JP2017172281A - Building - Google Patents

Building Download PDF

Info

Publication number
JP2017172281A
JP2017172281A JP2016061643A JP2016061643A JP2017172281A JP 2017172281 A JP2017172281 A JP 2017172281A JP 2016061643 A JP2016061643 A JP 2016061643A JP 2016061643 A JP2016061643 A JP 2016061643A JP 2017172281 A JP2017172281 A JP 2017172281A
Authority
JP
Japan
Prior art keywords
building
floor
fluid
storage tank
staircase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016061643A
Other languages
Japanese (ja)
Other versions
JP6542151B2 (en
Inventor
正樹 池田
Masaki Ikeda
正樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016061643A priority Critical patent/JP6542151B2/en
Publication of JP2017172281A publication Critical patent/JP2017172281A/en
Application granted granted Critical
Publication of JP6542151B2 publication Critical patent/JP6542151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor building with high safety properties capable of effectively preventing water from flowing into lower stories of the reactor building during a water disaster such as a tsunami or flood.SOLUTION: The reactor building includes: a storage tank 51 for storing fluid flowing in the building; and piping 41 disposed between the building and the storage tank 51 as a flow passage for the fluid. If the fluid flows into the building, the fluid flows in via the piping 41 and is stored in the storage tank 51.SELECTED DRAWING: Figure 1A

Description

本発明は、建屋の構造に係り、特に、津波や洪水などの水災害時に有効な原子力施設の建屋構造に関する。   The present invention relates to a structure of a building, and more particularly to a building structure of a nuclear facility that is effective at the time of a water disaster such as a tsunami or flood.

東日本大震災時の大津波の襲来により大きな損害を受けた原子力施設では、津波から重要設備を保護することが課題となっている。このような重要設備の1つとして、原子炉隔離時冷却系(RCIC)がある。   At nuclear facilities that have suffered significant damage from the tsunami attack during the Great East Japan Earthquake, protecting important equipment from the tsunami has become an issue. One such critical facility is the reactor isolation cooling system (RCIC).

RCIC(Reactor Core Isolation Cooling system)は、通常運転中に異常が発生した場合、原子炉の蒸気でタービン駆動ポンプを回して冷却水を原子炉に注水し、燃料の崩壊熱を除去し減圧する安全システムである。また、給水系の故障時などに、非常用注水ポンプとして機能し、原子炉の水位を維持する。   The RCIC (Reactor Core Isolation Cooling System) is a safety system that, when an abnormality occurs during normal operation, rotates the turbine drive pump with the steam of the reactor to inject cooling water into the reactor, removes the decay heat of the fuel, and reduces the pressure System. Also, it functions as an emergency water injection pump when the water supply system fails, and maintains the water level of the reactor.

一般に、原子力施設では、このRCICポンプ室は原子力施設の下階に設置されることが多い。その結果、大物搬入口が設置される上階で浸水が起こると、海水などの流体が上階から下階へ流入し、RCICポンプ室が浸水してしまう可能性がある。したがって、津波により建屋の上階に流体が流入した場合を想定し、上階から下階へ流入することを防ぐ方法が必要とされている。   Generally, in a nuclear facility, this RCIC pump room is often installed on the lower floor of the nuclear facility. As a result, when inundation occurs on the upper floor where the large-sized carry-in entrance is installed, fluid such as seawater may flow from the upper floor to the lower floor, and the RCIC pump chamber may be submerged. Therefore, assuming a case where fluid flows into the upper floor of the building due to a tsunami, a method for preventing the fluid from flowing from the upper floor to the lower floor is required.

本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、「津波や洪水などの水災害時に、空調ダクトを通じて建屋内に水が浸入するのを防止する止水装置を備えた空調ダクト」が開示されている。   As a background art in this technical field, for example, there is a technique such as Patent Document 1. Patent Document 1 discloses “an air conditioning duct including a water stop device that prevents water from entering the building through an air conditioning duct during a water disaster such as a tsunami or flood”.

特開2014−228175号公報JP 2014-228175 A

上記特許文献1のように、止水装置の利用により流体が空調ダクトを通じて建屋内へ流入するのを防ぐ方法などが提案されているが、流体が建屋内に流入してしまった時のシステムとしては不十分である。   As described in Patent Document 1, a method for preventing fluid from flowing into the building through the air conditioning duct by using a water stop device has been proposed, but as a system when the fluid has flowed into the building. Is insufficient.

そこで、本発明の目的は、津波や洪水などの水災害時に原子炉建屋の下階への水の流入を効果的に防止し、より安全性の高い原子炉建屋を提供することにある。   Accordingly, an object of the present invention is to effectively prevent the inflow of water into the lower floor of a reactor building at the time of a water disaster such as a tsunami or a flood, and provide a safer reactor building.

上記課題を解決するために、本発明は、建屋内に流入する流体を貯留する貯留槽と、前記建屋と前記貯留槽との間に設けられ、前記流体の流路となる配管と、を備え、流体が前記建屋内に流入した際、当該流入した流体が前記配管を介して前記貯留槽に貯留されることを特徴とする。   In order to solve the above problems, the present invention includes a storage tank that stores a fluid flowing into a building, and a pipe that is provided between the building and the storage tank and serves as a flow path for the fluid. When the fluid flows into the building, the fluid that flows in is stored in the storage tank through the pipe.

本発明によれば、津波襲来時に原子力施設に流入した流体を貯留槽に貯水し、流体が流入した位置よりも下階に設置された設備を流体から保護することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to store the fluid which flowed into the nuclear facility at the time of tsunami attack in a storage tank, and to protect the installation installed in the lower floor from the position where the fluid flowed in from the fluid.

これにより、原子力施設の安全性及び信頼性の向上を図ることができる。   As a result, the safety and reliability of the nuclear facility can be improved.

なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 図1Aにおける原子炉建屋1階の平面図である。It is a top view of the reactor building 1st floor in FIG. 1A. 図1Aにおける原子炉建屋地下1階の平面図である。It is a top view of the reactor building 1st floor in FIG. 1A. 図1Aにおける原子炉建屋地下2階の平面図である。It is a top view of the reactor building 2nd floor in FIG. 1A. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る網板を示す模式図である。It is a schematic diagram which shows the net | network board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 図5Aにおける原子炉建屋1階の平面図である。It is a top view of the reactor building 1st floor in FIG. 5A. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 図6Aにおける原子炉建屋1階の平面図である。It is a top view of the reactor building 1st floor in FIG. 6A. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 図7Aにおける原子炉建屋1階の平面図である。It is a top view of the reactor building 1st floor in FIG. 7A. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention. 本発明の一実施形態に係る原子炉建屋の断面構造を示す図である。It is a figure showing the section structure of the reactor building concerning one embodiment of the present invention.

以下、本発明の実施例について図面を用いて説明する。なお、各図面および各実施例において同一又は類似の構成要素については同じ符号を付し、重複する部分についてはその詳細な説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing and each embodiment, the same or similar components are denoted by the same reference numerals, and detailed description of overlapping portions is omitted.

図1Aから図3を用いて、実施例1の原子力施設の建屋構造について説明する。本実施例では、津波襲来時に大物搬入口から流入した流体が、下階に設置されたRCICポンプ室に流入しないように、大物搬入口から流入した流体を貯水する貯水槽と、貯水槽と階段室とを接続する配管とを備えた原子炉建屋の例について説明する。   The building structure of the nuclear facility according to the first embodiment will be described with reference to FIGS. 1A to 3. In the present embodiment, a reservoir that stores the fluid that has flowed in from the large carry-in port, a water tank, and a staircase so that the fluid that has flowed from the large carry-in port does not flow into the RCIC pump room installed on the lower floor when the tsunami strikes. An example of a nuclear reactor building provided with piping connecting the chambers will be described.

なお、本実施例では、説明をわかりやすくするために、1階に大物搬入口11を配置し、地下2階にRCICポンプ室21を配置し、1階と地下2階との間に1階と地下2階との間の浸水経路となる階段室30を配置し、階段室30に貯水槽51へ繋がる配管41を接続した原子炉建屋を想定する。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、開閉式の扉34を必要に応じて設置する。   In this embodiment, in order to make the explanation easy to understand, the large-size entrance 11 is arranged on the first floor, the RCIC pump chamber 21 is arranged on the second basement floor, and the first floor is between the first floor and the second basement floor. A reactor building is assumed in which a staircase 30 serving as an inundation path between the first floor and the second floor is arranged, and a pipe 41 connected to the water storage tank 51 is connected to the staircase 30. Further, in the staircase 30, an openable door 34 is installed as necessary in order to prevent the fluid from flowing into the lower floor than the position where the pipe 41 is connected.

本実施例において、貯水槽51は流体を貯留する貯留槽である。また、階段室30は少なくとも2階以上の複数階からなる建屋の各階を行き来するための階段および踊り場を含むエリアのことである。   In the present embodiment, the water storage tank 51 is a storage tank for storing fluid. The staircase room 30 is an area including a stairway and a landing for going back and forth between each floor of a building composed of at least two or more floors.

図1Aは、本実施例の原子炉建屋1階、原子炉建屋地下1階、原子炉建屋地下2階の断面図であり、図1B、図1C、図1Dは、それぞれ本実施例の原子炉建屋1階の平面図、原子炉建屋地下1階の平面図、原子炉建屋地下2階の平面図である。図1B、図1C、図1Dの点線の断面が図1Aに対応する。原子炉建屋の中央には、原子炉格納容器0が配置されていることがわかる。   FIG. 1A is a cross-sectional view of the first floor of the reactor building, the first floor of the reactor building, and the second floor of the reactor building according to the present embodiment. FIGS. 1B, 1C, and 1D are the reactors of the present embodiment, respectively. FIG. 3 is a plan view of the first floor of the building, a plan view of the first floor of the reactor building, and a plan view of the second floor of the reactor building. 1B, 1C, and 1D correspond to FIG. 1A. It can be seen that the reactor containment vessel 0 is arranged in the center of the reactor building.

津波により大物搬入口11から流入した流体は、まず1階の管理区域10に流入する。そして1階の階段扉31の破損などが生じると、流体は階段室30に流入する。   The fluid that has flowed in from the large material entrance 11 due to the tsunami first flows into the management area 10 on the first floor. When the first floor staircase door 31 is damaged, the fluid flows into the staircase 30.

ここで、階段室30に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、階段室30に流入した流体は、階段室30の地下2階へ到達する。そして、地下2階の階段扉33の破損などが生じると、流体は地下2階の管理区域20に流入する。さらに、地下2階のRCICポンプ室扉22の破損などが生じると、流体はRCICポンプ室21に流入する。   Here, when it is assumed that the pipe 41 connected to the water storage tank 51 is not connected to the staircase 30, the fluid flowing into the staircase 30 reaches the second floor of the staircase 30. Then, when the staircase door 33 on the second basement floor is damaged, the fluid flows into the management area 20 on the second basement floor. Further, when the RCIC pump chamber door 22 on the second basement floor is damaged, the fluid flows into the RCIC pump chamber 21.

しかし本実施例では、この浸水経路となる階段室30の途中に貯水槽51へ繋がる配管41を接続するため、流入した流体は配管41を通って貯水槽51に貯水される。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、原子炉建屋への流体の流入を検知したときに閉まる開閉式の扉34を必要に応じて設置する。   However, in the present embodiment, since the pipe 41 connected to the water storage tank 51 is connected in the middle of the staircase 30 serving as the inundation path, the inflowing fluid is stored in the water storage tank 51 through the pipe 41. In addition, the staircase 30 requires an openable door 34 that closes when fluid inflow to the reactor building is detected in order to prevent fluid from flowing into the lower floor than the position where the pipe 41 is connected. Install accordingly.

扉34の設置位置は、例えば、図1Aのように、階段室30の1階と地下1階との間に配管41が接続されているときは、階段室30の1階と地下1階との間に扉34を設置する。図2Aのように、階段室30の地下1階と地下2階との間に配管41が接続されているときは、階段室30の地下1階と地下2階との間に扉34を設置する。図2Bのように、階段室30の地下2階の位置に配管41が接続されているときは、扉34を設置しない。   For example, as shown in FIG. 1A, when the piping 41 is connected between the first floor of the staircase 30 and the first basement, the door 34 is installed on the first floor and the first basement. A door 34 is installed between the two. As shown in FIG. 2A, when the pipe 41 is connected between the first basement floor and the second basement floor of the staircase 30, a door 34 is installed between the first basement floor and the second basement floor of the staircase 30. To do. As shown in FIG. 2B, the door 34 is not installed when the pipe 41 is connected to the second basement level of the staircase 30.

また、流体がRCICポンプ室21へ流入する確率を低くするために、図2Cのように、扉34と同様な扉を複数設置してもよい。図2Cのように、扉34と同様な扉341と扉342を設置した場合は、扉341の破損などにより流体が扉341を通過しても、扉342により下階への流体の流入を防ぐことができる。つまり、扉の枚数を増すことで、RCICポンプ室21に流体が流入する確率を低くすることができる。   Further, in order to reduce the probability that the fluid flows into the RCIC pump chamber 21, a plurality of doors similar to the door 34 may be installed as shown in FIG. 2C. When doors 341 and 342 similar to the door 34 are installed as shown in FIG. 2C, even if fluid passes through the door 341 due to damage to the door 341, the door 342 prevents fluid from flowing into the lower floor. be able to. That is, by increasing the number of doors, the probability of fluid flowing into the RCIC pump chamber 21 can be reduced.

貯水槽51へ繋がる配管41と階段室30との境界には、流体は通過できるが、人間などは通過できないように、図3のような網板42を設置する。この網板42は、取り外し可能であっても不可であっても良いが、取り外し可能の場合は、メンテナンスなどを効率よく行うことができる。なお、人間などが通過できないようにする目的は、階段室30を通行する人間などが配管41を通って貯水槽51に落下することを防止するためである。また、ここでは例として図3のような網板42を示したが、網板42以外でも、流体は通過できるが、人間などは通過できない板や扉を用いてもよい。   A net 42 as shown in FIG. 3 is installed at the boundary between the piping 41 connected to the water storage tank 51 and the staircase 30 so that fluid can pass but humans cannot pass. The mesh plate 42 may be removable or not, but if it is removable, maintenance and the like can be performed efficiently. The purpose of preventing a person or the like from passing is to prevent a person or the like who passes through the staircase 30 from dropping into the water storage tank 51 through the pipe 41. Further, here, the mesh plate 42 as shown in FIG. 3 is shown as an example. However, a plate or door other than the mesh plate 42 that allows fluid to pass through but cannot pass through by humans may be used.

本実施例の原子炉建屋では、大物搬入口11から流入した流体は、1階の階段扉31の破損などにより階段室30に流入しても、配管41を通って貯水槽51に貯水される。その結果、流体が地下2階のRCICポンプ室21に流入することを防ぐことができる。   In the reactor building of the present embodiment, even if the fluid flowing in from the large material entrance 11 flows into the staircase 30 due to damage to the staircase door 31 on the first floor, the fluid is stored in the water storage tank 51 through the pipe 41. . As a result, the fluid can be prevented from flowing into the RCIC pump chamber 21 on the second basement floor.

なお、図1Bでは階段室30が大物搬入口11の反対側に設置されている例を示したが、大物搬入口11に対して横方向、すなわち図1Bの上下いずれかの位置に階段室30を設けてもよい。   Although FIG. 1B shows an example in which the staircase 30 is installed on the opposite side of the large carry-in entrance 11, the staircase 30 is arranged in a lateral direction with respect to the large carry-in entrance 11, that is, in any position above and below in FIG. 1B. May be provided.

また、本実施例では、説明をわかりやすくするために、浸水経路が1階の大物搬入口11から地下2階のRCICポンプ室21である原子炉建屋の例を示したが、流体が上階から下階へ流入することを想定し、上階から下階への浸水経路の途中に貯水槽51へ繋がる配管41を接続した原子炉建屋も本実施例に含まれる。   Further, in this embodiment, in order to make the explanation easy to understand, an example of the reactor building in which the inundation path is the RCIC pump chamber 21 on the second floor from the large material entrance 11 on the first floor is shown. This embodiment also includes a reactor building in which a pipe 41 connected to the water storage tank 51 is connected in the middle of the inundation path from the upper floor to the lower floor, assuming that it flows into the lower floor from the upper floor.

また、本実施例では、建屋の例として原子炉建屋を用いて説明したが、流体が上階から下階へ流入することを想定し、上階から下階への浸水経路の途中に貯水槽51へ繋がる配管41を接続した他の原子力施設の建屋も本実施例に含まれる。   In this embodiment, the reactor building is described as an example of the building. However, assuming that the fluid flows from the upper floor to the lower floor, the water storage tank is in the middle of the inundation path from the upper floor to the lower floor. Buildings of other nuclear facilities connected to the piping 41 connected to 51 are also included in this embodiment.

図4を用いて、実施例2の原子力施設の建屋構造について説明する。本実施例では、津波襲来時に大物搬入口から流入した流体が、下階に設置されたRCICポンプ室に流入しないように、大物搬入口から流入した流体を貯水する貯水槽と、貯水槽と階段室とを接続する複数の配管とを備えた原子炉建屋の例について説明する。なお、本実施例では、説明をわかりやすくするために、1階に大物搬入口11を配置し、地下2階にRCICポンプ室21を配置し、1階と地下2階との間に1階と地下2階との間の浸水経路となる階段室30を配置し、階段室30に貯水槽51へ繋がる少なくとも2系統以上の複数の配管41を接続した原子炉建屋を想定する。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、開閉式の扉34を必要に応じて設置する。   The building structure of the nuclear facility of Example 2 will be described with reference to FIG. In the present embodiment, a reservoir that stores the fluid that has flowed in from the large carry-in port, a water tank, and a staircase so that the fluid that has flowed from the large carry-in port does not flow into the RCIC pump room installed on the lower floor when the tsunami strikes. An example of a reactor building provided with a plurality of pipes connecting the chambers will be described. In this embodiment, in order to make the explanation easy to understand, the large-size entrance 11 is arranged on the first floor, the RCIC pump chamber 21 is arranged on the second basement floor, and the first floor is between the first floor and the second basement floor. A reactor building is assumed in which a staircase 30 serving as an inundation path between the first floor and the second floor is disposed, and a plurality of pipes 41 of at least two systems connected to the water storage tank 51 are connected to the staircase 30. Further, in the staircase 30, an openable door 34 is installed as necessary in order to prevent the fluid from flowing into the lower floor than the position where the pipe 41 is connected.

本実施例において、貯水槽51は流体を貯留する貯留槽である。また、階段室30は少なくとも2階以上の複数階からなる建屋の各階を行き来するための階段および踊り場を含むエリアのことである。   In the present embodiment, the water storage tank 51 is a storage tank for storing fluid. The staircase room 30 is an area including a stairway and a landing for going back and forth between each floor of a building composed of at least two or more floors.

図4は、本実施例の原子炉建屋1階、原子炉建屋地下1階、原子炉建屋地下2階の断面図である。なお、原子炉建屋1階の平面図、原子炉建屋地下1階の平面図、原子炉建屋地下2階の平面図については、実施例1と同様であるため省略する。   FIG. 4 is a cross-sectional view of the first floor of the reactor building, the first basement floor of the reactor building, and the second basement floor of the reactor building of this embodiment. Note that the plan view of the first floor of the reactor building, the plan view of the first floor of the reactor building, and the plan view of the second floor of the reactor building are the same as those in the first embodiment, and therefore will be omitted.

津波により大物搬入口11から流入した流体は、まず1階の管理区域10に流入する。そして1階の階段扉31の破損などが生じると、流体は階段室30に流入する。   The fluid that has flowed in from the large material entrance 11 due to the tsunami first flows into the management area 10 on the first floor. When the first floor staircase door 31 is damaged, the fluid flows into the staircase 30.

ここで、階段室30に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、階段室30に流入した流体は、階段室30の地下2階へ到達する。そして、地下2階の階段扉33の破損などが生じると、流体は地下2階の管理区域20に流入する。さらに、地下2階のRCICポンプ室扉22の破損などが生じると、流体はRCICポンプ室21に流入する。   Here, when it is assumed that the pipe 41 connected to the water storage tank 51 is not connected to the staircase 30, the fluid flowing into the staircase 30 reaches the second floor of the staircase 30. Then, when the staircase door 33 on the second basement floor is damaged, the fluid flows into the management area 20 on the second basement floor. Further, when the RCIC pump chamber door 22 on the second basement floor is damaged, the fluid flows into the RCIC pump chamber 21.

しかし本実施例では、この浸水経路となる階段室30の途中に貯水槽51へ繋がる複数の配管41を接続するため、流入した流体は配管41を通って貯水槽51に貯水される。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、原子炉建屋への流体の流入を検知したときに閉まる開閉式の扉34を必要に応じて設置する。扉34の設置位置の例については、実施例1と同様であるため、説明を省略する。   However, in the present embodiment, since a plurality of pipes 41 connected to the water storage tank 51 are connected in the middle of the staircase 30 serving as the inundation path, the inflowing fluid is stored in the water storage tank 51 through the pipe 41. In addition, the staircase 30 requires an openable door 34 that closes when fluid inflow to the reactor building is detected in order to prevent fluid from flowing into the lower floor than the position where the pipe 41 is connected. Install accordingly. About the example of the installation position of the door 34, since it is the same as that of Example 1, description is abbreviate | omitted.

貯水槽51へ繋がる複数の配管41と階段室30との境界には、実施例1で説明したような流体は通過できるが、人間などは通過できない網板42のようなものを設置する。これに関する説明も、実施例1と同様であるため省略する。   At the boundary between the plurality of pipes 41 connected to the water storage tank 51 and the staircase 30, a fluid such as the net plate 42 that can pass the fluid as described in the first embodiment but cannot pass by humans or the like is installed. Since the explanation about this is also the same as that of the first embodiment, it will be omitted.

本実施例の原子炉建屋では、大物搬入口11から流入した流体は、1階の階段扉31の破損などにより階段室30に流入しても、複数の配管41を通って貯水槽51に貯水される。その結果、流体が地下2階のRCICポンプ室21に流入することを防ぐことができる。なお、本実施例は、実施例1と異なり、貯水槽51へ繋がる複数の配管41を階段室30へ接続しているため、実施例1よりも、流体がRCICポンプ室21へ流入する可能性が低いと考えられる。   In the reactor building of the present embodiment, even if the fluid that has flowed in from the large material entrance 11 flows into the staircase 30 due to damage to the staircase door 31 on the first floor, the water is stored in the water storage tank 51 through the plurality of pipes 41. Is done. As a result, the fluid can be prevented from flowing into the RCIC pump chamber 21 on the second basement floor. In this embodiment, unlike the first embodiment, a plurality of pipes 41 connected to the water storage tank 51 are connected to the staircase 30, so that the fluid may flow into the RCIC pump chamber 21 as compared to the first embodiment. Is considered low.

本実施例では、説明をわかりやすくするために、浸水経路が1階の大物搬入口11から地下2階のRCICポンプ室21である原子炉建屋の例を示したが、流体が上階から下階へ流入することを想定し、上階から下階への浸水経路の途中に貯水槽51へ繋がる複数の配管41を接続した原子炉建屋も本実施例に含まれる。   In this embodiment, in order to make the explanation easy to understand, an example of the reactor building in which the inundation path is the RCIC pump chamber 21 on the second basement floor from the large entrance 11 on the first floor is shown, but the fluid flows from the upper floor to the lower floor. A reactor building in which a plurality of pipes 41 connected to the water storage tank 51 are connected in the middle of the inundation path from the upper floor to the lower floor is assumed to be inflow into the floor.

また、本実施例では、建屋の例として原子炉建屋を用いて説明したが、流体が上階から下階へ流入することを想定し、上階から下階への浸水経路の途中に貯水槽51へ繋がる複数の配管41を接続した他の原子力施設の建屋も本実施例に含まれる。   In this embodiment, the reactor building is described as an example of the building. However, assuming that the fluid flows from the upper floor to the lower floor, the water storage tank is in the middle of the inundation path from the upper floor to the lower floor. Buildings of other nuclear facilities to which a plurality of pipes 41 connected to 51 are connected are also included in this embodiment.

図5A及び図5Bを用いて、実施例3の原子力施設の建屋構造について説明する。本実施例では、津波襲来時に大物搬入口から流入した流体が、下階に設置されたRCICポンプ室に流入しないように、大物搬入口から流入した流体を貯水する貯水槽と、貯水槽と大物搬入口と同じフロアとを接続する配管とを備えた原子炉建屋の例について説明する。なお、本実施例では、説明をわかりやすくするために、1階に大物搬入口11を配置し、地下2階にRCICポンプ室21を配置し、1階と地下2階との間に1階と地下2階との間の浸水経路となる階段室30を配置し、1階に貯水槽51へ繋がる配管41を接続した原子炉建屋を想定する。   The building structure of the nuclear facility of Example 3 will be described with reference to FIGS. 5A and 5B. In the present embodiment, a reservoir that stores the fluid that has flowed in from the large carry-in port, a water tank and a large product so that the fluid that has flowed from the large carry-in port does not flow into the RCIC pump room installed on the lower floor when the tsunami strikes. An example of a reactor building provided with piping that connects the same floor to the carry-in port will be described. In this embodiment, in order to make the explanation easy to understand, the large-size entrance 11 is arranged on the first floor, the RCIC pump chamber 21 is arranged on the second basement floor, and the first floor is between the first floor and the second basement floor. A reactor building is assumed in which a staircase 30 serving as an inundation path between the first floor and the second floor is arranged, and a pipe 41 connected to a water storage tank 51 is connected to the first floor.

本実施例において、貯水槽51は流体を貯留する貯留槽である。また、階段室30は少なくとも2階以上の複数階からなる建屋の各階を行き来するための階段および踊り場を含むエリアのことである。   In the present embodiment, the water storage tank 51 is a storage tank for storing fluid. The staircase room 30 is an area including a stairway and a landing for going back and forth between each floor of a building composed of at least two or more floors.

図5Aは、本実施例の原子炉建屋1階、原子炉建屋地下1階、原子炉建屋地下2階の断面図であり、図5Bは本実施例の原子炉建屋1階の平面図である。図5Bの点線の断面が図5Aに対応する。なお、原子炉建屋地下1階の平面図、原子炉建屋地下2階の平面図については、実施例1と同様であるため省略する。   FIG. 5A is a cross-sectional view of the first floor of the reactor building, the first floor of the reactor building, and the second floor of the reactor building of the present embodiment, and FIG. 5B is a plan view of the first floor of the reactor building of the present embodiment. . The cross section of the dotted line in FIG. 5B corresponds to FIG. 5A. Since the plan view of the first floor of the reactor building and the plan view of the second floor of the reactor building are the same as those in the first embodiment, the description thereof is omitted.

津波により大物搬入口11から流入した流体は、まず1階の管理区域10に流入する。   The fluid that has flowed in from the large material entrance 11 due to the tsunami first flows into the management area 10 on the first floor.

ここで、原子炉建屋1階に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、1階の階段扉31の破損などが生じると、流体は階段室30に流入する。そして、階段室30に流入した流体が階段室30の地下2階へ到達し、地下2階の階段扉33の破損などが生じると、流体は地下2階の管理区域20に流入する。さらに、地下2階のRCICポンプ室扉22の破損などが生じると、流体はRCICポンプ室21に流入する。   Here, if it is assumed that the piping 41 connected to the water storage tank 51 is not connected to the first floor of the reactor building, the fluid flows into the staircase 30 when the staircase door 31 on the first floor is damaged. Then, when the fluid flowing into the staircase 30 reaches the second basement floor of the staircase 30 and the staircase door 33 on the second basement floor is damaged, the fluid flows into the management area 20 on the second basement floor. Further, when the RCIC pump chamber door 22 on the second basement floor is damaged, the fluid flows into the RCIC pump chamber 21.

しかし本実施例では、1階に貯水槽51へ繋がる配管41を接続するため、流入した流体は配管41を通って貯水槽51に貯水される。   However, in the present embodiment, since the pipe 41 connected to the water storage tank 51 is connected to the first floor, the fluid that flows in is stored in the water storage tank 51 through the pipe 41.

貯水槽51へ繋がる配管41と原子炉建屋1階との境界には、実施例1で説明したような流体は通過できるが、人間などは通過できない網板42のようなものを設置する。これに関する説明は、実施例1と同様であるため省略する。   At the boundary between the piping 41 connected to the water storage tank 51 and the first floor of the reactor building, a fluid such as the net plate 42 that can pass the fluid as described in the first embodiment but cannot pass by humans or the like is installed. Since the description regarding this is the same as that of the first embodiment, a description thereof will be omitted.

本実施例の原子炉建屋では、大物搬入口11から流入した流体は、配管41を通って貯水槽51に貯水される。その結果、流体が地下2階のRCICポンプ室21に流入することを防ぐことができる。なお、本実施例では、配管41を1階に接続しているため、1階に流入した流体は、階段室30に流入せずに、配管41に流入する可能性が高い。したがって、本実施例は、実施例1よりも、流体がRCICポンプ室21に流入する可能性が低いと考えられる。   In the reactor building of the present embodiment, the fluid flowing in from the large material inlet 11 is stored in the water tank 51 through the pipe 41. As a result, the fluid can be prevented from flowing into the RCIC pump chamber 21 on the second basement floor. In the present embodiment, since the pipe 41 is connected to the first floor, the fluid flowing into the first floor has a high possibility of flowing into the pipe 41 without flowing into the staircase 30. Therefore, it is considered that the possibility that the fluid flows into the RCIC pump chamber 21 is lower than that in the first embodiment.

本実施例では、説明をわかりやすくするために、浸水経路が1階の大物搬入口11から地下2階のRCICポンプ室21である原子炉建屋の例を示したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアに貯水槽51へ繋がる配管41を接続した原子炉建屋も本実施例に含まれる。   In this embodiment, in order to make the explanation easy to understand, an example of the reactor building in which the inundation path is the RCIC pump chamber 21 on the second basement floor from the large entrance 11 on the first floor is shown, but the fluid flows from the upper floor to the lower floor. The reactor building in which the pipe 41 connected to the water storage tank 51 is connected to the floor into which the fluid has flowed in is assumed in this embodiment.

また、本実施例では、建屋の例として原子炉建屋を用いて説明したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアに貯水槽51へ繋がる配管41を接続した他の原子力施設の建屋も本実施例に含まれる。   In this embodiment, the reactor building is described as an example of the building. However, assuming that the fluid flows from the upper floor to the lower floor, the pipe 41 connected to the water storage tank 51 is connected to the floor into which the fluid flows. Buildings of other connected nuclear facilities are also included in this embodiment.

図6A及び図6Bを用いて、実施例4の原子力施設の建屋構造について説明する。本実施例では、津波襲来時に大物搬入口から流入した流体が、下階に設置されたRCICポンプ室に流入しないように、大物搬入口から流入した流体を貯水する貯水槽と、貯水槽と大物搬入口と同じフロアとを接続する複数の配管とを備えた原子炉建屋の例について説明する。なお、本実施例では、説明をわかりやすくするために、1階に大物搬入口11を配置し、地下2階にRCICポンプ室21を配置し、1階と地下2階との間に1階と地下2階との間の浸水経路となる階段室30を配置し、1階に貯水槽51へ繋がる少なくとも2系統以上の複数の配管41を接続した原子炉建屋を想定する。   The building structure of the nuclear facility of Example 4 will be described with reference to FIGS. 6A and 6B. In the present embodiment, a reservoir that stores the fluid that has flowed in from the large carry-in port, a water tank and a large product so that the fluid that has flowed from the large carry-in port does not flow into the RCIC pump room installed on the lower floor when the tsunami strikes. An example of a nuclear reactor building provided with a plurality of pipes connecting the same entrance and the same floor will be described. In this embodiment, in order to make the explanation easy to understand, the large-size entrance 11 is arranged on the first floor, the RCIC pump chamber 21 is arranged on the second basement floor, and the first floor is between the first floor and the second basement floor. A reactor building is assumed in which a staircase 30 serving as an inundation path between the first floor and the second floor is arranged, and a plurality of pipes 41 of at least two systems connected to a water storage tank 51 are connected to the first floor.

本実施例において、貯水槽51は流体を貯留する貯留槽である。また、階段室30は少なくとも2階以上の複数階からなる建屋の各階を行き来するための階段および踊り場を含むエリアのことである。   In the present embodiment, the water storage tank 51 is a storage tank for storing fluid. The staircase room 30 is an area including a stairway and a landing for going back and forth between each floor of a building composed of at least two or more floors.

図6Aは、本実施例の原子炉建屋1階、原子炉建屋地下1階、原子炉建屋地下2階の断面図であり、図6Bは本実施例の原子炉建屋1階の平面図である。図6Bの点線の断面が図6Aに対応する。なお、原子炉建屋地下1階の平面図、原子炉建屋地下2階の平面図については、実施例1と同様であるため省略する。   6A is a cross-sectional view of the first floor of the reactor building, the first floor of the reactor building, and the second floor of the reactor building according to the present embodiment, and FIG. 6B is a plan view of the first floor of the reactor building according to the present embodiment. . 6B corresponds to FIG. 6A. Since the plan view of the first floor of the reactor building and the plan view of the second floor of the reactor building are the same as those in the first embodiment, the description thereof is omitted.

津波により大物搬入口11から流入した流体は、まず1階の管理区域10に流入する。   The fluid that has flowed in from the large material entrance 11 due to the tsunami first flows into the management area 10 on the first floor.

ここで、原子炉建屋1階に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、1階の階段扉31の破損などが生じると、流体は階段室30に流入する。そして、階段室30に流入した流体が階段室30の地下2階へ到達し、地下2階の階段扉33の破損などが生じると、流体は地下2階の管理区域20に流入する。さらに、地下2階のRCICポンプ室扉22の破損などが生じると、流体はRCICポンプ室21に流入する。   Here, if it is assumed that the piping 41 connected to the water storage tank 51 is not connected to the first floor of the reactor building, the fluid flows into the staircase 30 when the staircase door 31 on the first floor is damaged. Then, when the fluid flowing into the staircase 30 reaches the second basement floor of the staircase 30 and the staircase door 33 on the second basement floor is damaged, the fluid flows into the management area 20 on the second basement floor. Further, when the RCIC pump chamber door 22 on the second basement floor is damaged, the fluid flows into the RCIC pump chamber 21.

しかし本実施例では、1階に貯水槽51へ繋がる複数の配管41を接続するため、流入した流体は複数の配管41を通って貯水槽51に貯水される。   However, in the present embodiment, since a plurality of pipes 41 connected to the water storage tank 51 are connected to the first floor, the inflowing fluid is stored in the water storage tank 51 through the plurality of pipes 41.

貯水槽51へ繋がる複数の配管41と原子炉建屋1階との境界には、実施例1で説明したような流体は通過できるが、人間などは通過できない網板42のようなものを設置する。これに関する説明は、実施例1と同様であるため省略する。   At the boundary between the plurality of pipes 41 connected to the water storage tank 51 and the first floor of the reactor building, a fluid such as the net plate 42 that can pass the fluid as described in the first embodiment but cannot pass by humans is installed. . Since the description regarding this is the same as that of the first embodiment, a description thereof will be omitted.

本実施例の原子炉建屋では、大物搬入口11から流入した流体は、配管41を通って貯水槽51に貯水される。その結果、流体が地下2階のRCICポンプ室21に流入することを防ぐことができる。なお、本実施例は、実施例3と異なり、貯水槽51へ繋がる少なくとも2系統以上の複数の配管41を1階に接続しているため、実施例3よりも、流体がRCICポンプ室21に流入する可能性が低いと考えられる。   In the reactor building of the present embodiment, the fluid flowing in from the large material inlet 11 is stored in the water tank 51 through the pipe 41. As a result, the fluid can be prevented from flowing into the RCIC pump chamber 21 on the second basement floor. In this embodiment, unlike the third embodiment, since a plurality of pipes 41 of at least two systems connected to the water storage tank 51 are connected to the first floor, the fluid is supplied to the RCIC pump chamber 21 more than the third embodiment. The possibility of inflow is considered to be low.

本実施例では、説明をわかりやすくするために、浸水経路が1階の大物搬入口11から地下2階のRCICポンプ室21である原子炉建屋の例を示したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアに貯水槽51へ繋がる複数の配管41を接続した原子炉建屋も本実施例に含まれる。   In this embodiment, in order to make the explanation easy to understand, an example of the reactor building in which the inundation path is the RCIC pump chamber 21 on the second basement floor from the large entrance 11 on the first floor is shown, but the fluid flows from the upper floor to the lower floor. A reactor building in which a plurality of pipes 41 connected to the water storage tank 51 are connected to the floor into which the fluid has flowed is assumed to be included in the floor.

また、本実施例では、建屋の例として原子炉建屋を用いて説明したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアに貯水槽51へ繋がる複数の配管41を接続した他の原子力施設の建屋も本実施例に含まれる。   Further, in this embodiment, the reactor building is described as an example of the building. However, assuming that the fluid flows from the upper floor to the lower floor, a plurality of pipes connected to the water storage tank 51 on the floor into which the fluid flows. Buildings of other nuclear facilities to which 41 is connected are also included in this embodiment.

図7A及び図7Bを用いて、実施例5の原子力施設の建屋構造について説明する。本実施例では、津波襲来時に大物搬入口から流入した流体が、下階に設置されたRCICポンプ室に流入しないように、大物搬入口から流入した流体を貯水する貯水槽と、貯水槽と階段室とを接続する配管と、貯水槽と大物搬入口と同じフロアとを接続する配管とを備えた原子炉建屋の例について説明する。なお、本実施例では、説明をわかりやすくするために、1階に大物搬入口11を配置し、地下2階にRCICポンプ室21を配置し、1階と地下2階との間に1階と地下2階との間の浸水経路となる階段室30を配置し、1階と階段室30とに貯水槽51へ繋がる配管41を接続した原子炉建屋を想定する。ここで、配管41は複数あってもよい。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、開閉式の扉34を必要に応じて設置する。   The building structure of the nuclear facility of Example 5 will be described with reference to FIGS. 7A and 7B. In the present embodiment, a reservoir that stores the fluid that has flowed in from the large carry-in port, a water tank, and a staircase so that the fluid that has flowed from the large carry-in port does not flow into the RCIC pump room installed on the lower floor when the tsunami strikes. An example of a reactor building provided with a pipe connecting the chamber and a pipe connecting the water storage tank and the same floor as the large-size carry-in entrance will be described. In this embodiment, in order to make the explanation easy to understand, the large-size entrance 11 is arranged on the first floor, the RCIC pump chamber 21 is arranged on the second basement floor, and the first floor is between the first floor and the second basement floor. A reactor building is assumed in which a staircase 30 serving as an inundation path between the first floor and the second floor is arranged, and a pipe 41 connected to the water storage tank 51 is connected to the first floor and the staircase 30. Here, a plurality of pipes 41 may be provided. Further, in the staircase 30, an openable door 34 is installed as necessary in order to prevent the fluid from flowing into the lower floor than the position where the pipe 41 is connected.

本実施例において、貯水槽51は流体を貯留する貯留槽である。また、階段室30は少なくとも2階以上の複数階からなる建屋の各階を行き来するための階段および踊り場を含むエリアのことである。   In the present embodiment, the water storage tank 51 is a storage tank for storing fluid. The staircase room 30 is an area including a stairway and a landing for going back and forth between each floor of a building composed of at least two or more floors.

図7Aは、本実施例の原子炉建屋1階、原子炉建屋地下1階、原子炉建屋地下2階の断面図であり、図7Bは本実施例の原子炉建屋1階の平面図である。図7Bの点線の断面が図7Aに対応する。なお、本実施例の原子炉建屋1階の平面図は、実施例3もしくは実施例4と同様であり、原子炉建屋地下1階の平面図、及び原子炉建屋地下2階の平面図については、実施例1と同様である。ただし、本実施例の説明では、説明をわかりやすくするために、貯水槽と階段室とを接続する2本の配管と貯水槽と原子炉建屋1階とを接続する2本の配管とが備えられた原子炉建屋の例を用いる。   FIG. 7A is a cross-sectional view of the first floor of the reactor building, the first floor of the reactor building, and the second floor of the reactor building according to the present embodiment, and FIG. 7B is a plan view of the first floor of the reactor building according to the present embodiment. . 7B corresponds to FIG. 7A. The plan view of the first floor of the reactor building of this example is the same as that of Example 3 or Example 4. About the plan view of the first floor of the reactor building and the plan view of the second floor of the reactor building The same as in the first embodiment. However, in the explanation of the present embodiment, in order to make the explanation easy to understand, two pipes connecting the water tank and the staircase and two pipes connecting the water tank and the first floor of the reactor building are provided. An example of a reactor building is used.

津波により大物搬入口11から流入した流体は、まず1階の管理区域10に流入する。   The fluid that has flowed in from the large material entrance 11 due to the tsunami first flows into the management area 10 on the first floor.

ここで、原子炉建屋1階に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、1階の階段扉31の破損などが生じると、流体は階段室30に流入する。そして、階段室30に貯水槽51へ繋がる配管41が接続されていないと仮定した場合、階段室30に流入した流体が階段室30の地下2階へ到達し、地下2階の階段扉33の破損などが生じると、流体は地下2階の管理区域20に流入する。さらに、地下2階のRCICポンプ室扉22の破損などが生じると、流体はRCICポンプ室21に流入する。   Here, if it is assumed that the piping 41 connected to the water storage tank 51 is not connected to the first floor of the reactor building, the fluid flows into the staircase 30 when the staircase door 31 on the first floor is damaged. When it is assumed that the pipe 41 connected to the water storage tank 51 is not connected to the staircase 30, the fluid flowing into the staircase 30 reaches the second basement floor of the staircase 30, and the staircase door 33 on the second basement floor When damage or the like occurs, the fluid flows into the management area 20 on the second floor underground. Further, when the RCIC pump chamber door 22 on the second basement floor is damaged, the fluid flows into the RCIC pump chamber 21.

しかし本実施例では、1階に貯水槽51へ繋がる2本の配管41を接続するため、流入した流体は2本の配管41を通って貯水槽51に貯水される。なお、1階の階段扉31の破損などにより、流体が階段室30に流入しても、階段室30の途中に貯水槽51へ繋がる2本の配管41を接続するため、流入した流体は階段室30に接続された2本の配管41を通って貯水槽51に貯水される。また、階段室30には、配管41を接続した位置よりも下階へ流体が流入することを防ぐために、原子炉建屋への流体の流入を検知したときに閉まる開閉式の扉34を必要に応じて設置する。扉34の設置位置の例については、実施例1と同様であるため説明を省略する。   However, in this embodiment, since the two pipes 41 connected to the water storage tank 51 are connected to the first floor, the inflowing fluid is stored in the water storage tank 51 through the two pipes 41. Even if the fluid flows into the staircase 30 due to damage to the staircase door 31 on the first floor, etc., since the two pipes 41 connected to the water storage tank 51 are connected in the middle of the staircase 30, the fluid that flows in Water is stored in the water storage tank 51 through the two pipes 41 connected to the chamber 30. In addition, the staircase 30 requires an openable door 34 that closes when fluid inflow to the reactor building is detected in order to prevent fluid from flowing into the lower floor than the position where the pipe 41 is connected. Install accordingly. About the example of the installation position of the door 34, since it is the same as that of Example 1, description is abbreviate | omitted.

貯水槽51へ繋がる2本の配管41と原子炉建屋1階との境界、及び貯水槽51へ繋がる2本の配管41と階段室30との境界には、実施例1で説明したような流体は通過できるが、人間などは通過できない網板42のようなものを設置する。これに関する説明は、実施例1と同様であるため省略する。   The fluid as described in the first embodiment is provided at the boundary between the two pipes 41 connected to the water storage tank 51 and the first floor of the reactor building and the boundary between the two pipes 41 connected to the water storage tank 51 and the staircase 30. Is installed such as a net 42 that can pass through but cannot pass by humans. Since the description regarding this is the same as that of the first embodiment, a description thereof will be omitted.

本実施例の原子炉建屋では、大物搬入口11から流入した流体は、配管41を通って貯水槽51に貯水される。その結果、流体が地下2階のRCICポンプ室21に流入することを防ぐことができる。また、本実施例の原子炉建屋では、配管41を1階に接続することに加え、階段室30にも接続している。したがって、1階の階段扉31の破損などが生じて階段室30に流入しても、階段室30に接続された配管41を通って貯水槽51に貯水される。このことより、本実施例は、実施例1から実施例4よりも、流体がRCICポンプ室21に流入する可能性が低いと考えられる。   In the reactor building of the present embodiment, the fluid flowing in from the large material inlet 11 is stored in the water tank 51 through the pipe 41. As a result, the fluid can be prevented from flowing into the RCIC pump chamber 21 on the second basement floor. Further, in the reactor building of the present embodiment, the pipe 41 is connected to the staircase 30 in addition to connecting to the first floor. Therefore, even if the staircase door 31 on the first floor is damaged and flows into the staircase 30, the water is stored in the water storage tank 51 through the pipe 41 connected to the staircase 30. From this, it is considered that the possibility that the fluid flows into the RCIC pump chamber 21 is lower than that in the first to fourth embodiments.

本実施例では、説明をわかりやすくするために、浸水経路が1階の大物搬入口11から地下2階のRCICポンプ室21である原子炉建屋の例を示したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアと階段室30とに貯水槽51へ繋がる配管41を接続した原子炉建屋も本実施例に含まれる。   In this embodiment, in order to make the explanation easy to understand, an example of the reactor building in which the inundation path is the RCIC pump chamber 21 on the second basement floor from the large entrance 11 on the first floor is shown, but the fluid flows from the upper floor to the lower floor. The reactor building in which the pipe 41 connected to the water storage tank 51 is connected to the floor into which the fluid flows and the staircase 30 is assumed to flow into the floor.

また、本実施例では、建屋の例として原子炉建屋を用いて説明したが、流体が上階から下階へ流入することを想定し、流体が流入したフロアと上階から下階への浸水経路の途中とに貯水槽51へ繋がる配管41を接続した他の原子力施設の建屋も本実施例に含まれる。   In this embodiment, the reactor building is described as an example of the building. However, assuming that the fluid flows from the upper floor to the lower floor, the floor into which the fluid flows and the inundation from the upper floor to the lower floor are described. A building of another nuclear facility in which a pipe 41 connected to the water storage tank 51 is connected in the middle of the route is also included in this embodiment.

図8A及び図8Bを用いて、実施例6の原子力施設の建屋構造について説明する。本実施例では、実施例1から実施例5のいずれかで説明した原子炉建屋に備えられた貯水槽に開閉式の貯水槽扉を設置し、貯水槽に貯水された流体を放出する機能を与えた原子炉建屋の例について説明する。なお、本実施例の貯水槽扉は、手動制御で開閉を行う機能は備えているが、自動制御で開閉を行う機能は備えていない。また、津波の襲来により流体が貯水槽へ流入する経路については、実施例1から実施例5までの説明と重複するため、本実施例では説明を省略する。   The building structure of the nuclear facility of Example 6 will be described with reference to FIGS. 8A and 8B. In this embodiment, an openable water tank door is installed in the water tank provided in the reactor building described in any of the first to fifth embodiments, and the function of releasing the fluid stored in the water tank is provided. An example of a given reactor building will be described. In addition, although the water tank door of a present Example is provided with the function to open and close by manual control, it does not have the function to open and close by automatic control. In addition, since the path through which the fluid flows into the water storage tank due to the tsunami strike overlaps with the description from the first embodiment to the fifth embodiment, the description is omitted in this embodiment.

図8Aは、水位が高い時の模式図であり、図8Bは、水位が低い時の模式図である。本実施例の原子炉建屋の貯水槽51には、手動制御により開閉を行う開閉式の貯水槽扉52を設置する。なお、この貯水槽扉52は、通常は閉じているため、津波の襲来により水位が上昇しても、流体が貯水槽扉52から貯水槽51へ流入することはない。また、津波襲来時の水位を把握するために、水位を把握するセンサー53を必要に応じて設置する。ここで、図8A及び図8Bの原子炉建屋は、説明をわかりやすくするために、例として図1Aの貯水槽51に開閉式の貯水槽扉52が設置された原子炉建屋としている。   FIG. 8A is a schematic diagram when the water level is high, and FIG. 8B is a schematic diagram when the water level is low. In the water tank 51 of the reactor building of this embodiment, an openable water tank door 52 that is opened and closed by manual control is installed. In addition, since this water tank door 52 is normally closed, even if a water level rises by the tsunami attack, fluid does not flow into the water tank 51 from the water tank door 52. Moreover, in order to grasp the water level at the time of the tsunami attack, a sensor 53 for grasping the water level is installed as necessary. Here, the reactor building of FIGS. 8A and 8B is a reactor building in which an openable water tank door 52 is installed in the water tank 51 of FIG. 1A as an example for easy understanding.

流体が貯水槽51に貯水された場合、本実施例の原子炉建屋では、津波が引くなどで水位が低下した時に、貯水槽扉52を開いて貯水槽51に貯水された流体を放出する。その結果、貯水槽51に貯水された流体の量が減少し、再度津波が襲来しても多くの流体を貯水槽51に貯水することができる。なお、貯水槽扉52の開閉は、目視、あるいはセンサー53の利用により、手動制御で行う。   When the fluid is stored in the water storage tank 51, in the reactor building of this embodiment, when the water level is lowered due to a tsunami or the like, the water storage door 51 is opened to release the fluid stored in the water storage tank 51. As a result, the amount of fluid stored in the water storage tank 51 decreases, and even if a tsunami strikes again, a large amount of fluid can be stored in the water storage tank 51. In addition, opening and closing of the water tank door 52 is performed by manual control by visual observation or use of the sensor 53.

本実施例のように、貯水槽51に貯水槽扉52を設置することで、津波が再襲来しても、貯水槽扉52を設置していない時よりも多くの流体を貯水することができる。なお、貯水槽扉52の設置により流体を放出する機能を備えることは、貯水槽51の小規模化にも繋がると考えられる。また、このように流体を放出する機能は、貯水槽51に貯水された流体を放出する際に、貯水槽51に貯水された流体をポンプ等でくみ上げる必要がなく、効率よく流体を放出できる。   By installing the water tank door 52 in the water tank 51 as in the present embodiment, even when the tsunami comes back, more fluid can be stored than when the water tank door 52 is not installed. . In addition, it is thought that providing the function which discharge | releases a fluid by installation of the water tank door 52 leads also to the miniaturization of the water tank 51. The function of discharging the fluid in this way does not require pumping up the fluid stored in the water storage tank 51 when discharging the fluid stored in the water storage tank 51, and can efficiently discharge the fluid.

本実施例では、建屋の例として原子炉建屋を用いて説明したが、貯水槽扉52が設置された貯水槽51を備えた他の原子力施設の建屋も本実施例に含まれる。   Although the present embodiment has been described using a reactor building as an example of a building, a building of another nuclear facility provided with a water tank 51 in which a water tank door 52 is installed is also included in this embodiment.

図8A及び図8Bを用いて、実施例7の原子力施設の建屋構造について説明する。本実施例では、実施例1から実施例5のいずれかで説明した原子炉建屋に備えられた貯水槽に開閉式の貯水槽扉を設置し、貯水槽に貯水された流体を放出する機能を与えた原子炉建屋の例について説明する。なお、本実施例の貯水槽扉は、手動制御で開閉を行う機能に加え、自動制御で開閉を行う機能を備えている。また、津波の襲来により流体が貯水槽へ流入する経路については、実施例1から実施例5までの説明と重複するため、本実施例では説明を省略する。   The building structure of the nuclear facility of Example 7 will be described with reference to FIGS. 8A and 8B. In this embodiment, an openable water tank door is installed in the water tank provided in the reactor building described in any of the first to fifth embodiments, and the function of releasing the fluid stored in the water tank is provided. An example of a given reactor building will be described. In addition, the water tank door of the present embodiment has a function of opening and closing by automatic control in addition to a function of opening and closing by manual control. In addition, since the path through which the fluid flows into the water storage tank due to the tsunami strike overlaps with the description from the first embodiment to the fifth embodiment, the description is omitted in this embodiment.

また、水位が高い時の模式図(図8A)、水位が低い時の模式図(図8B)、貯水槽扉52、及びセンサー53については、実施例6と同様であるため、詳細な説明を省略する。ただし、本実施例の貯水槽扉52の開閉は、手動制御で開閉を行う機能に加え、自動制御で開閉を行う機能を備えている。自動制御で開閉を行う機能とは、例えば、水位センサー53により水位が低下したと判断したときに、この水位センサーの信号に基づいて扉を開く機能のことである。   Moreover, since the schematic diagram when the water level is high (FIG. 8A), the schematic diagram when the water level is low (FIG. 8B), the water tank door 52, and the sensor 53 are the same as those in the sixth embodiment, a detailed description will be given. Omitted. However, the opening and closing of the water tank door 52 of this embodiment has a function of opening and closing by automatic control in addition to a function of opening and closing by manual control. The function of opening and closing by automatic control is, for example, a function of opening a door based on a signal of the water level sensor when the water level sensor 53 determines that the water level has decreased.

流体が貯水槽51に貯水された場合、本実施例の原子炉建屋では、津波が引くなどで水位が低下した時に、貯水槽扉52を開いて貯水槽51に貯水された流体を放出する。その結果、貯水槽51に貯水された流体の量が減少し、再度津波が襲来しても多くの流体を貯水槽51に貯水することができる。なお、貯水槽扉52の開閉は、目視、あるいはセンサー53の利用による手動制御、もしくはセンサー53などの利用による自動制御で行う。   When the fluid is stored in the water storage tank 51, in the reactor building of this embodiment, when the water level is lowered due to a tsunami or the like, the water storage door 51 is opened to release the fluid stored in the water storage tank 51. As a result, the amount of fluid stored in the water storage tank 51 decreases, and even if a tsunami strikes again, a large amount of fluid can be stored in the water storage tank 51. The water tank door 52 is opened and closed by visual inspection, manual control using the sensor 53, or automatic control using the sensor 53 or the like.

本実施例のように、貯水槽51に貯水槽扉52を設置することで、津波が再襲来しても、貯水槽扉52を設置していない時よりも多くの流体を貯水することができる。なお、貯水槽扉52の設置により流体を放出する機能を備えることは、貯水槽51の小規模化にも繋がると考えられる。また、このように流体を放出する機能は、貯水槽51に貯水された流体を放出する際に、貯水槽51に貯水された流体をポンプ等でくみ上げる必要がなく、効率よく流体を放出できる。   By installing the water tank door 52 in the water tank 51 as in the present embodiment, even when the tsunami comes back, more fluid can be stored than when the water tank door 52 is not installed. . In addition, it is thought that providing the function which discharge | releases a fluid by installation of the water tank door 52 leads also to the miniaturization of the water tank 51. The function of discharging the fluid in this way does not require pumping up the fluid stored in the water storage tank 51 when discharging the fluid stored in the water storage tank 51, and can efficiently discharge the fluid.

本実施例では、建屋の例として原子炉建屋を用いて説明したが、貯水槽扉52が設置された貯水槽51を備えた他の原子力施設の建屋も本実施例に含まれる。   Although the present embodiment has been described using a reactor building as an example of a building, a building of another nuclear facility provided with a water tank 51 in which a water tank door 52 is installed is also included in this embodiment.

図8A及び図8Bを用いて、実施例8の原子力施設の建屋構造について説明する。本実施例では、実施例1から実施例5のいずれかで説明した原子炉建屋に備えられた貯水槽に開閉式の貯水槽扉を設置し、貯水槽に貯水された流体を放出する機能を与えた原子炉建屋の例について説明する。なお、本実施例の貯水槽扉は、水圧を利用して開閉を行う機能を備えている。また、津波の襲来により流体が貯水槽へ流入する経路については、実施例1から実施例5までの説明と重複するため、本実施例では説明を省略する。   The building structure of the nuclear facility of Example 8 will be described with reference to FIGS. 8A and 8B. In this embodiment, an openable water tank door is installed in the water tank provided in the reactor building described in any of the first to fifth embodiments, and the function of releasing the fluid stored in the water tank is provided. An example of a given reactor building will be described. In addition, the water tank door of the present embodiment has a function of opening and closing using water pressure. In addition, since the path through which the fluid flows into the water storage tank due to the tsunami strike overlaps with the description from the first embodiment to the fifth embodiment, the description is omitted in this embodiment.

また、水位が高い時の模式図(図8A)、水位が低い時の模式図(図8B)、貯水槽扉52、及びセンサー53については、実施例6と同様であるため、詳細な説明を省略する。ただし、本実施例の貯水槽扉52は、貯水槽51の内部から貯水槽51の外部へ開く構造をしており、貯水槽扉52の開閉は、水圧を利用して開閉を行う機能を備えている。水圧を利用して開閉を行う機能とは、例えば、貯水槽内部に流体が貯水され、貯水槽外部に流体が存在しない場合、貯水槽内部の水圧により貯水槽扉52を開く機能のことである。   Moreover, since the schematic diagram when the water level is high (FIG. 8A), the schematic diagram when the water level is low (FIG. 8B), the water tank door 52, and the sensor 53 are the same as those in the sixth embodiment, a detailed description will be given. Omitted. However, the water tank door 52 of the present embodiment has a structure that opens from the inside of the water tank 51 to the outside of the water tank 51, and the water tank door 52 has a function of opening and closing using water pressure. ing. The function of opening and closing using the water pressure is, for example, a function of opening the water tank door 52 by the water pressure inside the water tank when the water is stored inside the water tank and there is no fluid outside the water tank. .

流体が貯水槽51に貯水された場合、本実施例の原子炉建屋では、津波が引くなどで水位が低下した時に、貯水槽扉52が水圧の違いにより開いて貯水槽51に貯水された流体が放出される。その結果、貯水槽51に貯水された流体の量が減少し、再度津波が襲来しても多くの流体を貯水槽51に貯水することができる。   When the fluid is stored in the water storage tank 51, in the reactor building of the present embodiment, when the water level is lowered due to a tsunami or the like, the water stored in the water storage tank 51 is opened by the difference in water pressure. Is released. As a result, the amount of fluid stored in the water storage tank 51 decreases, and even if a tsunami strikes again, a large amount of fluid can be stored in the water storage tank 51.

本実施例のように、貯水槽51に貯水槽扉52を設置することで、津波が再襲来しても、貯水槽扉52を設置していない時よりも多くの流体を貯水することができる。なお、貯水槽扉52の設置により流体を放出する機能を備えることは、貯水槽51の小規模化にも繋がると考えられる。また、このように流体を放出する機能は、貯水槽51に貯水された流体を放出する際に、貯水槽51に貯水された流体をポンプ等でくみ上げる必要がなく、効率よく流体を放出できる。さらに、本実施例のように水圧を利用することで、実施例6や実施例7よりも小さな電力で貯水槽扉52の開閉を行うことができる上、停電時でも水圧の利用により、貯水槽51からの流体の放出が可能である。   By installing the water tank door 52 in the water tank 51 as in the present embodiment, even when the tsunami comes back, more fluid can be stored than when the water tank door 52 is not installed. . In addition, it is thought that providing the function which discharge | releases a fluid by installation of the water tank door 52 leads also to the miniaturization of the water tank 51. The function of discharging the fluid in this way does not require pumping up the fluid stored in the water storage tank 51 when discharging the fluid stored in the water storage tank 51, and can efficiently discharge the fluid. Further, by using the water pressure as in the present embodiment, the water tank door 52 can be opened and closed with a smaller electric power than in the sixth and seventh embodiments, and the water tank can be used by using the water pressure even during a power failure. The release of fluid from 51 is possible.

本実施例では、建屋の例として原子炉建屋を用いて説明したが、貯水槽扉52が設置された貯水槽51を備えた他の原子力施設の建屋も本実施例に含まれる。   Although the present embodiment has been described using a reactor building as an example of a building, a building of another nuclear facility provided with a water tank 51 in which a water tank door 52 is installed is also included in this embodiment.

図9を用いて、実施例9の原子力施設の建屋構造について説明する。本実施例では、実施例1から実施例8のいずれかで説明した原子炉建屋に備えられた貯水槽に、貯水槽と原子炉格納容器とを接続する配管を設置し、貯水槽に貯水された流体を原子炉の冷却に用いる機能を備えた原子炉建屋の例について説明する。なお、津波の襲来により流体が貯水槽に流入する経路については、実施例1から実施例5までの説明と重複するため、本実施例では説明を省略する。   The building structure of the nuclear facility of Example 9 will be described with reference to FIG. In the present embodiment, a pipe connecting the water storage tank and the reactor containment vessel is installed in the water tank provided in the reactor building described in any of the first to eighth embodiments, and water is stored in the water storage tank. An example of a reactor building having a function of using the fluid for cooling the reactor will be described. In addition, about the path | route into which a fluid flows in into a water storage tank by the tsunami attack, since it overlaps with description from Example 1 to Example 5, description is abbreviate | omitted in a present Example.

図9は、本実施例の原子炉建屋の例である。貯水槽51には、原子炉格納容器0に繋がる配管43が接続されており、配管43には、原子炉の冷却に貯水槽51に貯水された流体が必要と判断された時に開く貯水槽扉54が設置されている。ここで、図9の原子炉建屋は、説明をわかりやすくするために、例として図1Aの貯水槽51に貯水槽51と原子炉格納容器0を接続する配管43が設置された原子炉建屋を用いている。また、貯水槽扉54は通常は閉じている。   FIG. 9 is an example of the reactor building of the present embodiment. A pipe 43 connected to the reactor containment vessel 0 is connected to the water tank 51, and a water tank door that opens when it is determined that the fluid stored in the water tank 51 is necessary for cooling the reactor. 54 is installed. Here, in order to make the explanation easy to understand, the reactor building in FIG. 9 is an example of a reactor building in which a pipe 43 for connecting the water tank 51 and the reactor containment vessel 0 is installed in the water tank 51 in FIG. 1A. Used. The water tank door 54 is normally closed.

流体が貯水槽51に貯水された場合、本実施例の原子炉建屋では、原子炉の冷却に貯水槽51に貯水された流体が必要と判断された時に、貯水槽扉54を開いて貯水槽51に貯水された流体を原子炉の冷却に用いる。なお、配管43が貯水槽51に接続する位置を配管43が原子炉格納容器0に接続する位置よりも高く設置した場合、重力を利用して流体を原子炉格納容器0に流入することができる。したがって、停電などにより、電力が利用できない状況を考慮すると、貯水槽51内の流体がポンプなどの動力を必要とせずに、原子炉格納容器0へ流れるように配管43を傾けて設置するのが望ましい。   When the fluid is stored in the water storage tank 51, in the reactor building of the present embodiment, when it is determined that the fluid stored in the water storage tank 51 is necessary for cooling the reactor, the water storage tank door 54 is opened and the water storage tank is opened. The fluid stored in 51 is used for cooling the reactor. In addition, when the position where the pipe 43 is connected to the water storage tank 51 is set higher than the position where the pipe 43 is connected to the reactor containment vessel 0, the fluid can flow into the reactor containment vessel 0 using gravity. . Therefore, in consideration of the situation where electric power cannot be used due to a power failure or the like, it is necessary to install the pipe 43 in an inclined manner so that the fluid in the water storage tank 51 flows to the reactor containment vessel 0 without requiring the power of a pump or the like. desirable.

本実施例では、実施例1から実施例8の効果に加え、津波により押し寄せた流体の利用による原子炉の冷却機能が備わっている。したがって、他の原子炉冷却システムの機能が喪失しても、本機能により、一定時間の原子炉冷却が可能であると考えられる。   In the present embodiment, in addition to the effects of the first to eighth embodiments, a reactor cooling function is provided by using a fluid squeezed by a tsunami. Therefore, even if the functions of other reactor cooling systems are lost, it is considered that the reactor cooling can be performed for a certain period of time by this function.

本実施例では、原子炉建屋の例として実施例1の原子炉建屋を用いて説明したが、実施例2から実施例8の原子炉建屋に配管43を設置した例も本実施例に含まれる。   In this example, the reactor building of Example 1 was described as an example of the reactor building. However, examples in which the piping 43 is installed in the reactor buildings of Example 2 to Example 8 are also included in this example. .

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

0…原子炉格納容器、10…1階の管理区域、11…大物搬入口、20…地下2階の管理区域、21…RCICポンプ室、22…RCICポンプ室扉、30…階段室、31…1階の階段扉、32…地下1階の階段扉、33…地下2階の階段扉、34…階段室に設置された扉、41…配管、42…網板、43…貯水槽と原子炉格納容器を接続する配管、51…貯水槽、52…貯水槽扉、53…センサー、54…貯水槽と原子炉格納容器を接続する配管に設置された貯水槽扉、55…流体(海水)、56…海水面、341…階段室に設置された扉のうち高位置に設置された扉、342…階段室に設置された扉のうち低位置に設置された扉。   0 ... Reactor containment vessel, 10 ... Control area on the 1st floor, 11 ... Large port, 20 ... Management area on the 2nd basement floor, 21 ... RCIC pump room, 22 ... RCIC pump room door, 30 ... Stair room, 31 ... 1st floor stairs door, 32 ... 1st basement stairs door, 33 ... 2nd basement stairs door, 34 ... Door installed in the staircase, 41 ... Piping, 42 ... Net plate, 43 ... Reservoir and reactor Piping for connecting the containment vessel, 51 ... Reservoir, 52 ... Reservoir door, 53 ... Sensor, 54 ... Reservoir door installed in the piping connecting the reserving tank and the reactor containment vessel, 55 ... Fluid (seawater), 56 ... Sea level, 341 ... A door installed at a high position among doors installed in a staircase, 342 ... A door installed at a low position among doors installed in a staircase.

Claims (13)

建屋内に流入する流体を貯留する貯留槽と、
前記建屋と前記貯留槽との間に設けられ、前記流体の流路となる配管と、を備え、
流体が前記建屋内に流入した際、当該流入した流体が前記配管を介して前記貯留槽に貯留されることを特徴とする建屋。
A storage tank for storing fluid flowing into the building;
A pipe provided between the building and the storage tank and serving as a flow path for the fluid;
When the fluid flows into the building, the building is stored in the storage tank through the pipe.
請求項1に記載の建屋であって、
前記建屋は、当該建屋内に原子炉が設置される原子炉建屋であることを特徴とする建屋。
The building according to claim 1,
The building is a reactor building in which a nuclear reactor is installed in the building.
請求項1または2に記載の建屋であって、
前記建屋は、少なくとも2階以上の複数階からなり、前記複数階の各階を行き来する階段室を備え、
流体が前記建屋内に流入した際、当該流入した流体が前記階段室および前記配管を介して前記貯留槽に貯留されることを特徴とする建屋。
The building according to claim 1 or 2,
The building is composed of at least two or more floors, and includes a staircase that goes back and forth between the floors of the plurality of floors
When the fluid flows into the building, the building is stored in the storage tank via the staircase and the pipe.
請求項3に記載の建屋であって、
前記配管は、前記階段室に接続されることを特徴とする建屋。
The building according to claim 3,
The building is characterized in that the pipe is connected to the staircase.
請求項1から4のいずれか1項に記載の建屋であって、
前記配管は、前記建屋と前記貯留槽との間に少なくとも2系統以上設けられることを特徴とする建屋。
The building according to any one of claims 1 to 4,
The building is characterized in that at least two systems of the piping are provided between the building and the storage tank.
請求項1または2に記載の建屋であって、
前記配管は、流体が流入する前記建屋のフロアに直接接続されることを特徴とする建屋。
The building according to claim 1 or 2,
The building is characterized in that the pipe is directly connected to a floor of the building into which a fluid flows.
請求項6に記載の建屋であって、
前記配管は、少なくとも2系統以上設けられることを特徴とする建屋。
The building according to claim 6,
The building is characterized in that at least two systems of the piping are provided.
請求項3に記載の建屋であって、
前記配管は、前記階段室に接続される系統と、
前記階段室を介さずに流体が流入する前記建屋のフロアに直接接続される系統と、
を有することを特徴とする建屋。
The building according to claim 3,
The pipe is connected to the staircase;
A system directly connected to the floor of the building through which fluid flows without going through the staircase;
The building characterized by having.
請求項8に記載の建屋であって、
前記階段室に接続される系統および前記階段室を介さずに流体が流入する前記建屋のフロアに直接接続される系統の配管は、各々少なくとも2系統以上設けられることを特徴とする建屋。
The building according to claim 8,
The building connected to the staircase and the piping of the system directly connected to the floor of the building through which the fluid flows without passing through the staircase are provided at least two systems each.
請求項1から9のいずれか1項に記載の建屋であって、
前記貯留槽は、当該貯留槽に貯留した流体を放出する放出扉を備えることを特徴とする建屋。
The building according to any one of claims 1 to 9,
The said storage tank is equipped with the discharge door which discharge | releases the fluid stored in the said storage tank, The building characterized by the above-mentioned.
請求項10に記載の建屋であって、
前記建屋は、前記貯留槽近傍に流体表面の高さを検出するセンサーを備え、
前記センサーにより検出した流体表面の高さが所定の高さより低下した場合、前記放出扉を開くことで、前記貯留槽内に貯留された流体を放出することを特徴とする建屋。
The building according to claim 10,
The building includes a sensor that detects the height of the fluid surface in the vicinity of the storage tank,
When the height of the fluid surface detected by the sensor is lower than a predetermined height, the fluid stored in the storage tank is discharged by opening the discharge door.
請求項10に記載の建屋であって、
前記貯留槽近傍の流体表面の高さが前記貯留槽の位置よりも低下した場合、前記貯留槽内部の流体の圧力により前記放出扉を開くことで、前記貯留槽内に貯留された流体を放出することを特徴とする建屋。
The building according to claim 10,
When the height of the fluid surface near the storage tank is lower than the position of the storage tank, the fluid stored in the storage tank is released by opening the discharge door by the pressure of the fluid inside the storage tank. A building characterized by doing.
請求項2に記載の建屋であって、
前記貯留槽と前記原子炉との間に設けられ、前記貯留槽内に貯留される流体の流路となる配管と、
前記貯留槽と前記原子炉との間に設けられる前記配管内に貯留槽扉をさらに備え、
前記原子炉の炉心の冷却が必要になった場合、前記貯留槽扉を開くことで、前記貯留槽内の流体を前記原子炉に供給することを特徴とする建屋。
The building according to claim 2,
A pipe provided between the storage tank and the nuclear reactor, and serving as a flow path for fluid stored in the storage tank;
A storage tank door is further provided in the pipe provided between the storage tank and the nuclear reactor,
When cooling of the core of the nuclear reactor becomes necessary, the fluid in the storage tank is supplied to the nuclear reactor by opening the storage tank door.
JP2016061643A 2016-03-25 2016-03-25 Building Active JP6542151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061643A JP6542151B2 (en) 2016-03-25 2016-03-25 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061643A JP6542151B2 (en) 2016-03-25 2016-03-25 Building

Publications (2)

Publication Number Publication Date
JP2017172281A true JP2017172281A (en) 2017-09-28
JP6542151B2 JP6542151B2 (en) 2019-07-10

Family

ID=59970544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061643A Active JP6542151B2 (en) 2016-03-25 2016-03-25 Building

Country Status (1)

Country Link
JP (1) JP6542151B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230061A (en) * 2011-04-27 2012-11-22 Hitachi-Ge Nuclear Energy Ltd Atomic power plant with seismic isolation structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230061A (en) * 2011-04-27 2012-11-22 Hitachi-Ge Nuclear Energy Ltd Atomic power plant with seismic isolation structure

Also Published As

Publication number Publication date
JP6542151B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
US4080256A (en) Nuclear reactor apparatus
JP2010085282A (en) Nuclear power plant of pressurized water type
JP4908561B2 (en) Reactor containment vessel and nuclear power plant using the same
JPH07253492A (en) Boiling water nuclear reactor having active/passive composite safety system
CN110047606B (en) Arrangement structure of fuel plant of nuclear power station
JP6542151B2 (en) Building
JP6271158B2 (en) Reactor auxiliary equipment cooling equipment
JP2016044483A (en) Building
EP2966651A1 (en) Nuclear power plant and remodeling method therefor
US10446279B2 (en) Boiling water type nuclear power plant
Lee et al. Analyses of Fission Product Retention under ISLOCA using MELCOR for APR1400
CN110354645B (en) Passive online liquid supplementing device and method for containment filtering and discharging system
JP7223745B2 (en) Depressurization and coolant injection system for a highly simplified boiling water reactor
KR102078448B1 (en) Flooding Level Analysis Method of Reactor Building
JP6742896B2 (en) Overflow drainage system for nuclear power plants
JP2006138636A (en) Nuclear reactor building
JP6034735B2 (en) Filter vent building
Huang et al. Modification to Shield Tank Overpressure Protection in a CANDU Reactor for Beyond Design Basis Event
Bulkhead et al. DRESDEN-UFSAR
Maltsev et al. Provisions for Containment Integrity at Russian WWER NPPs Under BDBA Conditions
JPH04344494A (en) Reactor container
Demireva et al. Main results of the analysis of internal flooding in the reactor building of Kozloduy NPP Unit 6
JP2014228148A (en) Fluid inflow restriction device and fluid inflow restriction method
JPH0511592B2 (en)
Besse et al. L-18-206, Revision 32 to Updated Final Safety Analysis Report, Section 9, Auxiliary Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190612

R150 Certificate of patent or registration of utility model

Ref document number: 6542151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150