JP2017167231A - Replica optical element - Google Patents

Replica optical element Download PDF

Info

Publication number
JP2017167231A
JP2017167231A JP2016050411A JP2016050411A JP2017167231A JP 2017167231 A JP2017167231 A JP 2017167231A JP 2016050411 A JP2016050411 A JP 2016050411A JP 2016050411 A JP2016050411 A JP 2016050411A JP 2017167231 A JP2017167231 A JP 2017167231A
Authority
JP
Japan
Prior art keywords
replica
optical element
adhesive resin
diffraction grating
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016050411A
Other languages
Japanese (ja)
Inventor
智史 倉本
Satoshi Kuramoto
智史 倉本
浩行 笹井
Hiroyuki Sasai
浩行 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016050411A priority Critical patent/JP2017167231A/en
Publication of JP2017167231A publication Critical patent/JP2017167231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a replica optical element with which it is possible to reduce the occurrence of stray light.SOLUTION: Provided is a replica optical element 10 fabricated by a manufacturing method that includes a mold release agent film formation step of forming a groove-shaped mold release agent film 43 on the groove surface of a mold plate 30, a metal film formation step of forming a groove-shaped metal film 44 on the mold release agent film 43, a bonding step of closely adhering the metal film 44 and the underside of a glass substrate 11 via adhesive resin, and a reflection type optical element fabrication step of fabricating a replica optical element 10' having an adhesive resin layer 12 and the metal film 44 adhered to the glass substrate 11 by removing the glass substrate 11 form the mold plate 30. A vertical refractive index R satisfies expression (1), where nis a refractive index of glass to a line d and nis a refractive index of the adhesive resin to the line d.SELECTED DRAWING: Figure 1

Description

本発明は、分光光度計等の各種光学機器に使用されるレプリカ光学素子に関し、特に、スペクトログラフ中に設置角度が固定されて取り付けられるレプリカ回折格子に関する。   The present invention relates to a replica optical element used in various optical instruments such as a spectrophotometer, and more particularly to a replica diffraction grating that is mounted with a fixed installation angle in a spectrograph.

従来より、回折格子を量産する際に、マスター回折格子からレプリカ回折格子を作製する製造方法(White&Fraserレプリカ法)が採用されている(例えば、特許文献1参照)。   Conventionally, when mass-producing diffraction gratings, a manufacturing method (White & Fraser replica method) in which a replica diffraction grating is produced from a master diffraction grating has been employed (see, for example, Patent Document 1).

「White&Fraserレプリカ法」では、まず、マスター基板(ガラス基板)の上面にアルミニウム等の金属を蒸着してマスター金属薄膜を形成し、そのマスター金属薄膜に格子溝を形成することによりマスター回折格子を作製する。次に、このマスター回折格子を母型として、その格子面(マスター金属薄膜)の上面に薄く油膜(離型剤膜)を形成し、油膜の上面に真空蒸着によりレプリカ金属薄膜を形成して、格子溝形状のレプリカ金属薄膜を形成する。次に、このレプリカ金属薄膜の上面に接着剤を介してレプリカ基板(ガラス基板)を接着し、接着剤が硬化した後にレプリカ基板を母型から外す。これにより、油膜の上面に形成されていたレプリカ金属薄膜がレプリカ基板に移ってレプリカ反射型回折格子が得られる。   In the “White & Fraser replica method”, a master diffraction grating is formed by first depositing a metal such as aluminum on the upper surface of a master substrate (glass substrate) to form a master metal thin film and forming a grating groove in the master metal thin film. To do. Next, using this master diffraction grating as a matrix, forming a thin oil film (release agent film) on the upper surface of the grating surface (master metal thin film), forming a replica metal thin film on the upper surface of the oil film by vacuum deposition, A replica metal thin film having a lattice groove shape is formed. Next, a replica substrate (glass substrate) is bonded to the upper surface of the replica metal thin film via an adhesive, and after the adhesive is cured, the replica substrate is removed from the mother die. Thereby, the replica metal thin film formed on the upper surface of the oil film moves to the replica substrate, and a replica reflection type diffraction grating is obtained.

さらに、水酸化ナトリウム(苛性ソーダ)等を用いたウエットエッチングを実行してレプリカ金属薄膜を溶解させることで、レプリカ透過型回折格子が得られる。
そして、このようなレプリカ反射型回折格子やレプリカ透過型回折格子は、主として分光器(スペクトログラフ)に利用されている。
Furthermore, a replica transmission diffraction grating can be obtained by performing wet etching using sodium hydroxide (caustic soda) or the like to dissolve the replica metal thin film.
Such replica reflection diffraction gratings and replica transmission diffraction gratings are mainly used in spectrographs.

特開平7−261010号公報Japanese Patent Laid-Open No. 7-261010

ところで、分光器のスペクトルモードで試料を分析する場合には、レプリカ透過型回折格子で波長分離させた単色光を試料に入射してその吸収度合を計測するが、入射光にその単色光以外の波長の光、つまり迷光が混じると、それがノイズとなって分析感度や分析精度を低下させる要因となる。こうした迷光は、取り扱う光の波長が比較的長い場合、具体的には赤外光や可視光の場合はあまり問題とならないが、特に、取り扱う波長を短波長化する場合、例えば軟X線等の分光を行う際には問題となっていた。   By the way, when analyzing a sample in the spectral mode of a spectroscope, the monochromatic light wavelength-separated by a replica transmission diffraction grating is incident on the sample and the degree of absorption is measured. When light of a wavelength, that is, stray light is mixed, it becomes noise and causes a decrease in analysis sensitivity and analysis accuracy. Such stray light is not a problem when the wavelength of light to be handled is relatively long, specifically, in the case of infrared light or visible light. In particular, when the wavelength to be handled is reduced, for example, soft X-rays or the like. It was a problem when performing spectroscopy.

本件発明者らは、上記課題を解決するために、迷光の発生を軽減することが可能なレプリカ光学素子について鋭意検討を行った。
ここで、レプリカ基板のガラス「BK7(合成石英の一種)」の屈折率nは1.518(d線)であり、接着用樹脂の屈折率nは1.56(d線)であり、レプリカ基板と接着用樹脂層との界面で反射して、正規の回折光と同じ方向に反射散乱光が出射して迷光となっている。これらの事実から、d線に対する垂直反射率Rが2×10−4であると、迷光が問題になることがわかった。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a replica optical element that can reduce the generation of stray light.
Here, the refractive index n 1 of the glass “BK7 (a kind of synthetic quartz)” of the replica substrate is 1.518 (d line), and the refractive index n 2 of the adhesive resin is 1.56 (d line). Reflected at the interface between the replica substrate and the adhesive resin layer, reflected and scattered light is emitted in the same direction as the regular diffracted light and becomes stray light. From these facts, it was found that stray light becomes a problem when the vertical reflectance R with respect to the d-line is 2 × 10 −4 .

また、レプリカ基板と接着剤との付着性を良好にする目的で、接着面積を広げるためにレプリカ基板の接着剤の塗布面が微小凹凸状のスリ面となったものが利用されている。しかしながら、このスリ面が迷光の原因となっている。そこで、面粗さSが14μmRmsであると、迷光が問題になることがわかった。   Further, for the purpose of improving the adhesion between the replica substrate and the adhesive, in order to widen the adhesion area, a surface on which the adhesive is applied to the replica substrate is formed as a micro uneven surface. However, this slit surface causes stray light. Therefore, it was found that stray light becomes a problem when the surface roughness S is 14 μmRms.

すなわち、本発明のレプリカ光学素子は、型板の溝面上に溝形状の離型剤膜を形成する離型剤膜形成工程と、前記離型剤膜上に溝形状の金属膜を形成する金属膜形成工程と、接着用樹脂を介して前記金属膜上面とガラス基板下面とを密着させる接着工程と、前記ガラス基板を前記型板から取り外すことで、前記ガラス基板に接着用樹脂層及び前記金属膜が接着されたレプリカ光学素子を作製する反射型光学素子作製工程とを含む製造方法で作製されたレプリカ光学素子であって、前記ガラスのd線に対する屈折率をnとし、前記接着用樹脂のd線に対する屈折率をnとしたときに、垂直反射率Rが下記式(1)を満足するようにしている。
R=(n−n/(n+n≦1.0×10−5 ・・・ (1)
That is, the replica optical element of the present invention forms a release agent film forming step of forming a groove-shaped release agent film on the groove surface of the template, and forms a groove-shaped metal film on the release agent film. A metal film forming step, an adhesion step in which the upper surface of the metal film and the lower surface of the glass substrate are brought into close contact with each other through an adhesive resin, and removing the glass substrate from the mold plate, whereby the adhesive resin layer and the glass substrate a replica optical element produced by the production method comprising a reflective optical element fabricating step of fabricating a replica optical element which a metal film is bonded, the refractive index at the d-line of the glass and n 1, for the adhesive When the refractive index of the resin with respect to the d-line is n 2 , the vertical reflectance R satisfies the following formula (1).
R = (n 1 −n 2 ) 2 / (n 1 + n 2 ) 2 ≦ 1.0 × 10 −5 (1)

なお、本発明では、上下方向を逆転させて逆向きにして用いた場合も含まれるものとする。   In the present invention, the case where the vertical direction is reversed and used in the reverse direction is also included.

以上のように、本発明のレプリカ光学素子によれば、垂直反射率Rが式(1)を満足することにより、反射光と散乱光とが少なくなり、迷光を低減することができる。また、これにより、分光器に使用すると分析精度や分析感度を向上させることができ、特に軟X線等の短波長領域における分析精度の大幅な向上に寄与する。   As described above, according to the replica optical element of the present invention, when the vertical reflectance R satisfies Expression (1), reflected light and scattered light are reduced, and stray light can be reduced. This also improves the analysis accuracy and sensitivity when used in a spectroscope, and contributes to a significant improvement in analysis accuracy particularly in a short wavelength region such as soft X-rays.

(他の課題を解決するための手段および効果)
また、本発明のレプリカ光学素子において、前記ガラス基板下面の面粗さSは、下記式(2)を満足するようにしてもよい。
S≦1.0(nmRms) ・・・ (2)
本発明のレプリカ光学素子によれば、面粗さSが式(2)を満足することにより、さらに反射光と散乱光とが少なくなり、迷光を低減することができる。
(Means and effects for solving other problems)
In the replica optical element of the present invention, the surface roughness S of the lower surface of the glass substrate may satisfy the following formula (2).
S ≦ 1.0 (nmRms) (2)
According to the replica optical element of the present invention, when the surface roughness S satisfies the expression (2), reflected light and scattered light are further reduced, and stray light can be reduced.

また、本発明のレプリカ光学素子において、前記接着用樹脂は、カップリング剤を含有したものとしてもよい。
本発明のレプリカ光学素子によれば、接着用樹脂には例えば有機成分と無機成分との結合性を向上させるシランカップリング剤を代表とするカップリング剤が混合されているので、レプリカ基板の接着面がスリ面ではなく光沢面であっても高い接着性を確保することができ、金属膜をレプリカ基板にしっかりと貼着することができる。
In the replica optical element of the present invention, the adhesive resin may contain a coupling agent.
According to the replica optical element of the present invention, the adhesive resin is mixed with, for example, a coupling agent typified by a silane coupling agent that improves the bonding between the organic component and the inorganic component. Even if the surface is not a ground surface but a glossy surface, high adhesiveness can be secured, and the metal film can be firmly attached to the replica substrate.

また、本発明のレプリカ光学において、前記接着工程において、前記接着用樹脂を介して前記金属膜上面とガラス基板下面とを密着させる前に、前記ガラス基板下面にカップリング剤が塗布されたものであるようにしてもよい。
本発明のレプリカ光学素子によれば、光沢面となっているレプリカ基板の接着面にカップリング剤を塗布し、その上に接着用樹脂を塗布又は盛ることにより、カップリング剤の接着性を高めて金属膜をレプリカ基板にしっかりと貼着することができる。
In the replica optics of the present invention, a coupling agent is applied to the lower surface of the glass substrate before the upper surface of the metal film and the lower surface of the glass substrate are brought into close contact with each other through the adhesive resin in the bonding step. There may be.
According to the replica optical element of the present invention, the coupling agent is applied to the adhesive surface of the replica substrate which is a glossy surface, and the adhesive resin is applied or deposited thereon, thereby improving the adhesiveness of the coupling agent. Thus, the metal film can be firmly attached to the replica substrate.

そして、本発明のレプリカ光学素子において、前記レプリカ反射型光学素子から前記金属膜が除去されることで、溝面を有する前記接着用樹脂層と前記ガラス基板とからなるレプリカ透過型光学素子としてもよい。
さらに、本発明のレプリカ光学素子において、前記型板は、マスター回折格子又はネガ回折格子であり、前記レプリカ光学素子は、レプリカ回折格子であるようにしてもよい。
In the replica optical element of the present invention, the metal film is removed from the replica reflective optical element, so that the replica transmissive optical element including the adhesive resin layer having a groove surface and the glass substrate can be used. Good.
Furthermore, in the replica optical element of the present invention, the template may be a master diffraction grating or a negative diffraction grating, and the replica optical element may be a replica diffraction grating.

本発明に係るレプリカ透過型回折格子の一例を示す断面図。Sectional drawing which shows an example of the replica transmission type diffraction grating which concerns on this invention. 本発明に係るレプリカ透過型回折格子の製造方法の説明図。Explanatory drawing of the manufacturing method of the replica transmission type diffraction grating which concerns on this invention. 本発明に係るレプリカ透過型回折格子の製造方法の説明図。Explanatory drawing of the manufacturing method of the replica transmission type diffraction grating which concerns on this invention. 本発明に係るレプリカ透過型回折格子の製造方法の説明図。Explanatory drawing of the manufacturing method of the replica transmission type diffraction grating which concerns on this invention. 本発明に係るレプリカ透過型回折格子の製造方法の説明図。Explanatory drawing of the manufacturing method of the replica transmission type diffraction grating which concerns on this invention. マスター回折格子の一例を示す断面図。Sectional drawing which shows an example of a master diffraction grating. 回折光の波長と光強度との関係を示すグラフ。The graph which shows the relationship between the wavelength of diffracted light, and light intensity. 絶対回折効率を示すグラフ。The graph which shows absolute diffraction efficiency.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and includes various modes without departing from the spirit of the present invention.

図1は、本発明に係るレプリカ透過型回折格子の一例を示す断面図である。
レプリカ透過型回折格子10は、レプリカ基板11と、接着用樹脂層12とを備える。
FIG. 1 is a cross-sectional view showing an example of a replica transmission diffraction grating according to the present invention.
The replica transmission diffraction grating 10 includes a replica substrate 11 and an adhesive resin layer 12.

レプリカ基板11は、上下の面と前後左右の側面とからなる6面を有し、例えば、厚さ11mm、前後60mm、左右60mmの平板形状である。
上記レプリカ基板の上面の面粗さSは、1.0(nmRms)以下であることが好ましく、0.5(nmRms)以下であることがより好ましい。また、上記レプリカ基板の下面には、所定の厚さ(例えば70nm)のMgF等のARコート(中心波長400nm)が施されていることが好ましい。
The replica substrate 11 has six surfaces including upper and lower surfaces and front, rear, left and right side surfaces, and has a flat plate shape having a thickness of 11 mm, front and rear 60 mm, and left and right 60 mm, for example.
The surface roughness S of the upper surface of the replica substrate is preferably 1.0 (nmRms) or less, and more preferably 0.5 (nmRms) or less. Moreover, it is preferable that an AR coat (center wavelength: 400 nm) such as MgF 2 having a predetermined thickness (for example, 70 nm) is applied to the lower surface of the replica substrate.

接着用樹脂層12は、レプリカ基板11の上面に形成され、接着用樹脂層12の上面(格子面)には格子溝(例えば溝本数200本/mm、ブレーズ角8.6°の鋸歯形状)が形成されている。   The adhesive resin layer 12 is formed on the upper surface of the replica substrate 11, and the upper surface (lattice surface) of the adhesive resin layer 12 is a lattice groove (for example, a sawtooth shape having a groove number of 200 / mm and a blaze angle of 8.6 °). Is formed.

上記レプリカ基板の材質としては、例えば、石英ガラス、ゼロデュア(ZERODUR(登録商標):SCHOTT社製)等の低膨張性結晶ガラス、BK7、パイレックス(PYREX(登録商標))ガラス、ソーダガラス等が挙げられる。
また、上記接着用樹脂層の材質としては、例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂等の熱硬化樹脂や紫外線硬化樹脂等が挙げられる。
なお、本発明では、レプリカ基板11の材質のd線に対する屈折率をnとし、接着用樹脂12のd線に対する屈折率をnとしたときに、垂直反射率Rが式(1)を満足することになる。
R=(n−n/(n+n≦1.0×10−5 ・・・ (1)
つまり、垂直反射率Rが1.0×10−5以下であり、4×10−7以下であることが特に好ましい。
Examples of the material of the replica substrate include quartz glass, low-expansion crystal glass such as Zerodur (registered trademark: manufactured by SCHOTT), BK7, PYREX (registered trademark) glass, and soda glass. It is done.
Examples of the material for the adhesive resin layer include thermosetting resins such as urea resins, melamine resins, phenol resins, and epoxy resins, and ultraviolet curable resins.
In the present invention, when the refractive index with respect to the d-line of the material of the replica substrate 11 is n 1 and the refractive index with respect to the d-line of the adhesive resin 12 is n 2 , the vertical reflectance R is expressed by the equation (1). You will be satisfied.
R = (n 1 −n 2 ) 2 / (n 1 + n 2 ) 2 ≦ 1.0 × 10 −5 (1)
That is, the vertical reflectance R is particularly preferably 1.0 × 10 −5 or less and 4 × 10 −7 or less.

ここで、本発明に係るレプリカ透過型回折格子10の製造方法の一例について図2を用いて説明する。その製造方法は、マスター回折格子準備工程(A−1)と、離型剤膜形成工程(B−1)と、ネガ金属膜形成工程(B−2)と、接着工程(B−3)と、ネガ回折格子作製工程(B−4)と、離型剤膜形成工程(C−1)と、レプリカ金属膜形成工程(C−2)と、接着工程(C−3)と、反射型回折格子作製工程(C−4)と、透過型回折格子作製工程(C−5)とを含む。   Here, an example of a manufacturing method of the replica transmission type diffraction grating 10 according to the present invention will be described with reference to FIG. The manufacturing method includes a master diffraction grating preparation step (A-1), a release agent film formation step (B-1), a negative metal film formation step (B-2), and an adhesion step (B-3). , Negative diffraction grating preparation step (B-4), release agent film formation step (C-1), replica metal film formation step (C-2), adhesion step (C-3), reflection diffraction Including a grating fabrication step (C-4) and a transmission diffraction grating fabrication step (C-5).

(A−1)マスター回折格子準備工程
まず、マスター回折格子20を準備する。図3は、マスター回折格子の一例を示す断面図である。マスター回折格子20は、マスター基板21と、マスター金属薄膜22とを備える。
マスター基板21は、上面(格子面)と下面及び前後左右の側面とからなる6面を有し、マスター基板21の上面には格子溝(例えば溝本数200本/mm、ブレーズ角8.6°の鋸歯形状)が形成されている。
また、上記マスター基板の材質としては、例えば、上記レプリカ基板と同様の、石英ガラス、ゼロデュア等の低膨張性結晶ガラス、BK7、パイレックスガラス、ソーダガラス等が挙げられる。
(A-1) Master diffraction grating preparation step First, the master diffraction grating 20 is prepared. FIG. 3 is a cross-sectional view showing an example of a master diffraction grating. The master diffraction grating 20 includes a master substrate 21 and a master metal thin film 22.
The master substrate 21 has six surfaces including an upper surface (lattice surface), a lower surface, and front, back, left, and right side surfaces. On the upper surface of the master substrate 21, lattice grooves (for example, 200 grooves / mm, blaze angle 8.6 °). (Sawtooth shape).
Examples of the material of the master substrate include quartz glass, low-expansion crystal glass such as zerodur, BK7, pyrex glass, soda glass, and the like, similar to the replica substrate.

マスター金属薄膜22は、マスター基板21の上面(格子面)に所定の厚さとなるように形成されたものである。すなわち、マスター金属薄膜22は格子溝形状となっている。
上記マスター金属薄膜の所定の厚さは、0.1μm以上2μm以下であることが好ましく、上記マスター金属薄膜の材質としては、例えば、アルミニウム、金、白金、クロム、ニクロム、ニッケル等が挙げられる。
The master metal thin film 22 is formed on the upper surface (lattice surface) of the master substrate 21 so as to have a predetermined thickness. That is, the master metal thin film 22 has a lattice groove shape.
The predetermined thickness of the master metal thin film is preferably 0.1 μm or more and 2 μm or less. Examples of the material of the master metal thin film include aluminum, gold, platinum, chromium, nichrome, nickel, and the like.

このようなマスター回折格子20の製造方法の一例を述べると、まず、60mm×60mm×11mmの大きさのガラス基板(フロートガラス)21に、フォトレジスト(感光レジスト膜)としてOFPR(登録商標)5000(東京応化工業株式会社製)を0.4μm厚さでコーティングし、このフォトレジストにホログラフィック露光法(レーザ波長:441.6nm)により格子溝(密度:200本/mm)のレジストパターンを露光して、現像液に適切な時間浸漬させた後に、レジストパターンを形成する。次に、そのレジストパターンをマスクとして異方性イオンビームエッチングにより、溝断面形状がブレーズ角8.6°の鋸歯形状の格子溝を形成する。次に、その格子溝上に膜厚0.2μmのマスター金属薄膜22を真空蒸着により形成する。このようにして、マスター回折格子20が完成する。なお、刻線は、回折格子彫刻装置による機械刻線でも、イオンビームエッチングによる刻線でもよい。   An example of a manufacturing method of such a master diffraction grating 20 will be described. First, OFPR (registered trademark) 5000 is used as a photoresist (photosensitive resist film) on a glass substrate (float glass) 21 having a size of 60 mm × 60 mm × 11 mm. (Tokyo Ohka Kogyo Co., Ltd.) is coated with a thickness of 0.4 μm, and a resist pattern of lattice grooves (density: 200 lines / mm) is exposed on this photoresist by a holographic exposure method (laser wavelength: 441.6 nm). Then, after immersing in a developer for an appropriate time, a resist pattern is formed. Next, sawtooth-shaped lattice grooves having a blaze angle of 8.6 ° are formed by anisotropic ion beam etching using the resist pattern as a mask. Next, a master metal thin film 22 having a thickness of 0.2 μm is formed on the lattice grooves by vacuum deposition. In this way, the master diffraction grating 20 is completed. The engraving may be mechanical engraving using a diffraction grating engraving apparatus or engraving using ion beam etching.

(B−1)離型剤膜形成工程(図2(a)参照)
マスター回折格子20の格子面上に、所定の厚さとなるように油膜(離型剤膜)41を形成する。
上記油膜の形成方法としては、真空蒸着法等が挙げられ、真空蒸着法を用いる際には、蒸着源に対して一定距離を保ち、格子面に対して均一に成膜が形成されるように、例えば公転回転又は遊星回転(公転回転+自転回転)させておくことが好ましい。また、上記油膜の所定の厚さは、4nm以上10nm以下であることが好ましく、上記油膜の材質としては、例えば、シリコーンオイル等が挙げられる。
(B-1) Release agent film forming step (see FIG. 2A)
An oil film (release agent film) 41 is formed on the grating surface of the master diffraction grating 20 so as to have a predetermined thickness.
Examples of the method for forming the oil film include a vacuum vapor deposition method. When using the vacuum vapor deposition method, the film is formed uniformly on the lattice plane while maintaining a certain distance from the vapor deposition source. For example, it is preferable to perform revolution rotation or planet rotation (revolution rotation + rotation rotation). The predetermined thickness of the oil film is preferably 4 nm or more and 10 nm or less, and examples of the material of the oil film include silicone oil.

(B−2)ネガ金属膜形成工程(図2(b)参照)
油膜41上に、所定の厚さとなるようにネガ金属薄膜42を形成する。すなわち、ネガ金属薄膜42は格子溝形状となる。
上記ネガ金属薄膜の形成方法としては、上記した真空蒸着法等が挙げられる。また、上記ネガ金属薄膜の所定の厚さは、0.1μm以上2μm以下であることが好ましく、上記ネガ金属薄膜の材質としては、例えば、アルミニウム、金、白金、クロム、ニクロム、ニッケル等が挙げられる。
(B-2) Negative metal film forming step (see FIG. 2B)
A negative metal thin film 42 is formed on the oil film 41 so as to have a predetermined thickness. That is, the negative metal thin film 42 has a lattice groove shape.
Examples of the method for forming the negative metal thin film include the vacuum deposition method described above. The predetermined thickness of the negative metal thin film is preferably 0.1 μm or more and 2 μm or less. Examples of the material of the negative metal thin film include aluminum, gold, platinum, chromium, nichrome, nickel, and the like. It is done.

(B−3)接着工程
平板形状の青板31を用意し、青板31の下面に接着用樹脂を塗布して接着用樹脂層32’を形成する(図2(c)参照)。次に、接着用樹脂層32’を介してネガ金属薄膜42に青板31を適度な圧力で押し付ける(図2(d)参照)。このとき、接着用樹脂層32’がネガ金属薄膜42の断面鋸歯形状の格子溝を埋めるように広がることにより、下面に格子溝形状を有した接着用樹脂層32となる。次に、ベーク炉に収容し、60℃、約24時間の条件で熱を加えたり、接着用樹脂層32に紫外線を照射したりすることで硬化させる。
上記青板の下面の面粗さSは、スリ面であることが好ましく、また、上記接着用樹脂層の材質としては、例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂等の熱硬化樹脂や紫外線硬化樹脂等が挙げられる。
(B-3) Adhesion Step A flat blue plate 31 is prepared, and an adhesive resin is applied to the lower surface of the blue plate 31 to form an adhesive resin layer 32 ′ (see FIG. 2C). Next, the blue plate 31 is pressed against the negative metal thin film 42 through the adhesive resin layer 32 ′ with an appropriate pressure (see FIG. 2D). At this time, the adhesive resin layer 32 ′ spreads so as to fill the lattice grooves having a sawtooth cross section of the negative metal thin film 42, thereby forming the adhesive resin layer 32 having a lattice groove shape on the lower surface. Next, it is housed in a baking furnace and cured by applying heat at 60 ° C. for about 24 hours or by irradiating the adhesive resin layer 32 with ultraviolet rays.
The surface roughness S of the lower surface of the blue plate is preferably a ground surface, and examples of the material of the adhesive resin layer include thermosetting resins such as urea resin, melamine resin, phenol resin, and epoxy resin. And ultraviolet curable resin.

(B−4)ネガ回折格子作製工程(図2(e)参照)
青板31をマスター回折格子20から上方側に取り外すと、油膜(離型剤膜)41を境にして、ネガ金属薄膜42と接着用樹脂層32とが青板31とともに取り外される。なお、ネガ金属薄膜42の下面に残った油膜41はフッ素系溶剤(AK−255:旭硝子株式会社製)等で洗浄して除去する。
その結果、青板31に接着用樹脂層32とネガ金属薄膜42とが接着されたネガ回折格子30が作製される。
(B-4) Negative diffraction grating manufacturing process (see FIG. 2 (e))
When the blue plate 31 is removed upward from the master diffraction grating 20, the negative metal thin film 42 and the adhesive resin layer 32 are removed together with the blue plate 31 with the oil film (release agent film) 41 as a boundary. The oil film 41 remaining on the lower surface of the negative metal thin film 42 is removed by washing with a fluorine-based solvent (AK-255: manufactured by Asahi Glass Co., Ltd.) or the like.
As a result, the negative diffraction grating 30 in which the adhesive resin layer 32 and the negative metal thin film 42 are bonded to the blue plate 31 is produced.

(C−1)離型剤膜形成工程(図2(f)参照)
ネガ回折格子30の格子面上に、所定の厚さとなるように油膜(離型剤膜)43を形成する。
上記油膜の形成方法としては、先に述べた真空蒸着法等が挙げられる。また、上記油膜の所定の厚さは、4nm以上10nm以下であることが好ましく、上記油膜の材質としては、例えば、シリコーンオイル等が挙げられる。
(C-1) Release agent film forming step (see FIG. 2 (f))
An oil film (release agent film) 43 is formed on the grating surface of the negative diffraction grating 30 so as to have a predetermined thickness.
Examples of the method for forming the oil film include the vacuum deposition method described above. The predetermined thickness of the oil film is preferably 4 nm or more and 10 nm or less, and examples of the material of the oil film include silicone oil.

(C−2)レプリカ金属膜形成工程(図2(g)参照)
油膜43上に、所定の厚さとなるようにレプリカ金属薄膜44を形成する。すなわち、レプリカ金属薄膜44は格子溝形状となる。
上記レプリカ金属薄膜の形成方法としては、先に述べた真空蒸着法等が挙げられる。また、上記レプリカ金属薄膜の所定の厚さは、0.1μm以上2μm以下であることが好ましく、上記レプリカ金属薄膜の材質としては、例えば、アルミニウム、金、白金、クロム、ニクロム、ニッケル等が挙げられる。
(C-2) Replica metal film forming step (see FIG. 2G)
A replica metal thin film 44 is formed on the oil film 43 so as to have a predetermined thickness. That is, the replica metal thin film 44 has a lattice groove shape.
Examples of the method for forming the replica metal thin film include the vacuum evaporation method described above. The predetermined thickness of the replica metal thin film is preferably 0.1 μm or more and 2 μm or less, and examples of the material of the replica metal thin film include aluminum, gold, platinum, chromium, nichrome, nickel, and the like. It is done.

(C−3)接着工程
レプリカ基板11を用意し、レプリカ基板11の上面を所定の面粗さSに研磨し、フッ素系溶剤等で洗浄した後に、レプリカ基板11の上面に接着用樹脂を塗布して接着用樹脂層12’を形成する(図2(h)参照)。
上記レプリカ基板の上面の研磨方法としては、両面ラップ研磨加工等が挙げられる。
(C-3) Adhesion Step A replica substrate 11 is prepared, the upper surface of the replica substrate 11 is polished to a predetermined surface roughness S, washed with a fluorine-based solvent, etc., and then an adhesive resin is applied to the upper surface of the replica substrate 11 Thus, an adhesive resin layer 12 ′ is formed (see FIG. 2H).
Examples of the polishing method for the upper surface of the replica substrate include double-sided lapping polishing.

このとき、レプリカ基板11の上面に接着用樹脂を塗布する前に、接着用樹脂にカップリング剤を含有させたり、カップリング剤をレプリカ基板11の上面に塗布したりすることが好ましい。
上記カップリング剤は、有機質材料と無機質材料とのバインダとして作用するものであり、例えばシランカップリング剤等が挙げられ、このシランカップリング剤の具体例としては、3−グリシドキシプロピルトリメトキシシラン(「KBM−403」、信越化学工業株式会社製)等が有用である。
At this time, before applying the adhesive resin to the upper surface of the replica substrate 11, it is preferable to add a coupling agent to the adhesive resin or apply the coupling agent to the upper surface of the replica substrate 11.
The coupling agent functions as a binder between an organic material and an inorganic material, and examples thereof include a silane coupling agent. Specific examples of the silane coupling agent include 3-glycidoxypropyltrimethoxy. Silane (“KBM-403”, manufactured by Shin-Etsu Chemical Co., Ltd.) and the like are useful.

そして、接着用樹脂層12’を介してレプリカ金属薄膜44にレプリカ基板11を適度な圧力で押し付ける(図2(i)参照)。このとき、接着用樹脂層12’がレプリカ金属薄膜44の断面鋸歯形状の格子溝を埋めるように広がることにより、上面に格子溝形状を有した接着用樹脂層12となる。次に、ベーク炉に収容し、60℃、約24時間の条件で熱を加えたり、接着用樹脂層12に紫外線を照射したりすることで硬化させる。   Then, the replica substrate 11 is pressed against the replica metal thin film 44 through the adhesive resin layer 12 ′ with an appropriate pressure (see FIG. 2I). At this time, the adhesive resin layer 12 ′ spreads so as to fill the lattice grooves having a sawtooth cross section of the replica metal thin film 44, thereby forming the adhesive resin layer 12 having a lattice groove shape on the upper surface. Next, it is placed in a baking furnace and cured by applying heat at 60 ° C. for about 24 hours or by irradiating the adhesive resin layer 12 with ultraviolet rays.

(C−4)反射型回折格子作製工程(図2(j)参照)
レプリカ基板11をネガ回折格子30から下方側に取り外すと、油膜(離型剤膜)44を境にして、レプリカ金属薄膜44と接着用樹脂層12とがレプリカ基板11とともに取り外される。なお、レプリカ金属薄膜44の上面に残った油膜43はフッ素系溶剤等で洗浄して除去する。
その結果、レプリカ基板11に接着用樹脂層12とレプリカ金属薄膜44とが接着されたレプリカ反射型回折格子10’が作製される。
(C-4) Reflective diffraction grating manufacturing process (see FIG. 2 (j))
When the replica substrate 11 is removed downward from the negative diffraction grating 30, the replica metal thin film 44 and the adhesive resin layer 12 are removed together with the replica substrate 11 with the oil film (release agent film) 44 as a boundary. The oil film 43 remaining on the upper surface of the replica metal thin film 44 is removed by washing with a fluorine-based solvent or the like.
As a result, a replica reflective diffraction grating 10 ′ in which the adhesive resin layer 12 and the replica metal thin film 44 are bonded to the replica substrate 11 is manufactured.

(C−5)透過型回折格子作製工程
レプリカ反射型回折格子10’を水酸化ナトリウム(苛性ソーダ)溶液に浸漬して、レプリカ金属薄膜44を溶解させた後に苛性ソーダ溶液から取り出して純水で洗浄し、スピンナ等を用いて乾燥させる。これにより、レプリカ基板11と格子面を有する接着用樹脂層12とからなるレプリカ透過型回折格子10(図1参照)を作製することができる。
(C-5) Transmission diffraction grating manufacturing process The replica reflection diffraction grating 10 'is immersed in a sodium hydroxide (caustic soda) solution to dissolve the replica metal thin film 44, and then taken out from the caustic soda solution and washed with pure water. Dry using a spinner or the like. Thereby, the replica transmission type diffraction grating 10 (refer FIG. 1) which consists of the replica board | substrate 11 and the adhesive resin layer 12 which has a grating | lattice surface can be produced.

以上のように、本発明に係るレプリカ透過型回折格子10によれば、垂直反射率Rが式(1)を満足することにより反射光と散乱光とが少なくなり、迷光を低減することができる。   As described above, according to the replica transmission diffraction grating 10 according to the present invention, when the vertical reflectance R satisfies the expression (1), reflected light and scattered light are reduced, and stray light can be reduced. .

<他の実施形態>
なお、本発明は、例えば非球面光学レプリカ素子や球面光学レプリカ素子や平面光学レプリカ素子等にも適用することができる。
<Other embodiments>
The present invention can also be applied to, for example, an aspheric optical replica element, a spherical optical replica element, a planar optical replica element, and the like.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1>
上述したような製造方法で、面粗さSが1nmRms、材質の屈折率nが1.562(d線)となる厚さ11mm、前後60mm、左右60mmの平板形状のレプリカ基板「N−SK11(SCHOTT社製)」を用いるとともに、接着用樹脂の屈折率nが1.56(d線)となる接着用樹脂を用いて、溝本数200本/mm、ブレーズ角8.6°の鋸歯形状の格子面を有する実施例1に係るレプリカ透過型回折格子を作製した。なお、垂直反射率Rは4×10−7となっている。
<Example 1>
In the manufacturing method described above, surface roughness S is 1 nm RMS, thickness 11mm refractive index n 1 material is 1.562 (d line), front and rear 60mm, replica substrate of a flat shape of the left and right 60mm "N-SK11 with use of (SCHOTT Co.) ", of using the adhesive resin whose refractive index n 2 of the adhesive resin is 1.56 (d line), the number of grooves 200 present / mm, the blaze angle 8.6 ° serrated A replica transmission diffraction grating according to Example 1 having a shaped grating surface was produced. The vertical reflectance R is 4 × 10 −7 .

<実施例2>
面粗さSが1nmRmsのレプリカ基板の代わりに、面粗さSが14μmRmsとなるレプリカ基板を用いたこと以外は実施例1と同様にして、実施例2に係るレプリカ透過型回折格子を作製した。なお、垂直反射率Rは4×10−7となっている。
<Example 2>
A replica transmission diffraction grating according to Example 2 was fabricated in the same manner as in Example 1 except that a replica substrate having a surface roughness S of 14 μmRms was used instead of the replica substrate having a surface roughness S of 1 nmRms. . The vertical reflectance R is 4 × 10 −7 .

<比較例1>
面粗さSが1nmRms、材質の屈折率nが1.562(d線)となるレプリカ基板の代わりに、面粗さSが14μmRms、材質の屈折率nが1.518(d線)となるレプリカ基板「BK7」を用いたこと以外は実施例1と同様にして、比較例1に係るレプリカ透過型回折格子を作製した。なお、垂直反射率Rは2×10−4となっている。
<Comparative Example 1>
Surface roughness S is 1 nm RMS, the refractive index n 1 of the material is in place the replica substrate to be 1.562 (d line), surface roughness S is 14MyumRms, refractive index n 1 of the material is 1.518 (d line) A replica transmission diffraction grating according to Comparative Example 1 was fabricated in the same manner as in Example 1 except that the replica substrate “BK7” to be used was used. The vertical reflectance R is 2 × 10 −4 .

<評価1>回折光の強度
実施例1、2及び比較例1に係るレプリカ透過型回折格子の下面に光を照射し、上面から出射された回折光を検出した。図4は、回折光の波長と光強度との関係を示すグラフである。
図4に示すように、比較例1に係るレプリカ透過型回折格子による回折光は、迷光が多くブロードとなっているが、実施例1、2に係るレプリカ透過型回折格子による回折光は、迷光がほとんどなくシャープな形状を示している。すなわち、実施例1、2に係るレプリカ透過型回折格子は、比較例1に係るレプリカ透過型回折格子と比べて1/10程度に迷光が抑えられた。
<Evaluation 1> Intensity of Diffracted Light Light was applied to the lower surface of the replica transmission type diffraction gratings according to Examples 1 and 2 and Comparative Example 1, and diffracted light emitted from the upper surface was detected. FIG. 4 is a graph showing the relationship between the wavelength of diffracted light and the light intensity.
As shown in FIG. 4, the diffracted light by the replica transmission type diffraction grating according to Comparative Example 1 has a large amount of stray light, but the diffracted light by the replica transmission type diffraction grating according to Examples 1 and 2 is stray light. There is almost no sharpness. That is, in the replica transmission type diffraction gratings according to Examples 1 and 2, stray light was suppressed to about 1/10 as compared with the replica transmission type diffraction grating according to Comparative Example 1.

<評価2>絶対回折効率(入射光強度に対する次数1の回折光強度比)
実施例1、2及び比較例1に係るレプリカ透過型回折格子の下面に光を照射し、上面から出射された回折光を検出した。図5は、絶対回折効率を示すグラフである。
図5に示すように、比較例1に係るレプリカ透過型回折格子、実施例2に係るレプリカ透過型回折格子、実施例1に係るレプリカ透過型回折格子の順に、絶対回折効率が大きくなった。すなわち、実施例1、2に係るレプリカ透過型回折格子は、比較例1に係るレプリカ透過型回折格子と比べて絶対回折効率が10%程度向上した。
<Evaluation 2> Absolute diffraction efficiency (Diffraction light intensity ratio of order 1 with respect to incident light intensity)
The lower surface of the replica transmission type diffraction grating according to Examples 1 and 2 and Comparative Example 1 was irradiated with light, and diffracted light emitted from the upper surface was detected. FIG. 5 is a graph showing the absolute diffraction efficiency.
As shown in FIG. 5, the absolute diffraction efficiency increased in the order of the replica transmission diffraction grating according to Comparative Example 1, the replica transmission diffraction grating according to Example 2, and the replica transmission diffraction grating according to Example 1. That is, the absolute transmission efficiency of the replica transmission diffraction gratings according to Examples 1 and 2 was improved by about 10% compared with the replica transmission diffraction grating according to Comparative Example 1.

本発明は、分光光度計等の各種光学機器に使用されるレプリカ光学素子等に好適に利用できる。   The present invention can be suitably used for a replica optical element or the like used in various optical devices such as a spectrophotometer.

10 レプリカ透過型回折格子
10’ レプリカ反射型回折格子
11 レプリカ基板(ガラス基板)
12 接着用樹脂層
20 マスター回折格子
30 ネガ回折格子(型板)
41 油膜(離型剤膜)
43 油膜(離型剤膜)
44 レプリカ金属薄膜(金属膜)
DESCRIPTION OF SYMBOLS 10 Replica transmission type diffraction grating 10 'Replica reflection type diffraction grating 11 Replica substrate (glass substrate)
12 Adhesive resin layer 20 Master diffraction grating 30 Negative diffraction grating (template)
41 Oil film (release agent film)
43 Oil film (release agent film)
44 Replica metal thin film (metal film)

Claims (6)

型板の溝面上に溝形状の離型剤膜を形成する離型剤膜形成工程と、
前記離型剤膜上に溝形状の金属膜を形成する金属膜形成工程と、
接着用樹脂を介して前記金属膜上面とガラス基板下面とを密着させる接着工程と、
前記ガラス基板を前記型板から取り外すことで、前記ガラス基板に接着用樹脂層及び前記金属膜が接着されたレプリカ光学素子を作製する反射型光学素子作製工程とを含む製造方法で作製されたレプリカ光学素子であって、
前記ガラスのd線に対する屈折率をnとし、前記接着用樹脂のd線に対する屈折率をnとしたときに、垂直反射率Rが下記式(1)を満足することを特徴とするレプリカ光学素子。
R=(n−n/(n+n≦1.0×10−5 ・・・ (1)
A release agent film forming step of forming a groove-shaped release agent film on the groove surface of the template,
A metal film forming step of forming a groove-shaped metal film on the release agent film;
An adhesion step in which the upper surface of the metal film and the lower surface of the glass substrate are in close contact with each other through an adhesive resin;
A replica manufactured by a manufacturing method including a reflective optical element manufacturing step of manufacturing a replica optical element in which an adhesive resin layer and the metal film are bonded to the glass substrate by removing the glass substrate from the template An optical element,
The vertical reflectivity R satisfies the following formula (1) when the refractive index for the d-line of the glass is n 1 and the refractive index for the d-line of the adhesive resin is n 2. Optical element.
R = (n 1 −n 2 ) 2 / (n 1 + n 2 ) 2 ≦ 1.0 × 10 −5 (1)
前記ガラス基板下面の面粗さSは、下記式(2)を満足することを特徴とする請求項1に記載のレプリカ光学素子。
S≦1.0(nmRms) ・・・ (2)
The replica optical element according to claim 1, wherein the surface roughness S of the lower surface of the glass substrate satisfies the following formula (2).
S ≦ 1.0 (nmRms) (2)
前記接着用樹脂は、カップリング剤を含有したものであることを特徴とする請求項2に記載のレプリカ光学素子。   The replica optical element according to claim 2, wherein the adhesive resin contains a coupling agent. 前記接着工程において、前記接着用樹脂を介して前記金属膜上面とガラス基板下面とを密着させる前に、前記ガラス基板下面にカップリング剤が塗布されたものであることを特徴とする請求項2に記載のレプリカ光学素子。   3. In the bonding step, a coupling agent is applied to the lower surface of the glass substrate before the upper surface of the metal film and the lower surface of the glass substrate are brought into close contact with each other through the bonding resin. The replica optical element described in 1. 前記レプリカ反射型光学素子から前記金属膜が除去されることで、溝面を有する前記接着用樹脂層と前記ガラス基板とからなるレプリカ透過型光学素子とすることを特徴とする請求項1〜請求項4のいずれか1項に記載のレプリカ光学素子。   The replica reflective optical element comprising the adhesive resin layer having a groove surface and the glass substrate by removing the metal film from the replica reflective optical element. Item 5. The replica optical element according to any one of items 4 to 5. 前記型板は、マスター回折格子又はネガ回折格子であり、
前記レプリカ光学素子は、レプリカ回折格子であることを特徴とする請求項1〜請求項5のいずれか1項に記載のレプリカ光学素子。
The template is a master diffraction grating or a negative diffraction grating,
The replica optical element according to claim 1, wherein the replica optical element is a replica diffraction grating.
JP2016050411A 2016-03-15 2016-03-15 Replica optical element Pending JP2017167231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050411A JP2017167231A (en) 2016-03-15 2016-03-15 Replica optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050411A JP2017167231A (en) 2016-03-15 2016-03-15 Replica optical element

Publications (1)

Publication Number Publication Date
JP2017167231A true JP2017167231A (en) 2017-09-21

Family

ID=59908982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050411A Pending JP2017167231A (en) 2016-03-15 2016-03-15 Replica optical element

Country Status (1)

Country Link
JP (1) JP2017167231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026303A1 (en) * 2018-07-30 2020-02-06 株式会社島津製作所 Diffraction grating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072442A (en) * 1999-07-07 2001-03-21 Nippon Sheet Glass Co Ltd Method for producing article having uneven surface and article produced by the method
US20040183220A1 (en) * 2003-03-18 2004-09-23 Avinash Dalmia Ultra thin layer coating using self-assembled molecules as a separating layer for diffraction grating application
JP2006098428A (en) * 2004-09-28 2006-04-13 Shimadzu Corp Replica diffraction grating
WO2007119681A1 (en) * 2006-04-13 2007-10-25 Panasonic Corporation Diffractive optical element and method for manufacturing same
WO2013099875A1 (en) * 2011-12-27 2013-07-04 旭化成株式会社 Optical substrate and light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072442A (en) * 1999-07-07 2001-03-21 Nippon Sheet Glass Co Ltd Method for producing article having uneven surface and article produced by the method
US20040183220A1 (en) * 2003-03-18 2004-09-23 Avinash Dalmia Ultra thin layer coating using self-assembled molecules as a separating layer for diffraction grating application
JP2006098428A (en) * 2004-09-28 2006-04-13 Shimadzu Corp Replica diffraction grating
WO2007119681A1 (en) * 2006-04-13 2007-10-25 Panasonic Corporation Diffractive optical element and method for manufacturing same
WO2013099875A1 (en) * 2011-12-27 2013-07-04 旭化成株式会社 Optical substrate and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026303A1 (en) * 2018-07-30 2020-02-06 株式会社島津製作所 Diffraction grating

Similar Documents

Publication Publication Date Title
US6359735B1 (en) Antireflective coating and method of manufacturing same
TWI465861B (en) Optical wavelength dispersion device and method of manufacturing the same
CN104516032B (en) Layered product, imaging element package part, imaging device and electronic device
KR102097597B1 (en) Diffraction light guide plate and manufacturing method for diffraction light guide plate
JP4999556B2 (en) Manufacturing method of optical element having fine irregularities on surface
JP6690814B2 (en) Film mask, method for manufacturing the same, and pattern forming method using the same
JP2006106758A (en) Wire grid polarizer and manufacturing method therefor
WO2019024572A1 (en) Anti-reflection structure, display device and fabrication method for anti-reflection structure
KR20190045865A (en) Diffraction light guide plate and manufacturing method for diffraction light guide plate
JP2010117634A (en) Wire grid polarizer, and method of manufacturing the same
CN105378514A (en) Solar light management
TWI489142B (en) Optical wavelength dispersion device and method of manufacturing the same
JP2009128539A (en) Method for manufacturing antireflection structure
JP2017167231A (en) Replica optical element
JP4576961B2 (en) Method for manufacturing replica diffraction grating
JP2009512906A (en) Volume phase holographic grating optimized for the ultraviolet spectral region.
US7501035B2 (en) Method of manufacturing replica diffraction grating
JP2006317807A (en) Member equipped with antireflection structure and manufacturing method of the member
JP2009069809A (en) Polarization conversion element and method for manufacturing polarization conversion element
JP3675314B2 (en) Diffraction grating
JP2009128541A (en) Method for manufacturing antireflection structure
US20200081168A1 (en) Replica optical element
JP2009128540A (en) Method for manufacturing antireflection structure
JP2016161757A (en) Method of manufacturing diffraction grating and replica diffraction grating produced by the same
TWI826644B (en) Large area high resolution feature reduction lithography technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107