JP2017171620A - Manufacturing method of acetamide derivative - Google Patents

Manufacturing method of acetamide derivative Download PDF

Info

Publication number
JP2017171620A
JP2017171620A JP2016060209A JP2016060209A JP2017171620A JP 2017171620 A JP2017171620 A JP 2017171620A JP 2016060209 A JP2016060209 A JP 2016060209A JP 2016060209 A JP2016060209 A JP 2016060209A JP 2017171620 A JP2017171620 A JP 2017171620A
Authority
JP
Japan
Prior art keywords
general formula
acetamide derivative
mol
reaction
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016060209A
Other languages
Japanese (ja)
Other versions
JP6072329B1 (en
Inventor
延嶋 浩文
Hirofumi Nobushima
浩文 延嶋
昌晋 原田
Masakuni Harada
昌晋 原田
直城 小山
Naoki Koyama
直城 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to JP2016060209A priority Critical patent/JP6072329B1/en
Application granted granted Critical
Publication of JP6072329B1 publication Critical patent/JP6072329B1/en
Publication of JP2017171620A publication Critical patent/JP2017171620A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an acetamide derivative capable of providing the acetamide derivative at high yield, easy to separate by-products, small in effect to environment and easily applicable to an industrial process.SOLUTION: There is provided a manufacturing method of an acetamide derivative represented by the following general formula (1), where X represents a halogen atom, Rand Rrepresent each independently an alkyl group having 1 to 4 carbon atoms. It has a reaction process for reacting a compound represented by the following general formula (A), dialkyl amine represented by the following general formula (B) in an aromatic organic solvent in presence of basic alkali metal inorganic salt.SELECTED DRAWING: None

Description

本発明は、医薬及び農薬等の合成原料・合成中間体等として有用なアセトアミド誘導体の製造方法に関する。   The present invention relates to a method for producing an acetamide derivative useful as a synthetic raw material / synthetic intermediate for pharmaceuticals and agricultural chemicals.

2−クロロ−N,N−ジメチルアセトアミド等のアセトアミド誘導体は、医薬・農薬を製造するための原料や中間体として有用な化合物である。このようなアセトアミド誘導体を製造する方法としては、例えば、炭酸ナトリウムを加えたジメチルアミン水溶液に2−クロロ−N,N−ジメチルアセトアミドを滴下する方法が知られている(特許文献1)。また、必要に応じて酢酸ナトリウムを脱酸剤として添加したジクロロメタン中に、ジメチルアミン水溶液と2−クロロ−N,N−ジメチルアセトアミドをそれぞれ滴下して反応させる方法が知られている(特許文献2)。   Acetamide derivatives such as 2-chloro-N, N-dimethylacetamide are useful compounds as raw materials and intermediates for producing pharmaceuticals and agricultural chemicals. As a method for producing such an acetamide derivative, for example, a method is known in which 2-chloro-N, N-dimethylacetamide is dropped into a dimethylamine aqueous solution to which sodium carbonate is added (Patent Document 1). Further, a method is known in which a dimethylamine aqueous solution and 2-chloro-N, N-dimethylacetamide are dropped and reacted in dichloromethane with sodium acetate added as a deoxidizer as required (Patent Document 2). ).

さらに、相間移動触媒及び炭酸水素ナトリウムの存在下、ハロゲン系の有機溶媒と水の二相混合液中で、ジメチルアミンと2−クロロ−N,N−ジメチルアセトアミドを反応させる方法が知られている(特許文献3)。また、アルカリ金属酢酸塩の水溶液と塩素系炭化水素溶剤との混合液に、2−クロロ−N,N−ジメチルアセトアミドを滴下するとともに、ジメチルアミンのガスを導入する方法が知られている(特許文献4)。   Furthermore, a method of reacting dimethylamine and 2-chloro-N, N-dimethylacetamide in a two-phase mixture of a halogenated organic solvent and water in the presence of a phase transfer catalyst and sodium bicarbonate is known. (Patent Document 3). Further, a method is known in which 2-chloro-N, N-dimethylacetamide is added dropwise to a mixed solution of an alkali metal acetate aqueous solution and a chlorinated hydrocarbon solvent, and dimethylamine gas is introduced (patent). Reference 4).

特開昭59−98075号公報JP 59-98075 A 特開平3−223241号公報JP-A-3-223241 特開平6−247915号公報JP-A-6-247915 中国特許出願公開第1721392号明細書Chinese Patent Application No. 1721392

しかしながら、本発明者らの検討の結果、上記の特許文献に開示された方法には以下のような課題が存在することが判明した。例えば、特許文献1に開示された方法の場合、目的とする2−クロロ−N,N−ジメチルアセトアミドの収率が低いことがわかった。また、特許文献2〜4に開示された方法で用いられるジクロロメタン等のハロゲン系有機溶媒は、近年の環境に対する意識の高まり等から、可能な限りその使用を抑制することが望まれている。一方、ジクロロメタン等のハロゲン系有機溶媒の代わりに、工業的に頻繁に使用されている、トルエン等の芳香族系有機溶媒を反応溶媒として用いると、収率が低下することがわかった。   However, as a result of studies by the present inventors, it has been found that the following problems exist in the method disclosed in the above-mentioned patent document. For example, in the case of the method disclosed in Patent Document 1, it was found that the yield of the desired 2-chloro-N, N-dimethylacetamide was low. Moreover, it is desired to suppress the use of halogen-based organic solvents such as dichloromethane used in the methods disclosed in Patent Documents 2 to 4 as much as possible due to the recent increase in environmental awareness. On the other hand, when an aromatic organic solvent such as toluene, which is frequently used industrially, is used as a reaction solvent in place of a halogen-based organic solvent such as dichloromethane, it has been found that the yield decreases.

さらに、特許文献2及び4で開示された方法では、脱酸剤として酢酸ナトリウム等のアルカリ金属酢酸塩を用いる。このため、反応の進行に伴ってアルカリ金属酢酸塩に由来する酢酸が生成するので、反応系内に生成した酢酸を除去する必要がある。しかしながら、酢酸を除去するには精留塔などの高度な設備が必要であり、精製工程が煩雑となる。また、特許文献3に開示された方法は、高価な相間移動触媒を用いる必要があるため、不経済である。   Furthermore, in the methods disclosed in Patent Documents 2 and 4, an alkali metal acetate such as sodium acetate is used as a deoxidizer. For this reason, acetic acid derived from the alkali metal acetate is generated as the reaction proceeds, so that it is necessary to remove the acetic acid generated in the reaction system. However, removal of acetic acid requires sophisticated equipment such as a rectification column, which complicates the purification process. Further, the method disclosed in Patent Document 3 is uneconomical because it requires the use of an expensive phase transfer catalyst.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、高い収率でアセトアミド誘導体を得ることができるとともに、副生成物の分離が容易であり、かつ、環境に対する影響も小さく工業的プロセスに容易に適用可能なアセトアミド誘導体の製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the problem is that an acetamide derivative can be obtained in a high yield and that a by-product can be easily separated. Another object of the present invention is to provide a method for producing an acetamide derivative that has little environmental impact and can be easily applied to an industrial process.

本発明者らは上記課題を解決すべく鋭意検討した結果、以下の構成とすることによって上記課題を解決することが可能であることを見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示すアセトアミド誘導体の製造方法が提供される。
[1]下記一般式(1)で表されるアセトアミド誘導体の製造方法であって、下記一般式(A)で表される化合物と、下記一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩の存在下、芳香族有機溶媒中で反応させる反応工程を有するアセトアミド誘導体の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have completed the present invention. That is, according to this invention, the manufacturing method of the acetamide derivative shown below is provided.
[1] A method for producing an acetamide derivative represented by the following general formula (1), comprising a compound represented by the following general formula (A) and a dialkylamine represented by the following general formula (B): A method for producing an acetamide derivative comprising a reaction step of reacting in an aromatic organic solvent in the presence of a basic alkali metal inorganic salt.

Figure 2017171620
(前記一般式(1)中、Xは、ハロゲン原子を示し、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す)
Figure 2017171620
(In the general formula (1), X represents a halogen atom, and R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms)

Figure 2017171620
(前記一般式(A)中、Xは、それぞれ独立にハロゲン原子を示す。前記一般式(B)中、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す)
Figure 2017171620
(In the general formula (A), each X independently represents a halogen atom. In the general formula (B), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms).

[2]前記反応工程が、前記一般式(A)で表される化合物と、前記ジアルキルアミンとを、前記アルカリ金属無機塩を前記芳香族有機溶媒に分散させた反応系にそれぞれ添加して反応させる工程である前記[1]に記載のアセトアミド誘導体の製造方法。
[3]前記アルカリ金属無機塩が、炭酸水素ナトリウム及び炭酸水素カリウムの少なくともいずれかであり、前記芳香族有機溶媒が、トルエン及びキシレンの少なくともいずれかである前記[1]又は[2]に記載のアセトアミド誘導体の製造方法。
[4]前記一般式(1)及び(A)中のXが、塩素原子であり、前記一般式(1)及び(B)中のR1及びR2が、メチル基又はエチル基である前記[1]〜[3]のいずれかに記載のアセトアミド誘導体の製造方法。
[2] The reaction step is performed by adding the compound represented by the general formula (A) and the dialkylamine to a reaction system in which the alkali metal inorganic salt is dispersed in the aromatic organic solvent. The method for producing an acetamide derivative according to the above [1], which is a step of causing the reaction to occur.
[3] The above [1] or [2], wherein the alkali metal inorganic salt is at least one of sodium hydrogen carbonate and potassium hydrogen carbonate, and the aromatic organic solvent is at least one of toluene and xylene. A process for producing an acetamide derivative.
[4] X in the general formulas (1) and (A) is a chlorine atom, and R 1 and R 2 in the general formulas (1) and (B) are a methyl group or an ethyl group. The method for producing an acetamide derivative according to any one of [1] to [3].

本発明のアセトアミド誘導体の製造方法によれば、高い収率でアセトアミド誘導体を得ることができるとともに、副生成物の分離が容易であり、かつ、環境に対する影響も小さい。このため、本発明のアセトアミド誘導体の製造方法は、精製に要する負荷等も少なく、工業的プロセスに容易に適用される。   According to the method for producing an acetamide derivative of the present invention, an acetamide derivative can be obtained with a high yield, the separation of by-products is easy, and the influence on the environment is small. For this reason, the manufacturing method of the acetamide derivative of this invention has few load etc. which are required for refinement | purification, and is easily applied to an industrial process.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明のアセトアミド誘導体の製造方法は、一般式(1)で表されるアセトアミド誘導体の製造方法である。そして、以下の反応式に示すように、一般式(A)で表される化合物と、一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩の存在下、非ハロゲン系の芳香族有機溶媒中で反応させる反応工程を有する。以下、本発明のアセトアミド誘導体の製造方法を、単に「本発明の製造方法」とも記す。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. The method for producing an acetamide derivative of the present invention is a method for producing an acetamide derivative represented by the general formula (1). Then, as shown in the following reaction formula, the compound represented by the general formula (A) and the dialkylamine represented by the general formula (B) are non-halogenated in the presence of a basic alkali metal inorganic salt. A reaction step of reacting in an aromatic organic solvent of the system. Hereinafter, the method for producing an acetamide derivative of the present invention is also simply referred to as “the production method of the present invention”.

Figure 2017171620
Figure 2017171620

本発明者らは、従来の方法で使用されていた水とハロゲン系有機溶媒からなる二相系の反応溶媒に代えて、水とトルエン等の芳香族有機溶媒との二相系の反応溶媒中で、一般式(A)で表される化合物とジアルキルアミンを反応させることについて検討した。その結果、反応溶媒の有機相にハロゲン系有機溶媒を用いた場合に比して、芳香族有機溶媒を用いた場合には収率が顕著に低下することが判明した。その理由は、生成したアセトアミド誘導体の相当量が水相にも移行してしまい、有機相である芳香族有機溶媒中に移行する量が減少して回収率が低下したためであることが、精査の結果判明した。   The present inventors replaced the two-phase reaction solvent composed of water and a halogen-based organic solvent used in the conventional method in a two-phase reaction solvent of water and an aromatic organic solvent such as toluene. Thus, the reaction of the compound represented by the general formula (A) with the dialkylamine was studied. As a result, it was found that the yield was remarkably reduced when an aromatic organic solvent was used compared to when a halogen-based organic solvent was used for the organic phase of the reaction solvent. The reason for this is that a considerable amount of the acetamide derivative produced also migrated to the aqueous phase, and the amount migrated into the aromatic organic solvent, which is the organic phase, decreased and the recovery rate decreased. The result turned out.

そこで、本発明者らは、一般式(A)で表される化合物とジアルキルアミンを、二相系の反応溶媒中ではなく、実質的に水が存在しない芳香族有機溶媒中で反応させることについて検討した。その結果、目的とするアセトアミド誘導体を高収率で得られることが判明した。なお、本明細書における「実質的に水が存在しない」とは、反応の進行により生じた微量の水が含まれることとなる場合はあるが、少なくとも、原料化合物及び目的化合物を溶解させる溶媒や反応溶媒としての水を含まないことを意味する。さらに、一般式(A)で表される化合物とジアルキルアミンを、塩基性のアルカリ金属無機塩の存在下で反応させたところ、アルカリ金属無機塩が脱酸剤として有効に機能して反応が円滑に進行することがわかった。塩基性のアルカリ金属無機塩を脱酸剤として用いた場合、反応の進行により副生するのは、ろ過等の簡易な操作で容易に分離可能な塩化ナトリウム(NaCl)等のアルカリ金属ハロゲン化物である。このため、本発明の製造方法では、副生物を除去するための蒸留塔などの高度な設備が不要である。   Therefore, the present inventors have made a reaction between the compound represented by the general formula (A) and the dialkylamine in an aromatic organic solvent substantially free of water, not in a two-phase reaction solvent. investigated. As a result, it was found that the target acetamide derivative can be obtained in high yield. In the present specification, “substantially no water” means that a trace amount of water generated by the progress of the reaction may be contained, but at least a solvent for dissolving the raw material compound and the target compound, It means that water as a reaction solvent is not contained. Furthermore, when the compound represented by the general formula (A) and the dialkylamine are reacted in the presence of a basic alkali metal inorganic salt, the alkali metal inorganic salt functions effectively as a deoxidizer and the reaction is smooth. It turns out to progress. When a basic alkali metal inorganic salt is used as a deoxidizing agent, the by-product generated by the progress of the reaction is an alkali metal halide such as sodium chloride (NaCl) that can be easily separated by a simple operation such as filtration. is there. For this reason, the production method of the present invention does not require sophisticated equipment such as a distillation column for removing by-products.

上記のように、本発明の製造方法によれば、高い収率でアセトアミド誘導体を得ることができるとともに、ジクロロメタン等のハロゲン系有機溶媒を用いる必要もなく、さらには副生物を容易に除去することができる。また、比較的高価な相間移動触媒を用いる必要もないため、本発明の製造方法によれば、医薬及び農薬等の合成原料・合成中間体等として有用な純度の高いアセトアミド誘導体を工業的プロセスによって大量かつ安価に製造することができる。   As described above, according to the production method of the present invention, an acetamide derivative can be obtained with high yield, and it is not necessary to use a halogen-based organic solvent such as dichloromethane, and furthermore, by-products can be easily removed. Can do. In addition, since it is not necessary to use a relatively expensive phase transfer catalyst, according to the production method of the present invention, a high-purity acetamide derivative useful as a synthetic raw material / synthetic intermediate for pharmaceuticals and agricultural chemicals is produced by an industrial process. It can be manufactured in large quantities and at low cost.

本発明の製造方法は、下記一般式(1)で表されるアセトアミド誘導体の製造方法である。   The production method of the present invention is a method for producing an acetamide derivative represented by the following general formula (1).

Figure 2017171620
Figure 2017171620

一般式(1)中、Xは、ハロゲン原子を示す。ハロゲン原子としては、塩素原子(Cl)、臭素原子(Br)、及びヨウ素原子(I)などを挙げることができる。なかでも、塩素原子(Cl)が好ましい。また、一般式(1)中、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す。アルキル基は、直鎖状及び分岐状のいずれであってもよい。アルキル基の炭素数は1〜3であることが好ましく、1又は2であることがさらに好ましい。すなわち、アルキル基としては、メチル基、エチル基、プロピル基、及びブチル基を挙げることができる。 In general formula (1), X represents a halogen atom. Examples of the halogen atom include a chlorine atom (Cl), a bromine atom (Br), and an iodine atom (I). Of these, a chlorine atom (Cl) is preferable. Further, in the general formula (1), R 1 and R 2 represents an alkyl group having 1 to 4 carbon atoms independently. The alkyl group may be linear or branched. The alkyl group preferably has 1 to 3 carbon atoms, more preferably 1 or 2. That is, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.

本発明の製造方法は、下記一般式(A)で表される化合物と、下記一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩の存在下、芳香族有機溶媒中で反応させる反応工程を有する。一般式(A)で表される化合物とジアルキルアミンを反応させることで、目的とする一般式(1)で表されるアセトアミド誘導体が形成される。   In the production method of the present invention, a compound represented by the following general formula (A) and a dialkylamine represented by the following general formula (B) are mixed with an aromatic organic solvent in the presence of a basic alkali metal inorganic salt. Having a reaction step in which to react. By reacting the compound represented by the general formula (A) with a dialkylamine, the target acetamide derivative represented by the general formula (1) is formed.

Figure 2017171620
Figure 2017171620

一般式(A)中、Xは、それぞれ独立にハロゲン原子を示す。ハロゲン原子の具体例としては、好ましいものも含めて、一般式(1)中のXの例として挙げたものと同様のものを挙げることができる。   In general formula (A), X represents a halogen atom each independently. Specific examples of the halogen atom, including preferred ones, may be the same as those exemplified as X in the general formula (1).

一般式(B)中、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す。アルキル基の具体例としては、好ましいものも含めて、一般式(1)中のR1及びR2の例として挙げたものと同様のものを挙げることができる。すなわち、一般式(B)で表されるジアルキルアミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミンなどを用いることができる。 In the general formula (B), R 1 and R 2 represents an alkyl group having 1 to 4 carbon atoms independently. Specific examples of the alkyl group, including preferred ones, may be the same as those exemplified as examples of R 1 and R 2 in the general formula (1). That is, as the dialkylamine represented by the general formula (B), dimethylamine, diethylamine, dipropylamine, dibutylamine and the like can be used.

一般式(B)で表されるジアルキルアミンの一種であるジメチルアミンは、常温・常圧条件下では気体である。このため、ジメチルアミンについては、ガスの状態(ジメチルアミンガス)で、反応溶媒中に吹き込む(バブリングする)等して使用する。なお、ジメチルアミンは水溶液(40%又は50%ジメチルアミン水溶液等)として入手可能であるが、ジメチルアミン水溶液を使用すると、反応溶媒が水と芳香族有機溶媒の二相系となる。このため、目的物であるアセトアミド誘導体の収率が低下してしまうために好ましくない。   Dimethylamine, which is a kind of dialkylamine represented by the general formula (B), is a gas under normal temperature and normal pressure conditions. For this reason, dimethylamine is used in the state of gas (dimethylamine gas) by blowing (bubbling) it into the reaction solvent. Although dimethylamine is available as an aqueous solution (40% or 50% aqueous dimethylamine solution, etc.), when a dimethylamine aqueous solution is used, the reaction solvent becomes a two-phase system of water and an aromatic organic solvent. For this reason, since the yield of the target acetamide derivative will fall, it is not preferable.

塩基性のアルカリ金属無機塩は、反応によって生ずる酸成分(ハロゲン化水素)と反応する脱酸剤として機能しうる成分である。このようなアルカリ金属無機塩としては、炭酸水素ナトリウム(NaHCO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、及び炭酸カリウム(K2CO3)、リン酸一水素ナトリウム(Na2HPO4)、リン酸一水素カリウム(K2HPO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸二水素カリウム(KH2PO4)、リン酸ナトリウム(Na3PO4)、及びリン酸カリウム(K3PO4)などを挙げることができる。なかでも、目的とするアセトアミド誘導体をより高収率で得られることから、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムが好ましく、炭酸水素ナトリウム、炭酸水素カリウムがさらに好ましい。これらのアルカリ金属無機塩は、1種単独で又は2種以上を組み合わせて用いることができる。 The basic alkali metal inorganic salt is a component that can function as a deoxidizing agent that reacts with an acid component (hydrogen halide) generated by the reaction. Examples of such alkali metal inorganic salts include sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), and sodium monohydrogen phosphate. (Na 2 HPO 4 ), potassium monohydrogen phosphate (K 2 HPO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), sodium phosphate (Na 3 PO 4 ), and potassium phosphate (K 3 PO 4 ). Of these, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, and potassium carbonate are preferable, and sodium hydrogen carbonate and potassium hydrogen carbonate are more preferable because the target acetamide derivative can be obtained in a higher yield. These alkali metal inorganic salts can be used singly or in combination of two or more.

芳香族有機溶媒としては、トルエン、キシレン、エチルベンゼン、及びクロロベンゼンなどを挙げることができる。なかでも、環境に対する影響等を考慮すると、非ハロゲン系の芳香族有機溶媒が好ましい。さらには、目的とするアセトアミド誘導体をより高収率で得られることから、トルエンやキシレンが特に好ましい。これらの芳香族有機溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。   Examples of the aromatic organic solvent include toluene, xylene, ethylbenzene, and chlorobenzene. Among these, non-halogen aromatic organic solvents are preferable in consideration of environmental influences. Furthermore, toluene and xylene are particularly preferable because the target acetamide derivative can be obtained in a higher yield. These aromatic organic solvents can be used singly or in combination of two or more.

炭酸水素ナトリウムなどの塩基性のアルカリ金属無機塩は、通常、トルエンなどの芳香族有機溶媒にほとんど溶解しない。このため、一般式(A)で表される化合物とジアルキルアミンを反応させる反応系は、芳香族有機溶媒中に固体のアルカリ金属無機塩が分散した分散液である。したがって、反応工程では、例えば、一般式(A)で表される化合物と、ジアルキルアミンとを、アルカリ金属無機塩を芳香族有機溶媒に分散させた反応系にそれぞれ添加する。一般式(A)で表される化合物やジアルキルアミンを反応系に添加する方法は特に限定されない。例えば、気体であれば吹き込み(バブリング)などの方法によって、液体であれば滴下などの方法によって、これらの化合物を反応系に添加することができる。   Basic alkali metal inorganic salts such as sodium hydrogen carbonate are usually hardly dissolved in aromatic organic solvents such as toluene. Therefore, the reaction system for reacting the compound represented by the general formula (A) with the dialkylamine is a dispersion in which a solid alkali metal inorganic salt is dispersed in an aromatic organic solvent. Therefore, in the reaction step, for example, the compound represented by the general formula (A) and the dialkylamine are respectively added to the reaction system in which the alkali metal inorganic salt is dispersed in the aromatic organic solvent. The method for adding the compound represented by the general formula (A) and the dialkylamine to the reaction system is not particularly limited. For example, these compounds can be added to the reaction system by a method such as bubbling if it is a gas, or by a method such as dropping if it is a liquid.

反応温度は特に限定されないが、副生成物の生成を抑制するなどの観点からは、適度に冷却しながら反応させることが好ましい。具体的には、反応温度を−20〜20℃とすることが好ましい。また、一般式(A)で表される化合物及びジアルキルアミンを反応系に滴下等によって添加するのに要する時間は、反応系の温度が上昇しすぎないように適宜設定すればよく、通常、0.5〜10時間、好ましくは1〜6時間程度である。さらに、一般式(A)で表される化合物及びジアルキルアミンを添加後、必要に応じて15分〜2時間程度熟成させてもよい。   The reaction temperature is not particularly limited, but it is preferable to carry out the reaction with moderate cooling from the viewpoint of suppressing the formation of by-products. Specifically, the reaction temperature is preferably -20 to 20 ° C. In addition, the time required for adding the compound represented by the general formula (A) and the dialkylamine to the reaction system by dropping or the like may be appropriately set so that the temperature of the reaction system does not increase too much. .5 to 10 hours, preferably about 1 to 6 hours. Furthermore, after adding the compound represented by the general formula (A) and the dialkylamine, it may be aged for about 15 minutes to 2 hours as necessary.

反応工程の後は、例えば、(i)副生成物である塩化ナトリウム(NaCl)等のアルカリ金属ハロゲン化物をろ過して除去した後、(ii)必要に応じてろ液から水層を分離して除去し、(iii)得られたろ液を減圧濃縮すれば、目的とする一般式(1)で表されるアセトアミド誘導体を高い収率で得ることができる。なお、上記(i)〜(iii)の手順はどの順序で実施してもよい。例えば、反応液を減圧濃縮した後に、アルカリ金属ハロゲン化物をろ過して除去する順序としてもよい。なお、本発明の製造方法における反応式の一例を以下に示す。   After the reaction step, for example, (i) alkali metal halide such as sodium chloride (NaCl) as a by-product is removed by filtration, and (ii) the aqueous layer is separated from the filtrate as necessary. By removing and (iii) concentrating the obtained filtrate under reduced pressure, the target acetamide derivative represented by the general formula (1) can be obtained in high yield. The procedures (i) to (iii) may be performed in any order. For example, the reaction solution may be concentrated under reduced pressure, and then the alkali metal halide may be removed by filtration. In addition, an example of the reaction formula in the manufacturing method of this invention is shown below.

Figure 2017171620
Figure 2017171620

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.

(実施例1)
500mL四つ口コルベンに炭酸水素ナトリウム126.0g(1.50mol)及びトルエン146.8gを入れ、冷却しながら撹拌した。内温を5℃以下に保ち、クロロアセチルクロライド112.9g(1.00mol)を4時間かけて滴下すると同時に、ジメチルアミンガス49.6g(1.10mol)4時間かけて吹き込んだ。−2〜1℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン100gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液中の水層を分離して除去した後、トルエン層を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド113.2g(0.93mol)を得た。収率は93.1%であり、純度(GC面積%)は99.5%であり、含量(GC内部標準法)は99.9%であった。NMR及びIRの結果を以下に示す。
1H−NMR(500MHz,CDCl3):δ=2.99(s,3H),3.10(s,3H)、4.08(s,2H)
IR(cm-1,neat):2940(C−H),1654(C=O)
Example 1
A 500 mL four-necked Kolben was charged with 126.0 g (1.50 mol) of sodium hydrogen carbonate and 146.8 g of toluene, and stirred while cooling. While maintaining the internal temperature at 5 ° C. or lower, 112.9 g (1.00 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 49.6 g (1.10 mol) of dimethylamine gas was blown in over 4 hours. After stirring at −2 to 1 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 100 g of toluene and combined with the filtrate to obtain a filtrate washing solution. The aqueous layer in the filtrate was separated and removed, and then the toluene layer was concentrated under reduced pressure to obtain 113.2 g (0.93 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 93.1%, the purity (GC area%) was 99.5%, and the content (GC internal standard method) was 99.9%. The results of NMR and IR are shown below.
1 H-NMR (500 MHz, CDCl 3 ): δ = 2.99 (s, 3H), 3.10 (s, 3H), 4.08 (s, 2H)
IR (cm < -1 >, neat): 2940 (C-H), 1654 (C = O)

(実施例2)
300mL四つ口コルベンに炭酸水素カリウム75.1g(0.75mol)及びトルエン71.7gを入れ、冷却しながら撹拌した。内温を0〜3℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。1℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド51.5g(0.42mol)を得た。収率は84.8%であった。
(Example 2)
A 300 mL four-necked Kolben was charged with 75.1 g (0.75 mol) of potassium hydrogen carbonate and 71.7 g of toluene, and stirred while cooling. While maintaining the internal temperature at 0 to 3 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at 1 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 51.5 g (0.42 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 84.8%.

(実施例3)
300mL四つ口コルベンに炭酸ナトリウム53.0g(0.50mol)及びトルエン71.7gを入れ、冷却しながら撹拌した。内温を5℃以下に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。2℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド39.0g(0.32mol)を得た。収率は64.0%であった。
(Example 3)
Sodium carbonate 53.0 g (0.50 mol) and toluene 71.7 g were placed in a 300 mL four-necked Kolben and stirred while cooling. While maintaining the internal temperature at 5 ° C. or less, 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at 2 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 39.0 g (0.32 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 64.0%.

(実施例4)
300mL四つ口コルベンに炭酸カリウム69.1g(0.50mol)及びトルエン71.7gを入れ、冷却しながら撹拌した。内温を−1〜4℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて、滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。0℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン100gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド32.5g(0.27mol)を得た。収率は53.4%であった。
Example 4
In a 300 mL four-necked Kolben, 69.1 g (0.50 mol) of potassium carbonate and 71.7 g of toluene were added and stirred while cooling. While maintaining the internal temperature at −1 to 4 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. . After stirring at 0 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 100 g of toluene and combined with the filtrate to obtain a filtrate washing solution. The filtrate was concentrated under reduced pressure to obtain 32.5 g (0.27 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 53.4%.

(実施例5)
300mL四つ口コルベンに炭酸水素ナトリウム63.0g(0.75mol)及びキシレン84.5gを入れ、冷却しながら撹拌した。内温を0〜3℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。−2〜1℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をキシレン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド50.7g(0.42mol)を得た。収率は83.3%であった。
(Example 5)
Sodium hydrogen carbonate 63.0 g (0.75 mol) and xylene 84.5 g were placed in a 300 mL four-necked Kolben and stirred while cooling. While maintaining the internal temperature at 0 to 3 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at −2 to 1 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of xylene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 50.7 g (0.42 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 83.3%.

(実施例6)
300mL四つ口コルベンに炭酸水素ナトリウム63.0g(0.75mol)及びトルエン84.5gを入れ、冷却しながら撹拌した。内温を0〜11℃に保ち、クロロアセチルクロライド56.5g(0.50mol)とジエチルアミン40.2g(0.55mol)を4時間かけて同時に滴下した。−1〜1℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジエチルアセトアミド66.3g(0.44mol)を得た。収率は88.6%であった。
(Example 6)
Sodium hydrogen carbonate 63.0 g (0.75 mol) and toluene 84.5 g were placed in a 300 mL four-necked Kolben, and stirred while cooling. While maintaining the internal temperature at 0 to 11 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride and 40.2 g (0.55 mol) of diethylamine were simultaneously added dropwise over 4 hours. After stirring at −1 to 1 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 66.3 g (0.44 mol) of oily 2-chloro-N, N-diethylacetamide. The yield was 88.6%.

(実施例7)
300mL四つ口コルベンにリン酸一水素ナトリウム71.0g(0.50mol)及びトルエン84.5gを入れ、冷却しながら撹拌した。内温を0〜3℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。2℃で1時間撹拌した後、反応液を減圧濾過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド35.0g(0.27mol)を得た。収率は57.6%であった。
(Example 7)
A 300 mL four-necked Kolben was charged with 71.0 g (0.50 mol) of sodium monohydrogen phosphate and 84.5 g of toluene, and stirred while cooling. While maintaining the internal temperature at 0 to 3 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at 2 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 35.0 g (0.27 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 57.6%.

(比較例1)
1000mL四つ口コルベンに酢酸ナトリウム135.4g(1.65mol)及び塩化メチレン330.0gを入れ、冷却しながら撹拌した。内温を3〜4℃に保ち、クロロアセチルクロライド169.4g(1.5mol)と40%ジメチルアミン水溶液186.9g(1.65mol)を2時間かけて同時に滴下した。2〜3℃で1時間撹拌した後に水411.9gを添加し、反応液内に析出している無機塩の結晶を溶解した。塩化メチレン層を分離後、水層に塩化メチレン165gを加えて二次抽出した。塩化メチレン層を合わせて減圧濃縮して、塩化メチレン、酢酸、及び2−クロロ−N,N−ジメチルアセトアミドの混合溶液226.8gを得た。得られた混合溶液を減圧蒸留して、GC純度(面積%)が2−クロロ−N,N−ジメチルアセトアミド99.3%の画分91.2g(0.75mol)を得た。2−クロロ−N,N−ジメチルアセトアミドの収率は50.0%であった。
(Comparative Example 1)
Sodium acetate 135.4g (1.65mol) and methylene chloride 330.0g were put into 1000mL four neck Kolben, and it stirred, cooling. While maintaining the internal temperature at 3 to 4 ° C., 169.4 g (1.5 mol) of chloroacetyl chloride and 186.9 g (1.65 mol) of 40% dimethylamine aqueous solution were simultaneously added dropwise over 2 hours. After stirring at 2 to 3 ° C. for 1 hour, 411.9 g of water was added to dissolve inorganic salt crystals precipitated in the reaction solution. After the methylene chloride layer was separated, 165 g of methylene chloride was added to the aqueous layer for secondary extraction. The methylene chloride layers were combined and concentrated under reduced pressure to obtain 226.8 g of a mixed solution of methylene chloride, acetic acid, and 2-chloro-N, N-dimethylacetamide. The obtained mixed solution was distilled under reduced pressure to obtain 91.2 g (0.75 mol) of a fraction having a GC purity (area%) of 99.3% of 2-chloro-N, N-dimethylacetamide. The yield of 2-chloro-N, N-dimethylacetamide was 50.0%.

(比較例2)
1000mL四つ口コルベンに酢酸ナトリウム135.4g(1.65mol)及びトルエン216.3gを入れ、冷却しながら撹拌した。内温を0〜5℃に保ち、クロロアセチルクロライド169.4g(1.5mol)と50%ジメチルアミン水溶液147.3g(1.65mol)を2時間かけて同時に滴下した。1〜3℃で1時間撹拌した後に水450.0gを添加し、反応液内に析出している無機塩の結晶を溶解した。トルエン層を分離後、水層にトルエン108.2gを加えて二次抽出した。トルエン層を合わせて減圧濃縮して、トルエン、酢酸、及び2−クロロ−N,N−ジメチルアセトアミドの混合溶液221.0gを得た。得られた混合溶液を減圧蒸留して、GC純度(面積%)が2−クロロ−N,N−ジメチルアセトアミド99.3%の画分66.0g(0.54mol)を得た。2−クロロ−N,N−ジメチルアセトアミドの収率は36.2%であった。
(Comparative Example 2)
Sodium acetate 135.4g (1.65mol) and toluene 216.3g were put into 1000mL four neck Kolben, and it stirred, cooling. While maintaining the internal temperature at 0 to 5 ° C., 169.4 g (1.5 mol) of chloroacetyl chloride and 147.3 g (1.65 mol) of 50% dimethylamine aqueous solution were simultaneously added dropwise over 2 hours. After stirring at 1 to 3 ° C. for 1 hour, 450.0 g of water was added to dissolve the inorganic salt crystals precipitated in the reaction solution. After separating the toluene layer, 108.2 g of toluene was added to the aqueous layer for secondary extraction. The toluene layers were combined and concentrated under reduced pressure to obtain 221.0 g of a mixed solution of toluene, acetic acid, and 2-chloro-N, N-dimethylacetamide. The obtained mixed solution was distilled under reduced pressure to obtain 66.0 g (0.54 mol) of a fraction having a GC purity (area%) of 99.3% of 2-chloro-N, N-dimethylacetamide. The yield of 2-chloro-N, N-dimethylacetamide was 36.2%.

(比較例3)
200mL四つ口コルベンにトルエン99.2gを入れ、冷却しながら撹拌した。内温を2〜3℃に保ち、ジメチルアミンガス47.3g(1.05mol)を6時間かけて吹き込んだ。次いで、内温を2〜5℃に保ち、クロロアセチルクロライド56.5g(0.5mol)を3時間かけて滴下した。反応液中に析出したジメチルアミン塩酸塩の結晶を減圧ろ過し、結晶をトルエン180.7gで洗浄した。ろ液と洗浄液を合わせて減圧濃縮して、オイル状の2−クロロ−N,N−ジエチルアセトアミド19.8g(0.16mol)を得た。収率は32.6%であった。
(Comparative Example 3)
99.2 g of toluene was placed in a 200 mL four-necked Kolben and stirred while cooling. The internal temperature was kept at 2 to 3 ° C., and 47.3 g (1.05 mol) of dimethylamine gas was blown in over 6 hours. Subsequently, 56.5 g (0.5 mol) of chloroacetyl chloride was dropped over 3 hours while maintaining the internal temperature at 2 to 5 ° C. The crystals of dimethylamine hydrochloride precipitated in the reaction solution were filtered under reduced pressure, and the crystals were washed with 180.7 g of toluene. The filtrate and the washing solution were combined and concentrated under reduced pressure to obtain 19.8 g (0.16 mol) of oily 2-chloro-N, N-diethylacetamide. The yield was 32.6%.

上記の実施例及び比較例をまとめたものを表1に示す。   Table 1 shows a summary of the above examples and comparative examples.

Figure 2017171620
Figure 2017171620

本発明の製造方法は、医薬等を製造するための原料や中間体として有用な2−クロロ−N,N−ジメチルアセトアミド等のアセトアミド誘導体を工業的に製造する方法として好適である。   The production method of the present invention is suitable as a method for industrially producing an acetamide derivative such as 2-chloro-N, N-dimethylacetamide useful as a raw material or intermediate for producing a pharmaceutical or the like.

本発明者らは上記課題を解決すべく鋭意検討した結果、以下の構成とすることによって上記課題を解決することが可能であることを見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示すアセトアミド誘導体の製造方法が提供される。
[1]下記一般式(1)で表されるアセトアミド誘導体の製造方法であって、下記一般式(A)で表される化合物と、下記一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩芳香族有機溶媒に分散させた、実質的に水が存在しない反応系で反応させる反応工程を有するアセトアミド誘導体の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have completed the present invention. That is, according to this invention, the manufacturing method of the acetamide derivative shown below is provided.
[1] A method for producing an acetamide derivative represented by the following general formula (1), comprising a compound represented by the following general formula (A) and a dialkylamine represented by the following general formula (B): A method for producing an acetamide derivative comprising a reaction step in which a basic alkali metal inorganic salt is dispersed in an aromatic organic solvent and reacted in a reaction system substantially free of water .

本発明者らは上記課題を解決すべく鋭意検討した結果、以下の構成とすることによって上記課題を解決することが可能であることを見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示すアセトアミド誘導体の製造方法が提供される。
[1]下記一般式(1)で表されるアセトアミド誘導体の製造方法であって、下記一般式(A)で表される化合物と、下記一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩を芳香族有機溶媒に分散させた、実質的に水が存在しない反応系で反応させる反応工程を有し、前記アルカリ金属無機塩が、炭酸水素ナトリウム及び炭酸水素カリウムの少なくともいずれかであるアセトアミド誘導体の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have completed the present invention. That is, according to this invention, the manufacturing method of the acetamide derivative shown below is provided.
[1] A method for producing an acetamide derivative represented by the following general formula (1), comprising a compound represented by the following general formula (A) and a dialkylamine represented by the following general formula (B): the basic alkali metal inorganic salt is dispersed in an aromatic organic solvent, have a reaction step of reacting in a substantially reaction system water is not present, the alkali metal inorganic salts, sodium hydrogen carbonate and potassium hydrogen carbonate At least method of any der Ru acetamide derivative.

Figure 2017171620
(前記一般式(1)中、Xは塩素原子を示し、R1及びR2メチル基を示す)
Figure 2017171620
(In the general formula (1), X represents a chlorine atom, and R 1 and R 2 represent a methyl group)

Figure 2017171620
(前記一般式(A)中、Xは塩素原子を示す。前記一般式(B)中、R1及びR2メチル基を示す)
Figure 2017171620
(In the general formula (A), X represents a chlorine atom. In the general formula (B), R 1 and R 2 represent a methyl group)

[2]前記反応工程が、前記一般式(A)で表される化合物と、前記ジアルキルアミンとを、前記アルカリ金属無機塩を前記芳香族有機溶媒に分散させた反応系にそれぞれ添加して反応させる工程である前記[1]に記載のアセトアミド誘導体の製造方法。
[3]記芳香族有機溶媒が、トルエン及びキシレンの少なくともいずれかである前記[1]又は[2]に記載のアセトアミド誘導体の製造方法
[2] The reaction step is performed by adding the compound represented by the general formula (A) and the dialkylamine to a reaction system in which the alkali metal inorganic salt is dispersed in the aromatic organic solvent. The method for producing an acetamide derivative according to the above [1], which is a step of causing the reaction to occur.
[3] before Symbol aromatic organic solvent, the production method of the acetamide derivative according to the at least one of toluene and xylene [1] or [2].

参考例3)
300mL四つ口コルベンに炭酸ナトリウム53.0g(0.50mol)及びトルエン71.7gを入れ、冷却しながら撹拌した。内温を5℃以下に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。2℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド39.0g(0.32mol)を得た。収率は64.0%であった。
( Reference Example 3)
Sodium carbonate 53.0 g (0.50 mol) and toluene 71.7 g were placed in a 300 mL four-necked Kolben and stirred while cooling. While maintaining the internal temperature at 5 ° C. or less, 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at 2 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 39.0 g (0.32 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 64.0%.

参考例4)
300mL四つ口コルベンに炭酸カリウム69.1g(0.50mol)及びトルエン71.7gを入れ、冷却しながら撹拌した。内温を−1〜4℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて、滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。0℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン100gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド32.5g(0.27mol)を得た。収率は53.4%であった。
( Reference Example 4)
In a 300 mL four-necked Kolben, 69.1 g (0.50 mol) of potassium carbonate and 71.7 g of toluene were added and stirred while cooling. While maintaining the internal temperature at −1 to 4 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. . After stirring at 0 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 100 g of toluene and combined with the filtrate to obtain a filtrate washing solution. The filtrate was concentrated under reduced pressure to obtain 32.5 g (0.27 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 53.4%.

参考例6)
300mL四つ口コルベンに炭酸水素ナトリウム63.0g(0.75mol)及びトルエン84.5gを入れ、冷却しながら撹拌した。内温を0〜11℃に保ち、クロロアセチルクロライド56.5g(0.50mol)とジエチルアミン40.2g(0.55mol)を4時間かけて同時に滴下した。−1〜1℃で1時間撹拌した後、反応液を減圧ろ過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジエチルアセトアミド66.3g(0.44mol)を得た。収率は88.6%であった。
( Reference Example 6)
Sodium hydrogen carbonate 63.0 g (0.75 mol) and toluene 84.5 g were placed in a 300 mL four-necked Kolben, and stirred while cooling. While maintaining the internal temperature at 0 to 11 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride and 40.2 g (0.55 mol) of diethylamine were simultaneously added dropwise over 4 hours. After stirring at −1 to 1 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 66.3 g (0.44 mol) of oily 2-chloro-N, N-diethylacetamide. The yield was 88.6%.

参考例7)
300mL四つ口コルベンにリン酸一水素ナトリウム71.0g(0.50mol)及びトルエン84.5gを入れ、冷却しながら撹拌した。内温を0〜3℃に保ち、クロロアセチルクロライド56.5g(0.50mol)を4時間かけて滴下すると同時に、ジメチルアミンガス24.8g(0.55mol)を4時間かけて吹き込んだ。2℃で1時間撹拌した後、反応液を減圧濾過して無機塩の結晶をろ別した。結晶をトルエン50gで洗浄し、ろ液と合わせてろ洗液とした。ろ洗液を減圧濃縮して、オイル状の2−クロロ−N,N−ジメチルアセトアミド35.0g(0.27mol)を得た。収率は57.6%であった。
( Reference Example 7)
A 300 mL four-necked Kolben was charged with 71.0 g (0.50 mol) of sodium monohydrogen phosphate and 84.5 g of toluene, and stirred while cooling. While maintaining the internal temperature at 0 to 3 ° C., 56.5 g (0.50 mol) of chloroacetyl chloride was added dropwise over 4 hours, and 24.8 g (0.55 mol) of dimethylamine gas was blown in over 4 hours. After stirring at 2 ° C. for 1 hour, the reaction solution was filtered under reduced pressure to separate inorganic salt crystals. The crystals were washed with 50 g of toluene and combined with the filtrate to obtain a filtrate. The filtrate was concentrated under reduced pressure to obtain 35.0 g (0.27 mol) of oily 2-chloro-N, N-dimethylacetamide. The yield was 57.6%.

上記の実施例、参考例、及び比較例をまとめたものを表1に示す。 Table 1 shows a summary of the above examples , reference examples, and comparative examples.

Figure 2017171620
Figure 2017171620

Claims (4)

下記一般式(1)で表されるアセトアミド誘導体の製造方法であって、
下記一般式(A)で表される化合物と、下記一般式(B)で表されるジアルキルアミンとを、塩基性のアルカリ金属無機塩の存在下、芳香族有機溶媒中で反応させる反応工程を有するアセトアミド誘導体の製造方法。
Figure 2017171620
(前記一般式(1)中、Xは、ハロゲン原子を示し、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す)
Figure 2017171620
(前記一般式(A)中、Xは、それぞれ独立にハロゲン原子を示す。前記一般式(B)中、R1及びR2は、それぞれ独立に炭素数1〜4のアルキル基を示す)
A method for producing an acetamide derivative represented by the following general formula (1),
A reaction step in which a compound represented by the following general formula (A) and a dialkylamine represented by the following general formula (B) are reacted in an aromatic organic solvent in the presence of a basic alkali metal inorganic salt. A process for producing an acetamide derivative.
Figure 2017171620
(In the general formula (1), X represents a halogen atom, and R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms)
Figure 2017171620
(In the general formula (A), each X independently represents a halogen atom. In the general formula (B), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms).
前記反応工程が、前記一般式(A)で表される化合物と、前記ジアルキルアミンとを、前記アルカリ金属無機塩を前記芳香族有機溶媒に分散させた反応系にそれぞれ添加して反応させる工程である請求項1に記載のアセトアミド誘導体の製造方法。   The reaction step is a step of reacting the compound represented by the general formula (A) and the dialkylamine by adding them to a reaction system in which the alkali metal inorganic salt is dispersed in the aromatic organic solvent. A method for producing an acetamide derivative according to claim 1. 前記アルカリ金属無機塩が、炭酸水素ナトリウム及び炭酸水素カリウムの少なくともいずれかであり、
前記芳香族有機溶媒が、トルエン及びキシレンの少なくともいずれかである請求項1又は2に記載のアセトアミド誘導体の製造方法。
The alkali metal inorganic salt is at least one of sodium bicarbonate and potassium bicarbonate;
The method for producing an acetamide derivative according to claim 1, wherein the aromatic organic solvent is at least one of toluene and xylene.
前記一般式(1)及び(A)中のXが、塩素原子であり、
前記一般式(1)及び(B)中のR1及びR2が、メチル基又はエチル基である請求項1〜3のいずれか一項に記載のアセトアミド誘導体の製造方法。
X in the general formulas (1) and (A) is a chlorine atom,
The method for producing an acetamide derivative according to any one of claims 1 to 3, wherein R 1 and R 2 in the general formulas (1) and (B) are a methyl group or an ethyl group.
JP2016060209A 2016-03-24 2016-03-24 Method for producing acetamide derivative Active JP6072329B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060209A JP6072329B1 (en) 2016-03-24 2016-03-24 Method for producing acetamide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060209A JP6072329B1 (en) 2016-03-24 2016-03-24 Method for producing acetamide derivative

Publications (2)

Publication Number Publication Date
JP6072329B1 JP6072329B1 (en) 2017-02-01
JP2017171620A true JP2017171620A (en) 2017-09-28

Family

ID=57937593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060209A Active JP6072329B1 (en) 2016-03-24 2016-03-24 Method for producing acetamide derivative

Country Status (1)

Country Link
JP (1) JP6072329B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107118117B (en) * 2017-04-24 2019-04-23 公安部物证鉴定中心 The preparation method of forensic science qualitative, quantitative Fluorakil 100
CN115322112A (en) * 2022-09-19 2022-11-11 山东创新药物研发有限公司 Preparation method of 2-chloro-N- (2,6-xylyl) acetamide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895951A (en) * 1987-08-03 1990-01-23 Eastman Kodak Company Heterocyclic diamides and method for improving feed utilization and lactation in ruminant animals
JP2631236B2 (en) * 1990-01-29 1997-07-16 ダイセル化学工業株式会社 Method for producing N, N-dimethylchloroacetamide
JPH06247915A (en) * 1993-02-19 1994-09-06 Sumika Fine Kemu Kk Production of acetamide derivative
JP5797476B2 (en) * 2011-06-24 2015-10-21 株式会社ダイセル Process for producing unsaturated carboxylic acid amide composition

Also Published As

Publication number Publication date
JP6072329B1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5656952B2 (en) Piperazine derivative oxalate crystals
JPWO2006090778A1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
WO2011043204A1 (en) Method for producing diepoxy compound
JP6072329B1 (en) Method for producing acetamide derivative
TW201335128A (en) Method of consistently producing diallylbisphenols
JP2005325116A (en) Method for producing 5-bromo-2,2-difluorobenzo-[1,3]-dioxole
JP2012526802A (en) Method for producing alkylamine derivative
US10954191B2 (en) Process for the preparation of glycopyrrolate tosylate
JP2003335735A (en) Method for producing perfluoroisopropylanilines
JP2009518380A (en) Preparation of 2-chloroethoxy-acetic acid-N, N-dimethylamide
JP5795519B2 (en) Method for producing chlorosulfonylbenzoyl chloride compound
JP2506376B2 (en) Method for producing 2- (4-methylaminobutoxy) diphenylmethane hydrochloride
EP3406595B1 (en) Method for producing 2-aminonicotinic acid benzyl ester derivative
JP7227711B2 (en) Method for producing 2-(2-haloethyl)-1,3-dioxolane
JP2008509991A (en) Method for preparing glycidyl derivatives
JP2013006782A (en) Method for producing pyrazole compound
WO2017033813A1 (en) Method for producing alkenyl halide
WO2010058838A1 (en) Method for producing alkenyl mercaptan
JP6809485B2 (en) Method for producing acid halide solution and method for producing monoester compound
JP2000239225A (en) Production of optically active hydroxyester compound
JP2018503607A (en) Method for preparing tetraconazole
JP2002363112A (en) Method for producing chlorinated hydrocarbon
WO2006059774A1 (en) Method for purifying diallylbisphenol compound
JP2003064060A (en) Method for producing 1-methyl-3-phenylpiperazine
JP2012041288A (en) Method of producing thiophene sulfonyl carbamate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6072329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250