JP2017170543A - Spired metallic machine component and manufacturing method of spired metallic machine component - Google Patents

Spired metallic machine component and manufacturing method of spired metallic machine component Download PDF

Info

Publication number
JP2017170543A
JP2017170543A JP2016056880A JP2016056880A JP2017170543A JP 2017170543 A JP2017170543 A JP 2017170543A JP 2016056880 A JP2016056880 A JP 2016056880A JP 2016056880 A JP2016056880 A JP 2016056880A JP 2017170543 A JP2017170543 A JP 2017170543A
Authority
JP
Japan
Prior art keywords
spire
steel bar
segregation
center
type metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056880A
Other languages
Japanese (ja)
Other versions
JP6827268B2 (en
Inventor
雅義 秋山
Masayoshi Akiyama
雅義 秋山
耕也 梅田
Yasunari Umeda
耕也 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umeda Seisakusho kk
Original Assignee
Umeda Seisakusho kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umeda Seisakusho kk filed Critical Umeda Seisakusho kk
Priority to JP2016056880A priority Critical patent/JP6827268B2/en
Publication of JP2017170543A publication Critical patent/JP2017170543A/en
Application granted granted Critical
Publication of JP6827268B2 publication Critical patent/JP6827268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a spired metallic machine component capable of preventing or suppressing a condition impacted by segregated distribution which may cause deterioration in strength of a spired part.SOLUTION: A spired metallic machine component 1 is formed of a steel bar 3 by a cutting step, after the steel bar is provided by a hot-working step. The spired metallic machine component 1 comprises a spired part 2 which is arranged at one end side along a center axis Q, and which has a diameter thinner than that at the other end side. A center axis S of the spired part 2 is configured to be arranged deviated from a segregation center axis P of center segregation in the steel bar 3 so as to prevent or suppress a condition impacted by a segregation distribution which may cause deterioration in strength of the spired part 2.SELECTED DRAWING: Figure 3

Description

本発明は、軸方向に沿った一端部側に尖塔部を有する金属製の機械部品、及びその尖塔型金属製機械部品を製造する方法に関するものである。   The present invention relates to a metal mechanical part having a spire portion on one end side along the axial direction, and a method of manufacturing the spire type metal mechanical part.

従来から、軸方向の一端部側(作用部側)の径が他端部側(反作用部側)の径よりも細くなった尖塔型の構造を有する金属製機械部品が、薬等の錠剤を成形するために用いられる打錠機の杵や自動車のエンジンバルブ等として、産業界において多方面で使用されている。   Conventionally, a metal mechanical part having a spire-shaped structure in which the diameter on one end side (acting part side) in the axial direction is smaller than the diameter on the other end side (reaction part side) It is used in various fields in industry as a punch for tablet machines used for molding, an engine valve for automobiles, and the like.

このような尖塔型の構造を有する金属製機械部品は、当該尖塔型金属製機械部品より径の太い素材である棒鋼や線材から、相対的に太径の部分と相対的に細径の尖塔部を削り出して製造される。これら棒鋼や線材は、成分調整された溶鋼を連続鋳造等で固めた鋳片を、熱間圧延して、あるいは熱間圧延後に引抜加工等の冷間加工を施して、形成される材料である。   A metal machine part having such a spire-type structure is a relatively large-diameter part and a relatively small-diameter spire part from a steel bar or wire that is a thicker material than the steeple-type metal machine part. It is manufactured by shaving. These steel bars and wire rods are materials formed by hot-rolling slabs obtained by solidifying molten steel with adjusted components by continuous casting or by performing cold working such as drawing after hot rolling. .

ところで、鋳造過程において、鋳込まれた材料は、外側から体積収縮を伴いながら凝固が始まり、横断面内の中心部は最後に凝固することが知られている。このように凝固は外側から内側に進展するが、その際に、不純物等も内側に向かって濃化していくため、横断面内部で最後に凝固する中心部近傍には、偏析や介在物と称される特定元素の濃化や、酸化物、炭化物あるいは硫化物などの異物の濃化が観察される。また、鋳片の中心部近傍が凝固する時点において、中心部の周囲は既に凝固が完了しているため、中心部が凝固と共に体積収縮をしようとしても、既に凝固が完了した周囲から変形拘束を受けて、冷却に伴う自由な体積収縮が妨げられ、中心部に大きな引張力が作用する。その結果、ポロシティと呼ばれる空孔が中心部近傍に形成される(例えば、下記非特許文献1参照)。   By the way, in the casting process, it is known that the cast material starts to solidify with volume shrinkage from the outside, and the central portion in the cross section solidifies last. In this way, solidification progresses from the outside to the inside. At that time, impurities and the like are also concentrated toward the inside, and therefore, in the vicinity of the central portion that solidifies last inside the cross section, it is called segregation or inclusion. Concentration of a specific element and concentration of foreign matters such as oxide, carbide or sulfide are observed. In addition, when the vicinity of the center of the slab solidifies, the periphery of the center has already been solidified. In response, free volume shrinkage accompanying cooling is prevented, and a large tensile force acts on the center. As a result, pores called porosity are formed in the vicinity of the center (for example, see Non-Patent Document 1 below).

このような偏析等に起因する欠陥は、再溶融による凝固組織の調整処理を行うことで軽減させることは可能であるものの、完全に除去することは不可能であり、棒鋼や線材等の素材中に残存する(例えば、下記非特許文献2参照)。   Although defects caused by such segregation can be reduced by adjusting the solidification structure by remelting, they cannot be completely removed, and are not possible in materials such as steel bars and wire rods. (See, for example, Non-Patent Document 2 below).

また、凝固した鋳片の中心部近傍に発生するこのような異物の濃化や空孔は、熱間圧延やそれに続く冷間引抜加工等によって鋳片の断面積が減じられる過程で小さくなったり、軽減されるものの、やはり残存する。その結果、柱状の棒鋼や線材の軸芯近傍にも偏析や介在物あるいはポロシティの残存に起因する異常組織(欠陥)が認められる。   In addition, such foreign matter concentration and voids that occur near the center of the solidified slab may be reduced in the process of reducing the cross-sectional area of the slab by hot rolling or subsequent cold drawing. Although it is reduced, it still remains. As a result, abnormal structures (defects) due to segregation, inclusions, or residual porosity are also observed in the vicinity of the axis of the columnar bar or wire.

以下の説明では、尖塔型金属製機械部品を削り出す素材(母材)である棒鋼や線材等を総称して「棒鋼」とし、図12に示すように、棒鋼3の中心軸P’を「棒鋼中心軸」とする。   In the following description, the steel bars and wires that are the materials (base materials) for scraping the spire-shaped metal machine parts are collectively referred to as “bar steel”, and as shown in FIG. “Steel bar central axis”.

同図では、鋳造処理中や鋳造処理後に棒鋼3に出現する偏析、介在物、析出物、ポロシティ等の欠陥総てを含んだ分布がどのようになるかを示す尺度を「偏析分布」として、当該偏析分布の有無及び強弱を棒鋼3の横断面に対応付けて模式的に示している。同図から把握できるように、棒鋼中心軸P’を中心とした半径rの小円内では、偏析等の欠陥に起因する異常組織が残存する確率が高い。つまり、偏析分布の強度が高い部分は、棒鋼中心軸P’を中心とした半径rの円内に収まっている。一方、棒鋼中心軸P’を中心とした半径rの外側では、上記異常組織の残存が殆ど観察されない(偏析分布の強度がゼロまたは略ゼロである)。以上より、上記異常組織が残存する部分は、棒鋼中心軸P’を中心とする半径rの小さい円の範囲内に限定されることが理解できる。   In this figure, a scale showing how the distribution including all defects such as segregation, inclusions, precipitates, porosity, etc. appearing in the steel bar 3 during or after the casting process becomes “segregation distribution”. The presence / absence and strength of the segregation distribution is schematically shown in association with the cross section of the steel bar 3. As can be seen from the figure, in the small circle with the radius r centered on the steel bar central axis P ', there is a high probability that an abnormal structure due to segregation or other defects remains. That is, the portion having a high segregation distribution strength is contained in a circle having a radius r centered on the steel bar central axis P ′. On the other hand, almost no residual abnormal structure is observed outside the radius r centered on the steel bar central axis P ′ (the intensity of the segregation distribution is zero or substantially zero). From the above, it can be understood that the portion where the abnormal structure remains is limited to the range of a circle having a small radius r centered on the steel bar central axis P ′.

ここで、図13に、直径32mmの棒鋼から削り出して、研磨処理、腐食処理を施した直径15mmの材料(尖塔部を形成する前の時点の金属製機械部品)を光学顕微鏡で観察した写真を示す。同図(a)において矢印の先端にある斑点が、残存した異常組織であり、この異常組織の存在が観察される領域(強い偏析分布を示す領域)は、同図(b)に示すように、材料(尖塔部を形成する前の時点の金属製機械部品)の中心軸を中心とした直径約3mmの領域内であった。すなわち、異常組織の存在が観察される領域(強い偏析分布を示す領域)は、棒鋼中心軸を中心とする「棒鋼の直径の10分の1程度の直径」である。このことは、半径を基準として捉えた場合でも同様であり、図12を参照すると、棒鋼中心軸P’を中心とし且つ異常組織の存在が観察される領域の半径rは、棒鋼3の半径Rの10分の1程度である。ここで、異常組織の存在が観察される半径rの円の中心を「偏析中心」とすると、偏析中心は、棒鋼3の幾何学的中心と一致している。また、各横断面の偏析中心を、棒鋼3の軸方向に繋いだものを「偏析中心軸」とすると、偏析中心軸は棒鋼3の幾何学的軸P’に一致する。   Here, in FIG. 13, a photograph of a 15 mm diameter material (a metal mechanical part at the time before forming the spire portion) cut out from a steel bar having a diameter of 32 mm and subjected to polishing treatment and corrosion treatment, is observed with an optical microscope. Indicates. The spot at the tip of the arrow in FIG. 6A is the remaining abnormal tissue, and the region where the presence of this abnormal tissue is observed (region showing a strong segregation distribution) is as shown in FIG. In the region of about 3 mm in diameter centered on the central axis of the material (metal mechanical part before the spire portion was formed). That is, the region where the presence of an abnormal structure is observed (region showing a strong segregation distribution) is “a diameter about one tenth of the diameter of the steel bar” centered on the steel bar central axis. This is the same even when the radius is taken as a reference. Referring to FIG. 12, the radius r of the region centered on the central axis P ′ of the steel bar and where the presence of the abnormal structure is observed is the radius R of the steel bar 3. It is about 1/10 of. Here, if the center of a circle with a radius r where the presence of an abnormal structure is observed is defined as a “segregation center”, the segregation center coincides with the geometric center of the steel bar 3. When the segregation center of each cross section is connected to the axial direction of the steel bar 3 as a “segregation central axis”, the segregation central axis coincides with the geometric axis P ′ of the steel bar 3.

そして、異常組織が残存する部分(棒鋼中心軸P’を中心とした半径rの円の内側部分)の機械的強度は、異常組織が残存しない部分(棒鋼中心軸P’を中心とした半径rの円の外側部分)の機械的強度に比べて、遙かに劣っている。しかし、棒鋼3において異常組織が残存する部分の横断面の面積πrは、棒鋼3の横断面の面積πRと比べればさほど大きくない。上述の通り、通常の棒鋼3では、棒鋼中心軸P’を中心とした半径rが、棒鋼3の半径Rの10分の1以下であり、例えば、棒鋼3の半径Rが5mmから32mm程度の範囲で考えると、棒鋼中心軸P’を中心とした半径rは棒鋼3の半径Rの範囲に対応して0.5mmから3.2mm程度である。 The mechanical strength of the portion where the abnormal structure remains (the inner portion of the circle having the radius r centered on the steel bar central axis P ′) is equal to the portion where the abnormal structure does not remain (radius r centered on the steel bar central axis P ′). It is far inferior to the mechanical strength of the outer part of the circle. However, the area πr 2 of the cross section of the portion where the abnormal structure remains in the steel bar 3 is not so large as compared to the area πR 2 of the cross section of the steel bar 3. As described above, in the normal steel bar 3, the radius r centered on the steel bar central axis P ′ is 1/10 or less of the radius R of the steel bar 3, for example, the radius R of the steel bar 3 is about 5 mm to 32 mm. Considering the range, the radius r centered on the steel bar central axis P ′ is about 0.5 mm to 3.2 mm corresponding to the range of the radius R of the steel bar 3.

すなわち、異常組織の残存が観察される棒鋼中心軸P’を中心とした半径rと棒鋼3の半径Rの比率である「r/R」の値は最大で0.1であり、面積比(πr/πR)は0.01以下である。したがって、切削処理を施す前の素材段階(棒鋼3の状態)であれば、異常組織の残存する部分の横断面積は素材(棒鋼3)の横断面積に比べてはるかに小さく、異常組織の残存は素材(棒鋼3)の平均的強度に殆ど影響を与えない。 That is, the maximum value of “r / R”, which is the ratio of the radius r centered on the central axis P ′ of the steel bar where the residual abnormal structure remains, and the radius R of the steel bar 3 is 0.1, and the area ratio ( (πr 2 / πR 2 ) is 0.01 or less. Therefore, in the material stage (the state of the steel bar 3) before the cutting process is performed, the cross-sectional area of the portion where the abnormal structure remains is much smaller than the cross-sectional area of the material (the steel bar 3). Almost no influence on the average strength of the material (bar 3).

つまり、「(πr)÷(πR)=(r/R)≦0.01」の式で表すことができるように、棒鋼中心軸P’を中心とした半径rの部分で表される異常組織の存在(中心偏析の痕跡)は、棒鋼3全体の平均強度に殆ど影響を及ぼさない。 That is, it is represented by a portion of a radius r centered on the steel bar central axis P ′ so that it can be represented by the formula “(πr 2 ) ÷ (πR 2 ) = (r / R) 2 ≦ 0.01”. The presence of an abnormal structure (trace of central segregation) has little effect on the average strength of the steel bar 3 as a whole.

社団法人 日本鉄鋼協会編:「鉄鋼製造法(第1分冊、製銑・製鋼)」、丸善、p.682−695,p.724−727、1972Edited by Japan Iron and Steel Institute: “Steel Manufacturing Method (1st volume, steelmaking and steelmaking)”, Maruzen, p. 682-695, p. 724-727, 1972 佐藤潤,岩永浩司,富岡篤,西口克茂,中嶋宏樹,石田斉:「新ESRによる高品位ロール製造技術」、神戸製鋼技報、Vol.60、No.2、p.15−19、2010.8Jun Sato, Koji Iwanaga, Atsushi Tomioka, Katsushi Nishiguchi, Hiroki Nakajima, Hitoshi Ishida: “High-quality roll manufacturing technology using new ESR”, Kobe Steel Technical Report, Vol. 60, No. 2, p. 15-19, 2011.8

ところで、図12に示すように、中心軸P’及びその近傍に異常組織の残存が確認される棒鋼3から、相対的に太径の部分と相対的に細径の尖塔部20を削り出して尖塔型金属製機械部品10を製造・加工する場合、通常は、棒鋼中心軸P’と、尖塔部20の中心軸Sが同軸となるように加工される。その結果、尖塔型金属製機械部品10のうち、同図中において半径αで示す径の細くなった部分、つまり尖塔部20には、偏析等の欠陥に起因する異常組織の残存が認められる。すなわち、尖塔型金属製機械部品10の軸芯(尖塔型金属製機械部品10の中心軸R)は、同図中の棒鋼中心軸P’と一致しているため、尖塔部20の半径αの内側は、その外側と比べて偏析分布が高強度である。上述したように、偏析分布の強度が高い部分(異常組織の残存する部分)における材料としての機械的強度は、棒鋼3の平均的な機械的強度よりも劣っている。   By the way, as shown in FIG. 12, the relatively large diameter portion and the relatively small diameter steeple portion 20 are cut out from the steel bar 3 where the abnormal structure remains in the central axis P ′ and the vicinity thereof. When manufacturing and processing the steeple-shaped metal machine part 10, the steel bar center axis P ′ and the center axis S of the steeple portion 20 are usually processed coaxially. As a result, in the steeple-type metal mechanical part 10, abnormal portions due to segregation or other defects are observed in the thinned portion indicated by the radius α in FIG. That is, the axis of the steeple-type metal machine part 10 (the center axis R of the steeple-type metal machine part 10) coincides with the steel bar center axis P ′ in FIG. The inner side has a higher segregation distribution than the outer side. As described above, the mechanical strength of the material in the portion where the strength of the segregation distribution is high (the portion where the abnormal structure remains) is inferior to the average mechanical strength of the steel bar 3.

したがって、尖塔部20の半径αよりも棒鋼中心軸P’を中心とした半径rが大きければ、つまり「α<r」の関係を満たす場合には、尖塔部20の全領域が、棒鋼3のうち高強度の偏析分布が存在する部分から削り出されたものになり、尖塔部20の機械的強度は、高強度の偏析分布が存在する材料の機械的強度に強く影響を受け、著しく低下することになる。その結果、尖塔型金属製機械部品10の使用中に、尖塔部20が欠けたり、折損する可能性が高くなり、欠けや折損が起これば、尖塔型金属製機械部品10の交換頻度を高めるばかりでなく、尖塔型金属製機械部品10を搭載した機械(装置)は故障し、大きな事故に繋がる危険性が高まる。この傾向は、尖塔部20の横断面積πrが小さくなればなるほど顕著になる。 Therefore, if the radius r centered on the steel bar central axis P ′ is larger than the radius α of the steeple part 20, that is, if the relationship of “α <r” is satisfied, the entire region of the steeple part 20 is made of the steel bar 3. Of these, the mechanical strength of the spiers 20 is greatly affected by the mechanical strength of the material having the high-strength segregation distribution and is significantly reduced. It will be. As a result, there is a high possibility that the spire portion 20 will be chipped or broken during use of the spire-type metal machine part 10, and if chipping or breakage occurs, the replacement frequency of the spire-type metal machine part 10 is increased. Not only that, but the machine (equipment) on which the spire-type metal machine part 10 is mounted breaks down and the risk of leading to a major accident increases. This tendency becomes more prominent as the cross sectional area πr 2 of the spire portion 20 becomes smaller.

本発明は、このような点に着目してなされたものであって、主たる目的は、尖塔部の強度劣化の原因となる偏析分布の影響を受ける事態を防止・抑制可能な尖塔型金属製機械部品、及びそのような尖塔型金属製機械部品の製造方法を提供することにある。   The present invention has been made paying attention to such points, and the main purpose thereof is a spire-type metal machine capable of preventing / suppressing the influence of the segregation distribution that causes the deterioration of the strength of the spire. It is an object of the present invention to provide a part and a method for producing such a spire-type metal machine part.

すなわち、本発明は、熱間加工を経て提供される棒鋼を切削加工により形成される尖塔型金属製機械部品に関するものである。ここで、本発明における「棒鋼」は、鋳造された素材から圧延や鍛造などの熱間加工を経て提供される棒状や線状等、尖塔型金属製機械部品を削り出す素材(母材)全てを包含するもの(概念)である。なお、本発明における「棒鋼」は、熱間加工を経て提供されるものは勿論のこと、熱間加工の後に冷間引き抜きのような冷間加工を経て提供されるもの、あるいは、熱間や冷間加工の後に熱処理を施して提供されるものも含む概念である。   That is, the present invention relates to a spire-type metal machine part formed by cutting a steel bar provided through hot working. Here, the “bars” in the present invention are all materials (base materials) for cutting out steeple-type metal machine parts such as rods and lines provided from cast materials through hot working such as rolling and forging. (Concept). Note that the “bar” in the present invention is not only provided through hot working, but also provided through cold working such as cold drawing after hot working, It is a concept including what is provided by performing a heat treatment after cold working.

そして、本発明に係る尖塔型金属製機械部品は、当該尖塔型金属製機械部品の中心軸に沿った一端部側に、他端部側よりも細径の尖塔部を有し、尖塔部の中心軸を棒鋼における中心偏析の偏析中心軸から偏位させていることを特徴としている。ここで、本発明において「中心偏析」とは、熱間加工を、あるいは熱間加工後に冷間加工を経た棒鋼の横断面における一定範囲の半径の円内において分布している偏析等の欠陥に起因する異常組織であり、「偏析中心軸」は、中心偏析の中心を通る軸である。つまり、偏析等の欠陥に起因する異常組織の存在が観察される半径の円(偏析分布の強度が高い半径の円)の中心を「偏析中心」とすると、棒鋼における各横断面の偏析中心を、棒鋼の軸方向に繋いだ軸が「偏析中心軸」である。   And the spire type metal machine part according to the present invention has a spire part having a diameter smaller than that of the other end part on one end side along the central axis of the spire type metal machine part. The center axis is deviated from the center axis of segregation in the steel bar. Here, “center segregation” in the present invention refers to defects such as segregation that are distributed in a circle with a radius in a certain range in a cross section of a steel bar subjected to hot working or cold working after hot working. This is an abnormal structure resulting from the “segregation central axis”, which is an axis passing through the center of the central segregation. In other words, if the center of the radius circle where the presence of abnormal structures due to defects such as segregation is observed (the radius circle with a high segregation distribution strength) is the “segregation center”, the segregation center of each cross section of the steel bar is The axis connected in the axial direction of the steel bar is the “segregation central axis”.

本発明者は、従来の尖塔型金属製機械部品であれば生じる問題の原因が、素材である棒鋼を切削加工して尖塔型金属製機械部品を製造する際に、尖塔部の幾何学的中心軸と一致する尖塔型金属製機械の中心軸を、棒鋼の中心軸に一致させているため、結果として、棒鋼における偏析中心の偏析中心軸と、尖塔型金属製機械部品の中心軸が、相互に一致している点にあることを見出した。すなわち、本発明者は、尖塔型金属製機械部品における尖塔部に、棒鋼中心及びその近傍の異常組織が残存する部分(偏析分布の強度が高い部分)が含まれる従来の構成が、尖塔部の強度劣化の原因であることを究明した。   The inventor found that the cause of the problem that occurs in the case of a conventional spire-type metal machine part is the geometric center of the spire portion when manufacturing a spire-type metal machine part by cutting a steel bar as a raw material. The center axis of the spire metal machine that matches the axis matches the center axis of the steel bar.As a result, the segregation center axis of the segregation center of the steel bar and the center axis of the spire metal machine part It was found that the point is in agreement with. That is, the inventor of the present invention has a conventional configuration in which the portion of the steeple portion in the steeple-type metal machine part including the center of the steel bar and an abnormal structure in the vicinity thereof (the portion with a high segregation distribution strength) is included in the spire portion. The cause of strength deterioration was investigated.

そこで、本発明では、尖塔部の中心軸を棒鋼における中心偏析の偏析中心軸から偏位させる構成を採用した。このような本発明に係る尖塔型金属製機械部品であれば、尖塔部に異常組織が残存する事態を完全に回避できるか、あるいは尖塔部に存在する異常組織の残存部分の比率を格段に低減させることができ、尖塔部の強度劣化の原因となる偏析分布の影響を受ける事態を防止・抑制可能な尖塔型金属製機械部品を実現することができる。   Therefore, in the present invention, a configuration is adopted in which the central axis of the spire portion is displaced from the segregation central axis of the central segregation in the steel bar. With such a spire-type metal machine part according to the present invention, the situation in which abnormal tissue remains in the spire portion can be completely avoided, or the ratio of the remaining portion of abnormal tissue existing in the spire portion can be significantly reduced. It is possible to realize a spire-type metal machine part that can prevent or suppress the situation of being affected by the segregation distribution that causes the strength deterioration of the spire portion.

特に、本発明において、尖塔部に異常組織が存在する構成を確実に回避できるようにするには、棒鋼の偏析中心軸に対する尖塔部の中心軸の偏位量を、棒鋼の半径の10分の1以上に設定していることが好ましい。これは、図12に示すように、棒鋼の横断面内で、偏析等の欠陥に起因する異常組織が残存する部分が、棒鋼の偏析中心軸Pを中心とした半径rの小さい円の範囲内に限定される点、及び、棒鋼の偏析中心軸Pを中心とした半径rの値は棒鋼半径Rの10分の1程度である点、以上の点に着目したものである。なお、尖塔部の中心軸の偏位量の最大値は、母材となる棒鋼から目的の尖塔型金属製機械部品を切削により確実に得ることができる程度であることは当然である。   In particular, in the present invention, in order to reliably avoid the configuration in which the abnormal structure exists in the spire portion, the deviation amount of the central axis of the spire portion relative to the segregation central axis of the steel bar is set to 10 minutes of the radius of the steel bar. It is preferable to set it to 1 or more. This is because, as shown in FIG. 12, the portion where the abnormal structure due to segregation or other defects remains in the cross section of the steel bar is within the range of a circle with a small radius r centered on the segregation central axis P of the steel bar. The point limited to the above, and the value of the radius r around the segregation central axis P of the steel bar is about one-tenth of the steel bar radius R, and the above points are focused on. Naturally, the maximum value of the amount of deviation of the central axis of the spire portion is such that the target spire-type metal machine part can be reliably obtained from the steel bar as the base material by cutting.

さらにまた、本発明において、図3に示すように、棒鋼の偏析中心軸に対する尖塔部の中心軸の偏位量δが、尖塔部の半径αに、棒鋼の半径Rの10分の1を加算した値以上の値である構成、すなわち、「δ≧α+(R/10)」の式を満たす構成を採用すれば、棒鋼の偏析中心軸に対する尖塔部の中心軸の偏位量δを、尖塔部内から偏析の多い領域を排除する形で設定することになり、偏析等の欠陥に起因する異常組織が尖塔部に存在する構成を高い確率で回避することができる。そして、棒鋼の偏析中心軸を中心とした所定の半径の内側に限定される偏析分布の強度が高い部分を除いた部分、すなわち、棒鋼の偏析中心軸を中心とした所定の半径の外側の部分で尖塔部を形成し、偏析中心軸と尖塔部の中心軸とが偏位している構成を採用したことによって、尖塔部から偏析分布の影響を排除することが可能である。   Furthermore, in the present invention, as shown in FIG. 3, the deviation δ of the central axis of the spire portion relative to the segregation central axis of the steel bar is obtained by adding 1/10 of the radius R of the steel bar to the radius α of the spire portion. If a configuration satisfying the equation “δ ≧ α + (R / 10)” is employed, the amount of deviation δ of the central axis of the steeple portion relative to the segregation central axis of the steel bar is calculated as It is set in such a manner that a region having a large amount of segregation is excluded from the inside of the part, and a configuration in which abnormal tissue due to a defect such as segregation exists in the spire part can be avoided with high probability. And a portion excluding a portion where the intensity of the segregation distribution is high, which is limited to the inside of the predetermined radius centered on the segregation central axis of the steel bar, that is, a portion outside the predetermined radius centered on the segregation central axis of the steel bar By adopting a configuration in which the spire portion is formed and the segregation center axis and the center axis of the spire portion are displaced, it is possible to eliminate the influence of the segregation distribution from the spire portion.

また、本発明は、棒鋼から切削工程を経て尖塔型の金属製機械部品を製造する方法に関して、切削工程において、棒鋼における中心偏析の偏析中心軸から尖塔型金属製機械部品の中心軸を偏位させて切削することにより当該尖塔型金属製機械部品を削り出して製造することを特徴としている。   The present invention also relates to a method of manufacturing a steeple-type metal machine part from a steel bar through a cutting process, and in the cutting process, the center axis of the steeple-type metal machine part is displaced from the segregation central axis of the center segregation in the steel bar. The spire-type metal machine parts are cut out and manufactured by cutting them.

このような尖塔型金属製機械部品の製造方法であれば、強度劣化の原因である異常組織が尖塔部に全く存在しないか、殆ど存在しない尖塔型金属製機械部品を製造することができ、棒鋼の横断面内の平均的な機械的強度と同等の強度を有する尖塔部を備えた尖塔型金属製機械部品を製造することが可能になる。   With such a method for manufacturing a spire-type metal machine part, it is possible to manufacture a spire-type metal machine part that has no or almost no abnormal tissue that causes strength deterioration in the spire part. It is possible to manufacture a spire-type metal mechanical part having a spire portion having a strength equivalent to the average mechanical strength in the cross section of the above.

以上に述べたように、本発明によれば、尖塔部を有する金属製機械部品において、棒鋼における中心偏析の偏析中心軸から尖塔型金属製機械部品の中心軸を偏位させた構成を採用したことによって、尖塔部の機械的強度劣化を防ぐことができ、尖塔部の強度を母材である棒鋼の平均強度と同程度にすることが可能であり、尖塔型金属製機械部品の安定した強度保証を実現することができる。したがって、多発するおそれがある尖塔部の欠けや折損を未然に防止することができることから、尖塔型金属製機械部品の交換頻度を低減することができるようになり、また尖塔型金属製機械部品を用いた機械(装置)の安定稼働を保証することが可能になる。   As described above, according to the present invention, in the metal machine part having the spire portion, the configuration in which the center axis of the spire type metal machine part is displaced from the segregation center axis of the center segregation in the steel bar is adopted. Therefore, it is possible to prevent the deterioration of the mechanical strength of the spire part, and to make the strength of the spire part the same as the average strength of the steel bar that is the base material, and the stable strength of the spire-type metal machine parts Guarantees can be realized. Therefore, since it is possible to prevent the spire portion from being broken or broken, which can occur frequently, it is possible to reduce the replacement frequency of the spire-type metal machine parts, and to reduce the spire-type metal machine parts. It becomes possible to guarantee the stable operation of the used machine (device).

また、尖塔部を削り出す加工工程に於いて、尖塔部が細くなればなるほど、すなわち尖塔部の半径が小さくなればなるほど、尖塔部の強度が劣化し、削り出し時の折損事故が発生する確率が高くなるが、本発明によれば、そのような折損事故を未然に防止することができ、尖塔型金属製機械部品を製造する際の材料ロスや製造に要するエネルギーロス等、種々のロスの発生を抑止することができる。   Also, in the process of cutting out the spiers, the smaller the spiers, that is, the smaller the radius of the spiers, the lower the strength of the spiers, and the probability of a breakage accident when cutting However, according to the present invention, such a breakage accident can be prevented in advance, and various losses such as material loss and energy loss required for manufacturing a spire-type metal machine part can be prevented. Occurrence can be suppressed.

本発明の一実施形態に係る尖塔型金属製機械部品の全体模式図。1 is an overall schematic diagram of a steeple-type metal machine part according to an embodiment of the present invention. 同実施形態における棒鋼の全体模式図。The whole schematic diagram of the steel bar in the embodiment. 同実施形態における尖塔型金属製機械部品と棒鋼の相対位置関係(尖塔型金属製機械部品の棒鋼からの削り出し方)を図1及び図2に対応して示す図。The figure which shows the relative positional relationship (how to cut out the spire type metal machine part from the bar steel) in the same embodiment corresponding to FIG.1 and FIG.2. 本実施例及び比較例の試験片(尖塔型金属製機械部品)の強度試験方法を示す図。The figure which shows the strength test method of the test piece (spiral type metal machine parts) of a present Example and a comparative example. 同試験において試験片の尖塔部が根元で折損した時点を図4に対応して示す図。The figure which shows the time of the spire part of a test piece breaking at the root in the test corresponding to FIG. 同試験の各ケースにおける軸方向から見た試験片及び棒鋼の相対位置関係を示す図。The figure which shows the relative positional relationship of the test piece and steel bar seen from the axial direction in each case of the test. 同試験で用いた棒鋼(SNCM477)の成分を示す図。The figure which shows the component of the steel bar (SNCM477) used by the same test. 同試験におけるケース1及びケース2の試験結果を示す図。The figure which shows the test result of case 1 and case 2 in the same test. 同試験におけるケース1及びケース2の試験結果をグラフで示す図。The figure which shows the test result of case 1 and case 2 in the same test with a graph. 同試験におけるケース3及びケース4の試験結果を示す図。The figure which shows the test result of case 3 and case 4 in the same test. 同試験におけるケース3及びケース4の試験結果をグラフで示す図。The figure which shows the test result of case 3 and case 4 in the same test with a graph. 従来の尖塔型金属製機械部品と棒鋼の相対位置関係(尖塔型金属製機械部品の棒鋼からの削り出し方)を模式的に示す図。The figure which shows typically the relative positional relationship (how to cut out from a bar steel of a spire type metal machine part) of the conventional spire type metal machine part and a steel bar. 従来の尖塔型金属製機械部品であって軸芯近傍の偏析が確認される写真。A photograph showing segregation in the vicinity of the axis of a conventional spire-type metal machine part.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る尖塔型金属製機械部品1は、図1に示すように、尖塔型金属製機械部品1の中心軸Qに沿った一端部側に、他端部側よりも細い径に設定した尖塔部2を有するものである。このような尖塔型金属製機械部品1は、例えば打錠機の杵として用いられ、実際の使用時には尖塔部2で粉末を圧縮して錠剤を成型することが可能なものである。したがって、尖塔部2は作用部として機能する。すなわち、本実施形態に係る尖塔型金属製機械部品1は、尖塔型金属製機械部品1の中心軸Qに沿った作用部側に尖塔部2を有するものである。   As shown in FIG. 1, the spire-type metal machine component 1 according to the present embodiment is set to have a smaller diameter at one end side along the central axis Q of the spire-type metal machine component 1 than at the other end side. The spire portion 2 is provided. Such a spire-type metal machine part 1 is used, for example, as a punch of a tableting machine, and can be formed by compressing powder at the spire portion 2 during actual use. Therefore, the spire part 2 functions as an action part. That is, the steeple-type metal machine part 1 according to the present embodiment has the steeple part 2 on the action part side along the central axis Q of the steeple-type metal machine part 1.

尖塔型金属製機械部品1は、熱間加工を経て提供される例えば図2に示す棒鋼3から削り出して形成される被切削加工部品であり、図1及び図3に示すように、尖塔部2の中心軸Sは、尖塔型金属製機械部品1の中心軸Qと一致する。そして、本実施形態に係る尖塔型金属製機械部品1は、尖塔部2の中心軸Sを棒鋼3における中心偏析の偏析中心軸Pから偏位させている。   The steeple-shaped metal machine part 1 is a machined part formed by cutting from, for example, a steel bar 3 shown in FIG. 2 provided through hot working. As shown in FIGS. 1 and 3, the steeple part The center axis S of 2 coincides with the center axis Q of the spire-type metal machine part 1. And the spire-type metal machine part 1 which concerns on this embodiment has shifted the central axis S of the spire part 2 from the segregation central axis P of the center segregation in the steel bar 3. FIG.

ここで、鋳造処理中や鋳造処理後に棒鋼3に出現する偏析、介在物、析出物、ポロシティ等の欠陥に起因する異常組織が残存する部分(偏析分布の強度が高い部分)は、棒鋼3のうち図2及び図3における棒鋼3の中心軸P’を中心とした半径rの範囲内に限定される。図2及び図3では、前述の図12と同様に、偏析分布の有無及び強弱を棒鋼3の横断面に対応付けて模式的に示している。このように、熱間加工を経た棒鋼3の横断面における一定範囲の半径rの円内において分布している偏析等の欠陥に起因する異常組織が中心偏析であり、偏析分布の強度が高い上記半径rの中心を通る軸が、「中心偏析の偏析中心軸」である。本実施形態において、この偏析中心軸Pは、棒鋼3の中心軸P’に一致する。   Here, the part where the abnormal structure remaining due to defects such as segregation, inclusions, precipitates, porosity, etc. appearing in the steel bar 3 during the casting process or after the casting process (part where the strength of the segregation distribution is high) is Of these, the radius r is limited within the range of the center axis P ′ of the steel bar 3 in FIGS. 2 and 3. In FIGS. 2 and 3, similarly to FIG. 12 described above, the presence / absence and strength of segregation distribution is schematically shown in association with the cross section of the steel bar 3. Thus, the abnormal structure resulting from defects such as segregation distributed in a circle with a radius r in a certain range in the cross section of the steel bar 3 that has undergone hot working is the center segregation, and the strength of the segregation distribution is high. The axis passing through the center of the radius r is the “center segregation segregation central axis”. In the present embodiment, the segregation center axis P coincides with the center axis P ′ of the steel bar 3.

そして、本実施形態に係る尖塔型金属製機械部品1は、尖塔部2に、棒鋼3のうち上記半径rの範囲が含まれないように構成している点に特徴を有する。棒鋼3の中心軸P’と偏析中心軸Pが一致している棒鋼3を用いて、尖塔部2の中心軸Sを棒鋼3における中心偏析の偏析中心軸Pから偏位させた尖塔型金属製機械部品1を作るための一つの手段として、本実施形態では、尖塔型金属製機械部品1の中心軸Qと、偏析中心軸Pの間の距離δが以下の式1の関係を満たすように設定している。
δ≧(α+r) ・・・(式1) ここで、αは尖塔部2の半径である(図1及び図3参照)。
And the spire type metal mechanical component 1 which concerns on this embodiment has the characteristics in the point which is comprised so that the range of the said radius r among the steel bars 3 may not be included in the spire part 2. Using a steel bar 3 in which the central axis P ′ of the steel bar 3 and the segregation central axis P coincide with each other, the central axis S of the spire part 2 is displaced from the segregation central axis P of the central segregation in the steel bar 3. As one means for making the machine part 1, in this embodiment, the distance δ between the center axis Q of the spire-type metal machine part 1 and the segregation center axis P satisfies the relationship of the following formula 1. It is set.
δ ≧ (α + r) (Formula 1) where α is the radius of the spire portion 2 (see FIGS. 1 and 3).

このように、棒鋼3の中心軸P’と偏析中心軸Pが一致している棒鋼3であれば、尖塔型金属製機械部品1の中心軸Qと、偏析中心軸の間の距離δが式1の関係を満たすことで、尖塔部2には偏析等の欠陥に起因する異常組織が残存する部分が存在しなくなり、尖塔部2の強度低下を防止することが可能となる。   Thus, in the case of the steel bar 3 in which the central axis P ′ of the steel bar 3 and the segregation central axis P coincide with each other, the distance δ between the central axis Q of the spire-type metal machine part 1 and the segregation central axis is expressed by the equation When the relationship 1 is satisfied, the spire portion 2 does not have a portion in which abnormal tissue due to segregation or the like remains, and the strength of the spire portion 2 can be prevented from being reduced.

すなわち、本実施形態に係る尖塔型金属製機械部品1は、強度劣化の原因である異常組織が尖塔部2に存在しない構成を採用しているため、尖塔部2の機械的強度の劣化は発生せず、棒鋼3の横断面内の平均的な機械的強度と同等の強度を有する尖塔部2を得ることができる。そのため、本実施形態に係る尖塔型金属製機械部品1は、尖塔部2の欠けや折損が減少するという作用効果を奏する。   That is, since the spire-type metal mechanical component 1 according to the present embodiment employs a configuration in which the abnormal tissue that causes the strength deterioration does not exist in the spire portion 2, the deterioration of the mechanical strength of the spire portion 2 occurs. Without this, the spire portion 2 having a strength equivalent to the average mechanical strength in the cross section of the steel bar 3 can be obtained. Therefore, the spire-type metal mechanical component 1 according to the present embodiment has an operational effect that chipping or breakage of the spire portion 2 is reduced.

以下に、本実施形態に係る尖塔型金属製機械部品1の強度を検証すべく実施した試験内容、及び試験結果を図4乃至図11を参照して説明する。   Hereinafter, test contents and test results conducted to verify the strength of the spire-type metal machine part 1 according to the present embodiment will be described with reference to FIGS. 4 to 11.

本試験では、熱間圧延仕上げの黒皮丸棒素材である棒鋼3から尖塔型金属製機械部品に相当する細長い試験片Xを削り出し、図4に示すように、試験片Xのうち尖塔部2が形成されていない側の部分を、周方向において等ピッチ間隔で適宜の把持具Yによって把持した状態で、尖塔部2の先端を軸方向に対して直交する方向から適宜の押圧具Zによって押し込み、図5に示す時点、すなわち、尖塔部2の根元で折損が起こった時点を「破断に至った時点」として、この「破断に至った時点」の押込量Wを比較・検討した。なお、図4の紙面向かって左側の図は、同図におけるA方向から見た模式図であり、周方向において等ピッチ間隔で把持具Yによって、試験片Xのうち尖塔部2が形成されていない側の部分を把持している状態を示す図である。本試験で用いる棒鋼3は、その中心軸と偏析中心軸とが一致するものである。本試験片Xは、尖塔部2が形成されていない側の部分の直径を15mm、軸方向に沿った同部分の長さを29mmに設定し、尖塔部2の直径を3mmまたは5mm、軸方向に沿った尖塔部2の長さを30mmに設定したものである。また、本試験では、図4に示すyの値(尖塔部2の根元から把持具Yによる把持先端位置までの距離)を10mmに設定し、zの値(尖塔部2の先端から押圧具zが当接する距離)を5mmに設定している。   In this test, an elongated test piece X corresponding to a spire-type metal machine part is cut out from a steel bar 3 which is a hot-rolled black bar material, and as shown in FIG. With the appropriate pressing tool Z from the direction perpendicular to the axial direction, the tip of the spire portion 2 is gripped by the appropriate gripping tool Y at equal pitch intervals in the circumferential direction. The time point shown in FIG. 5, that is, the time point at which breakage occurred at the base of the spire portion 2 was defined as “the time point when the breakage was reached”, and the amount W of push-in at this “time point when the breakage occurred” was compared and examined. 4 is a schematic diagram viewed from the A direction in FIG. 4, and the spire portion 2 of the test piece X is formed by the gripper Y at equal pitch intervals in the circumferential direction. It is a figure which shows the state which has hold | gripped the part of the side which is not. The steel bar 3 used in this test has a center axis that coincides with the segregation center axis. In this test piece X, the diameter of the portion on which the spire portion 2 is not formed is set to 15 mm, the length of the same portion along the axial direction is set to 29 mm, the diameter of the spire portion 2 is set to 3 mm or 5 mm, and the axial direction The length of the spire part 2 along the line is set to 30 mm. Further, in this test, the value of y (the distance from the root of the spire portion 2 to the gripping tip position by the gripper Y) shown in FIG. 4 is set to 10 mm, and the value of z (from the tip of the spire portion 2 to the pressing tool z) is set. Is set to 5 mm.

本試験における試験片Xの削り出し方は、図6に示す4パターンである。ケース1は、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心(尖塔型金属製機械部品1の中心)とを一致させ、尖塔部2の直径d3を3mmに設定したものであり、ケース2は、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心を8mm偏位させ(偏位量δ:8mm)、尖塔部2の直径d3を3mmに設定したものである。   The method of cutting out the test piece X in this test is four patterns shown in FIG. In case 1, the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm (the center of the spire-type metal mechanical part 1) are matched, and the diameter d3 of the spire portion 2 is set. The case 2 is formed by shifting the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm by 8 mm (deviation amount δ: 8 mm). The diameter d3 of the part 2 is set to 3 mm.

また、ケース3は、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心とを一致させ、尖塔部2の直径d3を5mmに設定したものであり、ケース4は、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心を6mm偏位させ(偏位量δ:6mm)、尖塔部2の直径d3を5mmに設定したものである。   In addition, the case 3 is a case in which the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm are matched, and the diameter d3 of the spire portion 2 is set to 5 mm. 4, the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm are displaced by 6 mm (deviation amount δ: 6 mm), and the diameter d3 of the spire portion 2 is set to 5 mm. It is a thing.

ここで、棒鋼3における中心偏析の偏析中心軸Pは棒鋼3の中心を通る軸と一致している本試験において、棒鋼3の中心と試験片Xの中心を偏位させたケース2及びケース4が本実施例に係る試験片X(本発明に係る尖塔型金属製機械部品1)であり、棒鋼3の中心と試験片Xの中心を一致させたケース1及びケース3はそれぞれケース2及びケース4の比較例に係る試験片Xである。   Here, in the present test in which the center axis P of the center segregation in the steel bar 3 coincides with the axis passing through the center of the steel bar 3, the center of the steel bar 3 and the center of the test piece X are deviated. Is the test piece X according to the present embodiment (the spire-type metal machine part 1 according to the present invention), and the case 1 and the case 3 in which the center of the steel bar 3 and the center of the test piece X coincide with each other are the case 2 and the case 3, respectively. 4 is a test piece X according to Comparative Example 4;

なお、本試験で適用した各試験片Xは、棒鋼3である直径32mmの熱間圧延仕上SNCM447材(クロムモリブデン鋼SNCM447)から旋削して製作されたものである。クロムモリブデン鋼SNCM447に関するJIS規格での成分範囲は図7に示す通りである。   In addition, each test piece X applied in this test is manufactured by turning from a hot rolled finish SNCM447 material (chromium molybdenum steel SNCM447) having a diameter of 32 mm, which is a steel bar 3. The component range in the JIS standard regarding chromium molybdenum steel SNCM447 is as shown in FIG.

試験の結果は、図8〜図11に示す通りである。すなわち、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心(尖塔型金属製機械部品1の中心)とを一致させ、尖塔部2の直径d3を3mmに設定したケース1に関する試験を計6回行った結果、破断に至った時点(尖塔部2の根元で折損が起こった時点)の押し込み量Wの平均値は6.73mmであった(図8及び図9参照)。一方、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心を8mm偏位させ、尖塔部2の直径d3を3mmに設定したケース2に関する試験を計6回行った結果、破断に至った時点の押し込み量Wの平均値は11.68mmであった(図8及び図9参照)。   The test results are as shown in FIGS. That is, the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm (the center of the spire-type metal machine part 1) are matched, and the diameter d3 of the spire portion 2 is set to 3 mm. As a result of conducting a total of 6 tests for the set case 1, the average value of the pushing amount W at the time when the fracture was reached (when the breakage occurred at the base of the spire portion 2) was 6.73 mm (see FIG. 8 and FIG. 8). (See FIG. 9). On the other hand, a total of 6 tests were conducted on Case 2 in which the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm were displaced by 8 mm and the diameter d3 of the spire portion 2 was set to 3 mm. As a result, the average value of the push-in amount W at the time of rupture was 11.68 mm (see FIGS. 8 and 9).

また、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心とを一致させ、尖塔部2の直径d3を5mmに設定したケース3に関する試験を計3回行った結果、破断に至った時点の押し込み量Wの平均値は3.7mmであった(図10及び図11参照)。一方、直径d1が32mmである棒鋼3の中心と、直径d2が15mmである試験片Xの中心を6mm偏位させ、尖塔部2の直径d3を5mmに設定したケース4に関する試験を計3回行った結果、破断に至った時点の押し込み量Wの平均値は4.0mmであった(図10及び図11参照)。   In addition, the test relating to Case 3 in which the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm are matched and the diameter d3 of the spire portion 2 is set to 5 mm is performed a total of three times. As a result, the average value of the push-in amount W at the time when the fracture occurred was 3.7 mm (see FIGS. 10 and 11). On the other hand, a total of three tests on case 4 in which the center of the steel bar 3 having a diameter d1 of 32 mm and the center of the test piece X having a diameter d2 of 15 mm are offset by 6 mm and the diameter d3 of the spire portion 2 is set to 5 mm are performed. As a result, the average value of the push-in amount W at the time of rupture was 4.0 mm (see FIGS. 10 and 11).

以上の試験結果より、棒鋼3の中心と試験片Xの中心を偏芯させた本実施例のケース2、ケース4における破断に至った時点の押し込み量Wの値が、棒鋼3の中心と試験片Xの中心を一致させたケース1、ケース3と比較して大きいことが判明した。つまり、棒鋼3における中心偏析の偏析中心軸Pが棒鋼3の中心を通る軸と一致している本試験において、試験片Xの軸を、棒鋼3の偏析中心軸Pに対して偏位させることで、破断に至るまでの押し込み量Wの値は大きくなり、強度が増大することが判明した。   From the above test results, the value of the push-in amount W at the time of rupture in the case 2 and the case 4 of the present example in which the center of the steel bar 3 and the center of the test piece X are decentered is It was found to be larger than Case 1 and Case 3 in which the centers of the pieces X were matched. That is, in this test in which the segregation center axis P of the center segregation in the steel bar 3 coincides with the axis passing through the center of the steel bar 3, the axis of the test piece X is deviated from the segregation center axis P of the steel bar 3. Thus, it was found that the value of the indentation amount W until breakage increases and the strength increases.

なお、ミクロ組織観察の結果、棒鋼3の偏析中心軸Pを中心とした半径rの領域の外にも、棒鋼3の中心軸P’近傍ほどではないものの、僅かに異常組織の存在が確認された。この影響により、本試験の各ケースにおいて、図8〜図11に示すように、同じケース番号であっても試験番号毎に「破断に至った時点の押し込み量Wの値」にばらつきが生じたと推察できる。   As a result of microstructural observation, the presence of a slightly abnormal structure was confirmed in addition to the region of radius r centered on the segregation central axis P of the steel bar 3, although not as close to the central axis P ′ of the steel bar 3. It was. Due to this influence, in each case of this test, as shown in FIGS. 8 to 11, even if the case number is the same, the “value of the push amount W at the time of rupture” varies for each test number. I can guess.

しかし、各ケースに関する試験結果において、破断に至るまでの押し込み量Wの平均値を見ると、尖塔部2の直径d3が3mm、または5mmであっても、試験片Xの軸芯を棒鋼3の軸芯P’(つまり偏析中心軸P)からずらすことで、試験片X(尖塔型金属製機械部品)の破断強度は向上することが把握できる。   However, in the test results for each case, when the average value of the push-in amount W until rupture is seen, even if the diameter d3 of the spire portion 2 is 3 mm or 5 mm, the shaft core of the test piece X is made of the steel bar 3 It can be understood that the breaking strength of the test piece X (spiral metal machine part) is improved by shifting from the axis P ′ (that is, the segregation center axis P).

また、ケース1乃至ケース4に関する試験結果より、尖塔部2の直径d3を3mmに設定したケース2の方が、尖塔部2の直径d3を5mmに設定したケース4と比較して強度アップの程度が大きいことが判明した。これは、棒鋼3の偏析中心軸Pと尖塔部2の中心軸Sが一致している場合(ケース1、ケース3)、尖塔部2の直径d3が3mmであれば、偏析分布の強度が高い棒鋼3の中心軸P’回りの直径5mmの範囲内においても特に強い分布を示す領域に尖塔部2の全部が含まれるためであると考えられる。   Further, from the test results on cases 1 to 4, the strength of case 2 in which the diameter d3 of the spire portion 2 is set to 3 mm is higher than the case 4 in which the diameter d3 of the spire portion 2 is set to 5 mm. Turned out to be great. This is because when the segregation center axis P of the steel bar 3 and the center axis S of the spire portion 2 coincide with each other (case 1, case 3), if the diameter d3 of the spire portion 2 is 3 mm, the strength of the segregation distribution is high. This is presumably because all of the spire portion 2 is included in a region having a particularly strong distribution even within a range of 5 mm in diameter around the central axis P ′ of the steel bar 3.

以上に述べたように、棒鋼3における中心偏析の偏析中心軸Pが棒鋼3の中心を通る軸と一致している場合において、尖塔部2の中心軸Sを棒鋼3の中心軸P’から偏位させることで、棒鋼3の偏析中心軸Pから尖塔部2の中心軸Sを偏位させるように構成した本実施形態に係る尖塔型金属製機械部品1によれば、尖塔部2に偏析等の欠陥に起因する異常組織が残存する事態を完全に回避できるか、あるいは尖塔部2に存在する異常組織(欠陥部分)の比率を格段に低くすることができ、尖塔部2の強度劣化の原因となる偏析分布の影響を受ける事態を防止・抑制することが可能である。   As described above, when the segregation center axis P of the center segregation in the steel bar 3 coincides with the axis passing through the center of the steel bar 3, the center axis S of the spire portion 2 is deviated from the center axis P ′ of the steel bar 3. According to the spire-type metal mechanical part 1 according to the present embodiment configured to deviate the center axis S of the spire portion 2 from the segregation center axis P of the steel bar 3, the spire portion 2 is segregated or the like. The situation in which abnormal tissue remaining due to the defect of the spire can be completely avoided, or the ratio of the abnormal tissue (defect portion) present in the spire portion 2 can be remarkably reduced, and the cause of the strength deterioration of the spire portion 2 It is possible to prevent or suppress the situation affected by the segregation distribution.

特に、棒鋼3における中心偏析の偏析中心軸Pが棒鋼3の中心を通る軸と一致している場合において、図3に示すように、棒鋼3の横断面内で、異常組織が残存する部分が、棒鋼3の中心軸P’を中心とした半径rの小さい円の範囲内に限定される点、及び、異常組織が残存する半径rの値は、棒鋼3の半径Rの10分の1程度である点、以上の点に着目し、棒鋼3の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量δを、棒鋼3の半径Rの10分の1以上に設定することで、尖塔部2に異常組織が存在する構成を確実に回避できる。上述のケース2及びケース4の何れも、棒鋼3の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量δ(8mm、6mm)を、棒鋼3の半径R(16mm)の10分の1(1.6mm)以上に設定している。   In particular, when the segregation central axis P of the center segregation in the steel bar 3 is coincident with the axis passing through the center of the steel bar 3, as shown in FIG. The value of the radius r where the abnormal structure remains is limited to about one-tenth of the radius R of the steel bar 3, which is limited to the range of a circle with a small radius r centered on the central axis P ′ of the steel bar 3. By paying attention to the above points, the deviation amount δ of the central axis S of the spire portion 2 with respect to the segregation central axis P of the steel bar 3 is set to 1/10 or more of the radius R of the steel bar 3, A configuration in which abnormal tissue is present in the spire portion 2 can be reliably avoided. In both cases 2 and 4, the deviation amount δ (8 mm, 6 mm) of the center axis S of the spire portion 2 with respect to the segregation center axis P of the steel bar 3 is 10 minutes of the radius R (16 mm) of the steel bar 3. 1 (1.6 mm) or more is set.

さらにまた、棒鋼3における中心偏析の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量δを、尖塔部2の半径αに、棒鋼3の半径Rの10分の1を加算した値以上に設定した構成、すなわち、以下の式2を満たす構成を採用することで、棒鋼3における中心偏析の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量を大きく設定することになり、尖塔部2に異常組織が存在してしまう構成をより一層高い確率で回避することができる。
δ≧α+(R/10) ・・・(式2)
Furthermore, the deviation amount δ of the center axis S of the spire portion 2 with respect to the segregation center axis P of the center segregation in the steel bar 3 is a value obtained by adding 1/10 of the radius R of the steel bar 3 to the radius α of the spire portion 2. By adopting the configuration set above, that is, the configuration satisfying the following formula 2, the deviation amount of the central axis S of the spire portion 2 with respect to the central segregation center axis P of the central segregation in the steel bar 3 is set large. Further, a configuration in which abnormal tissue exists in the spire portion 2 can be avoided with a higher probability.
δ ≧ α + (R / 10) (Formula 2)

上述のケース2では、棒鋼3における中心偏析の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量δ(8mm)が、尖塔部2の半径α(1.5mm)に、棒鋼3の半径R(16mm)の10分の1(1.6mm)を加算した値(3.1mm)以上である。また、上述のケース4では、棒鋼3における中心偏析の偏析中心軸Pに対する尖塔部2の中心軸Sの偏位量δ(8mm)が、尖塔部2の半径α(2.5mm)に、棒鋼3の半径R(16mm)の10分の1(1.6mm)を加算した値(4.1mm)以上である。したがって、これらケース2及びケース4は上述の式2を満たす構成である。   In the case 2 described above, the deviation δ (8 mm) of the center axis S of the spire portion 2 with respect to the segregation center axis P of the center segregation in the steel bar 3 is set to the radius α (1.5 mm) of the spire portion 2. It is not less than a value (3.1 mm) obtained by adding 1/10 (1.6 mm) of the radius R (16 mm). Further, in the case 4 described above, the deviation δ (8 mm) of the center axis S of the spire portion 2 with respect to the segregation center axis P of the center segregation in the steel bar 3 is set to the radius α (2.5 mm) of the spire portion 2. It is equal to or more than a value (4.1 mm) obtained by adding one-tenth (1.6 mm) of the radius R of 3 (16 mm). Therefore, the case 2 and the case 4 are configured to satisfy the above-described expression 2.

また、切削工程において、棒鋼3における中心偏析の偏析中心軸Pから尖塔型金属製機械部品1の中心軸Qを偏位させて切削することにより当該尖塔型金属製機械部品1を削り出して製造する方法であれば、強度劣化の原因である異常組織が尖塔部2に全く存在しないか、殆ど存在しない尖塔型金属製機械部品1を製造することができ、棒鋼3の横断面内の平均的な機械的強度と同等の強度を有する尖塔部2を備えた尖塔型金属製機械部品1を製造することが可能になる。   Further, in the cutting process, the spire type metal machine part 1 is cut out and manufactured by shifting the center axis Q of the spire type metal machine part 1 from the segregation center axis P of the center segregation in the steel bar 3. If this method is used, it is possible to manufacture the spire-type metal machine part 1 in which the abnormal tissue that causes the strength deterioration does not exist at all or in the spire portion 2, and an average in the cross section of the steel bar 3 can be obtained. It becomes possible to manufacture the spire-type metal machine part 1 having the spire portion 2 having the same strength as the mechanical strength.

なお、本発明は上述した実施形態に限定されるものではない。例えば、上述の式1や式2の条件を満たさない構成であっても、尖塔部の中心軸を棒鋼における中心偏析の偏析中心軸から偏位させたものであれば、本発明に係る尖塔型金属製機械部品に該当する。   In addition, this invention is not limited to embodiment mentioned above. For example, even if it is a structure which does not satisfy | fill the conditions of the above-mentioned Formula 1 and Formula 2, if the center axis | shaft of a spire part is deviated from the segregation center axis | shaft of the center segregation in a steel bar, the spire type | mold which concerns on this invention Corresponds to metal machine parts.

また、尖塔型金属製機械部品全体の高さ寸法に占める尖塔部の高さ寸法の比率に対する尖塔部の直径の比率は適宜変更することができる。   In addition, the ratio of the diameter of the spire portion to the ratio of the height dimension of the spire portion to the height dimension of the entire spire-type metal machine part can be changed as appropriate.

また、本発明に係る尖塔型金属製機械部品は、尖塔部の中心軸と、尖塔型金属製機械部品の中心軸が一致し、尖塔部の中心軸を棒鋼における中心偏析の偏析中心軸から偏位させたものであればよく、完全な円柱状の尖塔部に代えて、例えば、軸方向に沿った所定箇所において径方向内側に凹んだ括れ部を有する尖塔部や、或いは軸方向に沿った所定箇所において径方向外側に出っ張った突部を有する尖塔部、さらには、先端部を円錐状または球面状に設定した尖塔部を適用することも可能である。   In addition, the spire-type metal machine part according to the present invention has the same center axis of the spire part as that of the spire-type metal machine part, and the center axis of the spire part deviates from the segregation center axis of the center segregation in the steel bar. It is sufficient that it is positioned, and instead of a complete columnar spire portion, for example, a spire portion having a constricted portion recessed radially inward at a predetermined location along the axial direction, or along the axial direction It is also possible to apply a spire portion having a projecting portion protruding radially outward at a predetermined location, and a spire portion having a tip portion set in a conical shape or a spherical shape.

棒鋼の具体的な素材として、上述のクロムモリブデン鋼SNCM447以外の素材を適用することも可能である。   As a specific material of the steel bar, a material other than the above-described chromium molybdenum steel SNCM447 can be applied.

また、本発明に係る尖塔型金属製機械部品は、薬等の錠剤を成形する打錠機の杵としての用途以外に、例えば自動車のエンジンバルブ等、産業界における多方面において利用・活用することが可能なものである。   In addition, the spire-type metal mechanical parts according to the present invention can be used and utilized in various fields in the industry, such as automobile engine valves, in addition to the use as a punch of a tableting machine for forming tablets such as medicines. Is possible.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…尖塔型金属製機械部品
2…尖塔部
3…棒鋼
P…棒鋼における中心偏析の偏析中心軸
P’…棒鋼の中心軸
Q…尖塔型金属製機械部品の中心軸
R…棒鋼の半径
S…尖塔部の中心軸
α…尖塔部の半径
δ…棒鋼の中心軸に対する尖塔部の中心軸の偏位量
DESCRIPTION OF SYMBOLS 1 ... Spire-shaped metal machine part 2 ... Spire part 3 ... Steel bar P ... Segregation center axis P 'of center segregation in bar steel ... Center axis Q of steel bar ... Center axis R of spire-type metal machine part ... Radius S of steel bar ... Center axis α of the spire part ... Radius δ of the spire part ... Deviation of the central axis of the spire part with respect to the central axis of the steel bar

Claims (4)

熱間加工を経て提供される棒鋼を切削加工により形成される尖塔型金属製機械部品であって、
当該尖塔型金属製機械部品の中心軸に沿った一端部側に、他端部側よりも細径の尖塔部を有し、前記尖塔部の中心軸を前記棒鋼における中心偏析の偏析中心軸から偏位させていることを特徴とする尖塔型金属製機械部品。
A spire-type metal machine part formed by cutting a steel bar provided through hot working,
On one end side along the central axis of the spire-type metal machine part, it has a steeple portion having a diameter smaller than that of the other end side, and the central axis of the spire portion is separated from the segregation central axis of the central segregation in the steel bar. Spire-type metal machine parts characterized by being displaced.
前記偏析中心軸に対する前記尖塔部の中心軸の偏位量を、前記棒鋼の半径の10分の1以上に設定している請求項1に記載の尖塔型金属製機械部品。 The spire-type metallic machine part according to claim 1, wherein a deviation amount of the central axis of the spire portion with respect to the segregation central axis is set to 1/10 or more of a radius of the steel bar. 前記偏析中心軸に対する前記尖塔部の中心軸の偏位量を、前記尖塔部の半径に、前記棒鋼の半径の10分の1を加算した値以上に設定している請求項1又は2に記載の尖塔型金属製機械部品。 The amount of deviation of the central axis of the spire portion with respect to the segregation central axis is set to a value equal to or greater than a value obtained by adding 1/10 of the radius of the steel bar to the radius of the spire portion. Spire-type metal machine parts. 棒鋼から切削工程を経て尖塔型金属製機械部品を製造する方法であって、
前記切削工程において、前記棒鋼における中心偏析の偏析中心軸から当該尖塔型金属製機械部品の中心軸を偏位させて切削することにより当該尖塔型金属製機械部品を削り出して製造することを特徴とする尖塔型金属製機械部品の製造方法。
A method of manufacturing a spire-type metal machine part from a steel bar through a cutting process,
In the cutting step, the spire type metal machine part is cut out and manufactured by shifting the center axis of the spire type metal machine part from the segregation center axis of the center segregation in the steel bar. A method for manufacturing a spire-type metal machine part.
JP2016056880A 2016-03-22 2016-03-22 Spire type metal machine parts, manufacturing method of spire type metal machine parts Active JP6827268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056880A JP6827268B2 (en) 2016-03-22 2016-03-22 Spire type metal machine parts, manufacturing method of spire type metal machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056880A JP6827268B2 (en) 2016-03-22 2016-03-22 Spire type metal machine parts, manufacturing method of spire type metal machine parts

Publications (2)

Publication Number Publication Date
JP2017170543A true JP2017170543A (en) 2017-09-28
JP6827268B2 JP6827268B2 (en) 2021-02-10

Family

ID=59970021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056880A Active JP6827268B2 (en) 2016-03-22 2016-03-22 Spire type metal machine parts, manufacturing method of spire type metal machine parts

Country Status (1)

Country Link
JP (1) JP6827268B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288907A (en) * 1978-06-28 1981-09-15 Chumanov Julian M Method of making billets
JPS63169210A (en) * 1986-12-29 1988-07-13 Nippon Steel Corp Manufacture of heavy-duty rail
JPS6427714A (en) * 1987-07-21 1989-01-30 Nippon Steel Corp Wire rod excellent in wire drawing workability
US6032363A (en) * 1996-06-10 2000-03-07 Parker-Hannifin Corporation Manufacture of fitting from metal billets or stock having centerline inhomogeneities
JP2008238275A (en) * 2007-03-23 2008-10-09 Dayton Progress Corp Tool with thermo-mechanically modified working region and method of forming such tool
JP2011157597A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Ind Ltd Hot-rolled steel bar or wire rod
JP2012513307A (en) * 2008-12-22 2012-06-14 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Tool for punching machines with reciprocating tool inserts
JP5757547B1 (en) * 2014-12-02 2015-07-29 石福金属興業株式会社 Probe pin made of Rh-based alloy and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288907A (en) * 1978-06-28 1981-09-15 Chumanov Julian M Method of making billets
JPS63169210A (en) * 1986-12-29 1988-07-13 Nippon Steel Corp Manufacture of heavy-duty rail
JPS6427714A (en) * 1987-07-21 1989-01-30 Nippon Steel Corp Wire rod excellent in wire drawing workability
US6032363A (en) * 1996-06-10 2000-03-07 Parker-Hannifin Corporation Manufacture of fitting from metal billets or stock having centerline inhomogeneities
JP2008238275A (en) * 2007-03-23 2008-10-09 Dayton Progress Corp Tool with thermo-mechanically modified working region and method of forming such tool
JP2012513307A (en) * 2008-12-22 2012-06-14 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Tool for punching machines with reciprocating tool inserts
JP2011157597A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Ind Ltd Hot-rolled steel bar or wire rod
JP5757547B1 (en) * 2014-12-02 2015-07-29 石福金属興業株式会社 Probe pin made of Rh-based alloy and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤潤、外5名: "新ESRによる高品位ロール製造技術", 神戸製鋼技報, vol. 60巻、2号, JPN6020048908, August 2010 (2010-08-01), JP, pages 15 - 19, ISSN: 0004411077 *

Also Published As

Publication number Publication date
JP6827268B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
RU2573456C2 (en) Systems and methods of manufacturing and treatment of alloy ingots
JP4733498B2 (en) FORGED MOLDED PRODUCT, ITS MANUFACTURING METHOD, FORGED MOLDING DEVICE AND FORGED PRODUCT MANUFACTURING SYSTEM
JP6678158B2 (en) Briquette roll and method for producing the same
JP2016069726A (en) PRODUCTION METHOD FOR Fe-Ni-BASED SUPERALLOY
JP5948124B2 (en) Magnesium alloy member and manufacturing method thereof
JP5437669B2 (en) Hot and hot forging die
JP5402529B2 (en) Steel for mold
JP2008213038A (en) Press forging method
JP2017170543A (en) Spired metallic machine component and manufacturing method of spired metallic machine component
EA034378B1 (en) Titanium cast product for hot rolling and method for producing the same
JP5444938B2 (en) Steel for mold
JP6373303B2 (en) Repair method for continuous casting mold
JP6238114B2 (en) High speed tool steel, cutting edge material and cutting tool, and manufacturing method of cutting edge material
JP6446124B2 (en) Method for producing aluminum alloy pipe excellent in corrosion resistance and workability
EP3159097A1 (en) Device and method for manufacturing metallic objects
JP5594164B2 (en) Manufacturing method of seamless steel pipe in high alloy or stainless steel
WO2016027208A1 (en) A method of forging complex parts from continuous cast billets
Illsley et al. Small Punch Testing of Electron Beam Melted (EBM) Ti‐6Al‐4V
JP6299413B2 (en) Slab continuous casting method
Douglas et al. Failures related to hot forming processes
JP2013059775A (en) Method for producing cast product, the cast product, and casting mold
RU2020123805A (en) WELDING ELECTRODE FOR ALUMINUM OR STEEL SHEETS AND METHOD FOR MANUFACTURING ELECTRODE
KR20190042656A (en) Cold forging steel and its manufacturing method
JPS58154451A (en) Casting
US10906095B2 (en) Mould for manufacturing mould steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6827268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250