流が集中する部位)の電位が各保護範囲内にそれぞれ収まるように、充放電電流を制御する。そのため、電流が集中する部位の劣化が適切に抑制される。その結果、正極板、セパレータおよび負極板が積層される構造を内部に有する二次電池において、電流が集中する部位の局所的な劣化を適切に抑制することができる。   According to the said structure, a control part uses the charging / discharging electric current for every some area | region which arranges the electric current which flows through the inside of a secondary battery in the extension direction (direction along the electrode plate surface) of a positive electrode plate and a negative electrode plate. Calculate and identify the maximum area through which the maximum current flows. And a control part controls charging / discharging electric current so that the electric potential of the site | part (namely, site | part where an electric current concentrates) contained in the maximum area | region of each electrode plate may each fall in each protection range. Therefore, deterioration of the part where current concentrates is appropriately suppressed. As a result, in a secondary battery having a structure in which a positive electrode plate, a separator, and a negative electrode plate are laminated, local deterioration of a portion where current is concentrated can be appropriately suppressed.

好ましくは、制御部は、二次電池の充放電中において、正極板の金属抵抗に由来する正極最大部位の電圧変化量である第1電位変化量を算出し、正極保護範囲または正極最大部位の電位を第1電位変化量を用いて補正するとともに、負極板の金属抵抗に由来する負極最大部位の電圧変化量である第2電位変化量を算出し、負極保護範囲または負極最大部位の電位を第2電位変化量を用いて補正する。   Preferably, the controller calculates a first potential change amount that is a voltage change amount of the maximum positive electrode portion derived from the metal resistance of the positive electrode plate during charging and discharging of the secondary battery, and the positive electrode protection range or the positive electrode maximum portion is calculated. While correcting the potential using the first potential change amount, the second potential change amount, which is the voltage change amount of the negative electrode maximum part derived from the metal resistance of the negative electrode plate, is calculated, and the potential of the negative electrode protection range or the negative electrode maximum part is calculated. Correction is performed using the second potential change amount.

上記構成によれば、金属抵抗由来の電位変化の影響によって充放電が過剰に制限されることを抑制することができる。具体的には、金属抵抗由来の電位変化は劣化に影響しないが、従来においては金属抵抗由来の電位変化量を算出する手段がなかったため、金属抵抗由来の電位変化量に相当するマージン分だけ過剰に各極の保護領域を狭くせざるを得なかった。これに対し、上記構成によれば、電流が集中する部位の金属抵抗由来の電圧変化量を各電極についてそれぞれ算出して、各極の保護領域または電位を補正する。そのため、従来に比べて、金属抵抗由来の電位変化の影響を排除した充放電制御が可能になる。その結果、金属抵抗由来の電位変化の影響によって充放電が過剰に制限されることを抑制することができる。   According to the said structure, it can suppress that charging / discharging is restrict | limited excessively by the influence of the electric potential change derived from metal resistance. Specifically, although the potential change due to the metal resistance does not affect the deterioration, there is no means for calculating the potential change due to the metal resistance in the past, so there is an excess corresponding to the margin corresponding to the potential change due to the metal resistance. However, the protection area of each pole had to be narrowed. On the other hand, according to the above configuration, the voltage change amount derived from the metal resistance at the portion where the current is concentrated is calculated for each electrode, and the protection region or potential of each electrode is corrected. Therefore, charge / discharge control that eliminates the influence of a potential change derived from metal resistance is possible as compared with the conventional case. As a result, it is possible to suppress the charge / discharge from being excessively limited by the influence of the potential change derived from the metal resistance.

車両の構成を概略的に示すブロック図である。1 is a block diagram schematically showing the configuration of a vehicle. 電池ユニットの構成を示す図である。It is a figure which shows the structure of a battery unit. 電池セルの内部構成を概略的に示す図である。It is a figure which shows schematically the internal structure of a battery cell. 非通電時、放電時および放電時の正極電位および負極電位を模式的に示す図である。It is a figure which shows typically the positive electrode potential and negative electrode potential at the time of non-energization, at the time of discharge, and discharge. 充放電時における電池セル内部の電流経路の一例を模式的に示す図である。It is a figure which shows typically an example of the current pathway inside a battery cell at the time of charging / discharging. 電流分配推定モデルの一例を模式的に示す図である。It is a figure which shows an example of a current distribution estimation model typically. ECUが行なう処理手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the process sequence which ECU performs. ECUが行なう処理手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the process sequence which ECU performs.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

<車両の構成>
図1は、本実施の形態による二次電池の制御装置が搭載される車両1の構成を概略的に示すブロック図である。図1には、車両1内の電気系統の充放電制御に関連する構成が示されている。なお、図1に示す車両1は電気自動車であるが、本発明を適用可能な車両は電気自動車に限らず、ハイブリッド車などの二次電池を搭載する任意の電動車両に適用可能である。
<Vehicle configuration>
FIG. 1 is a block diagram schematically showing a configuration of a vehicle 1 on which a secondary battery control device according to the present embodiment is mounted. FIG. 1 shows a configuration related to charge / discharge control of the electric system in the vehicle 1. Although the vehicle 1 shown in FIG. 1 is an electric vehicle, the vehicle to which the present invention can be applied is not limited to an electric vehicle, and can be applied to any electric vehicle equipped with a secondary battery such as a hybrid vehicle.

車両1は、二次電池システム10と、システムメインリレー(SMR:System Main Relay)20と、パワーコントロールユニット(PCU:Power Control Unit)30と、モータジェネレータ(MG:Motor Generator)40と、駆動輪50とを備える。二次電池システム10は、電池ユニット100と、監視ユニット200と、電子制御ユニット(ECU:Electronic Control Unit)300とを備える。   The vehicle 1 includes a secondary battery system 10, a system main relay (SMR) 20, a power control unit (PCU) 30, a motor generator (MG) 40, and driving wheels. 50. The secondary battery system 10 includes a battery unit 100, a monitoring unit 200, and an electronic control unit (ECU) 300.

電池ユニット100は、直列に接続された複数の電池セル110(図2参照)を含む。各電池セル110として、代表的にはリチウムイオン電池またはニッケル水素電池などの二次電池が適用される。   The battery unit 100 includes a plurality of battery cells 110 (see FIG. 2) connected in series. As each battery cell 110, a secondary battery such as a lithium ion battery or a nickel metal hydride battery is typically used.

監視ユニット200は、電圧センサ210と、電流センサ220と、温度センサ230とを含む。電圧センサ210は、電池ユニット100内の各セルの電圧(以下「セル電圧VC」ともいう)を検出可能に構成される。電流センサ220は、二次電池システム10の充放電電流Iを検出可能に構成される。温度センサ230は、電池ユニット100内の温度(以下「電池温度T」ともいう)を検出可能に構成される。各センサは、その検出結果を示す信号をECU300に出力する。   Monitoring unit 200 includes a voltage sensor 210, a current sensor 220, and a temperature sensor 230. Voltage sensor 210 is configured to detect the voltage of each cell in battery unit 100 (hereinafter also referred to as “cell voltage VC”). The current sensor 220 is configured to be able to detect the charge / discharge current I of the secondary battery system 10. The temperature sensor 230 is configured to detect the temperature in the battery unit 100 (hereinafter also referred to as “battery temperature T”). Each sensor outputs a signal indicating the detection result to ECU 300.

なお、以下では、充放電電流Iの符号が正である場合は放電中であることを示し、負である場合は充電中であることを示すものとする。   Hereinafter, when the sign of the charging / discharging current I is positive, it indicates that discharging is in progress, and when it is negative, it indicates that charging is being performed.

SMR20は、電池ユニット100とPCU30との間に電気的に接続されている。SMR20は、ECU300からの制御信号に応答してオンオフされる。これにより、電池ユニット100とPCU30との間の導通および遮断が切り替えられる。   The SMR 20 is electrically connected between the battery unit 100 and the PCU 30. The SMR 20 is turned on / off in response to a control signal from the ECU 300. Thereby, conduction | electrical_connection and interruption | blocking between the battery unit 100 and PCU30 are switched.

PCU30は、たとえばコンバータと、インバータ(いずれも図示せず)とを含む。PCU30は、ECU300からのスイッチング指令に従って、電池ユニット100とMG40との間で双方向に電力変換が可能に構成されている。コンバータは、電池ユニット100とインバータとの間で双方向の直流電圧変換を実行するように構成されている。インバータは、直流電力とMG40に入出力される交流電力との間の双方向の電力変換を実行するように構成されている。   PCU 30 includes, for example, a converter and an inverter (both not shown). The PCU 30 is configured to be capable of bi-directional power conversion between the battery unit 100 and the MG 40 in accordance with a switching command from the ECU 300. The converter is configured to perform bidirectional DC voltage conversion between the battery unit 100 and the inverter. The inverter is configured to perform bidirectional power conversion between DC power and AC power input / output to / from the MG 40.

より具体的には、インバータは、電池ユニット100からコンバータを経由して供給される直流電力を交流電力に変換してMG40に供給する。これにより、MG40は駆動輪50の駆動力を発生する。一方、車両1の回生制動時には、インバータは、MG40が発生する交流電力(回生電力)を直流電力に変換してコンバータに供給する。これにより、電池ユニット100が充電される。   More specifically, the inverter converts DC power supplied from the battery unit 100 via the converter into AC power and supplies the AC power to the MG 40. Thereby, the MG 40 generates the driving force of the driving wheel 50. On the other hand, at the time of regenerative braking of vehicle 1, the inverter converts AC power (regenerative power) generated by MG 40 into DC power and supplies it to the converter. Thereby, the battery unit 100 is charged.

ECU300は、CPU(Central Processing Unit)(図示せず)と、メモリ310と、入出力インターフェイス(図示せず)とを含んで構成される。ECU300は、各センサからの信号およびメモリに記憶された情報に基づいてPCU30を制御することによって、電池ユニット100の充放電を制御する。なお、ECU300の少なくとも一部は、電子回路等のハードウェアにより構成されてもよい。   ECU 300 includes a CPU (Central Processing Unit) (not shown), a memory 310, and an input / output interface (not shown). ECU 300 controls charging / discharging of battery unit 100 by controlling PCU 30 based on signals from each sensor and information stored in the memory. Note that at least a part of the ECU 300 may be configured by hardware such as an electronic circuit.

<電池ユニットの構成>
図2は、電池ユニット100の構成を詳細に示す図である。電池ユニット100は、複数の電池セル110と、一対のエンドプレート112と、拘束バンド114と、複数のバスバー116とを含む。セル数は特に限定されない。x軸、y軸およびz軸は互いに直交する。鉛直方向上方をz軸の正方向とする。
<Configuration of battery unit>
FIG. 2 is a diagram illustrating the configuration of the battery unit 100 in detail. Battery unit 100 includes a plurality of battery cells 110, a pair of end plates 112, a restraining band 114, and a plurality of bus bars 116. The number of cells is not particularly limited. The x axis, the y axis, and the z axis are orthogonal to each other. The upper vertical direction is the positive direction of the z-axis.

複数の電池セル110の各々は、たとえば扁平角型の形状を有する。複数の電池セル110は、最も面積が大きい側面が互いに距離を隔てて対向するように、y方向に並べられている。図2では、y方向に並べられた複数の電池セル110の一方端が部分的に示されている。y方向における一方端および他方端にそれぞれ対向するように、一対のエンドプレート112(図2では一方のみを示す)が配置されている。一対のエンドプレート112は、全ての電池セル110を挟み込んだ状態で拘束バンド114によって拘束されている。   Each of the plurality of battery cells 110 has a flat rectangular shape, for example. The plurality of battery cells 110 are arranged in the y direction so that the side surfaces having the largest area face each other with a distance therebetween. In FIG. 2, one end of the plurality of battery cells 110 arranged in the y direction is partially shown. A pair of end plates 112 (only one is shown in FIG. 2) are arranged so as to face one end and the other end in the y direction, respectively. The pair of end plates 112 are restrained by the restraining band 114 with all the battery cells 110 sandwiched therebetween.

各セル110は正極端子および負極端子を有し、その正極端子が隣接するセルの負極端子と対向するように配置されている。あるセルの正極端子と隣接するセルの負極端子とは、ボルトおよびナット(いずれも図示せず)を用いてバスバー116によって締結されることにより電気的に接続されている。これにより、電池ユニット100内において複数の電池セル110は互いに直列に接続されている。   Each cell 110 has a positive electrode terminal and a negative electrode terminal, and is arranged so that the positive electrode terminal faces the negative electrode terminal of an adjacent cell. A positive electrode terminal of a certain cell and a negative electrode terminal of an adjacent cell are electrically connected by being fastened by a bus bar 116 using a bolt and a nut (both not shown). Thereby, in the battery unit 100, the some battery cell 110 is mutually connected in series.

<電池セルの内部構成>
図3は、電池セル110の内部構成を概略的に示す図である。図3に示されるように、電池セル110の内部には、正極板130と、負極板140と、セパレータ150とが収容されている。正極板130および負極板140は、セパレータ150を介して積層される。すなわち、正極板130、セパレータ150および負極板140の順に積層される。
<Internal configuration of battery cell>
FIG. 3 is a diagram schematically showing the internal configuration of the battery cell 110. As shown in FIG. 3, a positive electrode plate 130, a negative electrode plate 140, and a separator 150 are accommodated in the battery cell 110. The positive electrode plate 130 and the negative electrode plate 140 are laminated via the separator 150. That is, the positive electrode plate 130, the separator 150, and the negative electrode plate 140 are laminated in this order.

図3には一組の正極板130、セパレータ150および負極板140が例示的に示されているが、実際には正極板130および負極板140がセパレータ150を挟んで交互に複数積層される。以下では、図3に示すように、正極板130および負極板140が延在する方向を単に「延在方向」ともいう。   FIG. 3 exemplarily shows a pair of positive electrode plate 130, separator 150, and negative electrode plate 140, but actually, a plurality of positive electrode plates 130 and negative electrode plates 140 are alternately stacked with separator 150 interposed therebetween. Hereinafter, as shown in FIG. 3, the direction in which the positive electrode plate 130 and the negative electrode plate 140 extend is also simply referred to as “extending direction”.

正極板130は、金属製の正極集電体132と、正極集電体132の表面に形成された正極活物質134とを含む。負極板140は、金属製の負極集電体142と、負極集電体142の表面に形成された負極活物質144とを含む。セパレータ150は、電解液に浸された状態で、正極板130と負極板140との間に設けられている。   The positive electrode plate 130 includes a metal positive electrode current collector 132 and a positive electrode active material 134 formed on the surface of the positive electrode current collector 132. The negative electrode plate 140 includes a metal negative electrode current collector 142 and a negative electrode active material 144 formed on the surface of the negative electrode current collector 142. The separator 150 is provided between the positive electrode plate 130 and the negative electrode plate 140 in a state immersed in the electrolytic solution.

正極板130の延在方向の一方側(図3の例では左側)の端部は正極端子に接続される。負極板140の延在方向の一方側(図3の例では右側)の端部は負極端子に接続される。   One end (left side in the example of FIG. 3) in the extending direction of the positive electrode plate 130 is connected to the positive electrode terminal. One end (right side in the example of FIG. 3) of the extending direction of the negative electrode plate 140 is connected to the negative electrode terminal.

以下では、正極板130の電位を「正極電位V(+)」と記載し、負極板140の電位を「負極電位V(−)」と記載する。また、非通電時の正極板130の電位を「正極開放電位OCP(+)」と記載し、非通電時の負極板140の電位を「負極開放電位OCP(−)」と記載する。 Hereinafter, the potential of the positive electrode plate 130 is described as “positive electrode potential V (+) ”, and the potential of the negative electrode plate 140 is described as “negative electrode potential V (−) ”. Further, the potential of the positive electrode plate 130 when not energized is described as “positive electrode open potential OCP (+) ”, and the potential of the negative electrode plate 140 when deenergized is described as “negative electrode open potential OCP (−) ”.

<正極保護領域および負極保護領域>
図4は、非通電時の正極電位V(+)および負極電位V(−)と、放電時の正極電位V(+)および負極電位V(−)と、充電時の正極電位V(+)および負極電位V(−)とを模式的に示す図である。
<Positive electrode protection region and negative electrode protection region>
4 is not energized when the positive electrode potential V (+) and negative potentials V (-) and, during discharge of the positive electrode potential V (+) and negative potentials V (-) and the positive electrode potential at the time of charging V (+) It is a figure which shows typically negative electrode potential V (-) .

非通電時(充放電電流I=0)においては、正極電位V(+)は正極開放電位OCP(+)となり、負極電位V(−)は負極開放電位OCP(−)となる。負極電位V(−)と正極電位V(+)との差がセル電圧VCである。 During non-energization (charge / discharge current I = 0), the positive electrode potential V (+) becomes the positive electrode open potential OCP (+) , and the negative electrode potential V (−) becomes the negative electrode open potential OCP (−) . The difference between the negative electrode potential V (−) and the positive electrode potential V (+) is the cell voltage VC.

放電時(充放電電流I>0)においては、正極電位V(+)は、正極集電体132の金属抵抗(以下「正極金属抵抗RM(+)」ともいう)および正極活物質134での反応に由来する電荷移動抵抗(以下「正極反応抵抗RC(+)」ともいう)の影響によって、正極開放電位OCP(+)よりも低下する。負極電位V(−)は、負極集電体142の金属抵抗(以下「負極金属抵抗RM(−)」ともいう)および負極活物質144での反応に由来する電荷移動抵抗(以下「負極反応抵抗RC(−)」ともいう)の影響によって、負極開放電位OCP(−)よりも増加する。 During discharging (charging / discharging current I> 0), the positive electrode potential V (+) is determined by the metal resistance of the positive electrode current collector 132 (hereinafter also referred to as “positive electrode metal resistance R M (+) ”) and the positive electrode active material 134. This is lower than the positive electrode open-circuit potential OCP (+) due to the influence of the charge transfer resistance (hereinafter also referred to as “positive electrode reaction resistance R C (+)) derived from this reaction. The negative electrode potential V (−) is the charge resistance (hereinafter referred to as “negative electrode reaction”) derived from the metal resistance of the negative electrode current collector 142 (hereinafter also referred to as “negative electrode metal resistance R M (−) ”) and the reaction with the negative electrode active material 144. The negative electrode open-circuit potential OCP (−) is increased by the influence of the resistance R C (−) ”.

充電時(充放電電流I<0)においては、正極電位V(+)は、正極金属抵抗RM(+)および正極反応抵抗RC(+)の影響によって、正極開放電位OCP(+)よりも増加する。負極電位V(−)は、負極金属抵抗RM(−)および負極反応抵抗RC(−)の影響によって、負極開放電位OCP(−)よりも低下する。 At the time of charging (charge / discharge current I <0), the positive electrode potential V (+) is greater than the positive electrode open-circuit potential OCP (+) due to the influence of the positive electrode metal resistance R M (+) and the positive electrode reaction resistance R C (+). Will also increase. The negative electrode potential V (−) is lower than the negative electrode open-circuit potential OCP (−) due to the influence of the negative electrode metal resistance RM (−) and the negative electrode reaction resistance RC (−) .

正極活物質134は、正極電位V(+)が過剰に低下したり過剰に増加したりすると劣化する。すなわち、正極電位V(+)には、正極活物質134が劣化しない正極下限電位V(+)minおよび正極上限電位V(+)maxが存在する。したがって、正極の劣化を防止するためには、正極電位V(+)が正極下限電位V(+)minと正極上限電位V(+)maxとの間の領域(以下「正極保護領域」ともいう)内に収まるように充放電電流Iを制御(制限)することが望ましい。 The positive electrode active material 134 deteriorates when the positive electrode potential V (+) decreases excessively or increases excessively. That is, the positive electrode potential V (+) includes a positive electrode lower limit potential V (+) min and a positive electrode upper limit potential V (+) max at which the positive electrode active material 134 does not deteriorate. Therefore, in order to prevent the deterioration of the positive electrode, the positive electrode potential V (+) is a region between the positive electrode lower limit potential V (+) min and the positive electrode upper limit potential V (+) max (hereinafter also referred to as “positive electrode protection region”). It is desirable to control (limit) the charge / discharge current I so as to be within the range.

負極活物質144は、負極電位V(−)が過剰に低下したり過剰に増加したりすると劣化する。すなわち、負極電位V(−)には、負極活物質144が劣化しない負極下限電位V(−)minおよび負極上限電位V(−)maxが存在する。したがって、負極の劣化を防止するためには、負極電位V(−)が負極下限電位V(−)minと負極上限電位V(−)maxとの間の領域(以下「負極保護領域」ともいう)内に収まるように充放電電流Iを制御(制限)することが望ましい。 The negative electrode active material 144 deteriorates when the negative electrode potential V (−) decreases excessively or increases excessively. That is, the negative electrode potential V (−) includes a negative electrode lower limit potential V (−) min and a negative electrode upper limit potential V (−) max at which the negative electrode active material 144 does not deteriorate. Therefore, in order to prevent the deterioration of the negative electrode, the negative electrode potential V (−) is a region between the negative electrode lower limit potential V (−) min and the negative electrode upper limit potential V (−) max (hereinafter also referred to as “negative electrode protection region”). It is desirable to control (limit) the charge / discharge current I so as to be within the range.

<電流集中部位の劣化抑制>
上述のように、電池セル110は、正極板130、セパレータ150および負極板140の順に積層される構造を内部に有する。このような積層構造を有する電池セル110においては、充放電時において、電池セル110の内部の抵抗バランスに応じて、電極板(正極板130および負極板140)の表面内の反応に偏り(ムラ)が生じる場合がある。
<Deterioration suppression of current concentration parts>
As described above, the battery cell 110 has a structure in which the positive electrode plate 130, the separator 150, and the negative electrode plate 140 are stacked in this order. In the battery cell 110 having such a laminated structure, during charging / discharging, the reaction within the surface of the electrode plate (the positive electrode plate 130 and the negative electrode plate 140) is biased (unevenness) according to the resistance balance inside the battery cell 110. ) May occur.

図5は、充放電時における電池セル110内部の電流経路の一例を模式的に示す図である。電池セル110内部における電流は、図5に示すように、正極端子、正極集電体132、正極活物質134、電解液(セパレータ150を含む)、負極活物質144、負極集電体142、負極端子の順に流れる。   FIG. 5 is a diagram schematically illustrating an example of a current path inside the battery cell 110 during charging and discharging. As shown in FIG. 5, the current in the battery cell 110 includes a positive electrode terminal, a positive electrode current collector 132, a positive electrode active material 134, an electrolyte (including the separator 150), a negative electrode active material 144, a negative electrode current collector 142, a negative electrode It flows in the order of terminals.

正極端子と負極端子との間の電流経路は、図5に示すように、電極板表面の各領域に分配される。この際、電池セル110の内部の抵抗バランスに応じて電極板表面内の反応に偏り(ムラ)が生じると、電池セル110の内部において電流が集中する部位が発生し、その部位が局所的に劣化することが懸念される。   As shown in FIG. 5, the current path between the positive electrode terminal and the negative electrode terminal is distributed to each region on the surface of the electrode plate. At this time, if the reaction in the electrode plate surface is biased (uneven) according to the resistance balance inside the battery cell 110, a site where current is concentrated in the battery cell 110 is generated, and the site is locally There is concern about deterioration.

従来においては、電極板表面内の反応分布を定量化する手段がなく、充放電時に電流が集中する部位を特定することができなかった。また、電圧センサ210によって検出されるセル電圧VCは、電流が集中する部位の場所に依らずに一定のため、セル電圧VCからは充放電時の電極板表面の反応分布を検出することはできなかった。   Conventionally, there is no means for quantifying the reaction distribution in the electrode plate surface, and it has not been possible to identify a site where current is concentrated during charging and discharging. In addition, since the cell voltage VC detected by the voltage sensor 210 is constant regardless of the location where the current is concentrated, the reaction distribution on the electrode plate surface during charging / discharging cannot be detected from the cell voltage VC. There wasn't.

そこで、本実施の形態によるECU300は、後述する電流分配推定モデル(図6参照)を予めメモリに記憶しておき、充放電中において充放電電流Iと電流分配推定モデルとを用いて電池内部における電流集中部位を特定する。そして、ECU300は、電流集中部位の正極電位VP(+)および電流集中部位の負極電位VP(−)を推定し、電流集中部位の各電位VP(+),VP(−)がそれぞれ正極保護範囲内および負極保護範囲内に収まるように、充放電電流Iを制御する。これにより、電流集中部位の劣化を適切に抑制することができる。 Therefore, ECU 300 according to the present embodiment stores a current distribution estimation model (see FIG. 6), which will be described later, in a memory in advance, and uses the charge / discharge current I and the current distribution estimation model inside the battery during charging / discharging. Specify the current concentration part. Then, ECU 300 estimates positive potential VP (+) at the current concentration portion and negative potential VP (−) at the current concentration portion, and each potential VP (+) , VP (−) at the current concentration portion is in the positive electrode protection range. The charge / discharge current I is controlled so as to be within the inner and negative electrode protection ranges. Thereby, deterioration of a current concentration part can be suppressed appropriately.

図6は、電流分配推定モデルの一例を模式的に示す図である。図6に示す電流分配推定モデルは、電池内部を電極板の延在方向(電極板表面に沿う方向)に並ぶN個の領域(1〜N番目の領域、Nは2以上の自然数)に仮想的に分割し、各領域における正極金属抵抗RM(+)1〜RM(+)N、正極反応抵抗RC(+)1〜RC(+)N、電解液抵抗RL1〜RLN、負極反応抵抗RC(−)1〜RC(−)N、および負極金属抵抗RM(−)1〜RM(−)Nをそれぞれ規定した抵抗ラダー回路によって表わされる。ECU300は、電池セル110の充放電中において、電流センサ220が検出した充放電電流Iと図6に示す電流分配推定モデルとを用いて、1〜N番目の領域にそれぞれ分配される分配電流i〜iを算出する。なお、図6に示す各抵抗は、たとえば電池温度Tをパラメータとして算出される。 FIG. 6 is a diagram schematically illustrating an example of a current distribution estimation model. The current distribution estimation model shown in FIG. 6 is virtually divided into N regions (1st to Nth regions, where N is a natural number of 2 or more) arranged in the battery in the extending direction of the electrode plate (the direction along the electrode plate surface). to split, the positive electrode metal resistor R M in each region (+) 1 ~R M (+ ) N, the positive electrode reaction resistance R C (+) 1 ~R C (+) N, electrolyte resistance R L1 to R LN , Negative electrode reaction resistances R C (−) 1 to R C (−) N , and negative electrode metal resistances R M (−) 1 to R M (−) N are respectively represented by resistance ladder circuits. The ECU 300 uses the charge / discharge current I detected by the current sensor 220 and the current distribution estimation model shown in FIG. to calculate the 1 ~i N. Each resistance shown in FIG. 6 is calculated using, for example, battery temperature T as a parameter.

図7は、ECU300が行なう処理手順を示すフローチャートである。このフローチャートは、電池セル110の充放電中に所定周期で繰り返し実行される。   FIG. 7 is a flowchart showing a processing procedure performed by ECU 300. This flowchart is repeatedly executed at a predetermined cycle during charging / discharging of the battery cell 110.

ステップ(以下、ステップを「S」と略す)10にて、ECU300は、監視ユニット200から充放電電流Iおよび電池温度Tを取得する。   In step (hereinafter, step is abbreviated as “S”) 10, ECU 300 acquires charge / discharge current I and battery temperature T from monitoring unit 200.

S11にて、ECU300は、充放電電流Iと上述の電流分配推定モデル(図6参照)とを用いて上述の分配電流i〜iを算出する。分配電流i〜iの具体的な算出手法については既に説明したため、詳細な説明はここでは繰り返さない。 In S11, ECU 300 calculates the above-described distribution currents i 1 to i N using charge / discharge current I and the above-described current distribution estimation model (see FIG. 6). Since the specific method for calculating the distribution currents i 1 to i N has already been described, detailed description thereof will not be repeated here.

S12にて、ECU300は、分配電流i〜iの間に偏りがあるか否かを判定する。分配電流i〜iの間に偏りがない場合(S12にてNO)、ECU300は、処理を終了する。 In S12, ECU 300 determines whether or not there is a bias between distribution currents i 1 to i N. If there is no bias between distribution currents i 1 to i N (NO in S12), ECU 300 ends the process.

分配電流i〜iの間に偏りがある場合(S12にてYES)、ECU300は、S13にて、分配電流i〜iのうちの最大値imaxを特定するとともに、最大値imaxが流れる領域(以下「最大領域」ともいう)に含まれる部位を電流集中部位として特定する。 When there is a bias between distribution currents i 1 to i N (YES in S12), ECU 300 specifies maximum value imax among distribution currents i 1 to i N in S13, and maximum value imax is A part included in the flowing area (hereinafter also referred to as “maximum area”) is specified as a current concentration part.

S14にて、ECU300は、S13にて特定された電流集中部位の正極電位VP(+)および負極電位VP(−)をそれぞれ推定する。たとえば、ECU300は、放電中においては、各電位VP(+),VP(−)をそれぞれ下記の式(1),(2)を用いて算出する。 In S14, ECU 300 estimates positive electrode potential VP (+) and negative electrode potential VP (-) of the current concentration portion specified in S13. For example, the ECU 300 calculates the potentials VP (+) and VP (−) using the following equations (1) and (2), respectively, during discharging.

VP(+)=OCP(+)−ΔVC(+) …(1)
VP(−)=OCP(−)+ΔVC(−) …(2)
ECU300は、充電中においては、各電位VP(+),VP(−)をそれぞれ下記の式(3),(4)を用いて算出する。
VP (+) = OCP (+) − ΔV C (+) (1)
VP (−) = OCP (−) + ΔV C (−) (2)
The ECU 300 calculates the potentials VP (+) and VP (−) using the following equations (3) and (4) during charging.

VP(+)=OCP(+)+ΔVC(+) …(3)
VP(−)=OCP(−)−ΔVC(−) …(4)
式(1),(3)において、「ΔVC(+)」は、電流集中部位の正極反応抵抗に由来する電位変化量である。式(2),(4)において、「ΔVC(−)」は、電流集中部位の負極反応抵抗に由来する電位低下量である。たとえば、図6に示すモデルにおいて3番目の領域が電流集中部位と特定された場合、ΔVC(+)およびΔVC(−)は下記の式(5),(6)を用いて算出することができる。
VP (+) = OCP (+) + ΔV C (+) (3)
VP (−) = OCP (−) −ΔV C (−) (4)
In the expressions (1) and (3), “ΔV C (+) ” is a potential change amount derived from the positive electrode reaction resistance at the current concentration portion. In the expressions (2) and (4), “ΔV C (−) ” is a potential decrease amount derived from the negative electrode reaction resistance at the current concentration site. For example, when the third region in the model shown in FIG. 6 is specified as the current concentration part, ΔV C (+) and ΔV C (−) are calculated using the following equations (5) and (6). Can do.

ΔVC(+)=i・RC(+)3 …(5)
ΔVC(−)=i・RC(−)3 …(6)
なお、各電位VP(+),VP(−)の推定手法は上記に限定されず、他の手法を用いて推定するようにしてもよい。
ΔV C (+) = i 3 · R C (+) 3 (5)
ΔV C (−) = i 3 · R C (−) 3 (6)
In addition, the estimation method of each electric potential VP (+) , VP (-) is not limited above, You may make it estimate using another method.

S15にて、ECU300は、S14にて推定された電流集中部位の正極電位VP(+)および電流集中部位の負極電位VP(−)がそれぞれ正極保護範囲内および負極保護範囲内に収まっているか否かを判定する。 In S15, ECU 300 determines whether or not positive potential VP (+) of the current concentration portion and negative potential VP (−) of the current concentration portion estimated in S14 are within the positive electrode protection range and the negative electrode protection range, respectively. Determine whether.

電流集中部位の正極電位VP(+)および電流集中部位の負極電位VP(−)がそれぞれ正極保護範囲内および負極保護範囲内に収まっている場合(S15にてYES)、ECU300は、処理を終了する。 When positive electrode potential VP (+) at the current concentration portion and negative electrode potential VP (−) at the current concentration portion are within the positive electrode protection range and the negative electrode protection range, respectively (YES in S15), ECU 300 ends the process. To do.

電流集中部位の正極電位VP(+)が正極保護範囲内に収まっていない場合、あるいは電流集中部位の負極電位VP(−)が負極保護範囲内に収まっていない場合(S15にてNO)、ECU300は、S16にて、電池ユニット100の充放電を制限する。具体的には、ECU300は、充放電電流Iの大きさが現在の値よりも低下するようにPCU30を制御する。これにより、電流集中部位の各電位VP(+),VP(−)がそれぞれ正極保護範囲内および負極保護範囲内に収まるように制御される。 When positive electrode potential VP (+) at the current concentration portion does not fall within the positive electrode protection range, or when negative electrode potential VP (−) at the current concentration portion does not fall within the negative electrode protection range (NO in S15), ECU 300 Restricts charging / discharging of the battery unit 100 at S16. Specifically, ECU 300 controls PCU 30 such that the magnitude of charge / discharge current I is lower than the current value. Thereby, the respective potentials VP (+) and VP (−) of the current concentration part are controlled so as to be within the positive electrode protection range and the negative electrode protection range, respectively.

以上のように、本実施の形態によるECU300は、電池ユニット100の充放電中において、充放電電流Iと電流分配推定モデル(図6参照)とを用いて電池セル110内部における電流集中部位を特定し、電流集中部位の正極電位VP(+)および電流集中部位の負極電位VP(−)を推定し、電流集中部位の各電位VP(+),VP(−)がそれぞれ正極保護範囲内および負極保護範囲内に収まるように、充放電電流Iを制御する。これにより、電流集中部位の劣化を適切に抑制することができる。その結果、正極板130、セパレータ150および負極板140が積層される構造を内部に有する電池セル110において、電流集中部位の局所的な劣化を適切に抑制することができる。 As described above, the ECU 300 according to the present embodiment identifies a current concentration portion in the battery cell 110 using the charge / discharge current I and the current distribution estimation model (see FIG. 6) during charging / discharging of the battery unit 100. Then, the positive potential VP (+) of the current concentration portion and the negative potential VP (−) of the current concentration portion are estimated, and the potentials VP (+) and VP (−) of the current concentration portion are within the positive electrode protection range and the negative electrode, respectively. The charge / discharge current I is controlled so as to be within the protection range. Thereby, deterioration of a current concentration part can be suppressed appropriately. As a result, in the battery cell 110 having a structure in which the positive electrode plate 130, the separator 150, and the negative electrode plate 140 are stacked, local deterioration of the current concentration portion can be appropriately suppressed.

<変形例>
本来、正極電位V(+)には、正極金属抵抗RM(+)に由来する電位変化量ΔVM(+)が含まれる。この電位変化量ΔVM(+)は、正極活物質134の劣化には影響しない。しかしながら、従来においては、電位変化量ΔVM(+)を算出する手段がなかったため、正極の劣化をより適切に抑制するためには、電位変化量ΔVM(+)に相当するマージン分だけ過剰に正極保護領域を狭くせざるを得なかった。
<Modification>
Originally, the positive electrode potential V (+) includes a potential change amount ΔV M (+) derived from the positive electrode metal resistance R M (+) . This potential change amount ΔVM (+) does not affect the deterioration of the positive electrode active material 134. However, in the prior art, since there was no means for calculating the potential change amount ΔV M (+) , in order to suppress the deterioration of the positive electrode more appropriately, a margin corresponding to the potential change amount ΔV M (+) is excessive. In addition, the positive electrode protection region had to be narrowed.

同様に、本来、負極電位V(−)には、負極金属抵抗RM(−)に由来する電位変化量ΔVM(−)が含まれる。この電位変化量ΔVM(−)は、負極活物質144の劣化には影響しない。しかしながら、従来においては、電位変化量ΔVM(−)を算出する手段がなかったため、負極の劣化をより適切に抑制するためには、電位変化量ΔVM(−)に相当するマージン分だけ過剰に負極保護領域を狭くせざるを得なかった。 Similarly, the negative electrode potential V (−) originally includes the potential change amount ΔV M (−) derived from the negative electrode metal resistance R M (−) . This potential change amount ΔV M (−) does not affect the deterioration of the negative electrode active material 144. However, conventionally, since there is no means for calculating the potential change amount ΔV M (−) , in order to suppress the deterioration of the negative electrode more appropriately, an excessive amount corresponding to the potential change amount ΔV M (−) is excessive. In addition, the negative electrode protection region had to be narrowed.

上記の点に鑑み、本変形例では、各極の電流集中部位における金属抵抗に由来する電位変化量ΔVPM(+),ΔVPM(−)を上述の図6に示す電流分配推定モデルを用いて算出し、算出された電位変化量ΔVPM(+),ΔVPM(−)に相当する分だけ各極の保護領域を拡大する。 In view of the above points, in the present modification, the potential change amounts ΔVP M (+) and ΔVP M (−) derived from the metal resistance at the current concentration portion of each pole are used using the current distribution estimation model shown in FIG. The protection area of each pole is expanded by an amount corresponding to the calculated potential change amounts ΔVP M (+) and ΔVP M (−) .

図8は、本変形例によるECU300が行なう処理手順を示すフローチャートである。なお、図8に示したステップのうち、上述の図7に示したステップと同じ番号を付しているステップについては、既に説明したため詳細な説明はここでは繰り返さない。   FIG. 8 is a flowchart showing a processing procedure performed by the ECU 300 according to this modification. Of the steps shown in FIG. 8, the steps given the same numbers as the steps shown in FIG. 7 described above have already been described, and detailed description thereof will not be repeated here.

S14にて電流集中部位の正極電位VP(+)および電流集中部位の負極電位VP(−)を推定した後、ECU300は、S20にて、電流集中部位の正極金属抵抗に由来する正極電位変化量ΔVPM(+)および電流集中部位の負極金属抵抗に由来する負極電位変化量ΔVPM(−)を、上述の図6に示す電流分配推定モデルを用いて算出する。正極電位変化量ΔVPM(+)は、正極端子から電流集中部位までの各領域の正極金属抵抗と各領域の正極集電体132を流れる電流との積を合計した値である。たとえば、図6に示すモデルにおいて3番目の領域が電流集中部位である場合、電流集中部位の金属抵抗に由来する正極電位変化量ΔVPM(+)は下記の式(7)を用いて算出される。 After estimating the positive electrode potential VP (+) at the current concentration part and the negative electrode potential VP (−) at the current concentration part in S14, the ECU 300 determines the positive electrode potential change amount derived from the positive metal resistance in the current concentration part in S20. ΔVP M (+) and the negative electrode potential change amount ΔVP M (−) derived from the negative electrode metal resistance at the current concentration portion are calculated using the current distribution estimation model shown in FIG. The positive electrode potential change amount ΔVP M (+) is a value obtained by summing the products of the positive electrode metal resistance in each region from the positive electrode terminal to the current concentration portion and the current flowing through the positive electrode current collector 132 in each region. For example, in the model shown in FIG. 6, when the third region is a current concentration portion, the positive electrode potential change amount ΔVP M (+) derived from the metal resistance of the current concentration portion is calculated using the following equation (7). The

ΔVPM(+)=I・RM(+)1+I・RM(+)2+I・RM(+)3 …(7)
なお、負極電位変化量ΔVPM(−)も同様の考え方で算出することができる。
ΔVP M (+) = I 1 · R M (+) 1 + I 2 · R M (+) 2 + I 3 · R M (+) 3 (7)
The negative electrode potential change amount ΔVP M (−) can be calculated based on the same concept.

S21にて、ECU300は、S20にて算出された正極電位変化量ΔVM(+)に相当する分だけ正極保護領域を拡大するとともに、負極電位変化量ΔVM(−)に相当する分だけ負極保護領域を拡大する。具体的には、ECU300は、正極下限電位V(+)min、正極上限電位V(+)max、負極下限電位V(−)min、および負極上限電位V(−)maxを、それれぞ下記の式(8),(9),(10),(11)を用いて補正する。 In S21, ECU 300 expands the positive electrode protection region by an amount corresponding to positive electrode potential change amount ΔV M (+) calculated in S20, and negative electrode by an amount corresponding to negative electrode potential change amount ΔV M (−). Enlarge the protection area. Specifically, the ECU 300 sets the positive electrode lower limit potential V (+) min , the positive electrode upper limit potential V (+) max , the negative electrode lower limit potential V (−) min , and the negative electrode upper limit potential V (−) max as follows: Correction is performed using equations (8), (9), (10), and (11).

(+)min=V(+)min−ΔVM(+) …(8)
(+)max=V(+)max+ΔVM(+) …(9)
(−)min=V(−)min−ΔVM(−) …(10)
(−)max=V(−)max+ΔVM(−) …(11)
ECU300は、S14にて推定された電流集中部位の各電位VP(+),VP(−)がそれぞれS21にて拡大された正極保護範囲内および負極保護範囲内に収まるように充放電電流Iを制限する(S15,S16)。
V (+) min = V ( +) min -ΔV M (+) ... (8)
V (+) max = V (+) max + ΔV M (+) (9)
V (-) min = V ( -) min -ΔV M (-) ... (10)
V (−) max = V (−) max + ΔV M (−) (11)
The ECU 300 sets the charge / discharge current I so that the potentials VP (+) and VP (−) of the current concentration portion estimated in S14 are within the positive electrode protection range and the negative electrode protection range expanded in S21, respectively. Restrict (S15, S16).

このように、本変形例によるECU300は、各極の電流集中部位における金属抵抗に由来する電位変化量ΔVPM(+),ΔVPM(−)に相当する分だけ各極の保護領域を拡大し、電流集中部位における各正極電位VP(+),VP(−)が拡大された各極の保護領域内に収まるように充放電電流Iを制御する。そのため、従来に比べて、金属抵抗由来の電位変化の影響を排除した充放電制御が可能になる。その結果、金属抵抗由来の電位変化の影響によって充放電電流Iが過剰に制限されることを抑制することができる。 As described above, the ECU 300 according to this modification expands the protection area of each pole by an amount corresponding to the potential changes ΔVP M (+) and ΔVP M (−) derived from the metal resistance at the current concentration portion of each pole. The charge / discharge current I is controlled so that the positive electrode potentials VP (+) and VP (−) at the current concentration portion are within the expanded protection region of each electrode. Therefore, charge / discharge control that eliminates the influence of a potential change derived from metal resistance is possible as compared with the conventional case. As a result, it is possible to suppress the charge / discharge current I from being excessively limited by the influence of the potential change derived from the metal resistance.

なお、本変形例においては、各電位変化量ΔVPM(+),ΔVPM(−)に相当する分だけ各極の保護領域をそれぞれ拡大したが、これに代えて、各電位変化量ΔVPM(+),ΔVPM(−)に相当する分だけ電流集中部位の各電位VP(+),VP(−)を補正するようにしてもよい。たとえば、放電中には電流集中部位の正極電位VP(+)を電位変化量ΔVPM(+)分だけ増加させるとともに電流集中部位の負極電位VP(−)を電位変化量ΔVPM(−)だけ低下させ、充電中には電流集中部位の正極電位VP(+)を電位変化量ΔVPM(+)分だけ低下させるとともに電流集中部位の負極電位VP(−)を電位変化量ΔVPM(−)だけ増加させるようにしてもよい。このようにしても、電流集中部位の各電位VP(+),VP(−)から金属抵抗由来の電位変化の影響を排除することができるため、充放電電流Iを過剰に制限されることを抑制することができる。 In this modification, the protection region of each pole is expanded by an amount corresponding to each potential change amount ΔVP M (+) and ΔVP M (−). Instead, each potential change amount ΔVP M You may make it correct | amend each electric potential VP (+) , VP (-) of an electric current concentration site | part by the part corresponded to (+) , ( DELTA ) VPM (-) . For example, during discharge, the positive electrode potential VP (+) at the current concentration portion is increased by the potential change amount ΔVP M (+) and the negative potential VP (−) at the current concentration portion is increased by the potential change amount ΔVP M (−). During charging, the positive electrode potential VP (+) at the current concentration portion is decreased by the potential change amount ΔVP M (+) and the negative potential VP (−) at the current concentration portion is decreased by the potential change amount ΔVP M (−). You may make it increase only. Even if it does in this way, since the influence of the electric potential change derived from metal resistance can be excluded from each electric potential VP (+) , VP (-) of a current concentration site | part, charging / discharging electric current I is restrict | limited excessively. Can be suppressed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 車両、10 二次電池システム、50 駆動輪、100 電池ユニット、110 電池セル、112 エンドプレート、114 拘束バンド、116 バスバー、130 正極板、132 正極集電体、134 正極活物質、140 負極板、142 負極集電体、144 負極活物質、150 セパレータ、200 監視ユニット、210 電圧センサ、220 電流センサ、230 温度センサ、300 ECU、310 メモリ。   DESCRIPTION OF SYMBOLS 1 Vehicle, 10 Secondary battery system, 50 Driving wheel, 100 Battery unit, 110 Battery cell, 112 End plate, 114 Restraint band, 116 Bus bar, 130 Positive electrode plate, 132 Positive electrode collector, 134 Positive electrode active material, 140 Negative electrode plate 142 negative electrode current collector, 144 negative electrode active material, 150 separator, 200 monitoring unit, 210 voltage sensor, 220 current sensor, 230 temperature sensor, 300 ECU, 310 memory.

Claims (2)

正極板、セパレータおよび負極板がこの順に積層される構造を内部に有する二次電池の制御装置であって、
前記二次電池の充放電電流を検出する電流検出部と、
前記充放電電流を制御する制御部とを備え、
前記制御部は、前記二次電池の充放電中において、
前記充放電電流を用いて、前記二次電池の内部を流れる電流を前記正極板および前記負極板の延在方向に並ぶ複数の領域ごとに算出し、
前記複数の領域のうちから最大の電流が流れる最大領域を特定し、
前記正極板の前記最大領域に含まれる部位である正極最大部位の電位が所定の正極保護範囲内に収まり、かつ前記負極板の前記最大領域に含まれる部位である負極最大部位の電位が所定の負極保護範囲内に収まるように、前記充放電電流を制御する、二次電池の制御装置。
A control device for a secondary battery having a structure in which a positive electrode plate, a separator and a negative electrode plate are laminated in this order,
A current detector for detecting a charge / discharge current of the secondary battery;
A controller for controlling the charge / discharge current,
The controller is configured to charge / discharge the secondary battery.
Using the charge / discharge current, the current flowing inside the secondary battery is calculated for each of a plurality of regions arranged in the extending direction of the positive electrode plate and the negative electrode plate,
Identify a maximum region through which a maximum current flows from the plurality of regions;
The potential of the positive electrode maximum portion, which is a portion included in the maximum region of the positive electrode plate, falls within a predetermined positive electrode protection range, and the potential of the negative electrode maximum portion, which is a portion included in the maximum region of the negative electrode plate, is predetermined. The control apparatus of a secondary battery which controls the said charging / discharging electric current so that it may be settled in a negative electrode protection range.
前記制御部は、前記二次電池の充放電中において、
前記正極板の金属抵抗に由来する前記正極最大部位の電圧変化量である第1電位変化量を算出し、前記正極最大部位の電位または前記正極保護範囲を前記第1電位変化量を用いて補正するとともに、
前記負極板の金属抵抗に由来する前記負極最大部位の電圧変化量である第2電位変化量を算出し、前記負極最大部位の電位または前記負極保護範囲を前記第2電位変化量を用いて補正する、請求項1に記載の二次電池の制御装置。
The controller is configured to charge / discharge the secondary battery.
A first potential change amount that is a voltage change amount of the maximum positive electrode portion derived from the metal resistance of the positive electrode plate is calculated, and the potential of the positive electrode maximum portion or the positive electrode protection range is corrected using the first potential change amount. And
A second potential change amount that is a voltage change amount of the negative electrode maximum portion derived from the metal resistance of the negative electrode plate is calculated, and the potential of the negative electrode maximum portion or the negative electrode protection range is corrected using the second potential change amount. The control device for a secondary battery according to claim 1.
JP2016060104A 2016-03-24 2016-03-24 Control device for secondary battery Active JP6504093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060104A JP6504093B2 (en) 2016-03-24 2016-03-24 Control device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060104A JP6504093B2 (en) 2016-03-24 2016-03-24 Control device for secondary battery

Publications (2)

Publication Number Publication Date
JP2017175798A true JP2017175798A (en) 2017-09-28
JP6504093B2 JP6504093B2 (en) 2019-04-24

Family

ID=59972383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060104A Active JP6504093B2 (en) 2016-03-24 2016-03-24 Control device for secondary battery

Country Status (1)

Country Link
JP (1) JP6504093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187050A (en) * 2019-05-16 2020-11-19 トヨタ自動車株式会社 Battery system, vehicle, and method for controlling battery system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089329A (en) * 2013-10-29 2015-05-07 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Adaptive current-collector electrochemical system
JP2015191750A (en) * 2014-03-28 2015-11-02 三菱自動車工業株式会社 battery
JP2015225846A (en) * 2014-05-30 2015-12-14 トヨタ自動車株式会社 Power storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089329A (en) * 2013-10-29 2015-05-07 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Adaptive current-collector electrochemical system
JP2015191750A (en) * 2014-03-28 2015-11-02 三菱自動車工業株式会社 battery
JP2015225846A (en) * 2014-05-30 2015-12-14 トヨタ自動車株式会社 Power storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187050A (en) * 2019-05-16 2020-11-19 トヨタ自動車株式会社 Battery system, vehicle, and method for controlling battery system
JP7275842B2 (en) 2019-05-16 2023-05-18 トヨタ自動車株式会社 BATTERY SYSTEM AND VEHICLE, AND BATTERY SYSTEM CONTROL METHOD

Also Published As

Publication number Publication date
JP6504093B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US10955479B2 (en) Battery control device
JP5104416B2 (en) Abnormality detection device for battery pack
US9263906B2 (en) Control apparatus and control method for lithium-ion secondary battery
CN103389466A (en) Electric storage device management apparatus, electric storage device pack, electric storage device management program, and method of estimating state of charge
JP7043944B2 (en) Power storage device
US10935607B2 (en) Control device for secondary battery, control method of secondary battery, battery system, and motor-driven vehicle
US10367359B2 (en) Power control apparatus and power control system
JPWO2017217092A1 (en) Management device and power storage system
WO2007089047A1 (en) Secondary cell monitoring device
JP2011024303A (en) Charge/discharge control device
JP2015109237A (en) Battery control system and battery control method
JP2010164510A (en) Abnormality detection device of battery pack
JP2015153509A (en) secondary battery system
JP6504093B2 (en) Control device for secondary battery
JP2021051888A (en) Abnormality detection device
JP2013235689A (en) Current sensor abnormality detecting device and method
JP6805837B2 (en) How to detect disconnection of the assembled battery
JP2016133405A (en) Monitoring apparatus and battery monitoring system
JP2023047092A (en) Charging method for battery
CN113016099B (en) Battery control device
JP2022523931A (en) Output control device and method for parallel multi-pack system
JP6907595B2 (en) How to detect disconnection of the assembled battery
JP2012165580A (en) Control device of power storage device
WO2022138745A1 (en) Battery control device, and battery system
JP2014196967A (en) Battery control device and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6504093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151