JP2017173260A - Interior material, structure with the interior material, and method for suppressing radioactivation of foundation using the interior material - Google Patents

Interior material, structure with the interior material, and method for suppressing radioactivation of foundation using the interior material Download PDF

Info

Publication number
JP2017173260A
JP2017173260A JP2016062490A JP2016062490A JP2017173260A JP 2017173260 A JP2017173260 A JP 2017173260A JP 2016062490 A JP2016062490 A JP 2016062490A JP 2016062490 A JP2016062490 A JP 2016062490A JP 2017173260 A JP2017173260 A JP 2017173260A
Authority
JP
Japan
Prior art keywords
interior material
layer
neutron
absorption layer
neutron absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016062490A
Other languages
Japanese (ja)
Other versions
JP7128605B2 (en
Inventor
克義 檜山
Katsuyoshi Hiyama
克義 檜山
奥野 功一
Koichi Okuno
功一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonseal Corp
Hazama Ando Corp
Original Assignee
Lonseal Corp
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonseal Corp, Hazama Ando Corp filed Critical Lonseal Corp
Priority to JP2016062490A priority Critical patent/JP7128605B2/en
Publication of JP2017173260A publication Critical patent/JP2017173260A/en
Application granted granted Critical
Publication of JP7128605B2 publication Critical patent/JP7128605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Finishing Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress radioactivation of a foundation.SOLUTION: An interior material A1 includes a first neutron absorption layer 1 and a neutron absorption layer 3, which contain 3-90 parts by weight of a neutron absorber to 100 parts by weight of synthetic resin.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、放射線医療施設・研究施設などの放射線施設・中性子利用施設等に用いられ、これら施設の下地コンクリートの放射化を抑制することにより放射性廃棄物の発生を防ぎ、また床上近傍の空間線量を低減し、患者・医療従事者・研究者等の施設利用者等の無用な被曝を低減する内装材、および該内装材を具備した構造物、並びに該内装材を用いた下地の放射化抑制方法に関するものである。   The present invention is used in, for example, radiation facilities such as radiation medical facilities and research facilities, neutron utilization facilities, etc., and prevents the generation of radioactive waste by suppressing the activation of the concrete underneath these facilities, Interior materials that reduce air dose and reduce unnecessary exposure of facility users such as patients, medical workers, researchers, etc., structures provided with the interior materials, and radiation of the ground using the interior materials The present invention relates to a method for suppressing crystallization.

近年、PET施設・BNCT施設などの放射線医療施設・加速器施設・中性子を利用した検査施設など、中性子線を取り扱う施設が増加している。
これら施設においては、中性子の使用によって床面・壁面・天井が放射化された場合、医療従事者・患者・作業者等の被曝が懸念される。また、これら施設が老朽化した時の取り壊しの際には、大量の放射性廃棄物が発生し、廃棄にかかる費用が膨大になるおそれがある。
そこで放射化抑制対策として、中性子吸収材を配合したコンクリート板、Na含有量を低減したコンクリート材料、中性子遮蔽方法が知られている(特許文献1〜3参照)。
In recent years, facilities that handle neutron beams, such as radiation medical facilities such as PET facilities and BNCT facilities, accelerator facilities, and inspection facilities using neutrons, are increasing.
In these facilities, if the floor, wall, or ceiling is activated by the use of neutrons, there is concern about the exposure of medical workers, patients, workers, etc. Moreover, when these facilities are demolished when they are aged, a large amount of radioactive waste is generated, and there is a possibility that the cost for disposal becomes enormous.
Therefore, as a measure for suppressing activation, a concrete plate containing a neutron absorber, a concrete material with a reduced Na content, and a neutron shielding method are known (see Patent Documents 1 to 3).

特許第4532447号公報Japanese Patent No. 4532447 特開2015-10826号公報JP 2015-10826 特許第4643193号公報Japanese Patent No. 4643193

しかしながら、下地の放射化は一般的には室内側の表面付近でのみ生じる為、上記従来技術のように、下地全体に高価な特殊コンクリート材料等を用いることは不経済である。また、上記従来技術では、施工作業にかかる負担が増大する上、内装材に求められる意匠性や機能性を有していない。   However, since the activation of the base generally occurs only near the surface on the indoor side, it is uneconomical to use an expensive special concrete material or the like for the entire base as in the prior art. Moreover, in the said prior art, the burden concerning construction work increases and it does not have the designability and functionality calculated | required by interior material.

このような課題に鑑みて、本発明は、以下の構成を具備するものである。
中性子吸収層を備えた内装材であって、前記中性子吸収層が、合成樹脂100重量部に対して中性子吸収材3〜90重量部を含むことを特徴とする内装材。
In view of such problems, the present invention has the following configuration.
An interior material including a neutron absorption layer, wherein the neutron absorption layer includes 3 to 90 parts by weight of a neutron absorber with respect to 100 parts by weight of a synthetic resin.

本発明は、以上説明したように構成されているので、下地の放射化を抑制することができる。   Since the present invention is configured as described above, activation of the ground can be suppressed.

(a)は本発明に係る内装材の一例(実施例1〜6)を示す断面図であり、(b)は他例(実施例7)を示す断面図である。(A) is sectional drawing which shows an example (Example 1-6) of the interior material which concerns on this invention, (b) is sectional drawing which shows another example (Example 7). (a)は図1(a)の内装材を具備した構造物の要部断面図であり、(b)は図1(b)の内装材を具備した構造物の要部断面図である。(A) is principal part sectional drawing of the structure which comprised the interior material of Fig.1 (a), (b) is principal part sectional drawing of the structure which comprised the interior material of FIG.1 (b). 実施例1〜7及び比較例1〜3について、中性子吸収層の配合を示す表である。It is a table | surface which shows the mixing | blending of a neutron absorption layer about Examples 1-7 and Comparative Examples 1-3. 実施例1〜7及び比較例1〜3について、評価試験の結果を示す表である。It is a table | surface which shows the result of an evaluation test about Examples 1-7 and Comparative Examples 1-3. 実施例6と比較例1について、放射化実験の結果を示す表である。It is a table | surface which shows the result of activation experiment about Example 6 and Comparative Example 1. FIG.

以下、図面を参照しながら本発明の実施形態を説明する。
図1(a)に示す内装材A1は、深層側から順番に、第1の中性子吸収層1と、基材2と、第2の中性子吸収層3と、意匠層4とを積層した多層構造に構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The interior material A1 shown in FIG. 1A is a multilayer structure in which a first neutron absorption layer 1, a base material 2, a second neutron absorption layer 3, and a design layer 4 are laminated in order from the deep layer side. Configured.

第1及び第2の中性子吸収層1,3の各々は、合成樹脂及び中性子吸収材等を混練してなるコンパウンドを、カレンダー成形により圧延したものである。前記コンパウンドには、必要に応じて、無機充填材や、その他の添加物等も配合される。   Each of the 1st and 2nd neutron absorption layers 1 and 3 rolls the compound formed by kneading | mixing a synthetic resin, a neutron absorber, etc. by calendering. An inorganic filler, other additives, etc. are blended with the compound as necessary.

前記合成樹脂としては、たとえばポリ塩化ビニル、エチレン−塩化ビニル共重合体、プロピレン−塩化ビニル共重合体、塩化ビニル−アクリル系樹脂共重合体、塩化ビニル−ウレタン共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−酢酸ビニル共重合体などの塩化ビニル系樹脂や、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂が挙げられ、これらを1種単独でも2種以上組み合わせて使用しても良い。これら合成樹脂の中でも加工性・施工性および価格の点でポリ塩化ビニルが好ましい。   Examples of the synthetic resin include polyvinyl chloride, ethylene-vinyl chloride copolymer, propylene-vinyl chloride copolymer, vinyl chloride-acrylic resin copolymer, vinyl chloride-urethane copolymer, vinyl chloride-vinylidene chloride. Examples thereof include vinyl chloride resins such as copolymers and vinyl chloride-vinyl acetate copolymers, and olefin resins such as polyethylene and polypropylene. These may be used alone or in combination of two or more. Among these synthetic resins, polyvinyl chloride is preferable in terms of processability, workability, and cost.

前記中性子吸収材としては、例えばリチウム・ホウ素・サマリウム・ガドリニウムなどの熱中性子を良く吸収する元素を含む化合物が用いられる。なかでも窒化ホウ素・炭化ホウ素・ホウ酸・灰ホウ石などのホウ素化合物が好適に用いられ、さらに成形加工性・加工設備へのダメージ・放射化抑制性能を考慮すると六方晶窒化ホウ素が好ましい。   As the neutron absorber, for example, a compound containing an element that absorbs thermal neutrons such as lithium, boron, samarium, and gadolinium is used. Of these, boron compounds such as boron nitride, boron carbide, boric acid and perovskite are preferably used, and hexagonal boron nitride is preferable in consideration of moldability, damage to processing equipment, and activation suppression performance.

前記中性子吸収材の配合量は合成樹脂100重量部に対して3〜90重量部が好ましい。この配合量が3重量部未満の場合は充分な放射化抑制性能が得られず、90重量部よりも多い場合は製造時の加工性が著しく低下する。
また、単位面積あたりの中性子吸収材の含有量は0.1〜3kg/m2であることが好ましい。この含有量が0.1kg/m2未満の場合は充分な放射化抑制性能が得られない。3kg/m2よりも多い場合は、製造時の加工性が著しく低下する。
The blending amount of the neutron absorber is preferably 3 to 90 parts by weight with respect to 100 parts by weight of the synthetic resin. When the blending amount is less than 3 parts by weight, sufficient activation suppressing performance cannot be obtained, and when it is more than 90 parts by weight, the workability at the time of production is remarkably lowered.
Further, the content of the neutron absorbing material per unit area is preferably 0.1 to 3 kg / m 2 . When the content is less than 0.1 kg / m 2, sufficient activation suppression performance cannot be obtained. If it is more than 3 kg / m 2 , the processability during production is significantly reduced.

また、無機充填材としては、放射化抑制性能に影響のない範囲で中性子吸収材とは異なる物質、例えば炭酸カルシウムが用いられる。
この無機充填材は、当該内装材A1を下地に接着する際の接着剤と第1の中性子吸収層1との接着性を向上するものであり、好ましくは合成樹脂100重量部に対して、1〜10重量部配合される。
なお、無機充填材の他例としては、シリカ、クレー、水酸化マグネシウム等を用いることも可能である。
In addition, as the inorganic filler, a substance different from the neutron absorber, such as calcium carbonate, is used within a range that does not affect the activation suppression performance.
This inorganic filler improves the adhesiveness between the adhesive and the first neutron absorption layer 1 when the interior material A1 is bonded to the base, and is preferably 1 to 100 parts by weight of the synthetic resin. ~ 10 parts by weight is blended.
As other examples of the inorganic filler, silica, clay, magnesium hydroxide and the like can be used.

また、その他、添加剤としては、可塑剤、熱安定剤、抗菌剤、光安定剤、紫外線吸収剤、難燃剤、帯電防止剤、滑剤、着色剤などを、使用用途に応じて必要な物性を与えるために適宜配合することが出来る。   In addition, as additives, plasticizers, heat stabilizers, antibacterial agents, light stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, lubricants, colorants, etc., have the necessary physical properties according to the intended use. In order to give, it can mix | blend suitably.

基材2は、多数の繊維を網状あるいはシート状に成形したものである。
この基材2の材質としては綿、麻、ポリエステル、アクリル、ナイロン、炭素繊維、ガラス等の有機繊維、無機繊維からなる織布、不織布等が挙げられる。
この基材2は、最下層(換言すれば、最深層あるいは最裏側の層)として、または中間層として各層の間に積層することができ、使用用途に応じて材質および積層位置を選択することができる。特に耐動荷重性・耐へこみ性・寸法安定性が重要な用途においては、ガラスなどの無機繊維から基材2を構成し、この基材2を中間層として積層するのが好ましい。基材2の厚みt2は、特に限定されないが、通常0.01〜1mmの範囲内に設定される。
The substrate 2 is formed by molding a large number of fibers into a net or sheet.
Examples of the material for the substrate 2 include cotton, hemp, polyester, acrylic, nylon, carbon fiber, glass and other organic fibers, and woven fabrics and nonwoven fabrics made of inorganic fibers.
This base material 2 can be laminated | stacked between each layer as a lowermost layer (in other words, the deepest layer or the backmost layer), or as an intermediate | middle layer, and selects a material and a lamination position according to a use application. Can do. In particular, in applications where dynamic load resistance, dent resistance, and dimensional stability are important, it is preferable that the base material 2 is composed of inorganic fibers such as glass and the base material 2 is laminated as an intermediate layer. The thickness t2 of the substrate 2 is not particularly limited, but is usually set within a range of 0.01 to 1 mm.

なお、図示例以外の他例としては、第1及び第2の中性子吸収層1,3を、内装材A1を構成する層のいずれにも適用することができるが、特に、該内装材A1を床材として用いる場合には、該床材の表面が長期間の歩行により摩耗すること等から、中性子吸収性能の耐久性や意匠性への影響を軽減するために、第1及び第2の中性子吸収層1,3を最表面層ではない裏層あるいは中間層に適用することが好ましい。そして、最表面層には後述する意匠層4あるいはその他の透明層等を配置することが好ましい。   As other examples other than the illustrated example, the first and second neutron absorption layers 1 and 3 can be applied to any of the layers constituting the interior material A1, and in particular, the interior material A1 is When used as a flooring, the first and second neutrons are used in order to reduce the effect of the neutron absorption performance on durability and design because the surface of the flooring is worn by walking for a long time. It is preferable to apply the absorbing layers 1 and 3 to the back layer or intermediate layer which is not the outermost layer. And it is preferable to arrange the design layer 4 or other transparent layer described later on the outermost surface layer.

図示例の第1の中性子吸収層1と第2の中性子吸収層3は、基材2を間に挟んで、その両側に積層されている。
これら第1の中性子吸収層1と第2の中性子吸収層3の厚みt1,t3は、略同一に設定され、本実施の形態の好ましい一例ではそれぞれ約0.8mm(合計1.6mm)に設定されている。
第1の中性子吸収層1は、基材2の一方の面に、例えばラミネート加工等により熱融着されている。
同様に、第2の中性子吸収層3は、基材2の他方の面に、例えばラミネート加工等により熱融着されている。
The first neutron absorption layer 1 and the second neutron absorption layer 3 in the illustrated example are laminated on both sides of the base material 2 therebetween.
The thicknesses t1 and t3 of the first neutron absorbing layer 1 and the second neutron absorbing layer 3 are set to be substantially the same, and in a preferred example of the present embodiment, each is set to about 0.8 mm (total 1.6 mm). Yes.
The first neutron absorption layer 1 is heat-sealed to one surface of the substrate 2 by, for example, laminating.
Similarly, the second neutron absorbing layer 3 is heat-sealed to the other surface of the substrate 2 by, for example, laminating.

第2の中性子吸収層3の表面には、意匠性を付与するために、模様や図柄等の意匠が印刷される。この意匠は意匠層4によって被覆されている。
意匠層4は、透明または半透明の合成樹脂からなる層であり、例えばラミネート加工等により、第2の中性子吸収層3の表面に積層されている。
この意匠層4の好ましい厚みt4は、0.2mm〜1mmの範囲内に設定される。
Designs such as patterns and designs are printed on the surface of the second neutron absorption layer 3 in order to impart design properties. This design is covered with the design layer 4.
The design layer 4 is a layer made of a transparent or translucent synthetic resin, and is laminated on the surface of the second neutron absorption layer 3 by, for example, laminating.
A preferable thickness t4 of the design layer 4 is set within a range of 0.2 mm to 1 mm.

なお、第2の中性子吸収層3の表面に意匠性を付与する他の手段としては、前記意匠の印刷をせずに、意匠層4として印刷層や着色層を積層した態様、各種天然繊維や合成繊維、木粉、樹脂チップ等の意匠付与材を、第2の中性子吸収層3や意匠層4に添加した態様、内装材A1(又はA2)の表面に、例えばエンボス加工等により凹凸を設けた態様等とすることが可能である。   In addition, as other means for imparting design properties to the surface of the second neutron absorption layer 3, without printing the design, an aspect in which a printed layer or a colored layer is laminated as the design layer 4, various natural fibers, An aspect in which a design imparting material such as synthetic fiber, wood powder, or resin chip is added to the second neutron absorption layer 3 or the design layer 4, and the surface of the interior material A1 (or A2) is provided with unevenness by, for example, embossing Or the like.

上記構成の内装材A1の厚みは施工部位・用途によって最適な厚みを適宜選択することができるが、0.2〜5mmであることが好ましい。
例えば、内装材A1を床材として用いる場合、その全体の厚みT1は通常用いられる床材の厚みに設定することが可能であるが、具体的に好ましい態様としては、厚みT1を1.5〜5mmに設定する。
仮に厚みT1を1.5mmより薄く設定した場合には、施工する際に下地の微細な凹凸などの形状の影響を受けやすく、施工後の美観が損なわれたり、歩行やキャスター走行に対する耐久性が劣ったりするおそれがある。一方。厚みT1を5mmより厚く設定した場合は、不必要な重量増加により、当該内装材A1を敷設する際の作業性の低下や、コストアップ等を招くおそれがある。
The thickness of the interior material A1 having the above-described configuration can be appropriately selected depending on the construction site and application, but is preferably 0.2 to 5 mm.
For example, when the interior material A1 is used as a flooring material, the total thickness T1 can be set to the thickness of a flooring material that is usually used. As a particularly preferable aspect, the thickness T1 is set to 1.5 to 5 mm. Set.
If the thickness T1 is set to be less than 1.5 mm, it will be easily affected by the shape of the ground surface, such as fine irregularities, and the post-construction aesthetics will be damaged, and the durability against walking and caster running will be inferior. There is a risk of on the other hand. When the thickness T1 is set to be thicker than 5 mm, an unnecessary weight increase may cause a decrease in workability when the interior material A1 is laid, an increase in cost, and the like.

次に、図1(b)に示す内装材B1について説明する。
内装材B1は、単一の第3の中性子吸収層5のみからなる単層構造に構成される。
第3の中性子吸収層5の構成及び材質等は、上述した第1及び第2の中性子吸収層1,3と同様である。
この内装材B1の厚みT2は、内装材A1と同様に、1.5〜5mmに設定することが可能であり、図示例の内装材B1は、厚さ約5mmのタイル材を構成している。
なお、この内装材B1においても、必要に応じて上述した意匠や意匠層4を設けることが可能である。
Next, the interior material B1 shown in FIG.
The interior material B1 is configured in a single-layer structure including only a single third neutron absorption layer 5.
The configuration, material, and the like of the third neutron absorption layer 5 are the same as those of the first and second neutron absorption layers 1 and 3 described above.
The thickness T2 of the interior material B1 can be set to 1.5 to 5 mm similarly to the interior material A1, and the interior material B1 in the illustrated example constitutes a tile material having a thickness of about 5 mm.
In addition, also in this interior material B1, it is possible to provide the design and design layer 4 which were mentioned above as needed.

上記構成の内装材A1,B1は、カレンダー成形、押出成形、射出成形、ラミネート加工などの公知の技術を適宜に組み合わせて用い製造することができる。なかでもカレンダー成形は広幅のシートを効率よく生産でき、かつ基材2・意匠層4などの積層が容易に行えることから好適である。
そして、内装材A1,B1の施工においては、従来の施工方法および接着剤などの副資材を用いることが可能である。
The interior materials A1 and B1 having the above-described configuration can be manufactured by appropriately combining known techniques such as calendar molding, extrusion molding, injection molding, and laminating. Among these, calender molding is preferable because a wide sheet can be efficiently produced and the base material 2 and the design layer 4 can be easily laminated.
And in construction of interior material A1, B1, it is possible to use auxiliary materials, such as the conventional construction method and an adhesive agent.

次に、上記構成の内装材A1,B1を具備した構造物A2,B2について説明する。
図2(a)に示す構造物A2は、上述した構成の内装材A1と、該内装材A1により被覆された下地Cを具備して構成される。
同様に、図2(b)に示す構造物B2は、上述した構成の内装材B1と、該内装材B1により被覆された下地Cを具備して構成される。
これら構造物A2,B2は、例えば、放射線医療施設・研究施設などの放射線施設・中性子利用施設、PET施設あるいは加速器施設・中性子を利用した検査施設等とすることが可能である。そして、下地Cは、前記施設の床面であり、例えば、コンクリートやモルタルにより形成される。
内装材A1,B1は、下地Cの表面の一部又は全部を被覆するとともに、該表面との間に接着層6を介在するようにして、該表面に張り付けられる。
接着層6には、下地C面に塗布されたプライマー(下塗り塗料)、及び該プライマーの乾燥後の表面に塗布された接着剤等から構成される。
前記プライマーには、例えば、ロンシール工業製のSPプライマーUを用いることができる。
また、前記接着剤は、JIS A 5536に準拠するものが好ましく、例えば、ロンシール工業製のロンセメントパワーエポを用いることができる。
Next, the structures A2 and B2 including the interior materials A1 and B1 configured as described above will be described.
A structure A2 shown in FIG. 2A includes the interior material A1 having the above-described configuration and a base C covered with the interior material A1.
Similarly, the structure B2 illustrated in FIG. 2B includes the interior material B1 having the above-described configuration and a base C covered with the interior material B1.
These structures A2 and B2 can be, for example, radiation facilities such as radiation medical facilities and research facilities, facilities using neutrons, PET facilities, accelerator facilities, inspection facilities using neutrons, and the like. And the foundation | substrate C is the floor surface of the said facility, for example, is formed with concrete or mortar.
The interior materials A1 and B1 cover part or all of the surface of the base C, and are attached to the surface with the adhesive layer 6 interposed therebetween.
The adhesive layer 6 is composed of a primer (undercoat paint) applied to the base C surface, an adhesive applied to the dried surface of the primer, and the like.
As the primer, for example, SP primer U manufactured by Ron Seal Industry can be used.
Further, the adhesive preferably conforms to JIS A 5536, and for example, Ron cement power epoch manufactured by Ron Seal Industry can be used.

次に、上記構成の内装材A1,B1について、評価試験の結果を説明する(図3〜5(表1〜3)参照)。   Next, the result of an evaluation test is demonstrated about interior material A1, B1 of the said structure (refer FIGS. 3-5 (Tables 1-3)).

図3(表1)は、実施例1〜6及び比較例1〜3に使用した中性子吸収層の配合を示す。各配合に用いた材料は以下のとおりである。
合成樹脂:ポリ塩化ビニル樹脂(PVC) 重合度1000、比重:1.4
可塑剤:フタル酸ジオクチル(DOP)、比重:0.99
熱安定剤:バリウム−亜鉛系金属石鹸、粉末状、比重:1.15
無機充填材:炭酸カルシウム、比重:2.7、モース硬度:3
中性子吸収材A:六方晶窒化ホウ素、平均粒径:8μm、比重:2.27、モース硬度:2
中性子吸収材B:炭化ホウ素、平均粒径:13.7μm、比重:2.51、モース硬度:14
基材:ガラスクロス、厚さ 約0.2mm、目付 縦約3本/cm×横約3本/cm
FIG. 3 (Table 1) shows the composition of the neutron absorbing layer used in Examples 1 to 6 and Comparative Examples 1 to 3. The materials used for each formulation are as follows.
Synthetic resin: Polyvinyl chloride resin (PVC) Degree of polymerization 1000, specific gravity: 1.4
Plasticizer: Dioctyl phthalate (DOP), specific gravity: 0.99
Thermal stabilizer: Barium-zinc metal soap, powder, specific gravity: 1.15
Inorganic filler: calcium carbonate, specific gravity: 2.7, Mohs hardness: 3
Neutron absorber A: hexagonal boron nitride, average particle size: 8 μm, specific gravity: 2.27, Mohs hardness: 2
Neutron absorber B: Boron carbide, average particle size: 13.7 μm, specific gravity: 2.51, Mohs hardness: 14
Base material: Glass cloth, thickness approx. 0.2mm, basis weight approx. 3 / cm x lateral approx. 3 / cm

<試験体の作製>
先ず、図3(表1)に記載の各混合物(コンパウンド)を、溶融混練後、温度185℃のカレンダーロールを用いたカレンダー成形により単層のシート状に成形した。
表1中、実施例1〜6の配合の単層シート状物は、第1の中性子吸収層1又は第2の中性子吸収層3として構成されるものであり、それぞれ、その厚みt1(又はt3)が約0.8mmである。
表1中、実施例7の配合の単層シート状物は、第3の中性子吸収層5として構成されるものであり、その厚みT2が約5mmである。
また、表1中、比較例1〜3の配合の単層シート状物は、それぞれ、その厚みが約0.8mmである。
<Preparation of specimen>
First, each mixture (compound) shown in FIG. 3 (Table 1) was melt-kneaded and then formed into a single-layer sheet by calendering using a calender roll at a temperature of 185 ° C.
In Table 1, the single-layer sheet-like material of the compositions of Examples 1 to 6 is configured as the first neutron absorption layer 1 or the second neutron absorption layer 3, and each has a thickness t1 (or t3). ) Is about 0.8mm.
In Table 1, the single-layer sheet material of the composition of Example 7 is configured as the third neutron absorption layer 5 and has a thickness T2 of about 5 mm.
Further, in Table 1, each of the single-layer sheet materials of the compositions of Comparative Examples 1 to 3 has a thickness of about 0.8 mm.

また、塩ビ樹脂100重量部、可塑剤35重量部、熱安定剤3重量部、充填材20重量部の混合物を、前記同様のカレンダー成形により単層のシート状に成形した。この単層シート状物は、意匠層4として構成されるものであり、その厚みt4が約0.4mmである。   Further, a mixture of 100 parts by weight of a vinyl chloride resin, 35 parts by weight of a plasticizer, 3 parts by weight of a heat stabilizer, and 20 parts by weight of a filler was formed into a single-layer sheet by calendar molding similar to the above. This single-layer sheet-like material is configured as the design layer 4 and has a thickness t4 of about 0.4 mm.

前記した各シート状物、及び基材2を順次熱融着により積層することで、実施例1〜7及び比較例1〜3の内装材を得た。
実施例1〜6及び比較例1〜3は、それぞれ、上述した内装材A1と同様の断面構造(図1(a)参照)の積層体であり、全体の厚さT1が約2mmの床板状に形成した。
なお、全体の厚みT1は、先に説明したように第1の中性子吸収層1と第2の中性子吸収層3が基材2の網目を埋めるため、各層の厚みt1〜t4の合計値にならない場合がある。
The above-described respective sheet-like materials and the base material 2 were sequentially laminated by thermal fusion to obtain the interior materials of Examples 1 to 7 and Comparative Examples 1 to 3.
Examples 1 to 6 and Comparative Examples 1 to 3 are each a laminated body having a cross-sectional structure similar to that of the interior material A1 described above (see FIG. 1A), and has a total thickness T1 of about 2 mm. Formed.
In addition, since the 1st neutron absorption layer 1 and the 2nd neutron absorption layer 3 fill the mesh | network of the base material 2 as demonstrated previously, the whole thickness T1 does not become the total value of thickness t1-t4 of each layer. There is a case.

実施例7は、内装材B1と同様の断面構造(図1(b)参照)の単層体であり、全体の厚さT2が約5mmのタイル状に形成した。   Example 7 is a single-layer body having a cross-sectional structure similar to that of the interior material B1 (see FIG. 1B), and was formed in a tile shape having an overall thickness T2 of about 5 mm.

<成形加工性の評価>
図4(表2)の成形加工性は、図3(表1)の配合の各混合物(コンパウンド)を、185℃の二本ロールにて溶融混練して厚み約0.8mmの単層シート状に成形する際に、その成形加工性を評価した結果を示している。
表2中、成型加工性の行における〇△×は、それぞれ、以下の状態を示す。
○:混練作業性・シート成形性共に良好。
△:混練作業時にやや硬さを感じるが、シート成形は可能。
×:コンパウンドが非常に硬く、混練作業が困難。ロール間隙へのコンパウンドのくい込みが悪く、シート成形が困難。
<Evaluation of molding processability>
The moldability shown in FIG. 4 (Table 2) is obtained by melting and kneading each mixture (compound) blended in FIG. 3 (Table 1) with two rolls at 185 ° C. to form a single layer sheet having a thickness of about 0.8 mm. The results of evaluating the moldability during molding are shown.
In Table 2, OΔx in the row of moldability indicates the following state, respectively.
○: Good kneading workability and sheet formability.
Δ: A slight hardness is felt during the kneading operation, but sheet molding is possible.
X: The compound is very hard and the kneading work is difficult. It is difficult to form a sheet due to poor penetration of the compound into the roll gap.

<熱中性子吸収性評価>
図4(表2)に示す熱中性子吸収性の評価は、内装材A1又は内装材B1の断面構造(図1(a)(b)参照)を有する実施例1〜7及び比較例1〜3をシミュレーション対象とし、粒子・重イオン輸送計算コードPHITS(Particle and Heavy Ion Transport Code System)による放射線シミュレーション解析により行った。PHITSは、汎用の粒子・重イオン輸送のモンテカルロ計算コードの1つであり、放射線施設の許認可申請にも用いられる信頼性の高い解析システムである。
表2中、熱中性子吸収性の行における◎○△×は、それぞれ、熱中性子透過量について、比較例1を1とした場合の比率が以下の範囲であることを示す。
◎:0.5以下
○:0.5〜0.8
△:0.8〜1.0
×:1.0以上
<Evaluation of thermal neutron absorption>
Evaluation of the thermal neutron absorbability shown in FIG. 4 (Table 2) is based on Examples 1 to 7 and Comparative Examples 1 to 3 having a cross-sectional structure of the interior material A1 or the interior material B1 (see FIGS. 1A and 1B). Was carried out by radiation simulation analysis using particle and heavy ion transport calculation code PHITS (Particle and Heavy Ion Transport Code System). PHITS is one of the general-purpose Monte Carlo calculation codes for particle and heavy ion transport, and is a highly reliable analysis system that is also used for applications for approval of radiation facilities.
In Table 2, ◎ ○ △ × in the thermal neutron absorbability row indicates that the ratio of the thermal neutron transmission amount when Comparative Example 1 is 1 is in the following range.
◎: 0.5 or less ○: 0.5 to 0.8
Δ: 0.8 to 1.0
×: 1.0 or more

<折り曲げ柔軟性評価>
図4(表2)に示す折り曲げ柔軟性の評価には、内装材A1の断面構造(図1(a)参照)を有する実施例1〜6及び比較例1〜3について、それぞれ、縦100mm×横25mmの試験片を作製し用いた。
この折り曲げ柔軟性は、JIS K 7106の試験方法を応用利用し、オルゼン式曲げこわさ試験機の支点間距離(20mm)と荷重(1.2Lbs)を一定とし、入隅方向に60°折り曲げ時の指示値にて評価した。
表2中、折り曲げ柔軟性の行における〇△×は、それぞれ、前記試験機の荷重を100%とした場合の比率(単位:%)が以下の範囲内であることを示す。この数値が低い程、柔軟であると評価できる。
○:50以下
△:51〜80
×:81以上
<Bending flexibility evaluation>
For evaluation of the bending flexibility shown in FIG. 4 (Table 2), each of Examples 1 to 6 and Comparative Examples 1 to 3 having the cross-sectional structure of the interior material A1 (see FIG. 1A) is 100 mm in length. A test piece having a width of 25 mm was prepared and used.
This bending flexibility is applied by applying the test method of JIS K 7106, and the distance between fulcrums (20mm) and load (1.2Lbs) of the Orzen-type bending stiffness tester is constant, and it is indicated when folding at 60 ° in the corner direction. The value was evaluated.
In Table 2, ◯ Δ × in the bending flexibility row indicates that the ratio (unit:%) when the load of the testing machine is 100% is in the following range. It can be evaluated that it is so flexible that this figure is low.
○: 50 or less △: 51-80
×: 81 or more

<接着性評価>
図4(表2)に示す90度剥離接着強度の評価には、内装材A1の断面構造(図1(a)参照)を有する実施例1〜6及び比較例1〜3について、それぞれ、縦200mm×横25mmの試験片を作製し用いた。
この試験は、JIS K 6854-1によるものであり、モルタル板にプライマー(ロンシール工業製:SPプライマーU)を塗布乾燥させたものを下地とし、JIS A 5536に準拠するエポキシ樹脂系二液形接着剤(ロンシール工業製:ロンセメントパワーエポ)を、専用くし目ゴテを用いて塗布し、オープンタイムを45分とった後に、前記試験片を張り付け、2日後の常態接着強度を引張試験機にて測定した。
表2中、90度剥離接着強度の行における◎○△は、それぞれ、90度剥離接着強度が以下の範囲内であることを示す。
◎:131(N/25mm)以上
○:61〜130(N/25mm)
△:20〜60(N/25mm)
<Adhesion evaluation>
For the evaluation of the 90-degree peel adhesive strength shown in FIG. 4 (Table 2), each of Examples 1 to 6 and Comparative Examples 1 to 3 having the cross-sectional structure (see FIG. A test piece of 200 mm × 25 mm wide was prepared and used.
This test is based on JIS K 6854-1, with a primer (SP Primer U made by Ron Seal Industry Co., Ltd.) coated and dried on a mortar board, and an epoxy resin-based two-part adhesive conforming to JIS A 5536 After applying the agent (Lonsea Kogyo Co., Ltd .: Roncement Power Epo) using a special comb iron and taking an open time of 45 minutes, the test piece was pasted and the normal bond strength after 2 days was measured with a tensile tester. It was measured.
In Table 2, “◎” in the 90 ° peel adhesion strength row indicates that the 90 ° peel adhesion strength is in the following range.
◎: 131 (N / 25mm) or more ○: 61-130 (N / 25mm)
Δ: 20-60 (N / 25mm)

図4(表2)に示したとおり、実施例1〜6は、成形加工性、熱中性子吸収性、折り曲げ柔軟性、及び90度剥離接着強度をバランスよく有したものであった。
そして、実施例7は、成形加工性、及び熱中性子吸収性をバランスよく有したものであった。
特に、中性子吸収層に無機充填材(炭酸カルシウム)を配合したもの(実施例6)については接着性が更に優れたものとなった。
As shown in FIG. 4 (Table 2), Examples 1 to 6 had good workability, thermal neutron absorbability, bending flexibility, and 90-degree peel adhesion strength in a well-balanced manner.
Example 7 had a good balance between moldability and thermal neutron absorbability.
In particular, the adhesiveness (Example 6) in which an inorganic filler (calcium carbonate) was blended in the neutron absorbing layer was further improved.

比較例1は、中性子吸収材を配合していないものであり、熱中性子吸収性が不十分であった。
比較例2は、中性子吸収材(窒化ホウ素)を少量配合したものであるが、熱中性子吸収性が不十分であった。
比較例3は、中性子吸収材(窒化ホウ素)を多量に配合したものであり、成形加工性・折り曲げ柔軟性が不十分であった。
In Comparative Example 1, no neutron absorber was blended, and the thermal neutron absorbability was insufficient.
In Comparative Example 2, a small amount of a neutron absorber (boron nitride) was blended, but the thermal neutron absorbability was insufficient.
In Comparative Example 3, a large amount of a neutron absorber (boron nitride) was blended, and molding processability and bending flexibility were insufficient.

また、図5(表3)は、放射化実験により放射性同位元素の生成量を測定した結果を示す。
この放射化実験には、内装材A1の断面構造(図1(a)参照)を有する実施例6及び比較例1について、それぞれ、直径5cmの試験片を作製し用いた。
この実験では、直径5cm,高さ5cmの普通コンクリートの円柱の上部に前記試験片を置き、前記試験片の上方には中性子発生装置を設置し、この中性子発生装置から前記試験片の表面に向けて熱中性子を一定量照射し、その後、前記普通コンクリート(円柱)に生成した被曝の主な原因となる2種類の放射性同位元素Na-24,Mn-56の生成量を、ゲルマニウム半導体検出器を用いて測定した。
前記中性子発生装置は、加速器(サイクロトロン)より発射した陽子ビームを、ベリリウムターゲットに衝突させて発生させ、ポリエチレン減速材によって熱中性子のエネルギーまで減速し放出するものである。
前記中性子発生装置により照射した熱中性子量は1.9×10-5 n/sec/cm2で、照射時間は2時間とした。
FIG. 5 (Table 3) shows the results of measuring the amount of radioisotope produced by activation experiments.
In this activation experiment, test pieces each having a diameter of 5 cm were prepared and used for Example 6 and Comparative Example 1 having the cross-sectional structure of the interior material A1 (see FIG. 1A).
In this experiment, the test piece is placed on top of a 5 cm diameter and 5 cm high regular concrete cylinder, a neutron generator is installed above the test piece, and the neutron generator is directed to the surface of the test piece. Then, a certain amount of thermal neutrons are irradiated, and then the amount of the two types of radioisotopes Na-24 and Mn-56, which are the main causes of the exposure generated on the above-mentioned ordinary concrete (cylinder), is measured using a germanium semiconductor detector. And measured.
The neutron generator generates a proton beam emitted from an accelerator (cyclotron) by colliding with a beryllium target, and decelerates and releases the energy to thermal neutron energy by a polyethylene moderator.
The amount of thermal neutron irradiated by the neutron generator was 1.9 × 10 −5 n / sec / cm 2 and the irradiation time was 2 hours.

前記放射化実験による結果は、図5(表3)に示すとおりであり、本願発明に係る実施例6は、従来の床材(比較例1)を施工した場合と比べ、前記放射性同位元素の生成量を約1/2に大幅に低減することができ、下地コンクリートの放射化抑制効果があることを確認した。   The result of the activation experiment is as shown in FIG. 5 (Table 3), and Example 6 according to the present invention is more effective than the case where the conventional flooring material (Comparative Example 1) is constructed. It was confirmed that the generation amount can be greatly reduced to about 1/2, and it has the effect of suppressing the activation of the ground concrete.

よって、上述した内装材A1,B1、構造物A2,B2及び放射化抑制方法によれば、従来の内装材では不可能であった下地コンクリートの放射化抑制を容易に達成することができ、ひいては、施設利用者等の被曝を防止するとともに、建物等の解体時における放射性廃棄物の発生を抑制して、廃棄コストを削減することができる。
さらに、本実施の形態の内装材A1,B1によれば、意匠層4等の構造により、内装材に求められる意匠性を向上することができる。
Therefore, according to the interior materials A1 and B1, the structures A2 and B2 and the activation suppression method described above, it is possible to easily achieve the activation suppression of the ground concrete, which is impossible with the conventional interior material, and consequently In addition to preventing exposure of facility users and the like, it is possible to reduce the cost of disposal by suppressing the generation of radioactive waste during the demolition of buildings and the like.
Furthermore, according to the interior materials A1 and B1 of the present embodiment, the design properties required for the interior material can be improved by the structure of the design layer 4 and the like.

なお、上記内装材A1では、第1の中性子吸収層1と第2の中性子吸収層3の厚みt1,t3を略同一にしたが、他例としては、これら二つの厚みt1,t3を異ならせることも可能である。   In the interior material A1, the thicknesses t1 and t3 of the first neutron absorption layer 1 and the second neutron absorption layer 3 are substantially the same. However, as another example, the two thicknesses t1 and t3 are different. It is also possible.

また、図示しない態様としては、内装材A1(図1(a)参照)から意匠層4を省いた態様、中性子吸収層を3以上備えるとともに隣接する中性子吸収層間にそれぞれ基材2を設けた態様等とすることも可能である。   Moreover, as an aspect which is not shown in figure, the aspect which excluded the design layer 4 from interior material A1 (refer FIG. 1 (a)), the aspect which provided the base material 2 between each adjacent neutron absorption layer while providing three or more neutron absorption layers Or the like.

また、上記実施の形態によれば、特に好ましい態様として、内装材を床材として構成したが、この内装材の他例としては、壁紙や、壁板材、腰板材、天井材等を構成することも可能である。   Moreover, according to the said embodiment, as an especially preferable aspect, although interior material was comprised as a flooring, as another example of this interior material, wallpaper, a wall board material, a waist board material, a ceiling material, etc. are comprised. Is also possible.

また、本発明は上述した実施の形態に限定されず、本発明の要旨を変更しない範囲で適宜変更可能である。   Further, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

1:第1の中性子吸収層
2:基材
3:第2の中性子吸収層
4:意匠層
5:第3の中性子吸収層
6:接着層
A1,B1:内装材
A2,B2:構造物
1: First neutron absorption layer 2: Base material 3: Second neutron absorption layer 4: Design layer 5: Third neutron absorption layer 6: Adhesive layer A1, B1: Interior materials A2, B2: Structure

Claims (7)

中性子吸収層を備えた内装材であって、前記中性子吸収層が、合成樹脂100重量部に対して中性子吸収材3〜90重量部を含むことを特徴とする内装材。   An interior material including a neutron absorption layer, wherein the neutron absorption layer includes 3 to 90 parts by weight of a neutron absorber with respect to 100 parts by weight of a synthetic resin. 前記中性子吸収材の含有量が0.1〜3kg/m2であることを特徴とする請求項1に記載の内装材。 The interior material according to claim 1, wherein the content of the neutron absorber is 0.1 to 3 kg / m 2 . 厚みが0.2〜5mmであることを特徴とする請求項1又は2記載の内装材。   The interior material according to claim 1 or 2, wherein the thickness is 0.2 to 5 mm. 前記中性子吸収層には、無機充填材が含まれていることを特徴とする請求項1〜3何れか1項記載の内装材。   The interior material according to any one of claims 1 to 3, wherein the neutron absorption layer contains an inorganic filler. 前記中性子吸収層に対し、中間層または最下層として基材が積層されていることを特徴とする請求項1〜4何れか1項記載の内装材。   The interior material according to any one of claims 1 to 4, wherein a base material is laminated as an intermediate layer or a lowermost layer with respect to the neutron absorption layer. 請求項1〜5何れか1項記載の内装材と、該内装材により覆われている下地とを具備することを特徴とする構造物。   A structure comprising the interior material according to any one of claims 1 to 5 and a base covered with the interior material. 請求項1〜5何れか1項記載の内装材を、下地に張り付けることを特徴とする下地の放射化抑制方法。   A method for suppressing activation of a base, comprising sticking the interior material according to any one of claims 1 to 5 to the base.
JP2016062490A 2016-03-25 2016-03-25 INTERIOR MATERIAL, STRUCTURE INCLUDED WITH THE INTERIOR MATERIAL, AND METHOD FOR SUPPRESSING ACTIVATION OF SUBSTRATE USING THE INTERIOR MATERIAL Active JP7128605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062490A JP7128605B2 (en) 2016-03-25 2016-03-25 INTERIOR MATERIAL, STRUCTURE INCLUDED WITH THE INTERIOR MATERIAL, AND METHOD FOR SUPPRESSING ACTIVATION OF SUBSTRATE USING THE INTERIOR MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062490A JP7128605B2 (en) 2016-03-25 2016-03-25 INTERIOR MATERIAL, STRUCTURE INCLUDED WITH THE INTERIOR MATERIAL, AND METHOD FOR SUPPRESSING ACTIVATION OF SUBSTRATE USING THE INTERIOR MATERIAL

Publications (2)

Publication Number Publication Date
JP2017173260A true JP2017173260A (en) 2017-09-28
JP7128605B2 JP7128605B2 (en) 2022-08-31

Family

ID=59972017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062490A Active JP7128605B2 (en) 2016-03-25 2016-03-25 INTERIOR MATERIAL, STRUCTURE INCLUDED WITH THE INTERIOR MATERIAL, AND METHOD FOR SUPPRESSING ACTIVATION OF SUBSTRATE USING THE INTERIOR MATERIAL

Country Status (1)

Country Link
JP (1) JP7128605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206455A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
WO2020166355A1 (en) * 2019-02-15 2020-08-20 株式会社安藤・間 Shielding body and radioactivation suppression structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797300U (en) * 1980-12-04 1982-06-15
JPS57151897A (en) * 1981-03-16 1982-09-20 Showa Denko Kk Neutron shielding material
JPS596799U (en) * 1982-07-07 1984-01-17 東レ株式会社 Covering cloth with neutron shielding ability
JPS5910098U (en) * 1982-07-12 1984-01-21 昭和ラミネ−ト印刷株式会社 radiation shielding sheet
JPS60109099U (en) * 1983-12-27 1985-07-24 凸版印刷株式会社 Neutron shielding sheet
JPS62280698A (en) * 1986-05-29 1987-12-05 三菱電線工業株式会社 Stack for shielding radiation and radiation protective clothing using said stack
US5262463A (en) * 1989-09-15 1993-11-16 Hoechst Aktiengesellschaft Neutron-absorbing materials
JP2011058922A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron beam shielding structure and room equipped with radiation source
JP2011058934A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron absorption sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063179A1 (en) 2002-01-23 2003-07-31 Allmighty Co., Ltd. Radiation protector and utilization thereof
JP2006233396A (en) 2005-02-28 2006-09-07 Kaneka Corp Method for producing vinyl chloride wallpaper of paste process
JPWO2012153772A1 (en) 2011-05-09 2014-07-31 クラレリビング株式会社 Radiation shielding material
JP5910098B2 (en) 2012-01-17 2016-04-27 トヨタ自動車株式会社 Drive device
US8842383B1 (en) 2013-05-31 2014-09-23 HGST Netherlands B.V. Laser power sensor with dual temperature sensor
JP6331005B2 (en) 2014-03-26 2018-05-30 クラレプラスチックス株式会社 Surface protection film for wall covering and wall covering using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797300U (en) * 1980-12-04 1982-06-15
JPS57151897A (en) * 1981-03-16 1982-09-20 Showa Denko Kk Neutron shielding material
JPS596799U (en) * 1982-07-07 1984-01-17 東レ株式会社 Covering cloth with neutron shielding ability
JPS5910098U (en) * 1982-07-12 1984-01-21 昭和ラミネ−ト印刷株式会社 radiation shielding sheet
JPS60109099U (en) * 1983-12-27 1985-07-24 凸版印刷株式会社 Neutron shielding sheet
JPS62280698A (en) * 1986-05-29 1987-12-05 三菱電線工業株式会社 Stack for shielding radiation and radiation protective clothing using said stack
US5262463A (en) * 1989-09-15 1993-11-16 Hoechst Aktiengesellschaft Neutron-absorbing materials
JP2011058922A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron beam shielding structure and room equipped with radiation source
JP2011058934A (en) * 2009-09-09 2011-03-24 Japan Atomic Energy Agency Neutron absorption sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206455A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
JP7138481B2 (en) 2018-05-30 2022-09-16 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
WO2020166355A1 (en) * 2019-02-15 2020-08-20 株式会社安藤・間 Shielding body and radioactivation suppression structure

Also Published As

Publication number Publication date
JP7128605B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
KR101527796B1 (en) Method for preparing textile composite for sheilding radiation
ES2691022T3 (en) A wall, a partition, a ceiling or a floor comprising gypsum boards for protection against radioactive rays
CN104080373B (en) Anti-flammability planar body and employ the mat not easily producing pernicious gas of described anti-flammability planar body and this not easily produces the manufacture method of the mat of pernicious gas
US9365017B2 (en) Moldable fire resistant composites
ES2738495T3 (en) Multilayer panel
JP7128605B2 (en) INTERIOR MATERIAL, STRUCTURE INCLUDED WITH THE INTERIOR MATERIAL, AND METHOD FOR SUPPRESSING ACTIVATION OF SUBSTRATE USING THE INTERIOR MATERIAL
WO2020162311A1 (en) Radioactivation suppressing structure and wall management method
KR102091344B1 (en) Multilayer sheet for radiation shielding and adhesive special paper comprising the same
JP2015030253A (en) Transparent nonflammable sheet and method for producing the same, and smokeproof vertical wall
JP6322359B2 (en) Radiation shielding wall, radiation shielding wall construction method, and radiation shielding wall repair method
DE102005057428B3 (en) Radiation resisting and -shielding coating system for components and structures, comprises carrier- and covering layers formed by sprayable gum out of isocyanate hardening polymer and composition of gum particles
JP2017170785A (en) Nonflammable sheet
JP6412991B2 (en) Transparent incombustible sheet, method for producing the same, and smoke barrier
JP2014181521A (en) Floor sheet and floor material using the same
JP2017170786A (en) Nonflammable sheet
JP2009285946A (en) Interior decorative material
RU223479U1 (en) Radiation protection panel
JP2020134222A (en) Shield body and radioactivation suppression structure
KR102496420B1 (en) Wallpaper and floor panel with excellent radon blocking effect
JP2014025216A (en) Base sheet for floor material and floor structure
JP2022173984A (en) Lightweight plate with excellent radiation resistance
JP4929991B2 (en) Interior decorative material
JP2016097622A (en) Incombustible decorative sheet and manufacturing method therefor
JP2022086791A (en) Antiviral pressure sensitive adhesive sheet
JP2014137364A (en) Sheet-like and tabular radiation shield or radiation transmission containment surface materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210127

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210319

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210323

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210601

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220315

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220712

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220801

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220816

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7128605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150