JP2017167455A - Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module - Google Patents

Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module Download PDF

Info

Publication number
JP2017167455A
JP2017167455A JP2016054824A JP2016054824A JP2017167455A JP 2017167455 A JP2017167455 A JP 2017167455A JP 2016054824 A JP2016054824 A JP 2016054824A JP 2016054824 A JP2016054824 A JP 2016054824A JP 2017167455 A JP2017167455 A JP 2017167455A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
manufacturing
alignment
alignment surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016054824A
Other languages
Japanese (ja)
Inventor
裕 川上
Yutaka Kawakami
裕 川上
大地 酒井
Daichi Sakai
大地 酒井
黒田 敏裕
Toshihiro Kuroda
敏裕 黒田
洋 別井
Takuo Betsui
洋 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016054824A priority Critical patent/JP2017167455A/en
Publication of JP2017167455A publication Critical patent/JP2017167455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide that facilitates optical axis alignment with an optical member as a separate body such as a photoelectric conversion element and an optical fiber connector and has excellent optical signal propagation efficiency, and to provide a method of manufacturing the same, a method of manufacturing an optical waveguide assembly, and a method of manufacturing an optical module.SOLUTION: A plate-shaped optical waveguide includes: a core pattern 1 for optical signal transmission; a cladding layer 2 that embeds the core pattern 1 for optical signal transmission; an optical path conversion mirror 3 that is provided on the core pattern 1 for optical signal transmission; and an inclined surface 4 between a position of which and the optical path conversion mirror 3 correlation is secured. The optical waveguide is provided in which the inclined surface 4 is an alignment surface 11 with a housing 6 on the outside. A method of manufacturing an optical waveguide assembly made by bringing at least the alignment surface 11 of the optical waveguide into alignment with the housing 6 on the outside is also provided.SELECTED DRAWING: Figure 5

Description

本発明は、光導波路、その製造方法、光導波路組立体の製造方法、及び光モジュールの製造方法に関する。   The present invention relates to an optical waveguide, a manufacturing method thereof, a manufacturing method of an optical waveguide assembly, and a manufacturing method of an optical module.

IC技術やLSI技術において、動作速度や集積度の向上のために、電気配線板における電気配線の一部を光ファイバや光導波路等の光配線に置き換え、電気信号の代わりに光信号を利用することが行われている。ボード間、及びボード内の短距離信号伝達に光信号を用いる場合、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路を用いることが望ましく、中でも加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。   In IC technology and LSI technology, in order to improve operation speed and integration, a part of the electrical wiring on the electrical wiring board is replaced with optical wiring such as an optical fiber or an optical waveguide, and an optical signal is used instead of an electrical signal. Things have been done. When optical signals are used for short-distance signal transmission between boards and within boards, it is desirable to use optical waveguides that have higher wiring flexibility and higher density than optical fibers. Optical waveguides using polymer materials with excellent properties are promising.

光導波路と光電変換素子やマザーボードと光接続を行う場合、収納サイズを小さくできるメリットがあるため、光導波路にはミラーを用いて光路変換機能を持たせる手法が多く用いられる。また、光電変換素子やマザーボードと光導波路の間で光通信を行うには、それぞれを位置精度よく配置する必要があるため、特許文献1のようにピンを用いて位置合わせする等の方法がある。   When optically connecting an optical waveguide to a photoelectric conversion element or a motherboard, there is a merit that the storage size can be reduced. Therefore, a method of providing an optical path conversion function using a mirror is often used for the optical waveguide. In addition, in order to perform optical communication between the photoelectric conversion element or the mother board and the optical waveguide, it is necessary to arrange each with high positional accuracy. Therefore, there is a method such as alignment using pins as in Patent Document 1. .

特開2013−195462号公報JP 2013-195462 A

しかしながら特許文献1のように、突き当て方式や、ガイドピン方式では外形と導波路中の光路との位置関係も精度良く形成する必要がある。   However, as in Patent Document 1, it is necessary to form the positional relationship between the outer shape and the optical path in the waveguide with high accuracy in the abutment method or the guide pin method.

本発明は、上記問題を解決するためになされたものであり、光電変換素子や光ファイバコネクタ等の別体の光学部材との光軸合わせが容易で、光信号伝播効率に優れた光導波路、その製造方法、光導波路組立体の製造方法、及び光モジュールの製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and is easy to align the optical axis with a separate optical member such as a photoelectric conversion element or an optical fiber connector, and has an excellent optical signal propagation efficiency, An object of the present invention is to provide a manufacturing method thereof, a manufacturing method of an optical waveguide assembly, and a manufacturing method of an optical module.

本発明者らは上記の課題を解決するために鋭意研究した結果、光信号伝送用コアパターンと、前記光信号伝送用コアパターンを埋設するクラッド層及び光路変換ミラーと、前記光路変換ミラーと位置の相関が確保された傾斜面とを有する板状の光導波路であって、前記傾斜面を外部の筐体との位置合わせ面Aとすることで、上記課題を解決し得ることを見出した。本発明は、かかる知見にもとづいて完成したものである。
すなわち、本発明は、以下のものに関する。
(1) 光信号伝送用コアパターンと、前記光信号伝送用コアパターンを埋設するクラッド層と、前記光信号伝送用コアパターンに設けられた光路変換ミラーと、前記光路変換ミラーと位置の相関が確保された傾斜面と、を有する板状の光導波路であって、前記傾斜面が外部の筐体との位置合わせ面Aである光導波路。
(2) 前記光路変換ミラーと前記傾斜面とが同一平面上又は平行面である(1)に記載の光導波路。
(3) 前記傾斜面と鋭角をなす前記光導波路の一方の面が、前記外部の筐体との位置合わせ面Bである(1)又は(2)に記載の光導波路。
(4) 前記傾斜面と交差し、光信号伝送用コアパターンの長手方向と平行な光導波路の2つの側面を形成する2つの面C又はDが、前記外部の筐体との位置合わせ面C又は位置合わせ面Dである(1)〜(3)のいずれか一項に記載の光導波路。
(5) (1)〜(4)のいずれか一項に記載の光導波路の製造方法であって、
ガイド用コアパターンとなる前記位置合わせ面C又は位置合わせ面Dが、前記光信号伝送用コアパターンと同時に形成される光導波路の製造方法。
(6) 前記(1)〜(4)のいずれか一項に記載の光導波路の少なくとも前記位置合わせ面Aと前記外部の筐体とが位置合わせされる光導波路組立体の製造方法。
(7) 前記位置合わせ面B、前記位置合わせ面C、及び前記位置合わせ面Dの少なくともいずれかと前記外部の筐体とが位置合わせされる(6)に記載の光導波路組立体の製造方法。
(8) 前記位置合わせ面A、前記位置合わせ面B、前記位置合わせ面C、及び前記位置合わせ面Dの少なくともいずれかと、前記外部の筐体とが接着剤を介して固定される(6)又は(7)に記載の光導波路組立体の製造方法。
(9) 前記接着剤が、光硬化性の接着剤であって、前記外部の筐体が前記接着剤を硬化せしめる活性光線に対して透過性を有する(8)に記載の光導波路組立体の製造方法。
(10) (6)〜(9)のいずれか一項に記載の光導波路組立体の製造方法によって光導波路組立体を製造した後、前記光導波路組立体の光導波路に光ファイバを光接続し、前記光ファイバに光コネクタを接続する光モジュールの製造方法。
As a result of diligent research to solve the above problems, the present inventors have found that an optical signal transmission core pattern, a cladding layer and an optical path conversion mirror in which the optical signal transmission core pattern is embedded, and the optical path conversion mirror and position It has been found that the above-mentioned problems can be solved by using the inclined optical surface as an alignment surface A with an external housing. The present invention has been completed based on such knowledge.
That is, the present invention relates to the following.
(1) An optical signal transmission core pattern, a cladding layer in which the optical signal transmission core pattern is embedded, an optical path conversion mirror provided in the optical signal transmission core pattern, and a correlation between positions of the optical path conversion mirror and An optical waveguide having a secured inclined surface, wherein the inclined surface is an alignment surface A with an external housing.
(2) The optical waveguide according to (1), wherein the optical path conversion mirror and the inclined surface are on the same plane or a parallel plane.
(3) The optical waveguide according to (1) or (2), wherein one surface of the optical waveguide that forms an acute angle with the inclined surface is an alignment surface B with the external casing.
(4) Two surfaces C or D that intersect with the inclined surface and form two side surfaces of the optical waveguide parallel to the longitudinal direction of the optical signal transmission core pattern are alignment surfaces C with the external casing. Or the optical waveguide as described in any one of (1)-(3) which is the alignment surface D.
(5) The method of manufacturing an optical waveguide according to any one of (1) to (4),
A method for manufacturing an optical waveguide, wherein the alignment surface C or the alignment surface D to be a guide core pattern is formed simultaneously with the optical signal transmission core pattern.
(6) A method of manufacturing an optical waveguide assembly in which at least the alignment surface A of the optical waveguide according to any one of (1) to (4) and the external casing are aligned.
(7) The method of manufacturing an optical waveguide assembly according to (6), wherein at least one of the alignment surface B, the alignment surface C, and the alignment surface D is aligned with the external housing.
(8) At least one of the alignment surface A, the alignment surface B, the alignment surface C, and the alignment surface D and the external housing are fixed with an adhesive (6). Or the manufacturing method of the optical waveguide assembly as described in (7).
(9) The optical waveguide assembly according to (8), wherein the adhesive is a photo-curable adhesive, and the outer casing is transmissive to actinic rays that cure the adhesive. Production method.
(10) After manufacturing the optical waveguide assembly by the method for manufacturing an optical waveguide assembly according to any one of (6) to (9), an optical fiber is optically connected to the optical waveguide of the optical waveguide assembly. The manufacturing method of the optical module which connects an optical connector to the said optical fiber.

本発明によれば、光電変換素子や光ファイバコネクタ等の別体の光学部材との光軸合わせが容易であり、従って光信号伝播効率に優れた光導波路、その製造方法、光導波路組立体の製造方法、及び光モジュールの製造方法を提供することができる。   According to the present invention, it is easy to align an optical axis with a separate optical member such as a photoelectric conversion element or an optical fiber connector, and therefore, an optical waveguide excellent in optical signal propagation efficiency, a manufacturing method thereof, and an optical waveguide assembly A manufacturing method and a manufacturing method of an optical module can be provided.

本発明の光導波路を示す上面図および側面図である。It is the top view and side view which show the optical waveguide of this invention. 本発明の光導波路を示す上面図および側面図である。It is the top view and side view which show the optical waveguide of this invention. 本発明の光導波路及び筐体からなる光導波路組立体を示す上面、側面方向からの断面図である。It is sectional drawing from the upper surface and side surface direction which shows the optical waveguide assembly which consists of the optical waveguide and housing | casing of this invention. 本発明の光導波路及び筐体からなる光導波路組立体を示す上面、側面方向からの断面図である。It is sectional drawing from the upper surface and side surface direction which shows the optical waveguide assembly which consists of the optical waveguide and housing | casing of this invention. 本発明の光導波路及び筐体からなる光導波路組立体を示す上面、側面方向からの断面図である。It is sectional drawing from the upper surface and side surface direction which shows the optical waveguide assembly which consists of the optical waveguide and housing | casing of this invention. 本発明の光導波路、筐体、光ファイバ及び光コネクタからなる光モジュールを示す側面図である。It is a side view which shows the optical module which consists of an optical waveguide of this invention, a housing | casing, an optical fiber, and an optical connector. 比較例1の光導波路及び筐体からなる光導波路組立体を示す上面、側面方向からの断面図である。It is sectional drawing from the upper surface and side surface direction which shows the optical waveguide assembly which consists of the optical waveguide of the comparative example 1, and a housing | casing.

本発明の光導波路は、図1に示すように基板5と光信号伝送用コアパターン1と、光信号伝送用コアパターン1を埋設するクラッド層2と光路変換ミラー3と、前記光路変換ミラーと位置の相関が確保された傾斜面4とを有する。以下、本発明に用いられる各部材について詳細に説明する。   As shown in FIG. 1, the optical waveguide of the present invention includes a substrate 5, an optical signal transmission core pattern 1, a clad layer 2 in which the optical signal transmission core pattern 1 is embedded, an optical path conversion mirror 3, and the optical path conversion mirror. And an inclined surface 4 in which a positional correlation is ensured. Hereinafter, each member used in the present invention will be described in detail.

[光信号伝送用コアパターン]
光信号伝送用コアパターン1としては、例えば、コア層形成用樹脂層を積層し、露光現像することで形成することができる。コア層形成用樹脂は、複数の成分を含む組成物であってもよい。
コア層形成用樹脂は、クラッド層2より高屈折率であり、活性光線によりパターン化し得るものを用いることが好ましい。パターン化する前のコア層形成用樹脂層の形成方法は限定されず、例えば、コア層形成用樹脂を溶媒に溶解して塗布するなどして積層してもよく、事前に用意したコア層形成用樹脂フィルムをラミネートしてもよい。
[Core pattern for optical signal transmission]
The optical signal transmission core pattern 1 can be formed, for example, by laminating a resin layer for forming a core layer, and exposing and developing. The core layer forming resin may be a composition containing a plurality of components.
The core layer forming resin preferably has a refractive index higher than that of the clad layer 2 and can be patterned by actinic rays. The method for forming the core layer forming resin layer before patterning is not limited. For example, the core layer forming resin may be laminated by dissolving the resin for forming the core layer in a solvent. A resin film may be laminated.

コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さが、通常は10〜100μmとなるように調整される。該フィルムの仕上がり後のコア層の厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜90μmの範囲であることが好ましく、該厚みを得るために適宜フィルム厚みを調整すればよい。   The thickness of the resin film for forming the core layer is not particularly limited, and the thickness of the core layer after drying is usually adjusted to be 10 to 100 μm. When the thickness of the core layer after finishing the film is 10 μm or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the formation of the optical waveguide, and when it is 100 μm or less, There is an advantage that the coupling efficiency is improved in coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. From the above viewpoint, the thickness of the film is preferably in the range of 30 to 90 μm, and the film thickness may be appropriately adjusted in order to obtain the thickness.

コア層形成用樹脂としては、用いる光信号に対して透明であり、活性光線によりパターンを形成し得るものを用いることが好ましい。   As the core layer forming resin, it is preferable to use a resin that is transparent to an optical signal to be used and can form a pattern with actinic rays.

[クラッド層]
本発明におけるクラッド層2は、例えば、クラッド層形成用樹脂層を積層し、露光、現像することで形成することができる。クラッド層形成用樹脂は、複数の成分を含む組成物であってもよい。
本発明で用いるクラッド層形成用樹脂としては、光信号伝送用コアパターン1より低屈折率で、光又は熱により硬化する樹脂であれば特に限定されず、熱硬化性樹脂や感光性樹脂を好適に使用することができる。クラッド層は、通常下部クラッド層と上部クラッド層に分かれて形成されるが、それらのクラッド層形成用樹脂は、クラッド層2において、該樹脂が含有する成分が同一であっても異なっていてもよく、該樹脂の屈折率が同一であっても異なっていてもよい。
[Clad layer]
The clad layer 2 in the present invention can be formed, for example, by laminating a resin layer for forming a clad layer, and exposing and developing. The clad layer forming resin may be a composition containing a plurality of components.
The clad layer forming resin used in the present invention is not particularly limited as long as it is a resin that has a lower refractive index than the optical signal transmission core pattern 1 and is cured by light or heat, and a thermosetting resin or a photosensitive resin is preferable. Can be used for The clad layer is usually formed by being divided into a lower clad layer and an upper clad layer, and these clad layer forming resins may be the same or different in the clad layer 2 containing the same resin. The refractive index of the resin may be the same or different.

クラッド層形成用樹脂層を積層する方法は特に限定されず、例えば、クラッド層形成用樹脂を溶媒に溶解して塗布するなどして積層してもよく、事前に用意したクラッド層形成用樹脂フィルムをラミネートしてもよい。
塗布による場合には、その方法は限定されず、クラッド層形成用樹脂を常法により塗布すれば良い。
また、ラミネートに用いるクラッド層形成用樹脂フィルムは、例えば、クラッド層形成用樹脂を溶媒に溶解して、支持フィルム(キャリアフィルム)に塗布し、溶媒を除去することにより容易に製造することができる。
The method for laminating the clad layer forming resin layer is not particularly limited. For example, the clad layer forming resin film may be laminated by dissolving the clad layer forming resin in a solvent. May be laminated.
In the case of application, the method is not limited, and the clad layer forming resin may be applied by a conventional method.
The clad layer-forming resin film used for laminating can be easily manufactured by, for example, dissolving the clad layer-forming resin in a solvent, applying it to a support film (carrier film), and removing the solvent. .

クラッド層2の厚さに関しては、特に限定するものではないが、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、クラッド層2の厚さは、15〜200μmがより好ましく、10〜100μmの範囲であることが更に好ましい。   The thickness of the cladding layer 2 is not particularly limited, but the thickness after drying is preferably in the range of 5 to 500 μm. When the thickness is 5 μm or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 μm or less, it is easy to control the film thickness uniformly. From the above viewpoint, the thickness of the clad layer 2 is more preferably 15 to 200 μm, and still more preferably 10 to 100 μm.

[光路変換ミラー]
光路変換ミラー3は、基板平面に対して平行方向に延在する光信号伝送用コアパターン1を伝搬した光信号を基板5やクラッド層2に略垂直な方向に光路変換する構造であれば特に限定はなく、コアパターン1に45°の切り欠きを設けて形成した空気反射ミラーであっても良いし、切り欠き部に反射金属層を形成した金属反射ミラーであっても良い。
光路変換ミラー3は、ダイシングソー等を用いて光信号伝送用コアパターン1に切り欠きを設けて形成したり、クラッド層2を形成後ダイシングソー等を用いて、光信号伝送用コアパターン1に切り欠きを設けて形成したり、フォトリソプロセスを用いて傾斜状のパターンを形成することができる。切り欠きは、下部クラッド層又は基板に達するよう設けてもよい。
[Optical path conversion mirror]
The optical path conversion mirror 3 has a structure that optically converts an optical signal propagated through the optical signal transmission core pattern 1 extending in a direction parallel to the substrate plane in a direction substantially perpendicular to the substrate 5 and the cladding layer 2. There is no limitation, and an air reflection mirror formed by providing a 45 ° cutout in the core pattern 1 or a metal reflection mirror in which a reflective metal layer is formed in the cutout portion may be used.
The optical path conversion mirror 3 is formed by forming a notch in the optical signal transmission core pattern 1 using a dicing saw or the like, or after forming the cladding layer 2 on the optical signal transmission core pattern 1 using a dicing saw or the like. It can be formed by providing a notch, or an inclined pattern can be formed by using a photolithography process. The cutout may be provided so as to reach the lower cladding layer or the substrate.

[傾斜面]
傾斜面4は、光路変換ミラー3と位置の相関が確保されていれば良く、光路変換ミラーと傾斜面とが同一平面上又は平行面であると好ましい。ダイシングソー等を用いて形成する際に切断する位置を一定量移動して形成する方法や、フォトリソプロセスを用いて形成する際に同一マスクを用いて形成する方法がある。
傾斜面4は、光路変換ミラー3を形成する工程で光路変換ミラー3と同一面上に形成すると、加工機の繰り返し精度の影響を省けるため望ましく、また、傾斜面4と光路変換ミラー3との距離が近い方が構造体のゆがみ等の影響を受けにくいためより望ましい。
[Inclined surface]
The inclined surface 4 is only required to have a positional correlation with the optical path conversion mirror 3, and the optical path conversion mirror and the inclined surface are preferably on the same plane or a parallel plane. There are a method in which a position to be cut when moving using a dicing saw or the like is moved by a certain amount, and a method in which the same mask is used when forming using a photolithography process.
If the inclined surface 4 is formed on the same surface as the optical path conversion mirror 3 in the step of forming the optical path conversion mirror 3, it is desirable to eliminate the influence of the repeatability of the processing machine. In addition, the inclined surface 4 and the optical path conversion mirror 3 A shorter distance is more preferable because it is less susceptible to distortion of the structure.

[位置合わせ面A]
本発明では、位置合わせ面A11が、傾斜面4の全て又は一部で形成されている。
位置合わせ面A11は、外部筐体と接触し、光導波路と外部筐体との位置関係を一定に保つ形状であれば特に限定はなく、コアパターン、クラッド層、基板に0°を超え90°未満、好ましくは30°〜60°の傾斜面となる切り欠きを設けて形成した平面であっても良いし、傾斜面を基本とし、これに基板と筐体が勘合される様に、矩形状の凹凸や、V溝と突起形状であってもよい。位置合わせ面A11は、傾斜面4に準じて作製することができる。
図1には、光導波路に傾斜面4を設け、これを位置合わせ面A11とし、更に基板5の先端を傾斜面Aより長くして、傾斜面4を保護している。図3に位置合わせ面Aと外部の筐体とが位置合わせ面Aと面して位置合わせされた光導波路組立体を示した。
図3で紙面の上方に示した図が光導波路組立体の側面方向からの断面図で、紙面の下方に示した図が上面方向からの断面図である。
[Alignment surface A]
In the present invention, the alignment surface A <b> 11 is formed by all or part of the inclined surface 4.
The alignment surface A11 is not particularly limited as long as the alignment surface A11 is in a shape that contacts the outer casing and keeps the positional relationship between the optical waveguide and the outer casing constant, and the core pattern, the clad layer, and the substrate exceed 0 ° and 90 °. It may be a flat surface formed by providing a notch that is an inclined surface of less than, preferably 30 ° to 60 °, or a rectangular shape so that the substrate and the housing are fitted to the inclined surface. Or a V-groove and a protrusion shape. The alignment surface A11 can be produced according to the inclined surface 4.
In FIG. 1, an inclined surface 4 is provided on the optical waveguide, which is used as an alignment surface A <b> 11, and the tip of the substrate 5 is made longer than the inclined surface A to protect the inclined surface 4. FIG. 3 shows an optical waveguide assembly in which the alignment surface A and an external housing are aligned to face the alignment surface A.
3 is a cross-sectional view from the side surface direction of the optical waveguide assembly, and a view shown below the paper surface is a cross-sectional view from the top surface direction.

[位置合わせ面B]
位置合わせ面B12は、傾斜面4と鋭角をなす光導波路の一方の面で、外部筐体と接触し、光導波路と外部筐体との位置関係を一定に保つ形状であれば特に限定はない。光導波路が基板5の上に形成されている場合、光導波路の一方の面は、板状の基板5の下面(基板に対し光導波路が形成されている面の反対側の面)となり、光導波路が基板の上に形成されていない場合、光導波路の一方の面は、クラッド層2又はコアパターン1の底面となる。位置合わせ面B12は、傾斜面4を形成する際の基準面となっていると、傾斜面4との角度の相関関係を高く保つことが可能なため望ましい。
位置合わせ面Bは、位置合わせ面Aと共に2面で筐体に接するので位置合わせと固定が、より確実となる。
図4は、位置合わせ面Bと位置合わせ面Aとで、筐体に光導波路を位置合わせし、固定した場合を示した。筐体と光導波路の2面(位置合わせ面A及びB)で接するので、図3のように上下にスライドし、ぶれることが抑制されるので設計した位置合せとなり、確実に固定される。
[Alignment surface B]
The alignment surface B12 is not particularly limited as long as the alignment surface B12 is one surface of the optical waveguide that forms an acute angle with the inclined surface 4 and is in contact with the external housing and maintains the positional relationship between the optical waveguide and the external housing constant. . When the optical waveguide is formed on the substrate 5, one surface of the optical waveguide is the lower surface of the plate-like substrate 5 (surface opposite to the surface where the optical waveguide is formed with respect to the substrate). When the waveguide is not formed on the substrate, one surface of the optical waveguide is the bottom surface of the cladding layer 2 or the core pattern 1. The alignment surface B12 is desirably a reference surface when the inclined surface 4 is formed because the correlation of the angle with the inclined surface 4 can be kept high.
Since the alignment surface B is in contact with the housing on two surfaces together with the alignment surface A, alignment and fixation are more reliable.
FIG. 4 shows a case where the optical waveguide is aligned and fixed to the housing by the alignment surface B and the alignment surface A. Since the housing and the two surfaces (positioning surfaces A and B) of the optical waveguide are in contact with each other, they slide up and down as shown in FIG.

[位置合わせ面C、位置合わせ面D]
位置合わせ面C13、D14は、位置合わせ面A11と位置合わせ面B12と鋭角をなす光導波路の一方の面で、外部筐体と接触し、光導波路と外部筐体との位置関係を一定に保つ形状であれば特に限定はない。位置合わせ面C13、D14は、傾斜面と交差し、光信号伝送用コアパターンの長手方向と平行な光導波路の2つの側面である。
光導波路を立方体とみたてた場合、その立方体の6面を前面、後面、上面、下面、右側面、左側面と呼び、前面に傾斜面があり、上面に光路変換ミラー、下面に基板又はクラッド層がある場合、右側面又は左側面が、位置合わせ面C13、又は位置合わせ面D14となる。図1では、右側面を位置合わせ面D14、左側面を位置合わせ面C13としている。位置合わせ面C13、D14は、位置合わせ面A及び位置合わせ面Bと垂直面を形成する。
位置合わせ面C13、D14は、基板5やクラッド層2、コアパターン1を加工することで形成できる。位置合わせ面の形状は、筐体と嵌合し、位置合わせと固定が行われる形状であるとよい。
位置合わせ面C13、D14は、コアパターン1を加工する際に同時に形成すると、コアパターン1との位置関係を精度良く形成することができ、即ち筐体とコアパターン及びミラーとの位置関係が正確になるため望ましい。
位置合わせ面C13、D14は、光導波路の位置合わせ面Aと共に、又は位置合わせ面Aと位置合わせ面Bと共に2面、3面又は4面のいずれかと外部の筐体と位置合わせされ、固定されるので、それらがより確実となる。
図2に、位置合わせ面C13、D14が、ガイド用コアパターンである例を示した。後述の実施例で説明するが、光信号伝送用コアパターンを作製するときに、光導波路の側面となる部分のコア層形成用樹脂を残しガイド用コアパターンとし、基板の幅より幅広に形成して、これを位置合わせ面C13、D14とする。これにより凸状の位置合わせ面C13、D14と嵌合する形状を有する筐体と確実に固定され、位置が合わされる。
図2には、下部クラッド層を幅狭に形成し、基板が露出するように形成してあり、これと嵌合する筐体とすることで位置合わせと固定が確実となる。
[Alignment surface C, alignment surface D]
The alignment surfaces C13 and D14 are one surface of the optical waveguide that forms an acute angle with the alignment surface A11 and the alignment surface B12, and are in contact with the external housing to keep the positional relationship between the optical waveguide and the external housing constant. If it is a shape, there will be no limitation in particular. The alignment surfaces C13 and D14 are two side surfaces of the optical waveguide that intersect the inclined surface and are parallel to the longitudinal direction of the optical signal transmission core pattern.
When the optical waveguide is viewed as a cube, the six faces of the cube are called the front, back, top, bottom, right side, and left side, and there are inclined surfaces on the front, an optical path conversion mirror on the top, and a substrate or cladding on the bottom When there is a layer, the right side surface or the left side surface becomes the alignment surface C13 or the alignment surface D14. In FIG. 1, the right side surface is defined as an alignment surface D14, and the left side surface is defined as an alignment surface C13. The alignment surfaces C13 and D14 form a vertical surface with the alignment surface A and the alignment surface B.
The alignment surfaces C13 and D14 can be formed by processing the substrate 5, the cladding layer 2, and the core pattern 1. The shape of the alignment surface may be a shape that fits with the housing and is aligned and fixed.
If the alignment surfaces C13 and D14 are formed simultaneously when the core pattern 1 is processed, the positional relationship with the core pattern 1 can be formed with high accuracy, that is, the positional relationship between the housing, the core pattern, and the mirror is accurate. This is desirable.
The alignment surfaces C13 and D14 are aligned and fixed to the external housing together with the alignment surface A of the optical waveguide, or the alignment surface A and the alignment surface B, and two, three, or four surfaces. So they are more certain.
FIG. 2 shows an example in which the alignment surfaces C13 and D14 are guide core patterns. As will be described in the examples described later, when the optical signal transmission core pattern is manufactured, the core layer forming resin is left in the portion that becomes the side surface of the optical waveguide to form a guide core pattern that is wider than the width of the substrate. These are referred to as alignment surfaces C13 and D14. Thereby, it fixes to the housing | casing which has a shape fitted with the convex alignment surfaces C13 and D14, and a position is match | combined.
In FIG. 2, the lower clad layer is formed so as to have a narrow width so that the substrate is exposed. By using a casing that fits the lower clad layer, alignment and fixation are ensured.

[基板]
本発明の光導波路には基板5を用いると好ましく、用い得る基板5の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルム、電気配線板等が挙げられる。
基板5の厚みは、5μm〜1mmであることが好ましく、10μm〜100μmであることがより好ましい。基板5の厚みが5μm以上であると、基板5の剛性の点で好ましく、1mm以下であると、光路変換ミラー3にて反射された光信号が広がる前に受光素子や光ファイバ等で受光できるため好ましい。
[substrate]
The substrate 5 is preferably used for the optical waveguide of the present invention, and the material of the substrate 5 that can be used is not particularly limited. For example, a glass epoxy resin substrate, a ceramic substrate, a glass substrate, a silicon substrate, a plastic substrate, a metal substrate, Examples include a substrate with a resin layer, a substrate with a metal layer, a plastic film, a plastic film with a resin layer, a plastic film with a metal layer, and an electric wiring board.
The thickness of the substrate 5 is preferably 5 μm to 1 mm, and more preferably 10 μm to 100 μm. If the thickness of the substrate 5 is 5 μm or more, it is preferable from the viewpoint of the rigidity of the substrate 5, and if it is 1 mm or less, the light signal reflected by the optical path conversion mirror 3 can be received by a light receiving element or an optical fiber before spreading. Therefore, it is preferable.

[筐体]
筐体6は光導波路を保持することができればよい。筐体6には、光導波路と光接続する光ファイバを固定するための穴や溝、光電変換素子との位置合わせのためのピン穴が形成されていれば、光ファイバ及び光電変換素子との組み立てを簡便に行うことができるため望ましい。接着剤を用いて光導波路や光ファイバを固定する場合、接着剤を外側から流し込むための穴、溝が形成されていると、より確実に接着できるため望ましい。
筐体6を形成する材料としては樹脂、金属、セラミックス等を用いることができる。光硬化性の接着剤を用いて光導波路や光ファイバを固定する場合、接着のための活性光線を透過する材質を用いることで、より強固に接着できるため望ましい。筐体6は成型、削り出し等の方法で形成することができる。
筐体6には、図5に示すように、筐体に光導波路を差し込み、位置合わせ面Aで光導波路と筐体を面合わせした際に、光導波路が筐体に嵌まり込み、後戻りしないように突起部を設けると好ましい。これにより光導波路と筐体が、より確実に固定される。
[Case]
The housing 6 only needs to hold the optical waveguide. If a hole or groove for fixing the optical fiber optically connected to the optical waveguide or a pin hole for alignment with the photoelectric conversion element is formed in the housing 6, the optical fiber and the photoelectric conversion element This is desirable because it can be easily assembled. In the case of fixing an optical waveguide or an optical fiber using an adhesive, it is desirable that a hole or a groove for pouring the adhesive from the outside is formed because the adhesive can be more reliably bonded.
As a material for forming the housing 6, resin, metal, ceramics, or the like can be used. In the case of fixing an optical waveguide or an optical fiber using a photo-curable adhesive, it is preferable to use a material that transmits an actinic ray for adhesion because the material can be bonded more firmly. The housing 6 can be formed by a method such as molding or shaving.
As shown in FIG. 5, when the optical waveguide is inserted into the casing 6 and the optical waveguide and the casing are aligned on the alignment surface A, the optical waveguide fits into the casing and does not return. Thus, it is preferable to provide a protrusion. As a result, the optical waveguide and the housing are more reliably fixed.

[光モジュール]
本発明の光モジュールは、光導波路を筐体に固定した光導波路組立体と、この光導波路組立体の光導波路に光接続された光ファイバと、この光ファイバに接続された光コネクタからなる。
図6に、光モジュールの断面図を示した。光導波路と筐体からなる光導波路組立体の光導波路の光信号伝送用コアパターンに光ファイバ21が光学的に接続され、更に、光ファイバ21の他端に光コネクタ22が光学的に接続される。
このような光モジュールとすることで、光電変換素子や光ファイバコネクタ等の別体の光学部材との光軸合わせが容易となり光信号伝播効率に優れる。
[Optical module]
The optical module of the present invention comprises an optical waveguide assembly in which an optical waveguide is fixed to a housing, an optical fiber optically connected to the optical waveguide of the optical waveguide assembly, and an optical connector connected to the optical fiber.
FIG. 6 shows a cross-sectional view of the optical module. The optical fiber 21 is optically connected to the optical signal transmission core pattern of the optical waveguide of the optical waveguide assembly including the optical waveguide and the housing, and the optical connector 22 is optically connected to the other end of the optical fiber 21. The
By setting it as such an optical module, optical axis alignment with separate optical members, such as a photoelectric conversion element and an optical fiber connector, becomes easy, and it is excellent in optical signal propagation efficiency.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
<クラッド層形成用樹脂フィルムの作製>
[(A)(メタ)アクリルポリマー(ベースポリマー)の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2´−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(A)(メタ)アクリルポリマーの溶液(固形分45質量%)を得た。
Example 1
<Preparation of a resin film for forming a cladding layer>
[Production of (A) (meth) acrylic polymer (base polymer)]
46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate were weighed in a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel, and a thermometer, and stirred while introducing nitrogen gas. . The liquid temperature was raised to 65 ° C., 47 parts by mass of methyl methacrylate, 33 parts by mass of butyl acrylate, 16 parts by mass of 2-hydroxyethyl methacrylate, 14 parts by mass of methacrylic acid, 2,2′-azobis (2,4-dimethylvaleronitrile ) A mixture of 3 parts by mass, 46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate was added dropwise over 3 hours, followed by stirring at 65 ° C. for 3 hours, and further stirring at 95 ° C. for 1 hour. A) A (meth) acrylic polymer solution (solid content: 45% by mass) was obtained.

[クラッド層形成用樹脂ワニスの調合]
ベースポリマーとして、前記(A)(メタ)アクリルポリマー溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業株式会社製「U−200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業株式会社製「UA−4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン株式会社製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(BASF社製「イルガキュア2959」)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASF社製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(東洋濾紙株式会社製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスを得た。
[Preparation of resin varnish for forming clad layer]
As a base polymer, 84 parts by mass (solid content 38 parts by mass) of the (A) (meth) acrylic polymer solution (solid content 45% by mass), (B) urethane (meth) acrylate having a polyester skeleton as a photocuring component ( Shin-Nakamura Chemical Co., Ltd. “U-200AX”) 33 parts by mass, urethane (meth) acrylate having a polypropylene glycol skeleton (Shin-Nakamura Chemical Co., Ltd. “UA-4200”) 15 parts by mass, (C) heat As a curing component, 20 parts by mass of a polyfunctional block isocyanate solution (solid content: 75% by mass) obtained by protecting an isocyanurate type trimer of hexamethylene diisocyanate with methyl ethyl ketone oxime (“Sumijour BL3175” manufactured by Sumika Bayer Urethane Co., Ltd.) 15 parts by mass of solid content), (D) as photopolymerization initiator, 1- 4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one ("IRGACURE 2959" manufactured by BASF) 1 part by mass, bis (2,4,6-trimethylbenzoyl) 1 part by mass of phenylphosphine oxide (“Irgacure 819” manufactured by BASF) and 23 parts by mass of propylene glycol monomethyl ether acetate as an organic solvent for dilution were mixed with stirring. After pressure filtration using a polyflon filter having a pore size of 2 μm (“PF020” manufactured by Toyo Roshi Kaisha, Ltd.), degassing was performed under reduced pressure to obtain a resin varnish for forming a cladding layer.

[クラッド層形成用樹脂フィルムの作製]
上記で得られたクラッド層形成用樹脂ワニスを、支持フィルムであるPETフィルム(東洋紡株式会社製「コスモシャインA4100」、厚み50μm)の非処理面上に、塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムを得た。
このとき、クラッド層形成用樹脂ワニスより形成される樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、その膜厚については後述する。
[Preparation of resin film for forming clad layer]
The resin varnish for forming a clad layer obtained above is coated on a non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 μm) as a support film. Applying using Hirano Tech Seed Co., Ltd., drying at 100 ° C. for 20 minutes, and then applying a surface release treatment PET film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 μm) as a protective film to form a cladding layer A resin film was obtained.
At this time, the thickness of the resin layer formed from the clad layer forming resin varnish can be arbitrarily adjusted by adjusting the gap of the coating machine, and the film thickness will be described later.

<コア層形成用樹脂フィルムの作製>
(A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、新日鐵住金化学株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、BASF社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、BASF社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上述のクラッド層形成用樹脂ワニスの調合と同様の方法及び条件でコア層形成用樹脂ワニスを調合した。その後、上記と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスを、支持フィルムであるPETフィルム(商品名:コスモシャインA1517、東洋紡株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。
このとき、コア層形成用樹脂ワニスより形成される樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、その膜厚については後述する。
<Preparation of core layer forming resin film>
(A) As a base polymer, 26 parts by mass of a phenoxy resin (trade name: Phenotote YP-70, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and (B) 9,9-bis [4- ( 2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, manufactured by Shin-Nakamura Chemical Co., Ltd.) and 36 parts by mass of bisphenol A type epoxy acrylate (trade name: EA-1020, manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 36 parts by mass, (C) as a photopolymerization initiator, 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by BASF), and 1- [4- (2-Hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name: Irgacure 2959, ASF varnish is prepared in the same manner and under the same conditions as the above clad layer forming resin varnish except that 1 part by weight and 40 parts by weight of propylene glycol monomethyl ether acetate are used as the organic solvent. did. Thereafter, pressure filtration and degassing under reduced pressure were performed in the same manner and conditions as described above.
The core layer-forming resin varnish obtained above is the same as in the above production example on the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) as a support film. After coating and drying by the method, a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is pasted as a protective film so that the release surface is on the resin side, forming a core layer A resin film was obtained.
At this time, the thickness of the resin layer formed from the core layer forming resin varnish can be arbitrarily adjusted by adjusting the gap of the coating machine, and the film thickness will be described later.

<光導波路の作製>
[下部クラッド層の形成]
基板5として縦150mm、横150mmのポリイミドフィルム(ポリイミド;ユーピレックスRN(宇部興産株式会社製)、厚み;25μm)を用い、その一方の面上に、上記で得られた45μm厚みのクラッド層形成用樹脂フィルムの保護フィルムを剥離した後に、真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。続いて、紫外線露光機(株式会社オーク製作所製、EXM−1172)を用いて、クラッド層形成用樹脂フィルムの支持フィルム側から紫外線(波長365nm)を3.0J/cmで照射し、支持フィルムを剥離後、170℃で1時間加熱乾燥及び硬化し、下部クラッド層2を形成した。
<Fabrication of optical waveguide>
[Formation of lower cladding layer]
A polyimide film (polyimide; Upilex RN (manufactured by Ube Industries, Ltd.), thickness: 25 μm) having a length of 150 mm and a width of 150 mm is used as the substrate 5, and the above-obtained 45 μm-thick cladding layer is formed on one surface thereof. After the protective film of the resin film is peeled off, a vacuum pressure laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) is used to vacuum the pressure to 500 Pa or less, and the pressure is 0.4 MPa, the temperature is 110 ° C., and the pressurization time is 30. Lamination was performed by thermocompression bonding under the conditions of seconds. Subsequently, using a UV exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), UV light (wavelength 365 nm) was irradiated at 3.0 J / cm 2 from the support film side of the resin film for forming the clad layer, and the support film. After peeling off, the film was dried and cured at 170 ° C. for 1 hour to form the lower cladding layer 2.

[光信号伝送用コアパターン及びガイド用コアパターンの形成]
次いで、上記で形成したクラッド層2(下部)上に、上記で得られた50μm厚みのコア層形成用樹脂フィルムを、保護フィルムを剥離した後に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件でラミネートし、次いで上記の真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着した。
[Formation of optical signal transmission core pattern and guide core pattern]
Next, on the clad layer 2 (lower part) formed above, after the protective film is peeled off the 50 μm-thick core layer-forming resin film obtained above, a roll laminator (HLM manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM) -1500) under the conditions of a pressure of 0.4 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min, and then using the above-described vacuum pressure laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.), 500 Pa After vacuuming below, thermocompression bonding was performed under conditions of a pressure of 0.4 MPa, a temperature of 70 ° C., and a pressurization time of 30 seconds.

続いて、光信号伝送用コアパターン1とガイド用コアパターンを形成するネガ型フォトマスクと、上記紫外線露光機とを用いて、支持フィルム側から紫外線(波長365nm)を0.8J/cmで照射し、次いで80℃で5分間露光後加熱を行った。光信号伝送用コアパターン1は光導波路の中央部に延在する2つのコアを有するものとし、ガイド用コアパターンは光導波路の両縁部に直線状のコアパターンを有するものとした(図2参照)。
その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いてエッチングした。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、光信号伝送用コアパターン1及びガイド用コアパターンを形成した。
Subsequently, by using the negative photomask for forming the optical signal transmission core pattern 1 and the guide core pattern, and the ultraviolet exposure machine, ultraviolet rays (wavelength 365 nm) are emitted from the support film side at 0.8 J / cm 2 . Irradiation was followed by post-exposure heating at 80 ° C. for 5 minutes. The optical signal transmission core pattern 1 has two cores extending in the center of the optical waveguide, and the guide core pattern has linear core patterns on both edges of the optical waveguide (FIG. 2). reference).
Thereafter, the PET film as the support film was peeled off and etched using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s), and formed the optical signal transmission core pattern 1 and the guide core pattern.

[クラッド層(上部)の形成]
得られたコアパターン上から、上記で得られた55μm厚みのクラッド層形成用樹脂フィルムを、保護フィルムを剥離した後に、真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。続いて、ガイド用コアパターンの一部を露出するため開口部を有するネガ型フォトマスクと、上記紫外線露光機を用いて、クラッド層形成用樹脂フィルムの支持フィルム側から紫外線(波長365nm)を3.0J/cmで照射し、支持フィルムを剥離後、80℃で5分間露光後加熱を行い、現像、洗浄を行ってガイド用コアパターンの一部が露出したクラッド層2(上部)を形成した(図2参照)。
[Clad layer (top) formation]
From the obtained core pattern, after removing the protective film from the 55 μm-thick clad layer forming resin film obtained above, a vacuum pressure laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) was used. After vacuuming to 500 Pa or less, lamination was performed by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 110 ° C., and a pressurization time of 30 seconds. Subsequently, using a negative photomask having an opening to expose a part of the guide core pattern and the ultraviolet exposure machine, ultraviolet light (wavelength 365 nm) is emitted from the support film side of the resin film for forming the cladding layer. Irradiate at 0.0 J / cm 2 , peel off the support film, perform post-exposure heating at 80 ° C. for 5 minutes, develop, and wash to form the cladding layer 2 (upper part) where a part of the guide core pattern is exposed (See FIG. 2).

[光路変換ミラーの形成]
得られた光導波路のクラッド層2(上部)側からダイシングソー(DAC552、株式会社ディスコ製)を用いて45°の光路変換ミラー3と位置合わせ面Aをそれぞれ形成した。
[Formation of optical path conversion mirror]
Using the dicing saw (DAC552, manufactured by DISCO Corporation) from the clad layer 2 (upper) side of the obtained optical waveguide, the 45 ° optical path conversion mirror 3 and the alignment surface A were formed.

[導波路外形の形成]
得られた光導波路の周囲をダイシングソー(DAC552、株式会社ディスコ製、90°ブレード)を用いて切断し、導波路の外形を形成した。その際、図2に示すように外形2辺はガイド用コアパターンが導波路外形をなすよう、基材及び下部クラッドをハーフカットした。
これにより、位置合わせ面Aを有するミラー付き光導波路を得た。
[Formation of waveguide outline]
The periphery of the obtained optical waveguide was cut using a dicing saw (DAC552, manufactured by DISCO Corporation, 90 ° blade) to form the outer shape of the waveguide. At that time, as shown in FIG. 2, the base material and the lower clad were half-cut so that the guide core pattern had a waveguide outer shape on the two outer sides.
Thereby, the optical waveguide with a mirror which has the alignment surface A was obtained.

[筐体との位置精度測定(X及びY方向)]
作製した光導波路基板を、射出成型で作製した筐体に嵌め合わせ、成型にて筐体に形成した穴と、ミラーから射出される光線の位置関係を測定した。具体的には、外形切断によって露出したコア端部からハロゲンランプ光を水平照射し、ミラーを介して垂直方向に光路変換した光束中心と筐体に空けた穴中心の位置関係を、半導体検査顕微鏡(MX61L、オリンパス株式会社製)を用いて撮像し、画像解析ソフト(NIS Elements、画像統合ソフトウェア、株式会社ニコン製)を用いて測定した。コア幅方向をX方向、コア進行方向をY方向と定義した。
下記の表1に示すように得られた測定平均値と設計値の差はX方向で0.6μm、Y方向で1.1μmだった。得られた測定値の標準偏差はX方向0.79μm、Y方向0.93μmだった。
[Position accuracy measurement with case (X and Y direction)]
The produced optical waveguide substrate was fitted into a case produced by injection molding, and the positional relationship between the hole formed in the case by molding and the light beam emitted from the mirror was measured. Specifically, the positional relationship between the center of the light beam that was irradiated with halogen lamp light horizontally from the edge of the core exposed by cutting the outer shape and changed the optical path in the vertical direction via a mirror, and the center of the hole in the housing was measured. (MX61L, manufactured by Olympus Corporation) was used for imaging, and measurement was performed using image analysis software (NIS Elements, image integration software, manufactured by Nikon Corporation). The core width direction was defined as the X direction, and the core traveling direction was defined as the Y direction.
The difference between the measured average value and the design value obtained as shown in Table 1 below was 0.6 μm in the X direction and 1.1 μm in the Y direction. The standard deviation of the measured values was 0.79 μm in the X direction and 0.93 μm in the Y direction.

[筐体との位置精度測定(Z方向)]
作製した光導波路基板を、射出成型で作製した筐体に嵌め合わせ、筐体外形端と、コアから射出される光線の位置関係を測定した。具体的には、光路変換ミラーへハロゲンランプ光を垂直照射し、コアを介して外形切断によって露出したコア端部から出射された光束中心と筐体底辺との距離を、半導体検査顕微鏡(MX61L、オリンパス株式会社製)を用いて撮像し、画像解析ソフト(NIS Elements、株式会社ニコン製)を用いて測定した。この距離はX方向、Y方向に垂直な方向成分とし、Z方向と定義した。
得られた測定平均値と設計値の差は−0.5μmだった。得られた測定値の標準偏差は1.00μmだった。
[Position accuracy measurement with case (Z direction)]
The produced optical waveguide substrate was fitted into a case produced by injection molding, and the positional relationship between the outer edge of the case and the light beam emitted from the core was measured. Specifically, a halogen lamp light is vertically irradiated onto the optical path conversion mirror, and the distance between the center of the light beam emitted from the end of the core exposed by cutting the outer shape through the core and the bottom of the housing is measured with a semiconductor inspection microscope (MX61L, The image was taken using Olympus Corporation, and measured using image analysis software (NIS Elements, Nikon Corporation). This distance is defined as the Z direction, which is a direction component perpendicular to the X direction and the Y direction.
The difference between the measured average value and the design value was −0.5 μm. The standard deviation of the obtained measured value was 1.00 μm.

(実施例2)
実施例1に加え、導波路と筐体の間に紫外線熱硬化接着剤を滴下し、紫外線を1J/cm照射した後、熱風乾燥炉を用いて100℃、1時間の熱硬化を行い導波路と筐体を固定した。実施例1と同様に筐体との位置精度(X、Y方向及びZ方向)を測定したところ、得られた測定平均値と設計値の差はX方向で1.4μm、Y方向で0.8μm、Z方向で−1.4μmだった。得られた測定値の標準偏差はX方向1.09μm、Y方向0.92μm、Z方向1.06μmで、実施例1と同等だった。
(Example 2)
In addition to Example 1, an ultraviolet thermosetting adhesive was dropped between the waveguide and the case, and after irradiation with 1 J / cm 2 of ultraviolet rays, heat curing was performed at 100 ° C. for 1 hour using a hot air drying furnace. The waveguide and the case were fixed. When the positional accuracy (X, Y direction and Z direction) with respect to the housing was measured in the same manner as in Example 1, the difference between the obtained measurement average value and the design value was 1.4 μm in the X direction, and 0. It was 8 μm and −1.4 μm in the Z direction. The standard deviations of the measured values were 1.09 μm in the X direction, 0.92 μm in the Y direction, and 1.06 μm in the Z direction, which were the same as in Example 1.

(実施例3)
実施例1の光導波路の外形を切断する際に、ガイド用コアを露出させず、ダイシングブレードで外形を形成した以外は同様の方法で光導波路を作製した(図1参照)。
実施例1と同様に筐体との位置精度(X、Y方向及びZ方向)を測定したところ、得られた測定平均値と設計値の差はX方向で−4.4μm、Y方向で1.0μm、Z方向で−0.5μmだった。得られた測定値の標準偏差はX方向6.28μm、Y方向1.00μm、Z方向0.99μmで、実施例1と比べX方向のばらつきが大きくなった。
(Example 3)
When the outer shape of the optical waveguide of Example 1 was cut, an optical waveguide was produced in the same manner except that the guide core was not exposed and the outer shape was formed with a dicing blade (see FIG. 1).
When the positional accuracy (X, Y direction and Z direction) with respect to the housing was measured in the same manner as in Example 1, the difference between the obtained measurement average value and the design value was −4.4 μm in the X direction and 1 in the Y direction. 0.0 μm and −0.5 μm in the Z direction. The standard deviations of the measured values were 6.28 μm in the X direction, 1.00 μm in the Y direction, and 0.99 μm in the Z direction, and the variation in the X direction was larger than that in Example 1.

(比較例1)
実施例3において、光導波路の外形を切断する際に、位置合わせ面Aをダイシングブレードで切断し、ブレード切断面が位置合わせ面Aとなるよう外形を形成した以外は同様の方法で光導波路を作製した(図7参照)。
実施例1と同様に筐体との位置精度(X、Y方向及びZ方向)を測定したところ、得られた測定平均値と設計値の差はX方向で10.9μm、Y方向で4.7μm、Z方向で−3.6μmだった。得られた測定値の標準偏差はX方向6.20μm、Y方向3.47μm、Z方向9.08μmで、実施例1と比べX方向、Y方向及びZ方向のばらつきが大きくなった。
実施例1〜3及び比較例1の筐体と光路変換ミラーからの反射光との位置関係と、測定とをまとめて表1に示した。
(Comparative Example 1)
In Example 3, when the outer shape of the optical waveguide is cut, the alignment surface A is cut with a dicing blade, and the optical waveguide is formed in the same manner except that the outer shape is formed so that the blade cutting surface becomes the alignment surface A. It produced (refer FIG. 7).
When the positional accuracy (X, Y direction and Z direction) with respect to the housing was measured in the same manner as in Example 1, the difference between the obtained measurement average value and the design value was 10.9 μm in the X direction and 4. It was 7 μm and −3.6 μm in the Z direction. The standard deviations of the measured values were 6.20 μm in the X direction, 3.47 μm in the Y direction, and 9.08 μm in the Z direction, and the variations in the X direction, Y direction, and Z direction were larger than those in Example 1.
Table 1 shows the positional relationship between the housings of Examples 1 to 3 and Comparative Example 1 and the reflected light from the optical path conversion mirror, and the measurement.

Figure 2017167455
Figure 2017167455

図2に示した外形2辺にガイド用コアパターンを設けた実施例1は、図1に示したようにそれを設けない実施例3と比べ、コアの幅方向であるX方向の測定平均値と設計値の差と、標準偏差が共に小さく、位置精度がより良好となった。また、接着剤を用いての固定は(実施例2)、それを用いない実施例1と同様な位置精度であり、より強固に固定できる。本発明によらず傾斜面を設けない比較例1は、X、Y、Z方向で実施例よりも位置精度で劣る。   The first embodiment in which the guide core pattern is provided on the two sides of the outer shape shown in FIG. 2 is compared with the third embodiment in which the guide core pattern is not provided as shown in FIG. The difference between the design value and the standard deviation are both small, and the positional accuracy is better. In addition, fixing using an adhesive (Example 2) has the same positional accuracy as Example 1 without using it, and can be fixed more firmly. The comparative example 1 which does not provide an inclined surface irrespective of this invention is inferior to an Example in position accuracy in a X, Y, Z direction.

本発明の光導波路及び光導波路組立体は、光ファイバコネクタや光電変換素子との位置合わせが容易であり、各種光学装置、光インターコネクション等の幅広い分野に適用可能である。また、光導波路に光接続された光ファイバと、光ファイバに接続された光コネクタからなる光モジュールは、位置合わせがよいので光信号伝播効率に優れ、光電変換素子や光ファイバコネクタ等の別体の光学部材との光軸合わせが容易となる。   The optical waveguide and the optical waveguide assembly of the present invention can be easily aligned with an optical fiber connector or a photoelectric conversion element, and can be applied to various fields such as various optical devices and optical interconnections. An optical module comprising an optical fiber optically connected to an optical waveguide and an optical connector connected to the optical fiber is excellent in optical signal propagation efficiency because of its good alignment, and is separate from a photoelectric conversion element, an optical fiber connector, etc. It becomes easy to align the optical axis with the optical member.

1.光信号伝送用コアパターン
2.クラッド層
3.光路変換ミラー
4.傾斜面
5.基板
6.筐体
11.位置合わせ面A
12.位置合わせ面B
13.位置合わせ面C
14.位置合わせ面D
21.光ファイバ
22.光コネクタ
1. 1. Optical signal transmission core pattern 2. Clad layer 3. Optical path conversion mirror Inclined surface 5. Substrate 6. Housing 11. Alignment surface A
12 Alignment surface B
13. Alignment surface C
14 Alignment surface D
21. Optical fiber 22. Optical connector

Claims (10)

光信号伝送用コアパターンと、前記光信号伝送用コアパターンを埋設するクラッド層と、前記光信号伝送用コアパターンに設けられた光路変換ミラーと、前記光路変換ミラーと位置の相関が確保された傾斜面と、を有する板状の光導波路であって、前記傾斜面が外部の筐体との位置合わせ面Aである光導波路。   The optical signal transmission core pattern, the cladding layer in which the optical signal transmission core pattern is embedded, the optical path conversion mirror provided in the optical signal transmission core pattern, and the correlation between the positions of the optical path conversion mirror are secured. An optical waveguide having an inclined surface, wherein the inclined surface is an alignment surface A with an external housing. 前記光路変換ミラーと前記傾斜面とが同一平面上又は平行面である請求項1に記載の光導波路。   The optical waveguide according to claim 1, wherein the optical path conversion mirror and the inclined surface are coplanar or parallel. 前記傾斜面と鋭角をなす前記光導波路の一方の面が、前記外部の筐体との位置合わせ面Bである請求項1又は2に記載の光導波路。   The optical waveguide according to claim 1, wherein one surface of the optical waveguide forming an acute angle with the inclined surface is an alignment surface B with the external casing. 前記傾斜面と交差し、光信号伝送用コアパターンの長手方向と平行な光導波路の2つの側面を形成する2つの面C又はDが、前記外部の筐体との位置合わせ面C又は位置合わせ面Dである請求項1〜3のいずれか一項に記載の光導波路。   Two surfaces C or D that intersect the inclined surface and form two side surfaces of the optical waveguide parallel to the longitudinal direction of the optical signal transmission core pattern are the alignment surface C or alignment with the external casing. It is the surface D, The optical waveguide as described in any one of Claims 1-3. 請求項1〜4のいずれか一項に記載の光導波路の製造方法であって、
ガイド用コアパターンとなる前記位置合わせ面C又は位置合わせ面Dが、前記光信号伝送用コアパターンと同時に形成される光導波路の製造方法。
A method for producing an optical waveguide according to any one of claims 1 to 4,
A method for manufacturing an optical waveguide, wherein the alignment surface C or the alignment surface D to be a guide core pattern is formed simultaneously with the optical signal transmission core pattern.
前記請求項1〜4のいずれか一項に記載の光導波路の少なくとも前記位置合わせ面Aと前記外部の筐体とが位置合わせされる光導波路組立体の製造方法。   The manufacturing method of the optical waveguide assembly with which the said alignment surface A of the optical waveguide as described in any one of the said Claims 1-4 and the said external housing | casing are aligned. 前記位置合わせ面B、前記位置合わせ面C、及び前記位置合わせ面Dの少なくともいずれかと前記外部の筐体とが位置合わせされる請求項6に記載の光導波路組立体の製造方法。   The method of manufacturing an optical waveguide assembly according to claim 6, wherein at least one of the alignment surface B, the alignment surface C, and the alignment surface D is aligned with the external housing. 前記位置合わせ面A、前記位置合わせ面B、前記位置合わせ面C、及び前記位置合わせ面Dの少なくともいずれかと、前記外部の筐体とが接着剤を介して固定される請求項6又は7に記載の光導波路組立体の製造方法。   8 or 7, wherein at least one of the alignment surface A, the alignment surface B, the alignment surface C, and the alignment surface D and the external housing are fixed via an adhesive. A method for manufacturing the optical waveguide assembly as described. 前記接着剤が、光硬化性の接着剤であって、前記外部の筐体が前記接着剤を硬化せしめる活性光線に対して透過性を有する請求項8に記載の光導波路組立体の製造方法。   The method of manufacturing an optical waveguide assembly according to claim 8, wherein the adhesive is a photocurable adhesive, and the external casing is transmissive to actinic rays that cure the adhesive. 請求項6〜9のいずれか一項に記載の光導波路組立体の製造方法によって光導波路組立体を製造した後、前記光導波路組立体の光導波路に光ファイバを光接続し、前記光ファイバに光コネクタを接続する光モジュールの製造方法。   An optical waveguide assembly is manufactured by the method for manufacturing an optical waveguide assembly according to any one of claims 6 to 9, and an optical fiber is optically connected to the optical waveguide of the optical waveguide assembly. An optical module manufacturing method for connecting an optical connector
JP2016054824A 2016-03-18 2016-03-18 Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module Pending JP2017167455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054824A JP2017167455A (en) 2016-03-18 2016-03-18 Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054824A JP2017167455A (en) 2016-03-18 2016-03-18 Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module

Publications (1)

Publication Number Publication Date
JP2017167455A true JP2017167455A (en) 2017-09-21

Family

ID=59908960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054824A Pending JP2017167455A (en) 2016-03-18 2016-03-18 Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module

Country Status (1)

Country Link
JP (1) JP2017167455A (en)

Similar Documents

Publication Publication Date Title
WO2014020730A1 (en) Optical fiber connector, method for manufacturing optical fiber connector, method for connecting optical fiber connector and optical fiber, and assembled body of optical fiber connector and optical fiber
US20170010413A1 (en) Optical waveguide and manufacturing method thereof
JP5691493B2 (en) Optical fiber connector and manufacturing method thereof
JP5966470B2 (en) Optical waveguide and method for manufacturing the same
WO2015020064A1 (en) Lens member manufacturing method, lens member, curved surface shape pattern manufacturing method, and resin film for forming curved surface shape pattern
JP5736743B2 (en) Optical fiber connector and manufacturing method thereof
JP2017167455A (en) Optical waveguide, method of manufacturing the same, method of manufacturing optical waveguide assembly, and method of manufacturing optical module
JP2012181266A (en) Optical fiber connector and method of manufacturing the same
JP2014038133A (en) Method for manufacturing optical waveguide and optical waveguide
JP6044175B2 (en) Optical waveguide manufacturing method and optical waveguide
JP5691561B2 (en) Optical fiber connector and manufacturing method thereof
JP6857835B2 (en) Optical waveguide coupling
JP2014032255A (en) Optical fiber connector, manufacturing method therefor, method of connecting optical fiber connector and optical fibers, and optical fiber connector-optical fiber assembly
JP6048033B2 (en) Optical waveguide and method for manufacturing the same
JP2013205632A (en) Optical fiber connector and method of loading optical fiber
JP2015025953A (en) Optical fiber connector, manufacturing method therefor, and optical fiber cable with the same
JP2015203841A (en) Light guide and production method of the same
JP6069836B2 (en) Optical waveguide and method for manufacturing the same
JP5776333B2 (en) Optical fiber connector and manufacturing method thereof
JP5966307B2 (en) Manufacturing method of optical waveguide
JP2012133236A (en) Optical fiber connector and manufacturing method therefor
JP6048032B2 (en) Optical waveguide and method for manufacturing the same
JP2013142826A (en) Method for manufacturing optical waveguide
JP2014142516A (en) Lens member, optical waveguide with lens member, and methods of producing them
JP2015025954A (en) Optical fiber connector, manufacturing method therefor, and optical fiber cable with the same