JP2017170770A - Pipeline repairing structure and pipeline repairing method - Google Patents

Pipeline repairing structure and pipeline repairing method Download PDF

Info

Publication number
JP2017170770A
JP2017170770A JP2016059795A JP2016059795A JP2017170770A JP 2017170770 A JP2017170770 A JP 2017170770A JP 2016059795 A JP2016059795 A JP 2016059795A JP 2016059795 A JP2016059795 A JP 2016059795A JP 2017170770 A JP2017170770 A JP 2017170770A
Authority
JP
Japan
Prior art keywords
pipe
existing pipe
cylindrical
elastic member
entire circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016059795A
Other languages
Japanese (ja)
Other versions
JP6770814B2 (en
Inventor
伸吉 大岡
Shinkichi Ooka
伸吉 大岡
恒 喜多島
Hisashi Kitajima
恒 喜多島
張 満良
Mitsuyoshi Cho
満良 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshika Engineering Co Ltd
Original Assignee
Yoshika Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshika Engineering Co Ltd filed Critical Yoshika Engineering Co Ltd
Priority to JP2016059795A priority Critical patent/JP6770814B2/en
Publication of JP2017170770A publication Critical patent/JP2017170770A/en
Application granted granted Critical
Publication of JP6770814B2 publication Critical patent/JP6770814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pipeline repairing structure and a pipeline repairing method which, in a pipeline repairing structure having a regeneration pipe installed inside an existing pipe, can prevent ground water and sand from flowing between the existing pipe and the regeneration pipe.SOLUTION: Provided is a pipeline repairing structure having inside of an existing pipe 100 covered with a regeneration pipe 102. A non-covered region 100a, which is not covered with the repairing pipe 102, is arranged at an end part of the existing pipe 100. The pipeline repairing structure includes a cylindrical elastic member 10 that covers a boundary between the non-covered region 100a and the repairing pipe 102 over both thereof from inside and a cylindrical rigid member 20 that presses the cylindrical elastic member 10 from inside. On an outer peripheral surface of the cylindrical elastic member 10 are formed projecting parts 14-1 and 14-2 that protrude outward in a radial direction, where the protruding parts 14-1 adheres to whole circumference of the non-covered region 100a of the existing pipe and the protruding parts 14-2 adheres to the inside of the regeneration pipe 102.SELECTED DRAWING: Figure 7

Description

本発明は下水道管路などの管路の補修構造及び管路補修方法に関する。   The present invention relates to a pipe repair structure and a pipe repair method such as a sewer pipe.

下水管等の既設管の補修のため、従来から既設管の内側に更生管を設置する補修方法が行われている。更生管を形成する方法としては、筒状の硬化性ライニング材を折り畳まれた状態で既設管内に導入した後、既設管内面に硬化性ライニング材を密着させた状態として硬化させるライニング工法(特許文献1)や、既製の複数の筒状ピースを1つずつ連続して既設管内に導入していく鞘管工法(特許文献2)などが知られている。   In order to repair existing pipes such as sewage pipes, conventionally, repair methods have been performed in which rehabilitated pipes are installed inside existing pipes. As a method for forming the rehabilitated pipe, a cylindrical curable lining material is introduced into an existing pipe in a folded state, and then the curable lining material is cured in a state where the curable lining material is in close contact with the inner surface of the existing pipe (Patent Document 1) and a sheath pipe construction method (Patent Document 2) in which a plurality of ready-made cylindrical pieces are successively introduced into existing pipes are known.

特開2013−028172号公報JP 2013-028172 A 特開2011−110856号公報JP 2011-110856 A

しかしながら、上記の方法では、更生管設置後に、既設管の亀裂等の破損・亀裂箇所から流入した地下水やこれに付随する土砂が、既設管と更生管との間の僅かな隙間を通って流れる場合があった。地下水や土砂が管路内に流入すると、地中に空洞が形成される恐れがあり、地面陥没等の被害が発生する場合がある。   However, in the above method, after the rehabilitation pipe is installed, the groundwater flowing in from the breakage / crack point of the existing pipe or the earth and sand accompanying it flows through a slight gap between the existing pipe and the rehabilitation pipe. There was a case. If groundwater or earth and sand flows into the pipe, a hollow may be formed in the ground, and damage such as ground depression may occur.

したがって、本発明の目的は、既設管の内側に更生管が設置された管路補修構造において、既設管と更生管との間において地下水や土砂が流れることを防止することができる管路補修構造及びこれを形成するための管路補修方法を提供することにある。   Accordingly, an object of the present invention is a pipe repair structure in which a rehabilitation pipe is installed inside an existing pipe, and a pipe repair structure that can prevent groundwater and earth and sand from flowing between the existing pipe and the rehabilitation pipe. Another object of the present invention is to provide a pipeline repair method for forming the same.

上記課題を解決するため、請求項1に記載の管路補修構造は、
既設管の内面が更生管で被覆された管路補修構造であって、
前記既設管の内面のうち該既設管の端部に、所定幅で全周に亘り前記更生管による被覆がなされていない非被覆領域が設けられ、
前記非被覆領域と前記更生管との境界をそれら双方にまたがって内側から覆う筒状弾性部材と、該筒状弾性部材を内側から押圧して前記既設管の内面側に圧接状態で維持する筒状剛性部材とを有し、
前記筒状弾性部材の外周面上には、幅方向に間隔を空けて少なくとも2箇所に径方向外方に突出し且つ全周に亘って延在する突条部がそれぞれ形成され、該突条部のうち1つが前記既設管の非被覆領域に全周で密着し、前記突条部のうち別の1つが前記更生管の内面に全周で密着していることを特徴とする。
In order to solve the above problem, the pipeline repair structure according to claim 1 is:
It is a pipeline repair structure where the inner surface of an existing pipe is covered with a rehabilitation pipe,
Of the inner surface of the existing pipe, an end portion of the existing pipe is provided with an uncovered region that is not covered with the rehabilitated pipe over the entire circumference with a predetermined width,
A cylindrical elastic member that covers the boundary between the uncovered region and the rehabilitation pipe from both inside, and a cylinder that presses the cylindrical elastic member from the inside and maintains it in pressure contact with the inner surface of the existing pipe A rigid member,
On the outer peripheral surface of the cylindrical elastic member, there are formed ridges that project radially outward and extend over the entire circumference at least at two locations with a gap in the width direction. One of them is in close contact with the non-covered region of the existing pipe over the entire circumference, and another one of the protrusions is in close contact with the inner surface of the rehabilitated pipe over the entire circumference.

この構成によれば、既設管の破損箇所などを介して地中から管路内に刺入した地下水が、既設管と更生管との間の微小な隙間を流れたとしても、管路内には、筒状剛性部材により固定された筒状弾性部材が設置され、筒状弾性部材に設けられた2つの突条部が、既設管と更生管との境界部を両側から塞ぐ形で設置されていることにより止水効果が発揮されるので、管路内にそれ以上の地下水及びこれに付随する土砂が流入することを防止することができる。   According to this configuration, even if the groundwater that has been inserted into the pipe line from the ground through the damaged part of the existing pipe flows through the minute gap between the existing pipe and the rehabilitated pipe, The cylindrical elastic member fixed by the cylindrical rigid member is installed, and the two ridges provided on the cylindrical elastic member are installed so as to block the boundary between the existing pipe and the renovated pipe from both sides. Since the water-stopping effect is exhibited, it is possible to prevent further underground water and sediment associated therewith from flowing into the pipeline.

請求項2に記載の管路補修方法は、前記非被覆領域に、前記内面の全周に亘って形成された溝状の誘導メジを有することを特徴とする。   According to a second aspect of the present invention, in the pipe repair method, the uncovered region has a groove-shaped guide medium formed over the entire inner surface.

誘導メジは、例えば、地震などの地盤変動により、既設管に応力がかかった場合において、誘導メジが形成された箇所における既設管の破壊を誘導するものである。これにより、既設管の誘導メジ以外の他の部分が破壊することに起因して、既設管の外側から地下水や土砂が既設管内に流入することを防止することができる。したがって、地震などの地盤変動があった場合であっても、本発明の既設管補修構造による止水機能を十分に維持することが可能となる。   For example, in the case where stress is applied to an existing pipe due to ground fluctuation such as an earthquake, the induction medium induces destruction of the existing pipe at a location where the induction medium is formed. As a result, it is possible to prevent groundwater or earth and sand from flowing into the existing pipe from the outside of the existing pipe due to the destruction of the other parts other than the guide medium of the existing pipe. Therefore, even if there is a ground change such as an earthquake, the water stop function by the existing pipe repair structure of the present invention can be sufficiently maintained.

また、請求項3に記載の管路補修方法は、既設管の内面が更生管で被覆された管路補修方法であって、
前記既設管の内面のうち該既設管の端部に、所定幅で全周に亘り前記更生管による被覆がなされていない非被覆領域を設けるための非被覆面形成工程と、
前記非被覆領域と前記更生管との境界をそれら双方にまたがって内側から覆う筒状弾性部材と、該筒状弾性部材を内側から押圧して前記既設管の内面側に圧接状態で維持する筒状剛性部材を設置するための筒状部材設置工程と、
を含み、
前記筒状弾性部材の外周面上には、幅方向に間隔を空けて少なくとも2箇所に径方向外方に突出し且つ全周に亘って延在する突条部がそれぞれ形成され、該突条部のうち1つが前記既設管の非被覆領域に全周で密着し、前記突条部のうち別の1つが前記更生管の内面に全周で密着していることを特徴とする。
The pipe repair method according to claim 3 is a pipe repair method in which an inner surface of an existing pipe is covered with a rehabilitation pipe,
A non-covered surface forming step for providing an uncovered region in the inner surface of the existing tube, which is not covered with the rehabilitated tube over the entire circumference, at an end of the existing tube;
A cylindrical elastic member that covers the boundary between the uncovered region and the rehabilitation pipe from both inside, and a cylinder that presses the cylindrical elastic member from the inside and maintains it in pressure contact with the inner surface of the existing pipe A cylindrical member installation step for installing a cylindrical rigid member;
Including
On the outer peripheral surface of the cylindrical elastic member, there are formed ridges that project radially outward and extend over the entire circumference at least at two locations with a gap in the width direction. One of them is in close contact with the non-covered region of the existing pipe over the entire circumference, and another one of the protrusions is in close contact with the inner surface of the rehabilitated pipe over the entire circumference.

本発明の既設管補修方法によれば、上記で説明した本発明の既設管補修構造を効率的な作業で行うことができる。すなわち、筒状弾性部材をその内側から筒状剛性部材で既設管内面側に押圧し、その状態を維持するだけで、本発明の既設管補修構造を形成することができる。   According to the existing pipe repair method of the present invention, the existing pipe repair structure of the present invention described above can be performed by an efficient operation. That is, the existing pipe repair structure of the present invention can be formed simply by pressing the cylindrical elastic member from the inside to the existing pipe inner surface side with the cylindrical rigid member and maintaining the state.

請求項4の既設管補修方法は、前記突条部は複数層とすることで厚さ調節可能であることを特徴とする。   The existing pipe repairing method according to claim 4 is characterized in that the thickness of the protruding portion is adjustable by forming a plurality of layers.

施工現場によって既設管の劣化具合などの条件や環境が異なるが、上記構成によれば、現場において突条部の高さを調整可能な構成とすることにより、事前の準備作業を減らすことができるので、全体の作業の容易化が図られる。   Although conditions and environments such as deterioration of existing pipes vary depending on the construction site, according to the above configuration, the preparatory work can be reduced by adopting a configuration that can adjust the height of the protrusion on the site. Therefore, the whole work can be facilitated.

請求項5に記載の既設管補修方法は、前記非被覆面形成工程の後、且つ前記筒状部材設置工程の前に、前記非被覆領域に、前記内面の全周に亘って溝状の誘導メジを形成する工程を含むことを特徴とする。   The existing pipe repairing method according to claim 5, wherein after the uncovered surface forming step and before the cylindrical member installing step, a groove-shaped guide is formed in the uncovered region over the entire circumference of the inner surface. And a step of forming a medium.

請求項2で説明したように、誘導メジを形成することにより、地震などの地盤変動があった場合であっても、本発明の既設管補修構造による止水機能を十分に維持することが可能となる。   As described in claim 2, by forming a guide medium, it is possible to sufficiently maintain the water stop function by the existing pipe repair structure of the present invention even when there is ground change such as an earthquake. It becomes.

本発明によれば、老朽化した既設管が補修されるとともに、既設管と更生管との間において地下水や土砂が流れることを防止することができる。したがって、地下水や土砂が管路内に流入することに起因する地面陥没を未然に防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, while an old existing pipe is repaired, it can prevent that groundwater and earth and sand flow between an existing pipe and a renovated pipe. Therefore, it is possible to prevent the ground depression due to the inflow of groundwater or earth and sand into the pipeline.

更生管の設置状態を示す概略断面図である。It is a schematic sectional drawing which shows the installation state of a rehabilitation pipe | tube. 既設管とマンホールの接続部を示す断面図である。It is sectional drawing which shows the connection part of an existing pipe and a manhole. 筒状弾性部材と筒状剛性部材の例を示す斜視図である。It is a perspective view which shows the example of a cylindrical elastic member and a cylindrical rigid member. 筒状弾性部材の断面図である。It is sectional drawing of a cylindrical elastic member. 筒状剛性部材の展開図である。It is an expanded view of a cylindrical rigid member. 挿入部材及びその挿入動作を示す斜視図である。It is a perspective view which shows an insertion member and its insertion operation | movement. 本発明の既設管補修構造を示す概略断面図である。It is a schematic sectional drawing which shows the existing pipe repair structure of this invention. 図7の要部拡大図である。It is a principal part enlarged view of FIG. 筒状剛性部材の他の例を示す展開図である。It is an expanded view which shows the other example of a cylindrical rigid member. 筒状剛性部材の他の例を示す斜視図である。It is a perspective view which shows the other example of a cylindrical rigid member. 拡径作業を示す説明図である。It is explanatory drawing which shows a diameter expansion operation | work.

以下、図面を参照して本発明の管路補修構造及び管路補修方法を詳細に説明する。まず、本発明の既設管補修方法について各工程をそれぞれ説明する。   Hereinafter, the pipe repair structure and the pipe repair method of the present invention will be described in detail with reference to the drawings. First, each process is demonstrated about the existing pipe repair method of this invention, respectively.

図1は、既設管の内側に更生管が設置された状態を示す概略図である。図示されているように、下水管である既設管100が2つのマンホール(中継構造体)104−1、104−2の間に配置され、それぞれ連通接続されている。そして、既設管100の内側には更生管102が設置されて、更生管102により既設管100の内面が被覆されている。既設管100と更生管102との間には微小な隙間が存在し、既設管100の亀裂など(図示せず)を介して既設管100と更生管102との間に流入した地下水や土砂はマンホール104−1又は104−2方向へ流れ、管路内に流入することとなる。本発明はこの地下水や土砂の流入を防止するためのものである。   FIG. 1 is a schematic view showing a state where a rehabilitation pipe is installed inside an existing pipe. As shown in the figure, an existing pipe 100 as a sewer pipe is disposed between two manholes (relay structures) 104-1 and 104-2, and is connected to each other. A rehabilitated tube 102 is installed inside the existing tube 100, and the rehabilitated tube 102 covers the inner surface of the existing tube 100. There is a minute gap between the existing pipe 100 and the rehabilitated pipe 102, and groundwater and earth and sand flowing between the existing pipe 100 and the rehabilitated pipe 102 through cracks (not shown) of the existing pipe 100 It flows in the direction of the manhole 104-1 or 104-2 and flows into the pipeline. The present invention is intended to prevent the inflow of groundwater and earth and sand.

本発明において、更生管の設置は従来から用いられている方法で行えばよい。例えば、光や熱で硬化する筒状のライニング材を未硬化状態で既設管内に導入した後、ライニング材の両端を密閉することにより形成された密閉空間に圧縮空気を供給することによりライニング材を既設管内面に押圧した状態で硬化させるライニング工法や、熱可塑性樹脂で構成された筒状のライニング材で既設管内面を被覆するライニング工法が挙げられる。   In the present invention, the rehabilitation pipe may be installed by a conventionally used method. For example, a cylindrical lining material that is cured by light or heat is introduced into an existing pipe in an uncured state, and then the lining material is supplied by supplying compressed air to a sealed space formed by sealing both ends of the lining material. Examples include a lining method for curing the inner surface of the existing pipe while being pressed against the inner surface of the existing pipe, and a lining method for covering the inner surface of the existing pipe with a cylindrical lining material made of a thermoplastic resin.

[非被覆面形成工程]
次に、非被覆面形成工程について説明する。既設管100の内側に形成された更生管102のうち、既設管100の端部の所定幅を全周に亘り除去する。これにより、図2の拡大図に示しているように、既設管100の内面のうち既設管100の端部に、所定幅で全周に亘り更生管102による被覆がなされていない非被覆領域100aが形成される。除去方法はどのような手段もよく、切削機などにより行うことができる。非被覆領域100aの管軸方向の幅は特に限定されないが、例えば、100〜300mmである。
[Uncoated surface forming process]
Next, the uncoated surface forming step will be described. Of the rehabilitated pipe 102 formed inside the existing pipe 100, the predetermined width at the end of the existing pipe 100 is removed over the entire circumference. As a result, as shown in the enlarged view of FIG. 2, the end portion of the existing pipe 100 in the inner surface of the existing pipe 100 is not covered with the renovated pipe 102 over the entire circumference with a predetermined width. Is formed. Any means may be used for the removal method, and it can be performed by a cutting machine or the like. Although the width | variety of the pipe-axis direction of the non-coating area | region 100a is not specifically limited, For example, it is 100-300 mm.

[筒状部材設置工程]
次に、筒状剛性部材及び筒状弾性部材(まとめて「筒状部材」とも称する。)を設置する工程について説明する。図3は、筒状弾性部材と筒状剛性部材の一例を示す斜視図である。筒状弾性部材10は、図2で示した非被覆領域100aと更生管102との境界部101を覆うように設置されるものであり、その設置は筒状剛性部材20により内側から固定されることにより行われる。
[Cylindrical member installation process]
Next, a process of installing a cylindrical rigid member and a cylindrical elastic member (collectively referred to as “cylindrical member”) will be described. FIG. 3 is a perspective view showing an example of a cylindrical elastic member and a cylindrical rigid member. The cylindrical elastic member 10 is installed so as to cover the boundary portion 101 between the uncovered region 100a and the rehabilitated tube 102 shown in FIG. 2, and the installation is fixed from the inside by the cylindrical rigid member 20. Is done.

筒状剛性部材20はその径を拡大させることが可能な拡径部材であり、筒状弾性部材10は、筒状剛性部材20の拡径作業によって既設管100の内面側に押圧される。具体的には、図4にその断面形状を示すように、筒状剛性部材20の外周面20a(図3参照)上を被装する筒状のベース部12と、ベース部12の幅方向両端部の外周面上に全周に亘って延在する突条部14−1、14−2とを有している。突条部14−1、14−2は筒状弾性部材10の径方向外方に突出している。   The cylindrical rigid member 20 is a diameter-expanding member whose diameter can be increased, and the cylindrical elastic member 10 is pressed to the inner surface side of the existing pipe 100 by the diameter-expanding operation of the cylindrical rigid member 20. Specifically, as shown in FIG. 4, the cylindrical base portion 12 that covers the outer peripheral surface 20 a (see FIG. 3) of the cylindrical rigid member 20 and both ends of the base portion 12 in the width direction are shown. It has protrusions 14-1 and 14-2 extending over the entire circumference on the outer peripheral surface of the part. The protruding portions 14-1 and 14-2 protrude outward in the radial direction of the cylindrical elastic member 10.

本実施の形態では、2つの突条部14−1、14−2はそれぞれ、4つの小突条部14−1a、14−2aが隣り合う形で形成されている。設置状態では、一方の突条部14−1は既設管100の非被覆領域100a(図2参照)と密着し、他方の突条部14−2は更生管102の内面102a(図2参照)と密着することとなる。したがって、突条部14−1と突条部14−2は、その高さが互いに異なり、既設管非被覆面用の突条部14−1の方が、更生管内面用の突条部14−2よりも、高さが高くなっている(即ち、径方向の長さが長い)。ベース部12の厚さは、例えば2〜3mmであり、突条部14−2の厚さは、例えば2〜10mmであり、突条部14−1の厚さは、例えば、突条部14−2の厚さと更生管102の厚さを合計したものである。突条部14−1、14−2の幅方向の長さは、例えば、50〜100mmである。   In the present embodiment, the two protrusions 14-1 and 14-2 are formed in such a manner that the four small protrusions 14-1a and 14-2a are adjacent to each other. In the installed state, one ridge 14-1 is in close contact with the uncovered region 100a (see FIG. 2) of the existing pipe 100, and the other ridge 14-2 is the inner surface 102a (see FIG. 2) of the rehabilitated pipe 102. It will be in close contact with. Therefore, the height of the protrusion 14-1 and the protrusion 14-2 are different from each other, and the protrusion 14-1 for the existing pipe non-covered surface is the protrusion 14 for the inner surface of the rehabilitated pipe. The height is higher than −2 (that is, the length in the radial direction is longer). The thickness of the base portion 12 is, for example, 2 to 3 mm, the thickness of the protrusion 14-2 is, for example, 2 to 10 mm, and the thickness of the protrusion 14-1 is, for example, the protrusion 14 -2 and the thickness of the rehabilitation pipe 102 are totaled. The length in the width direction of the protrusions 14-1 and 14-2 is, for example, 50 to 100 mm.

突条部14−1、14−2は、施工現場において適宜厚さを変更できるように複数層とすることができる構造としてもよい。すなわち、図示しているように、突状部14−1の表面形状にフィットする底面を有する高さ調節用層15を突状部14−1に被せるように設置することにより、高さ調節可能な構造としてもよい。なお、本実施の形態では、突状部14−1、14−2は、筒状弾性部材10の外周面上の幅方向両端部に一箇所ずつの合計2箇所に設けているが、本発明では、筒状弾性部材の幅方向に間隔を空けて少なくとも2箇所に設けて有ればよく、更に別の箇所に突条部を設けてもよい。   The protrusions 14-1 and 14-2 may have a structure that can be formed into a plurality of layers so that the thickness can be appropriately changed at the construction site. That is, as shown in the figure, the height can be adjusted by installing the height adjusting layer 15 having a bottom surface that fits the surface shape of the protruding portion 14-1 so as to cover the protruding portion 14-1. It may be a simple structure. In the present embodiment, the projecting portions 14-1 and 14-2 are provided at a total of two locations, one at each of both ends in the width direction on the outer peripheral surface of the cylindrical elastic member 10. Then, what is necessary is just to have provided at least 2 places at intervals in the width direction of the cylindrical elastic member, and may provide a protrusion part in another place.

突条部14−1、14−2は弾性部材から形成されている。弾性部材としては例えばゴムや独立気泡発泡体が挙げられる。ゴムは通常のゴムでも、水で膨潤する水膨潤ゴムでもよい。ゴムの材質として、特にSBRやEPDMが挙げられる(JIS K 6353)。水膨潤ゴムを使用した場合には、筒状剛性部材20と既設管100内面又は更生管102内面との間で膨潤し、より密着度が高まり止水効果を向上させることができる。突条部14−1、14−2はこのような構成に限られず、止水効果を発揮できればどのような形状でもよい。   The protruding portions 14-1 and 14-2 are formed of an elastic member. Examples of the elastic member include rubber and closed cell foam. The rubber may be a normal rubber or a water swelling rubber that swells with water. Examples of the rubber material include SBR and EPDM (JIS K 6353). When water swelling rubber is used, it swells between the cylindrical rigid member 20 and the inner surface of the existing pipe 100 or the inner surface of the rehabilitation pipe 102, and the degree of adhesion is further increased and the water stop effect can be improved. The protrusions 14-1 and 14-2 are not limited to such a configuration, and may have any shape as long as the water stop effect can be exhibited.

図3に示しているように、筒状剛性部材20は、その外周に筒状弾性部材10を外嵌させて用いられるものである。筒状剛性部材20は筒状弾性部材10の径を拡大させることが可能な拡径部材であり、既設管内において筒状剛性部材20を適切な径になるまで拡径、すなわち筒状弾性部材10が適切な押圧力で既設管の内面側に押圧された状態が得られるまで筒状剛性部材20の内径を広げるものである。   As shown in FIG. 3, the cylindrical rigid member 20 is used by fitting a cylindrical elastic member 10 on the outer periphery thereof. The cylindrical rigid member 20 is a diameter-expanding member that can increase the diameter of the cylindrical elastic member 10. The cylindrical rigid member 20 is expanded in diameter to an appropriate diameter in the existing pipe, that is, the cylindrical elastic member 10. The inner diameter of the cylindrical rigid member 20 is increased until a state where the pressure is pressed to the inner surface side of the existing pipe with an appropriate pressing force is obtained.

筒状剛性部材20は、一枚の板部材22を湾曲させて形成され、両端部が互いに所定間隔で対向し、この部位に隙間部24を形成するサイズを有している。筒状剛性部材20の最終的な拡径作業は、この隙間部24に後述する挿入部材30を筒状剛性部材20の幅方向端部側から中心方向に挿入し、これにより隙間部24の間隔を広げることによって行われる。   The cylindrical rigid member 20 is formed by curving a single plate member 22, and has a size such that both end portions face each other at a predetermined interval and a gap portion 24 is formed at this portion. The final diameter expansion operation of the cylindrical rigid member 20 is performed by inserting an insertion member 30 (to be described later) into the gap portion 24 in the center direction from the end in the width direction of the cylindrical rigid member 20. Is done by spreading.

そして、筒状剛性部材20の拡径状態の維持は、筒状剛性部材20の隙間部24に挿入された挿入部材30をそのままの位置で固定させることによって行われる。筒状剛性部材20はステンレス(SUS316やSUS314)   And the maintenance of the diameter-expanded state of the cylindrical rigid member 20 is performed by fixing the insertion member 30 inserted into the gap portion 24 of the cylindrical rigid member 20 at the position as it is. The cylindrical rigid member 20 is stainless steel (SUS316 or SUS314).

図5に、筒状剛性部材20の展開図、すなわち、板部材22の構成を示す。図示のように、板部材22は略長方形の例えば鋼材や合成樹脂材等の所定の可撓性を有する部材で構成されている。   FIG. 5 shows a development view of the cylindrical rigid member 20, that is, the configuration of the plate member 22. As shown in the figure, the plate member 22 is formed of a substantially rectangular member having a predetermined flexibility such as a steel material or a synthetic resin material.

板部材22の幅方向両端部には、折曲部24−1、24−2が形成されており、筒状剛性部材20を形成するときは折曲部24−1、24−2が径方向外方に向けて折曲された状態になっている。折曲部24−1、24−2は既設管100内を流れる流水等によって筒状弾性部材10(図3参照)が位置ずれするのを防止し、かつ筒状剛性部材20を補強するものである。本実施の形態では、一方の折曲部24−1の方が他方の折曲部24−2のよりも幅が広く形成されている。   Bending portions 24-1 and 24-2 are formed at both ends in the width direction of the plate member 22. When the cylindrical rigid member 20 is formed, the bending portions 24-1 and 24-2 are in the radial direction. It is in a state bent toward the outside. The bent portions 24-1 and 24-2 prevent the cylindrical elastic member 10 (see FIG. 3) from being displaced by flowing water or the like flowing in the existing pipe 100, and reinforce the cylindrical rigid member 20. is there. In the present embodiment, one bent portion 24-1 is formed wider than the other bent portion 24-2.

板部材22の長さ方向両端部にはそれぞれ後述する所定の輪郭形状を有する基端部26と終端部28とが形成されている。また、折曲部24−1、24−2は、基端部26と終端部28付近では存在せず、折曲部24−1、24−2に該当する部位が除かれた状態になっており、それぞれ平端部31、32を形成している。   At both ends in the length direction of the plate member 22, a base end portion 26 and a terminal end portion 28 having predetermined contour shapes, which will be described later, are formed. Further, the bent portions 24-1 and 24-2 do not exist in the vicinity of the base end portion 26 and the terminal end portion 28, and the portions corresponding to the bent portions 24-1 and 24-2 are removed. The flat end portions 31 and 32 are formed, respectively.

基端部26と終端部28には板部材22の幅方向両側にそれぞれ傾斜端部26a、26b及び28a、28bが形成されている。傾斜部26a、26b、28a、28bは、基端部26と終端部28のそれぞれの板部材22幅方向端部から中央部に向かって、板部材22の長さ方向外方に傾斜するように形成されている。基端部26及び終端部28の、傾斜端部26a、26b、28a、28bを形成していない中央部付近は、板部材22の幅方向に略平行に延在する中央部26c、28cを形成している。基端部26及び終端部28のこれら諸形状により、基端部26と終端部28は互いに対称的な形状を有するようになっている。この構成により、この板部材22を、基端部26と終端部28とが互いに対向するように湾曲させ、基端部26と終端部28との間に隙間部24(図3参照)を有する筒状剛性部材20を形成するものである。   In the base end portion 26 and the terminal end portion 28, inclined end portions 26a and 26b and 28a and 28b are formed on both sides in the width direction of the plate member 22, respectively. The inclined portions 26 a, 26 b, 28 a, 28 b are inclined so as to incline outward in the length direction of the plate member 22 from the respective plate member 22 width direction ends of the base end portion 26 and the terminal end portion 28 toward the center portion. Is formed. Near the central portion of the base end portion 26 and the terminal end portion 28 where the inclined end portions 26a, 26b, 28a, 28b are not formed, central portions 26c, 28c extending substantially parallel to the width direction of the plate member 22 are formed. doing. Due to these shapes of the base end portion 26 and the terminal end portion 28, the base end portion 26 and the terminal end portion 28 have symmetrical shapes. With this configuration, the plate member 22 is curved so that the base end portion 26 and the terminal end portion 28 face each other, and a gap portion 24 (see FIG. 3) is provided between the base end portion 26 and the terminal end portion 28. The cylindrical rigid member 20 is formed.

符号25で示した部材は当板部材25であり、平板状の略長方形形状を有している。当板部材25は、筒状剛性部材20の隙間部24となる部分を補強し、かつ隙間部24から筒状弾性部材10が筒状剛性部材20の内周側に突出するのを防止するものであり、筒状剛性部材20と筒状弾性部材10との間に装着される。当板部材25は、筒状剛性部材20よりも厚さが薄いか或いは同等の厚さを有し、板部材22と同一の材質で形成することができる。   The member denoted by reference numeral 25 is the abutting plate member 25, and has a flat, substantially rectangular shape. The plate member 25 reinforces the portion that becomes the gap portion 24 of the cylindrical rigid member 20 and prevents the cylindrical elastic member 10 from protruding from the gap portion 24 toward the inner peripheral side of the cylindrical rigid member 20. It is mounted between the cylindrical rigid member 20 and the cylindrical elastic member 10. The plate member 25 is thinner than or equal to the cylindrical rigid member 20 and can be formed of the same material as the plate member 22.

図6は、本実施の形態で使用する挿入部材30の構成を示した斜視図であり、挿入部材30を隙間部24に挿入する状態を示している。挿入部材30の挿入を行うため、筒状剛性部材20において、上述した平端部31と平端部32とで挿入口を形成している。   FIG. 6 is a perspective view showing a configuration of the insertion member 30 used in the present embodiment, and shows a state in which the insertion member 30 is inserted into the gap portion 24. In order to insert the insertion member 30, in the cylindrical rigid member 20, the flat end portion 31 and the flat end portion 32 described above form an insertion port.

同図に示したように、挿入部材30には、くさび状部32を上下から挟むように略平板状の外側プレート部38と内側プレート部36とが設けられている。くさび状部32は、上記挿入方向200に長さ方向を有し、筒状剛性部材20の傾斜端部26a及び傾斜端部28aにそれぞれ対向して当接される当接面32aと32bとを両面に有している。この当接面32a、32bにより、挿入方向に狭くなる挟角αを形成しており、挟角αは傾斜端部26aと傾斜端部28aとが互いに対向した状態で形成する角度βとほぼ等しくなるように形成されている。更に、当接面32a、32bの挿入方向(矢印200方向)の長さは、傾斜端部26a、28aと略等しくなるように形成されている。   As shown in the figure, the insertion member 30 is provided with an outer plate portion 38 and an inner plate portion 36 that are substantially flat so as to sandwich the wedge-shaped portion 32 from above and below. The wedge-shaped portion 32 has a length direction in the insertion direction 200, and has contact surfaces 32a and 32b that are in contact with the inclined end portion 26a and the inclined end portion 28a of the cylindrical rigid member 20, respectively. Has on both sides. The contact surfaces 32a and 32b form a narrow angle α that narrows in the insertion direction, and the narrow angle α is substantially equal to an angle β that is formed when the inclined end portion 26a and the inclined end portion 28a face each other. It is formed to become. Furthermore, the length of the contact surfaces 32a and 32b in the insertion direction (arrow 200 direction) is formed to be substantially equal to the inclined end portions 26a and 28a.

挿入部材30を隙間部24に挿入する時は、外側プレート部38と内側プレート部36との間に筒状剛性部材20の傾斜端部26aと傾斜端部28aとが両側で挿入される。挿入部材30が隙間部24に挿入された状態で、外側プレート部38は筒状剛性部材20の外周側に位置し、内側プレート部36は筒状剛性部材20の内周側に位置する状態となっている。   When the insertion member 30 is inserted into the gap 24, the inclined end portion 26a and the inclined end portion 28a of the cylindrical rigid member 20 are inserted between the outer plate portion 38 and the inner plate portion 36 on both sides. In a state where the insertion member 30 is inserted into the gap portion 24, the outer plate portion 38 is positioned on the outer peripheral side of the cylindrical rigid member 20, and the inner plate portion 36 is positioned on the inner peripheral side of the cylindrical rigid member 20. It has become.

挿入部材30が、隙間部24を筒状剛性部材20の中央部方向に向かって移動するに従い、傾斜端部26a、28aは、当接面32a、32bに押され、隙間部24の幅が広くなる方向に移動する。これにより筒状剛性部材20の拡径が行われる。   As the insertion member 30 moves through the gap 24 toward the central portion of the cylindrical rigid member 20, the inclined end portions 26a and 28a are pushed by the contact surfaces 32a and 32b, and the width of the gap 24 increases. Move in the direction. Thereby, the diameter of the cylindrical rigid member 20 is expanded.

そして、筒状剛性部材20が最適の状態にまで拡径された時点で挿入部材30による拡径動作を停止させ、停止位置に挿入部材30をそのままの置で固定させることにより筒状剛性部材20の上記拡径状態が維持される。この状態ではくさび状部32のほぼ全体が隙間部24に挿入された状態になる。   Then, when the diameter of the cylindrical rigid member 20 is expanded to an optimum state, the diameter expansion operation by the insertion member 30 is stopped, and the insertion member 30 is fixed at the stop position as it is. The above-mentioned expanded diameter state is maintained. In this state, almost the entire wedge-shaped portion 32 is inserted into the gap portion 24.

筒状弾性部材10と筒状剛性部材20を配置するには、既設管100内の所望とする位置に筒状弾性部材10及び筒状剛性部材20を配置し、筒状剛性部材20を上述したように拡径することにより行うことができる。これにより、筒状弾性部材10はその内側から筒状剛性部材20により既設管100内周面側に押圧され、圧接状態で維持される。   In order to arrange the cylindrical elastic member 10 and the cylindrical rigid member 20, the cylindrical elastic member 10 and the cylindrical rigid member 20 are arranged at desired positions in the existing pipe 100, and the cylindrical rigid member 20 is described above. Thus, it can carry out by expanding a diameter. Thereby, the cylindrical elastic member 10 is pressed to the inner peripheral surface side of the existing pipe 100 by the cylindrical rigid member 20 from the inner side, and is maintained in a pressure contact state.

図7は、本発明の既設管補修方法が完了した状態の図、即ち、本発明の既設管補修構造を示す断面図であり、図8はその部分詳細図である。図示のように、筒状弾性部材10は、既設管100の非被覆領域100aと更生管102との境界部101をそれら双方にまたがって内側から覆っており、一方の突条部14−1は、既設管100の非被覆領域100aに全周で密着している。また、他方の突条部14−2は、更生管102の内面102aに全周で密着している。突条部14−1、14−2は筒状剛性部材20の拡径動作により圧縮された状態となっている。   FIG. 7 is a view showing a state where the existing pipe repairing method of the present invention is completed, that is, a sectional view showing the existing pipe repairing structure of the present invention, and FIG. 8 is a partial detail view thereof. As shown in the figure, the cylindrical elastic member 10 covers the boundary portion 101 between the uncovered region 100a of the existing tube 100 and the rehabilitated tube 102 from both inside, and one of the protruding portions 14-1 Further, it is in close contact with the non-covering region 100a of the existing pipe 100 all around. Further, the other protrusion 14-2 is in close contact with the inner surface 102a of the rehabilitated tube 102 on the entire circumference. The protruding portions 14-1 and 14-2 are compressed by the diameter expansion operation of the cylindrical rigid member 20.

これにより、既設管100の破損箇所などを介して地中から管路内に刺入した地下水が、既設管100と更生管102との間の微小な隙間を流れたとしても、管路内には、突条部14−1、14−2が、既設管100と更生管102との境界部101を両側から塞ぐ形で設置されていることにより止水効果が発揮されるので、管路内にそれ以上の地下水及びこれに付随する土砂が流入することを防止することができる。地下水及び土砂の流入を防止することにより、地中における空洞の発生を防止し、地面陥没などの被害を未然に防止することができる。   As a result, even if the groundwater that has been inserted into the pipe line from the ground through the damaged part of the existing pipe 100 flows through the minute gap between the existing pipe 100 and the rehabilitated pipe 102, Since the protrusions 14-1 and 14-2 are installed so as to block the boundary portion 101 between the existing pipe 100 and the rehabilitation pipe 102 from both sides, the water stop effect is exhibited. Therefore, it is possible to prevent further underground water and accompanying earth and sand from flowing in. By preventing the inflow of groundwater and earth and sand, the generation of cavities in the ground can be prevented, and damage such as ground depression can be prevented.

上述したように、筒状剛性部材20の一方の折曲部24−1は他方の折曲部24−2よりも幅が長く形成されているので、一方の折曲部24−1は既設管100の非被覆領域100aに接し、他方の折曲部24−2は更生管102の内周面102aに接触している。これにより、管路内を流れる下水や異物により筒状弾性部材10が位置ずれするのを防止することができる。   As described above, since one bent portion 24-1 of the cylindrical rigid member 20 is formed to be longer in width than the other bent portion 24-2, one bent portion 24-1 is provided with an existing pipe. The other bent portion 24-2 is in contact with the inner peripheral surface 102a of the rehabilitation pipe 102. Thereby, it is possible to prevent the cylindrical elastic member 10 from being displaced due to sewage or foreign matter flowing in the pipe line.

図9は他の実施の形態を示す概略断面図である。図示されているように、既設管100の非被覆領域100aに溝状の誘導メジ50が形成されている。誘導メジ50は既設管100の非被覆領域100aの内面の全周に亘って形成されている。   FIG. 9 is a schematic cross-sectional view showing another embodiment. As shown in the drawing, a groove-shaped guide medium 50 is formed in the uncovered region 100 a of the existing pipe 100. The guide meditation 50 is formed over the entire circumference of the inner surface of the non-covered region 100a of the existing pipe 100.

誘導メジ50は、例えば、地震などの地盤変動により、既設管100に応力がかかった場合において、誘導メジ50が形成された箇所における既設管100の破壊を誘導するものである。これにより、既設管100の誘導メジ50以外の他の部分が破壊することにより、既設管100の外側から地下水や土砂が既設管100内に流入することを防止することができる。したがって、地震などの地盤変動があった場合であっても、本発明の既設管補修構造による止水機能を十分に維持することが可能となる。なお、誘導メジ50には、ウレタンなどの密閉部材を詰めてもよい。   For example, when the existing pipe 100 is subjected to stress due to ground fluctuation such as an earthquake, the induction medium 50 induces the destruction of the existing pipe 100 at the location where the induction medium 50 is formed. Thereby, it can prevent that groundwater and earth and sand flow in into the existing pipe 100 from the outer side of the existing pipe 100 by destroying other parts other than the guide meditation 50 of the existing pipe 100. Therefore, even if there is a ground change such as an earthquake, the water stop function by the existing pipe repair structure of the present invention can be sufficiently maintained. The guide medium 50 may be filled with a sealing member such as urethane.

(筒状剛性部材の例2)
次に、本発明において使用することができる筒状剛性部材の他の例について説明する。図10は、筒状剛性部材60の展開図である。図示のように、筒状剛性部材60は、1枚の矩形状の板部材62からなり、板部材62は鋼材や合成樹脂材等の所定の可撓性を有する部材で形成されている。
(Example 2 of cylindrical rigid member)
Next, another example of the cylindrical rigid member that can be used in the present invention will be described. FIG. 10 is a development view of the cylindrical rigid member 60. As shown in the figure, the cylindrical rigid member 60 includes a single rectangular plate member 62, and the plate member 62 is formed of a member having a predetermined flexibility such as a steel material or a synthetic resin material.

板部材62の一方の端部62a近傍には、板部材62の長手方向に間隔をおいて形成された複数組の係止孔64a〜cが設けられ、板部材62の他方の端部62b近傍には、切り起こし加工によって係止片66が形成されており、係止片66は筒状剛性部材60の内方側へ突出形成されている。   A plurality of sets of locking holes 64 a to 64 c formed at intervals in the longitudinal direction of the plate member 62 are provided in the vicinity of one end 62 a of the plate member 62, and in the vicinity of the other end 62 b of the plate member 62. The locking piece 66 is formed by cutting and raising, and the locking piece 66 is formed to protrude inward of the cylindrical rigid member 60.

板部材62を筒状の形状となるように湾曲させることにより筒状剛性部材60が形成される。そして、後述する拡開機により筒状剛性部材60を拡径させ、次いで若干縮径させたときに、係止片66がいずれか一組の係止孔64a〜64cに選択的に係合することで、筒状剛性部材60の拡径状態を維持することができる。   The cylindrical rigid member 60 is formed by bending the plate member 62 into a cylindrical shape. Then, when the cylindrical rigid member 60 is expanded in diameter by a later-described expander and then slightly reduced in diameter, the locking piece 66 is selectively engaged with any one set of locking holes 64a to 64c. Thus, the expanded diameter state of the cylindrical rigid member 60 can be maintained.

また、板部材62の幅方向両端部には、折曲部68−1、68−2が形成されており、筒状剛性部材60を形成するときは、折曲部68が径方向外方に向けて折曲された状態になっている。折曲部68は、既設管路内を流れる流水等によって筒状弾性部材10(図4参照)が位置ずれするのを防止し、かつ筒状剛性部材60を補強するものである。また、水や水中に混入した固形物を流れやすくする機能も有する。   Further, bent portions 68-1 and 68-2 are formed at both ends in the width direction of the plate member 62. When the cylindrical rigid member 60 is formed, the bent portions 68 are radially outward. It is in a state of being bent towards. The bent portion 68 prevents the cylindrical elastic member 10 (see FIG. 4) from being displaced due to flowing water or the like flowing in the existing pipeline, and reinforces the cylindrical rigid member 60. It also has a function of facilitating the flow of water and solid matter mixed in water.

以下、上述の筒状剛性部材60及び筒状弾性部材10を既設管100に設置するための作業について説明する。図11は、既設管内に筒状剛性部材60及び筒状弾性部材10を設置するときの様子を示す概略図である。筒状剛性部材60及び筒状弾性部材10を設置するためには、まず、筒状剛性部材60と筒状弾性部材10(図3で示したものを同様)を拡開機50に装着する。   Hereinafter, the operation | work for installing the above-mentioned cylindrical rigid member 60 and the cylindrical elastic member 10 in the existing pipe | tube 100 is demonstrated. FIG. 11 is a schematic view showing a state when the cylindrical rigid member 60 and the cylindrical elastic member 10 are installed in an existing pipe. In order to install the cylindrical rigid member 60 and the cylindrical elastic member 10, first, the cylindrical rigid member 60 and the cylindrical elastic member 10 (similar to those shown in FIG. 3) are mounted on the spreader 50.

拡開機50は、例えば図9に示すように軸部51と、この軸部51に固定され、かつ圧力流体、例えば圧縮空気等の供給により風船状に膨張する膨張部52とを有し、この膨張部52を収縮させた状態で、筒状剛性部材60及び筒状弾性部材10をこの順で拡開機50に装着する。   For example, as shown in FIG. 9, the spreader 50 includes a shaft portion 51, and an expansion portion 52 that is fixed to the shaft portion 51 and expands in a balloon shape when supplied with a pressure fluid such as compressed air. The cylindrical rigid member 60 and the cylindrical elastic member 10 are mounted on the spreader 50 in this order in a state where the expansion portion 52 is contracted.

次いで地上に配置された流体源からホースを介してニップル53へ供給される圧縮空気により膨張部52が膨張して筒状弾性部材10及び筒状剛性部材60が拡開機50に対して変位しない程度に筒状剛性部材60に圧接して筒状弾性部材10及び筒状剛性部材60を拡開機50に固定し、その状態に維持させる。   Next, the expansion portion 52 is expanded by the compressed air supplied from the fluid source arranged on the ground to the nipple 53 via the hose, and the cylindrical elastic member 10 and the cylindrical rigid member 60 are not displaced with respect to the spreader 50. The cylindrical elastic member 10 and the cylindrical rigid member 60 are fixed to the spreader 50 by being pressed against the cylindrical rigid member 60, and maintained in that state.

続いて筒状弾性部材10及び筒状剛性部材60が装着された拡開機50を、既設管100の端部位置に配置し、ニップル53を介して再び供給される圧縮空気により膨張部52を更に膨張させる。膨張部52の膨張により筒状剛性部材60が拡開され、いずれか1組の係止孔62a〜62cに係止片66が係合可能になる程度に拡開される(図10参照)。   Subsequently, the spreader 50 to which the cylindrical elastic member 10 and the cylindrical rigid member 60 are mounted is disposed at the end position of the existing pipe 100, and the expansion portion 52 is further expanded by the compressed air supplied again through the nipple 53. Inflate. The cylindrical rigid member 60 is expanded by the expansion of the expansion portion 52, and is expanded to the extent that the locking piece 66 can be engaged with any one of the locking holes 62a to 62c (see FIG. 10).

その結果筒状剛性部材60によって筒状弾性部材10は既設管100の内周面側に押圧され、突条部14−1、14−2が弾性変形する。以上のようにして、筒状剛性部材60と筒状弾性部材10が既設管100内に設置される。このように設置された既設管の補修構造は、図7で示したものと同様の効果を得ることができる。   As a result, the cylindrical elastic member 10 is pressed against the inner peripheral surface side of the existing pipe 100 by the cylindrical rigid member 60, and the protrusions 14-1 and 14-2 are elastically deformed. As described above, the cylindrical rigid member 60 and the cylindrical elastic member 10 are installed in the existing pipe 100. The repair structure of the existing pipe installed in this way can obtain the same effects as those shown in FIG.

本発明は、上記実施の形態の構成に限定されるものではなく、発明の要旨の範囲内で種々の変形が可能である。なお、本発明はどのような大きさの既設管に対しても適用することができる。例えば、呼び径が200〜800mmの既設管、例えば、埋設管、特に下水管に好適に使用できる。   The present invention is not limited to the configuration of the above embodiment, and various modifications are possible within the scope of the gist of the invention. The present invention can be applied to existing pipes of any size. For example, it can be suitably used for an existing pipe having a nominal diameter of 200 to 800 mm, for example, a buried pipe, particularly a sewer pipe.

10 筒状弾性部材
12 ベース部
14 突条部
14−1a、14−2a 小突条部
20 筒状剛性部材
22 板部材
24 隙間部
24−1、24−2 折曲部
30 挿入部材
60 筒状剛性部材
62a、62b、62c 係止孔
64 係止片
100 既設管
100a 非被覆領域
101 境界部
102 更生管
104−1、104−2 マンホール
DESCRIPTION OF SYMBOLS 10 Cylindrical elastic member 12 Base part 14 Projection part 14-1a, 14-2a Small projection part 20 Cylindrical rigid member 22 Plate member 24 Gap part 24-1, 24-2 Bending part 30 Insertion member 60 Cylindrical form Rigid member 62a, 62b, 62c Locking hole 64 Locking piece 100 Existing pipe 100a Uncovered area 101 Boundary part 102 Rehabilitated pipe 104-1, 104-2 Manhole

Claims (5)

既設管の内面が更生管で被覆された管路補修構造であって、
前記既設管の内面のうち該既設管の端部に、所定幅で全周に亘り前記更生管による被覆がなされていない非被覆領域が設けられ、
前記非被覆領域と前記更生管との境界をそれら双方にまたがって内側から覆う筒状弾性部材と、該筒状弾性部材を内側から押圧して前記既設管の内面側に圧接状態で維持する筒状剛性部材とを有し、
前記筒状弾性部材の外周面上には、幅方向に間隔を空けて少なくとも2箇所に径方向外方に突出し且つ全周に亘って延在する突条部がそれぞれ形成され、該突条部のうち1つが前記既設管の非被覆領域に全周で密着し、前記突条部のうち別の1つが前記更生管の内面に全周で密着していることを特徴とする管路補修構造。
It is a pipeline repair structure where the inner surface of an existing pipe is covered with a rehabilitation pipe,
Of the inner surface of the existing pipe, an end portion of the existing pipe is provided with an uncovered region that is not covered with the rehabilitated pipe over the entire circumference with a predetermined width,
A cylindrical elastic member that covers the boundary between the uncovered region and the rehabilitation pipe from both inside, and a cylinder that presses the cylindrical elastic member from the inside and maintains it in pressure contact with the inner surface of the existing pipe A rigid member,
On the outer peripheral surface of the cylindrical elastic member, there are formed ridges that project radially outward and extend over the entire circumference at least at two locations with a gap in the width direction. 1 is closely attached to the non-covered region of the existing pipe over the entire circumference, and another one of the protrusions is closely attached to the inner surface of the rehabilitated pipe over the entire circumference. .
前記非被覆領域に、前記内面の全周に亘って形成された溝状の誘導メジを有する、請求項1に記載の管路補修構造。   The pipe repair structure according to claim 1, wherein the uncovered region has a groove-shaped guide medium formed over the entire circumference of the inner surface. 既設管の内面が更生管で被覆された管路補修方法であって、
前記既設管の内面のうち該既設管の端部に、所定幅で全周に亘り前記更生管による被覆がなされていない非被覆領域を設けるための非被覆面形成工程と、
前記非被覆領域と前記更生管との境界をそれら双方にまたがって内側から覆う筒状弾性部材と、該筒状弾性部材を内側から押圧して前記既設管の内面側に圧接状態で維持する筒状剛性部材を設置するための筒状部材設置工程と、
を含み、
前記筒状弾性部材の外周面上には、幅方向に間隔を空けて少なくとも2箇所に径方向外方に突出し且つ全周に亘って延在する突条部がそれぞれ形成され、該突条部のうち1つが前記既設管の非被覆領域に全周で密着し、前記突条部のうち別の1つが前記更生管の内面に全周で密着していることを特徴とする管路補修方法。
A pipe repair method in which the inner surface of an existing pipe is covered with a retread pipe,
A non-covered surface forming step for providing an uncovered region in the inner surface of the existing tube, which is not covered with the rehabilitated tube over the entire circumference, at an end of the existing tube;
A cylindrical elastic member that covers the boundary between the uncovered region and the rehabilitation pipe from both inside, and a cylinder that presses the cylindrical elastic member from the inside and maintains it in pressure contact with the inner surface of the existing pipe A cylindrical member installation step for installing a cylindrical rigid member;
Including
On the outer peripheral surface of the cylindrical elastic member, there are formed ridges that project radially outward and extend over the entire circumference at least at two locations with a gap in the width direction. One of them is in close contact with the non-covered area of the existing pipe over the entire circumference, and another one of the protrusions is in close contact with the inner surface of the rehabilitated pipe over the entire circumference. .
前記突条部は複数層とすることで厚さ調節可能であることを特徴とする請求項3に記載の方法。   The method according to claim 3, wherein the thickness of the protrusion is adjustable by forming a plurality of layers. 前記非被覆面形成工程の後、且つ前記筒状部材設置工程の前に、
前記非被覆領域に、前記内面の全周に亘って溝状の誘導メジを形成する工程を含むことを特徴とする請求項3又は4に記載の方法。
After the uncoated surface forming step and before the cylindrical member installing step,
5. The method according to claim 3, further comprising a step of forming a groove-shaped guide medium in the uncovered region over the entire circumference of the inner surface.
JP2016059795A 2016-03-24 2016-03-24 Pipeline repair structure and pipeline repair method Active JP6770814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059795A JP6770814B2 (en) 2016-03-24 2016-03-24 Pipeline repair structure and pipeline repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059795A JP6770814B2 (en) 2016-03-24 2016-03-24 Pipeline repair structure and pipeline repair method

Publications (2)

Publication Number Publication Date
JP2017170770A true JP2017170770A (en) 2017-09-28
JP6770814B2 JP6770814B2 (en) 2020-10-21

Family

ID=59970093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059795A Active JP6770814B2 (en) 2016-03-24 2016-03-24 Pipeline repair structure and pipeline repair method

Country Status (1)

Country Link
JP (1) JP6770814B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094959A (en) * 2017-11-21 2019-06-20 吉佳エンジニアリング株式会社 Diameter expanding device and elastic sleeve installation method
JP2019178708A (en) * 2018-03-30 2019-10-17 株式会社栗本鐵工所 Treatment structure and treatment method for pipe inner surface regeneration end part
CN113503421A (en) * 2021-07-16 2021-10-15 宁克远 Ultraviolet light solidification restores heavy-calibre pipeline with pricking head
JP2021188471A (en) * 2020-06-04 2021-12-13 東亜グラウト工業株式会社 Method of constructing break induction part in pipeline

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265798A (en) * 1990-03-15 1991-11-26 Toa Gurauto Kogyo Kk Repair method for existing pipeline and cover body for repair
JPH09123277A (en) * 1995-10-31 1997-05-13 Yoshika Kk Covering body for repair of pipeline
JP2014076592A (en) * 2012-10-11 2014-05-01 Yoshika Engineering Kk Maintenance structure and maintenance method of sewerage system
JP2014161978A (en) * 2013-02-27 2014-09-08 Ashimori Ind Co Ltd Method for processing end of lining material and diameter extender used for the same
JP2015175449A (en) * 2014-03-17 2015-10-05 東亜グラウト工業株式会社 Partial repairing method for existing pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265798A (en) * 1990-03-15 1991-11-26 Toa Gurauto Kogyo Kk Repair method for existing pipeline and cover body for repair
JPH09123277A (en) * 1995-10-31 1997-05-13 Yoshika Kk Covering body for repair of pipeline
JP2014076592A (en) * 2012-10-11 2014-05-01 Yoshika Engineering Kk Maintenance structure and maintenance method of sewerage system
JP2014161978A (en) * 2013-02-27 2014-09-08 Ashimori Ind Co Ltd Method for processing end of lining material and diameter extender used for the same
JP2015175449A (en) * 2014-03-17 2015-10-05 東亜グラウト工業株式会社 Partial repairing method for existing pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094959A (en) * 2017-11-21 2019-06-20 吉佳エンジニアリング株式会社 Diameter expanding device and elastic sleeve installation method
JP7040753B2 (en) 2017-11-21 2022-03-23 吉佳エンジニアリング株式会社 Installation method of diameter expansion device and elastic sleeve
JP2019178708A (en) * 2018-03-30 2019-10-17 株式会社栗本鐵工所 Treatment structure and treatment method for pipe inner surface regeneration end part
JP2021188471A (en) * 2020-06-04 2021-12-13 東亜グラウト工業株式会社 Method of constructing break induction part in pipeline
JP7248310B2 (en) 2020-06-04 2023-03-29 東亜グラウト工業株式会社 A construction method for constructing a rupture-inducing part in a pipeline
CN113503421A (en) * 2021-07-16 2021-10-15 宁克远 Ultraviolet light solidification restores heavy-calibre pipeline with pricking head

Also Published As

Publication number Publication date
JP6770814B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US9562339B2 (en) Apparatus and method for sealing pipes and underground structures
US10436374B2 (en) Grooved sealing member for sealing pipes and other underground structures and method of using
JP2017170770A (en) Pipeline repairing structure and pipeline repairing method
US8240340B2 (en) Hydrophilic end seal
US8636036B2 (en) Apparatus and method for sealing pipes
US8651145B2 (en) End seal
WO2019079370A1 (en) Method and apparatus for repairing a length of pipe or a main/lateral pipe junction
US20220196198A1 (en) A liner arrangement for installing in a pipe structure, and a method for relining a pipe structure
JP6747872B2 (en) Water shutoff method for existing pipes and water shutoff structure for existing pipes
JP6426904B2 (en) Water stop method of pipeline
CA2873329C (en) Apparatus and method for sealing pipes and underground structures
KR101918897B1 (en) Non-digging Sewerage Mending Apparatus and its manufacturing method
JP6802563B2 (en) Fixing tool for rehabilitation pipe and fixing tool for rehabilitation pipe
US20200109810A1 (en) Method and Assembly for Sealing Off a Pipe
JP4305803B2 (en) Structure for backfilling the end of the lining material for pipes
JPH11270774A (en) Repairing member for part of pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150