JP2017167015A - Method for collecting oil constituent in low temperature liquid gas - Google Patents

Method for collecting oil constituent in low temperature liquid gas Download PDF

Info

Publication number
JP2017167015A
JP2017167015A JP2016053398A JP2016053398A JP2017167015A JP 2017167015 A JP2017167015 A JP 2017167015A JP 2016053398 A JP2016053398 A JP 2016053398A JP 2016053398 A JP2016053398 A JP 2016053398A JP 2017167015 A JP2017167015 A JP 2017167015A
Authority
JP
Japan
Prior art keywords
low
liquefied gas
oil component
filter
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016053398A
Other languages
Japanese (ja)
Other versions
JP6318186B2 (en
Inventor
隆裕 上村
Takahiro Kamimura
隆裕 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2016053398A priority Critical patent/JP6318186B2/en
Publication of JP2017167015A publication Critical patent/JP2017167015A/en
Application granted granted Critical
Publication of JP6318186B2 publication Critical patent/JP6318186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for collecting an oil constituent in a low-temperature liquid gas capable of securely collecting the oil constituent in the low-temperature liquid gas and precisely performing analysis thereafter.SOLUTION: An amount of a low-temperature liquid gas made to circulate through a filter is obtained by making the low-temperature liquid gas circulate with a filter 11 having a plurality of pores being cooled at a temperature of the low-temperature liquid gas, making the filter capture and collect an oil constituent contained in the low-temperature liquid gas in a solid state, and making the low-temperature liquid gas passing through the filter segmented by the pores to be gasified at a downstream side of the filter to measure a flow quantity of the gasified gas.SELECTED DRAWING: Figure 1

Description

本発明は、低温液化ガス中の油成分回収方法に関し、詳しくは、常温常圧下で液体である液化酸素、液化窒素、液化アルゴンなどの各種液化ガス中に含まれている油成分の回収方法に関する。   The present invention relates to a method for recovering an oil component in a low-temperature liquefied gas, and more particularly to a method for recovering an oil component contained in various liquefied gases such as liquefied oxygen, liquefied nitrogen, and liquefied argon that are liquid at normal temperature and pressure. .

有機工業化学や半導体製造の分野では、常温常圧下、例えば25℃、1atmで気体である酸素ガス、窒素ガス、アルゴンガスなどの各種工業ガスの品質管理を行うため、各工業ガス中の不純物の分析が実施されている。同様に、常温常圧下で液体である液化酸素、液化窒素、液化アルゴンなどの各種液化ガスの品質管理も実施する必要がある。前記液化ガスに含まれる不純物には、炭素数が5以上の炭化水素(以下、「油成分」という)も含まれている。したがって、油成分の分析も品質管理や保安管理上必要とされている。   In the field of organic industrial chemistry and semiconductor manufacturing, quality control of various industrial gases such as oxygen gas, nitrogen gas, and argon gas, which are gases at room temperature and normal pressure, for example, 25 ° C. and 1 atm, Analysis is being carried out. Similarly, it is necessary to carry out quality control of various liquefied gases such as liquefied oxygen, liquefied nitrogen, and liquefied argon that are liquid at normal temperature and pressure. The impurities contained in the liquefied gas include hydrocarbons having 5 or more carbon atoms (hereinafter referred to as “oil component”). Therefore, analysis of oil components is also required for quality control and security control.

従来から、ステンレスペール缶などに直接低温液化ガスを回収し、気化後に残渣として缶底に残った油成分を溶媒抽出して分析する方法が一般的に知られているが、外部汚染の影響を受けやすいという難点があった。一方、ガス中の不純物である油成分の測定方法としては、例えば、活性アルミナ、珪藻土、モレキュラーシーブ、活性炭などの無機系吸着剤、ポリマー系吸着剤などの吸着剤が充填された吸着筒に油成分を含むガスを流通させ、油成分を吸着剤に吸着させた後、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスを流通させながら吸着筒を加熱し、前記吸着剤に吸着されている油成分を脱着させ、不活性ガスに同伴された油成分を分析することが知られている(例えば、特許文献1参照。)。   Conventionally, a method for recovering low-temperature liquefied gas directly to a stainless steel pail can and analyzing the oil component remaining on the bottom of the can as a residue after vaporization is generally known. There was a difficulty of being easy to receive. On the other hand, as a method for measuring the oil component that is an impurity in the gas, for example, an adsorption cylinder filled with an adsorbent such as an inorganic adsorbent such as activated alumina, diatomaceous earth, molecular sieve, activated carbon, or a polymer adsorbent is used. After the gas containing the component is circulated and the oil component is adsorbed by the adsorbent, the adsorbing cylinder is heated while the inert gas such as nitrogen gas, helium gas, and argon gas is circulated, and is adsorbed by the adsorbent. It is known to desorb an oil component and analyze the oil component entrained in an inert gas (see, for example, Patent Document 1).

特開2014−62815号公報JP 2014-62815 A

ガス中の油成分の分析は、特許文献1に記載された方法で行うことができるが、液化ガス中の油成分を分析する際には、分析する前に液化ガスを気化させる必要があり、液化ガスを気化させるための装置、例えば蒸発器などの内部に分析対象となる油成分が残留するおそれがあった。このため液化ガス中の油成分濃度を正確に精度よく分析することが困難であった。   Analysis of the oil component in the gas can be performed by the method described in Patent Document 1, but when analyzing the oil component in the liquefied gas, it is necessary to vaporize the liquefied gas before analysis, There is a possibility that an oil component to be analyzed remains in an apparatus for vaporizing the liquefied gas, for example, an evaporator. For this reason, it was difficult to accurately and accurately analyze the oil component concentration in the liquefied gas.

そこで本発明は、低温液化ガス中の油成分を確実に回収することができ、その後の分析も精度よく行うことが可能な低温液化ガス中の油成分回収方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for recovering an oil component in a low-temperature liquefied gas that can reliably recover the oil component in the low-temperature liquefied gas and that can be accurately analyzed thereafter.

上記目的を達成するため、本発明の低温液化ガス中の油成分回収方法は、低温液化ガス中の油成分を分離回収するための低温液化ガス中の油成分回収方法において、複数の細孔を有するフィルタを前記低温液化ガスの温度に冷却した状態で、該フィルタに前記低温液化ガスを流通させ、低温液化ガス中に固体状態で含まれている油成分を前記フィルタに捕捉させて回収するとともに、該フィルタを通過する低温液化ガスを前記細孔で細分化することによってフィルタ下流側で気化させ、気化したガスの流量を測定することによって前記フィルタに流通させた低温液化ガス量を求めることを特徴としている。   In order to achieve the above object, an oil component recovery method in a low-temperature liquefied gas according to the present invention includes a plurality of pores in the oil component recovery method in a low-temperature liquefied gas for separating and recovering an oil component in a low-temperature liquefied gas. In a state where the filter is cooled to the temperature of the low-temperature liquefied gas, the low-temperature liquefied gas is circulated through the filter, and the oil component contained in the solid state in the low-temperature liquefied gas is captured and collected by the filter. The low-temperature liquefied gas passing through the filter is vaporized on the downstream side of the filter by subdividing the pores, and the amount of the low-temperature liquefied gas circulated through the filter is determined by measuring the flow rate of the vaporized gas. It is a feature.

さらに、本発明の低温液化ガス中の油成分回収方法は、前記フィルタが前記細孔を1mm当たり100個から100万個有していること、前記フィルタが焼結金属フィルタであること、前記フィルタが、先端をドーム状に形成した先端ドーム円筒型に形成されていることを特徴としている。 Furthermore, in the method for recovering an oil component in the low-temperature liquefied gas of the present invention, the filter has 100 to 1 million pores per 1 mm 2 , the filter is a sintered metal filter, The filter is formed in a tip dome cylindrical shape having a tip formed in a dome shape.

本発明の低温液化ガス中の油成分回収方法によれば、低温液化ガス温度に冷却したフィルタに低温液化ガスを流通させるので、低温液化ガス中に含まれる固体状の油成分を、そのままの状態でフィルタに確実に捕捉して回収することができる。   According to the oil component recovery method in the low-temperature liquefied gas of the present invention, since the low-temperature liquefied gas is circulated through the filter cooled to the low-temperature liquefied gas temperature, the solid oil component contained in the low-temperature liquefied gas is left as it is. Can be reliably captured and collected by the filter.

本発明の低温液化ガス中の油成分回収方法を実施可能な装置構成の一形態例を示す説明図である。It is explanatory drawing which shows one example of an apparatus structure which can implement the oil component recovery method in the low-temperature liquefied gas of this invention. 金属フィルタの一形状例を示す説明図である。It is explanatory drawing which shows the example of 1 shape of a metal filter.

図1及び図2は、本発明の低温液化ガス中の油成分回収方法を実施可能な装置構成の一形態例を示す説明図である。本形態例に示す油成分回収装置は、複数の細孔を有するフィルタ、例えば金属フィルタ11を内部に装着した油成分回収管12と、該油成分回収管12の入口側に接続した低温液化ガス導入経路13と、油成分回収管12の出口側に接続した気化ガス導出経路14と、低温液化ガス導入経路13に設けられた回収入口弁15と、該回収入口弁15の上流側に接続した予冷経路16と、該予冷経路16から分岐した放出経路17と、該放出経路17に設けられた放出弁18と、前記気化ガス導出経路14に設けられた回収出口弁19及び流量計20とを備えている。前記予冷経路16には、開度調節可能な低温液化ガス容器出口弁21を有する低温液化ガス出口経路22を介して低温液化ガス容器23が接続される。   FIG. 1 and FIG. 2 are explanatory diagrams showing an example of an apparatus configuration capable of implementing the oil component recovery method in the low-temperature liquefied gas of the present invention. The oil component recovery apparatus shown in this embodiment includes a filter having a plurality of pores, for example, an oil component recovery pipe 12 having a metal filter 11 mounted therein, and a low-temperature liquefied gas connected to the inlet side of the oil component recovery pipe 12 An inlet path 13, a vaporized gas outlet path 14 connected to the outlet side of the oil component recovery pipe 12, a recovery inlet valve 15 provided in the low temperature liquefied gas inlet path 13, and an upstream side of the recovery inlet valve 15. A precooling path 16, a discharge path 17 branched from the precooling path 16, a discharge valve 18 provided in the discharge path 17, a recovery outlet valve 19 and a flow meter 20 provided in the vaporized gas outlet path 14. I have. A low temperature liquefied gas container 23 is connected to the precooling path 16 via a low temperature liquefied gas outlet path 22 having a low temperature liquefied gas container outlet valve 21 whose opening degree can be adjusted.

前記金属フィルタ11は、油成分回収管12内を通過する低温液化ガス中の固体状の油成分を捕捉して回収するためのものであり、例えば、直径0.01〜100μmのマイクロメーターレベルの細孔を、1mm当たり100個から100万個程度、均一に有する金属フィルタ、具体例として、焼結金属フィルタを使用することができる。この金属フィルタ11の形状は任意であるが、例えば、図2に示すように、油成分回収管12の内部に突出した状態になる先端をドーム状に形成した先端ドーム円筒型金属フィルタ11aを、支持部材11bにより気密状態で支持したもの使用することができる。このような筒状に形成することにより、金属フィルタ11の面積を拡大することができ、低温液化ガスの処理量を増加させることができる。 The metal filter 11 is for capturing and recovering a solid oil component in the low-temperature liquefied gas passing through the oil component recovery pipe 12, for example, a micrometer level of 0.01 to 100 μm in diameter. A metal filter having about 100 to 1 million pores per mm 2 and a sintered metal filter can be used as a specific example. The shape of the metal filter 11 is arbitrary. For example, as shown in FIG. 2, a tip dome cylindrical metal filter 11a having a dome-shaped tip that protrudes into the oil component recovery pipe 12 is provided. What was supported in the airtight state by the support member 11b can be used. By forming in such a cylindrical shape, the area of the metal filter 11 can be expanded, and the amount of low-temperature liquefied gas treated can be increased.

前記低温液化ガス容器23は、分析対象となる低温液化ガスが貯蔵されている容器であり、各種低温液化ガスを貯蔵可能なものならば、任意の構造のものを使用可能であり、例えば、コールドエバポレーターを用いることができる。前記流量計20は、金属フィルタ11を通過して油成分回収管12から気化ガス導出経路14に導出される際に気化したガスの流量を測定するためのものであり、ガス流量を測定できればよく、一般的な気体用のフローメーターを使用することができる。また、前記各経路や弁は、一般的な低温用配管材料、例えば、ステンレス鋼製のものを使用すればよい。   The low-temperature liquefied gas container 23 is a container in which a low-temperature liquefied gas to be analyzed is stored, and any structure can be used as long as it can store various low-temperature liquefied gases. An evaporator can be used. The flow meter 20 is for measuring the flow rate of gas vaporized when passing through the metal filter 11 and being led out from the oil component recovery pipe 12 to the vaporized gas lead-out path 14, as long as the gas flow rate can be measured. A general gas flow meter can be used. Moreover, the said each path | route and valve should just use the general piping material for low temperature, for example, the thing made from stainless steel.

次に、このように形成した油成分回収装置を使用して低温液化ガス中に固体状態で含まれている油成分を前記金属フィルタ11に捕捉させて回収する方法を説明する。   Next, a method for collecting and recovering the oil component contained in the solid state in the low-temperature liquefied gas by the metal filter 11 using the oil component recovery apparatus thus formed will be described.

まず、外部からの汚染を防ぐため、十分に洗浄した金属フィルタ11を油成分回収管12に装着した後、油成分回収管12に、回収入口弁15及び回収出口弁19を閉じた状態の低温液化ガス導入経路13と気化ガス導出経路14とを接続する。また、低温液化ガス容器出口弁21を閉じた状態の低温液化ガス出口経路22と低温液化ガス導入経路13とを予冷経路16を介して接続し、油成分回収対象となる低温液化ガスを貯蔵した低温液化ガス容器23に油成分回収装置を接続した状態とする。   First, in order to prevent contamination from the outside, a sufficiently cleaned metal filter 11 is attached to the oil component recovery pipe 12, and then the recovery inlet valve 15 and the recovery outlet valve 19 are closed in the oil component recovery pipe 12. The liquefied gas introduction path 13 and the vaporized gas outlet path 14 are connected. Further, the low-temperature liquefied gas outlet path 22 in a state where the low-temperature liquefied gas container outlet valve 21 is closed is connected to the low-temperature liquefied gas introduction path 13 via the pre-cooling path 16 to store the low-temperature liquefied gas to be the oil component recovery target. An oil component recovery device is connected to the low temperature liquefied gas container 23.

次に、放出弁18を開いてから低温液化ガス容器出口弁21を開き、低温液化ガス容器23から流出した低温液化ガスによって低温液化ガス出口経路22と予冷経路16内に存在する大気を追い出すとともに、両経路22,16を低温液化ガス温度まで冷却する。放出経路17から低温液化ガスが流出することを確認することで、両経路22,16の冷却を完了とする。   Next, after opening the discharge valve 18, the low-temperature liquefied gas container outlet valve 21 is opened, and the low-temperature liquefied gas flowing out from the low-temperature liquefied gas container 23 expels the air present in the low-temperature liquefied gas outlet path 22 and the precooling path 16. Both channels 22 and 16 are cooled to the low temperature liquefied gas temperature. By confirming that the low-temperature liquefied gas flows out from the discharge path 17, the cooling of both the paths 22 and 16 is completed.

そして、回収出口弁19を開いてから回収入口弁15を開き、放出弁18を閉じて低温液化ガスを予冷経路16から低温液化ガス導入経路13を通して油成分回収管12に導入する。これにより、低温液化ガス中の油成分は、固体状態を維持したままで金属フィルタ11に捕捉されるとともに、金属フィルタ11の細孔を通過することによって低温液化ガスがミスト状に細分化された状態で気化ガス導出経路14に流出し、外気温状態(マイナス20℃から50℃)で大気圧の気化ガス導出経路14内で気化し、ガス状態で流量計20を通って流量が測定される。このとき、流量計20で測定したガス流量が一定になるように、低温液化ガス容器出口弁21の開度を調節することにより、流量計20で測定した流量と時間とによってガス量を算出することができる。   Then, the recovery outlet valve 19 is opened, the recovery inlet valve 15 is opened, the discharge valve 18 is closed, and the low temperature liquefied gas is introduced from the precooling path 16 through the low temperature liquefied gas introduction path 13 into the oil component recovery pipe 12. As a result, the oil component in the low-temperature liquefied gas is captured by the metal filter 11 while maintaining a solid state, and the low-temperature liquefied gas is fragmented into mist by passing through the pores of the metal filter 11. The gas flows out into the vaporized gas lead-out path 14 in the state, vaporizes in the vaporized gas lead-out path 14 at atmospheric pressure in the outside air temperature state (from minus 20 ° C. to 50 ° C.), and the flow rate is measured through the flow meter 20 in the gas state. . At this time, by adjusting the opening degree of the low-temperature liquefied gas container outlet valve 21 so that the gas flow rate measured by the flow meter 20 is constant, the gas amount is calculated based on the flow rate and time measured by the flow meter 20. be able to.

また、通常は、低温液化ガス容器23から流出する低温液化ガスの圧力は、低温液化ガス容器23の気相部の圧力(ヘッド圧)、貯蔵液化ガス量に応じた圧力を有しているので、低温液化ガス容器出口弁21の開度を調節することにより、適当な流量で油成分回収管12に低温液化ガスを導入することができる。なお、低温液化ガスの圧力が低い際には、液化ガスポンプを利用することもできる。   In general, the pressure of the low-temperature liquefied gas flowing out from the low-temperature liquefied gas container 23 has a pressure corresponding to the pressure (head pressure) of the gas phase portion of the low-temperature liquefied gas container 23 and the amount of stored liquefied gas. The low temperature liquefied gas can be introduced into the oil component recovery pipe 12 at an appropriate flow rate by adjusting the opening degree of the low temperature liquefied gas container outlet valve 21. When the pressure of the low-temperature liquefied gas is low, a liquefied gas pump can be used.

あらかじめ設定された量の低温液化ガスを油成分回収管12に導入したら、低温液化ガス容器出口弁21、回収入口弁15、回収出口弁19の順に閉じる。これにより、低温液化ガス中の油成分を金属フィルタ11に捕捉した状態になる。金属フィルタ11に捕捉した油成分は、適宜な溶媒で金属フィルタ11から油成分を抽出することにより、周知の分析装置を用いて分析することができる。さらに、流量計20で測定した流量、低温液化ガスの導入時間、外気温度、外気圧に基づいて、低温液化ガス量(質量kg又は体積L)が算出できるので、低温液化ガス中の油成分の種類や濃度を正確に求めることができる。   When a predetermined amount of the low-temperature liquefied gas is introduced into the oil component recovery pipe 12, the low-temperature liquefied gas container outlet valve 21, the recovery inlet valve 15, and the recovery outlet valve 19 are closed in this order. As a result, the oil component in the low-temperature liquefied gas is captured by the metal filter 11. The oil component captured by the metal filter 11 can be analyzed using a known analyzer by extracting the oil component from the metal filter 11 with an appropriate solvent. Furthermore, since the amount of low-temperature liquefied gas (mass kg or volume L) can be calculated based on the flow rate measured by the flow meter 20, the introduction time of the low-temperature liquefied gas, the outside air temperature, and the outside pressure, the oil component in the low-temperature liquefied gas can be calculated. The type and concentration can be determined accurately.

このように、あらかじめ洗浄し、低温液化ガスの温度に冷却した金属フィルタ11に低温液化ガスを直接導入するため、外部汚染を生じることがなく、低温液化ガス中で固化した状態になっている油成分を金属フィルタ11で確実に捕捉することができる。また、金属フィルタ11を通過したミスト状の低温液化ガスを気化させてガス状態で流量を測定するので、低温液化ガスの量も正確に算出することができる。   In this way, since the low-temperature liquefied gas is directly introduced into the metal filter 11 that has been washed in advance and cooled to the temperature of the low-temperature liquefied gas, the oil is solidified in the low-temperature liquefied gas without causing external contamination. The component can be reliably captured by the metal filter 11. In addition, since the mist-like low-temperature liquefied gas that has passed through the metal filter 11 is vaporized and the flow rate is measured in a gas state, the amount of the low-temperature liquefied gas can also be accurately calculated.

特に、金属フィルタ11を油成分回収管12内に設けているので、外部からの汚染や結露を防止することができる。また、低温液化ガス中の微量の油成分を回収する際は、金属フィルタ11への液化ガス流通量を増やせばよいだけなので、大きな回収容器は不要となる。さらに、油成分は、金属フィルタ11に吸着した状態で捕捉されているため、低温液化ガスの流れによって金属フィルタ11から脱離することはほとんどなく、金属フィルタ11から油成分を抽出する際には、油成分を溶解可能な少量の溶媒で油成分を抽出することができる。   In particular, since the metal filter 11 is provided in the oil component recovery pipe 12, contamination and condensation from the outside can be prevented. In addition, when collecting a small amount of oil component in the low-temperature liquefied gas, it is only necessary to increase the amount of liquefied gas flowing to the metal filter 11, so that a large collection container is not required. Further, since the oil component is captured while adsorbed on the metal filter 11, the oil component is hardly desorbed from the metal filter 11 due to the flow of the low temperature liquefied gas, and the oil component is extracted from the metal filter 11. The oil component can be extracted with a small amount of solvent capable of dissolving the oil component.

また、複数の細孔を有するフィルタは、低温液化ガス温度に耐えられればよいことから、ステンレス鋼やアルミニウムなどの金属で形成したフィルタ以外にも、フッ素樹脂などの合成樹脂や金属酸化物、炭素などの無機材料で形成したフィルタも使用できる。さらに、フィルタの形状や構造は、油成分回収管12の口径などの条件に応じて適宜設定することができる。   In addition, a filter having a plurality of pores only needs to be able to withstand a low-temperature liquefied gas temperature. Therefore, in addition to a filter formed of a metal such as stainless steel or aluminum, a synthetic resin such as a fluororesin, a metal oxide, or carbon A filter formed of an inorganic material such as can also be used. Furthermore, the shape and structure of the filter can be appropriately set according to conditions such as the diameter of the oil component recovery pipe 12.

図1に示す構成の油成分回収装置を使用して油成分回収実験を行った。分析対象低温液化ガスには、油成分としてn−ヘキサデカンを10mg/Lを含む液化窒素(マイナス196℃)を使用した。油成分回収管12は、長さ150mmの1/4インチのステンレス配管を使用した。金属フィルタ11は、平均直径1μmのマイクロメーターレベルの細孔15aを、1mm当たり約1万個有する焼結金属フィルタを、外径4mm、内径2mm、長さ30mmの先端ドーム円筒状に形成するとともに、外径11.8mm、厚さ1mmの支持部材で支持したものを使用した。 An oil component recovery experiment was performed using the oil component recovery apparatus having the configuration shown in FIG. The low temperature liquefied gas to be analyzed was liquefied nitrogen (minus 196 ° C.) containing 10 mg / L of n-hexadecane as an oil component. As the oil component recovery pipe 12, a 1/4 inch stainless steel pipe having a length of 150 mm was used. As the metal filter 11, a sintered metal filter having about 10,000 micrometer-level pores 15a with an average diameter of 1 μm per 1 mm 2 is formed in a cylindrical shape at the tip dome having an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 30 mm. And what was supported by the supporting member of outer diameter 11.8mm and thickness 1mm was used.

十分に洗浄した金属フィルタ11を装着した油成分回収管12に前述の手順で液化窒素を導入した。液化窒素は、出口側が大気圧で、35℃の流量計20で測定した流量が毎分20Lになるように低温液化ガス容器出口弁21の開度を調節して50分間導入した。このときの液化窒素量は1.4Lとなる。   Liquefied nitrogen was introduced into the oil component recovery pipe 12 equipped with the sufficiently cleaned metal filter 11 by the above-described procedure. The liquefied nitrogen was introduced for 50 minutes by adjusting the opening of the low-temperature liquefied gas container outlet valve 21 so that the flow rate measured by the flow meter 20 at 35 ° C. was 20 L / min. The amount of liquefied nitrogen at this time is 1.4L.

液化窒素の導入を終えた後、油成分回収管12から金属フィルタ11を取り出し、フロン溶媒25mLで金属フィルタ11に捕捉された油成分を抽出し、赤外分光分析計で分析した。その結果、13.8mgの油成分が検出された。n−ヘキサデカンを10mg/Lで含む液化窒素1.4L中の油成分の理論量は14mgであるから、前記油成分回収装置を使用して前記手順で液化窒素中の油成分を回収することにより、98%以上の高回収率で油成分を回収できたことがわかる。   After the introduction of liquefied nitrogen, the metal filter 11 was taken out from the oil component recovery tube 12, and the oil component captured by the metal filter 11 was extracted with 25 mL of a chlorofluorocarbon solvent, and analyzed with an infrared spectrometer. As a result, 13.8 mg of oil component was detected. Since the theoretical amount of oil component in 1.4 L of liquefied nitrogen containing n-hexadecane at 10 mg / L is 14 mg, by recovering the oil component in liquefied nitrogen in the above procedure using the oil component recovery device. It can be seen that the oil component was recovered at a high recovery rate of 98% or more.

なお、従来方法として、前記同様に、n−ヘキサデカンを10mg/Lで含む液化窒素を2Lのステンレスペール缶に投入して大気環境下で液化窒素を気化させた後、ステンレスペール缶の内側全てに付着した油成分を50mlのフロン溶媒で抽出し、同様にして赤外分光分析計で分析した。その結果、17mgの油成分が検出された。これは、外部汚染の影響で油成分が多く検出されたものと思われる。また、ステンレスペール缶内の液化窒素を完全に気化させるまで6時間程度を必要とした。   As a conventional method, as described above, liquefied nitrogen containing 10 mg / L of n-hexadecane is put into a 2 L stainless steel pail can to vaporize the liquefied nitrogen in an atmospheric environment, and then all inside the stainless steel pail can. The adhering oil component was extracted with 50 ml of chlorofluorocarbon solvent and similarly analyzed with an infrared spectrometer. As a result, 17 mg of oil component was detected. This seems to be because many oil components were detected due to the influence of external contamination. Further, it took about 6 hours to completely vaporize the liquefied nitrogen in the stainless steel pail.

あらかじめ15mgのn−ヘキサデカンを塗布した金属フィルタ11を油成分回収管12に装着し、油成分を含まない液化窒素(油成分濃度0.1mg/L未満)を、前記同様に、毎分20Lで50分間導入した。液化窒素導入後に金属フィルタ11を取り出し、フロン溶媒25mLで金属フィルタ11に捕捉された油成分を抽出し、赤外分光分析計で分析した結果、14.9mgの油成分が検出された。したがって、金属フィルタに塗布された油成分が99%以上保持されていることが確認された。一方、ステンレスペール缶の内面に同量のn−ヘキサデカンを塗布して液化窒素1.4Lを投入し、前記同様にして液化窒素気化後に50mlのフロン溶媒で抽出した油成分を分析したところ、10mgしか油成分が検出できなかった。これは、液化窒素の気化に伴って油成分の一部が一緒に蒸発してしまったものと思われる。   A metal filter 11 previously coated with 15 mg of n-hexadecane is attached to the oil component recovery tube 12, and liquefied nitrogen containing no oil component (oil component concentration of less than 0.1 mg / L) is applied at a rate of 20 L / min. Introduced for 50 minutes. After introducing the liquefied nitrogen, the metal filter 11 was taken out, and the oil component captured by the metal filter 11 was extracted with 25 mL of a chlorofluorocarbon solvent and analyzed with an infrared spectrometer. As a result, 14.9 mg of the oil component was detected. Therefore, it was confirmed that 99% or more of the oil component applied to the metal filter was retained. On the other hand, the same amount of n-hexadecane was applied to the inner surface of the stainless steel pail, 1.4 L of liquefied nitrogen was added, and the oil component extracted with 50 ml of chlorofluorocarbon solvent after liquefied nitrogen vaporization was analyzed in the same manner as above. Only the oil component could be detected. This is probably because part of the oil component evaporated together with the vaporization of liquefied nitrogen.

11…金属フィルタ、11a…先端ドーム円筒型金属フィルタ、11b…支持部材、12…油成分回収管、13…低温液化ガス導入経路、14…気化ガス導出経路、15…回収入口弁、16…予冷経路、17…放出経路、18…放出弁、19…回収出口弁、20…流量計、21…低温液化ガス容器出口弁、22…低温液化ガス出口経路、23…低温液化ガス容器   DESCRIPTION OF SYMBOLS 11 ... Metal filter, 11a ... Tip dome cylindrical metal filter, 11b ... Support member, 12 ... Oil component recovery pipe, 13 ... Low temperature liquefied gas introduction path, 14 ... Vaporized gas outlet path, 15 ... Recovery inlet valve, 16 ... Pre-cooling Path, 17 ... discharge path, 18 ... discharge valve, 19 ... recovery outlet valve, 20 ... flow meter, 21 ... low temperature liquefied gas container outlet valve, 22 ... low temperature liquefied gas outlet path, 23 ... low temperature liquefied gas container

Claims (4)

低温液化ガス中の油成分を分離回収するための低温液化ガス中の油成分回収方法において、複数の細孔を有するフィルタを前記低温液化ガスの温度に冷却した状態で、該フィルタに前記低温液化ガスを流通させ、低温液化ガス中に固体状態で含まれている油成分を前記フィルタに捕捉させて回収するとともに、該フィルタを通過する低温液化ガスを前記細孔で細分化することによってフィルタ下流側で気化させ、気化したガスの流量を測定することによって前記フィルタに流通させた低温液化ガス量を求めることを特徴とする低温液化ガス中の油成分回収方法。   In the oil component recovery method in the low temperature liquefied gas for separating and recovering the oil component in the low temperature liquefied gas, the filter having a plurality of pores is cooled to the temperature of the low temperature liquefied gas, and the low temperature liquefaction is applied to the filter. The gas is circulated, and the oil component contained in the low-temperature liquefied gas in a solid state is captured and collected by the filter, and the low-temperature liquefied gas passing through the filter is subdivided by the pores to downstream the filter. A method for recovering an oil component in a low-temperature liquefied gas, characterized in that the amount of the low-temperature liquefied gas circulated through the filter is determined by measuring the flow rate of the vaporized gas. 前記フィルタは、前記細孔を1mm当たり100個から100万個有していることを特徴とする請求項1記載の低温液化ガス中の油成分回収方法。 2. The oil component recovery method in low-temperature liquefied gas according to claim 1, wherein the filter has 100 to 1 million pores per 1 mm 2 . 前記フィルタは、焼結金属フィルタであることを特徴とする請求項1又は2記載の低温液化ガス中の油成分回収方法。   3. The oil component recovery method in low-temperature liquefied gas according to claim 1, wherein the filter is a sintered metal filter. 前記フィルタは、先端をドーム状に形成した先端ドーム円筒型に形成されていることを特徴とする請求項1乃至3のいずれか1項記載の低温液化ガス中の油成分回収方法。   4. The method for recovering an oil component in low-temperature liquefied gas according to claim 1, wherein the filter is formed in a tip dome cylindrical shape having a tip formed in a dome shape.
JP2016053398A 2016-03-17 2016-03-17 Oil component recovery method in low-temperature liquefied gas Active JP6318186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053398A JP6318186B2 (en) 2016-03-17 2016-03-17 Oil component recovery method in low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053398A JP6318186B2 (en) 2016-03-17 2016-03-17 Oil component recovery method in low-temperature liquefied gas

Publications (2)

Publication Number Publication Date
JP2017167015A true JP2017167015A (en) 2017-09-21
JP6318186B2 JP6318186B2 (en) 2018-04-25

Family

ID=59913828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053398A Active JP6318186B2 (en) 2016-03-17 2016-03-17 Oil component recovery method in low-temperature liquefied gas

Country Status (1)

Country Link
JP (1) JP6318186B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913939Y1 (en) * 1970-02-06 1974-04-06
JPS5044146Y1 (en) * 1969-06-30 1975-12-16
JPH0471635A (en) * 1990-07-10 1992-03-06 Taiyo Sanso Co Ltd Feeder for low-temperature liquefied gas of low particle content
JPH05206527A (en) * 1991-08-20 1993-08-13 Taiyo Sanso Co Ltd Dehydrating method for cryo-liqefied gas
US5474671A (en) * 1994-04-11 1995-12-12 Phillips Petroleum Company Process for removing oil from liquefied petroleum gas
JPH08281004A (en) * 1995-04-10 1996-10-29 I H I Plantec:Kk Device for removing lubricant in liquefied gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044146Y1 (en) * 1969-06-30 1975-12-16
JPS4913939Y1 (en) * 1970-02-06 1974-04-06
JPH0471635A (en) * 1990-07-10 1992-03-06 Taiyo Sanso Co Ltd Feeder for low-temperature liquefied gas of low particle content
JPH05206527A (en) * 1991-08-20 1993-08-13 Taiyo Sanso Co Ltd Dehydrating method for cryo-liqefied gas
US5474671A (en) * 1994-04-11 1995-12-12 Phillips Petroleum Company Process for removing oil from liquefied petroleum gas
JPH08281004A (en) * 1995-04-10 1996-10-29 I H I Plantec:Kk Device for removing lubricant in liquefied gas

Also Published As

Publication number Publication date
JP6318186B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5202836B2 (en) Xenon recovery system and recovery device
CN103499662B (en) Sampling analysis device and sampling analysis method for atmosphere volatile organic compounds
JP2021501880A (en) High-speed quasi-ambient temperature multicapillary column preconcentration system for volatile chemical analysis by gas chromatography
WO2014160208A1 (en) Devices, systems and methods for analyzing fluid streams
JP2009099501A (en) Gas recovery device and its method
JP4998879B2 (en) Hydrogen isotope separation and enrichment method
KR20000062311A (en) Method for purifying a cryogenic fluid by filtration and adsorption
LT6321B (en) Method and device for detection of elemental gaseous mercury in air or other gases
JP6318186B2 (en) Oil component recovery method in low-temperature liquefied gas
JP7019726B2 (en) Analysis method for trace pollutants in cryogenic liquids
JP6765117B2 (en) Pretreatment equipment for gas analysis and pretreatment method for gas analysis
JPH02298302A (en) Process for separating condensable vapor from particles in highly compressed gas
EP3176578B1 (en) Preprocessing apparatus and method for gas analysis
US20160091245A1 (en) Apparatus and method for purifying gases and method of regenerating the same
CN109323909B (en) Gas automatic separation system for inertness in small-gas-volume environment sample
JP3864395B2 (en) Method for measuring tristable oxygen isotope ratio in air or dissolved gas and O2 isolation device used therefor
JP2010036079A (en) Washing system
Palonen et al. Molecular sieves in 14CO2 sampling and handling
JP4019152B2 (en) Trace hydrogen molecule and hydrogen isotope molecular separation analyzer
JP4100561B2 (en) Rapid measurement apparatus and method for semi-volatile organic compounds in exhaust gas
Stehr et al. Collection and analysis of atmospheric ozone samples
WO2018154512A1 (en) Argon recycling system for an inductively coupled plasma mass spectrometer
US11796514B2 (en) Apparatuses and methods involving extraction of heavy rare gases
Joshi et al. RPC gas recovery by open loop method
JPH05288654A (en) Apparatus and method for sampling concentration of minute amount of dissolved gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6318186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250