JP2017166992A - Simulation device and program - Google Patents

Simulation device and program Download PDF

Info

Publication number
JP2017166992A
JP2017166992A JP2016052739A JP2016052739A JP2017166992A JP 2017166992 A JP2017166992 A JP 2017166992A JP 2016052739 A JP2016052739 A JP 2016052739A JP 2016052739 A JP2016052739 A JP 2016052739A JP 2017166992 A JP2017166992 A JP 2017166992A
Authority
JP
Japan
Prior art keywords
wave
propagation
bending
amplitude
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016052739A
Other languages
Japanese (ja)
Other versions
JP6664690B2 (en
Inventor
幸人 中野
Yukihito Nakano
幸人 中野
雄一 松村
Yuichi Matsumura
雄一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Toyota Central R&D Labs Inc
Original Assignee
Gifu University NUC
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, Toyota Central R&D Labs Inc filed Critical Gifu University NUC
Priority to JP2016052739A priority Critical patent/JP6664690B2/en
Publication of JP2017166992A publication Critical patent/JP2017166992A/en
Application granted granted Critical
Publication of JP6664690B2 publication Critical patent/JP6664690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a frequency response function for each component of wave amplitude.SOLUTION: A simulation device of the present invention calculates, as response to an inputted amplitude to a three-dimensional beam structure, a wave amplitude vector comprising each component of a longitudinal wave forward propagation wave in a direction x, a longitudinal wave backward propagation wave in the direction x, a torsion forward propagation wave, a torsion backward propagation wave, a bending forward propagation wave in a direction y, a bending forward proximity wave in the direction y, a bending backward propagation wave in the direction y, a bending backward proximity wave in the direction y, a bending forward propagation wave in a direction z, a bending forward proximity wave in the direction z, a bending backward propagation wave in the direction z, and a bending backward proximity wave in the direction z.SELECTED DRAWING: Figure 2

Description

本発明は、シミュレーション装置及びプログラムに係り、特に、3次元はり構造への入力振幅に対する応答としての波動振幅を計算するシミュレーション装置及びプログラムに関する。   The present invention relates to a simulation apparatus and a program, and more particularly to a simulation apparatus and a program for calculating a wave amplitude as a response to an input amplitude to a three-dimensional beam structure.

従来より、数値解析によって周波数応答関数を求める手法として、質量行列、剛性行列を利用した2つの手法が知られている(非特許文献1)。1つ目の手法は、直接法と呼ばれ、質量行列と剛性行列とを組み合わせた行列の逆行列を直接求めることにより、周波数応答関数が求まる。もうひとつの手法は、理論モード解析と呼ばれ、質量行列と剛性行列とを組み合わせた行列を固有値解析にかけることにより、モード特性を求め、各モードの応答の重ね合わせで周波数応答関数を求める手法である。この手法では周波数応答関数における各モードの寄与を評価することが可能である。   2. Description of the Related Art Conventionally, two methods using a mass matrix and a stiffness matrix are known as methods for obtaining a frequency response function by numerical analysis (Non-Patent Document 1). The first method is called a direct method, and a frequency response function is obtained by directly obtaining an inverse matrix of a combination of a mass matrix and a stiffness matrix. The other method, called theoretical mode analysis, is a method that obtains mode characteristics by applying a matrix that combines a mass matrix and stiffness matrix to eigenvalue analysis, and obtains a frequency response function by superimposing the responses of each mode. It is. In this method, it is possible to evaluate the contribution of each mode in the frequency response function.

また、分布定数系モデルで複雑な構造物の波動伝播解析を実施している事例として、宇宙構造物を対象にした時系列の波動伝播数値解析の事例が知られている(非特許文献2)。   In addition, as an example of conducting a wave propagation analysis of a complex structure using a distributed parameter system model, a case of a time series wave propagation numerical analysis targeting a space structure is known (Non-patent Document 2). .

長松昭男、「モード解析入門」、コロナ社、1993年.Akio Nagamatsu, “Introduction to Mode Analysis”, Corona, 1993. 西田明美、「3次元フレーム構造物の波動伝播特性に関する研究:ティモシェンコ梁理論の導入」、構造工学論文集B、Vol.52B、pp.119-124、日本建築学会、2006年Akimi Nishida, “Study on Wave Propagation Characteristics of 3D Frame Structures: Introduction of Tymoshenko Beam Theory”, Structural Engineering Papers B, Vol. 52B, pp.119-124, Architectural Institute of Japan, 2006

上記非特許文献1の周波数応答関数を求める解析技術では、振動を構成している構造物内部の各波動の伝播を物理的に考慮しておらず、波動伝播を考慮しない別の物理モデル(離散系モデル)から周波数応答関数を求めている。   In the analysis technique for obtaining the frequency response function of Non-Patent Document 1, the propagation of each wave inside the structure constituting the vibration is not physically considered, and another physical model that does not consider the wave propagation (discrete) The frequency response function is obtained from the system model.

また、上記非特許文献2に記載の、波動伝播に関する研究・技術開発では、衝撃荷重負荷時の時系列での波動伝播解析が主であり、周波数応答関数などの定常状態での波動伝播の扱いに関する研究事例はない。   In the research and technology development related to wave propagation described in Non-Patent Document 2 above, wave propagation analysis in time series when impact load is applied is the main, and handling of wave propagation in steady state such as frequency response function is handled. There are no research cases on.

このように、従来法のモード解析や周波数応答関数から波動伝播寄与を求めることができない。構造物の波動伝播寄与を求めるには別の手法がいる。   Thus, the wave propagation contribution cannot be obtained from the conventional mode analysis or frequency response function. There is another method to determine the wave propagation contribution of a structure.

本発明は、上記の事情を鑑みてなされたもので、波動振幅の成分別に周波数応答関数を求めることができるシミュレーション装置及びプログラムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a simulation apparatus and a program capable of obtaining a frequency response function for each wave amplitude component.

上記の目的を達成するために本発明に係るシミュレーション装置は、複数のはり要素が結合した3次元はり構造への入力振幅に対する応答としての波動振幅を計算するシミュレーション装置であって、入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0と、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、各成分の伝播に伴った位相の変化を表す伝播行列Dとに基づいて、以下の式に従って、応答としての波動振幅を表す、各成分の波動振幅ベクトルaを計算する計算手段を含んで構成されている。 In order to achieve the above object, a simulation apparatus according to the present invention is a simulation apparatus that calculates a wave amplitude as a response to an input amplitude to a three-dimensional beam structure in which a plurality of beam elements are coupled, and represents the input amplitude. , Longitudinal direction forward propagation wave in the x direction which is the axial direction of the beam element, longitudinal direction backward propagation wave in the x direction, torsional forward propagation wave, torsional backward propagation wave, bending forward propagation wave in the y direction, bending forward proximity in the y direction Wave, y-direction bending backward propagation wave, y-direction bending backward propagation wave, z-direction bending forward propagation wave, z-direction bending forward propagation wave, z-direction bending backward propagation wave, and z-direction bending backward propagation wave Based on a wave amplitude vector a 0 composed of each component, a scattering matrix S representing the transmissivity of the discontinuous part of the three-dimensional beam structure, and a propagation matrix D representing a phase change accompanying the propagation of each component. And the following formula I represents the wave amplitude as a response, is configured to include a calculating means for calculating wave amplitude vector a of each component.

ただし、Iは、単位行列である。 Here, I is a unit matrix.

本発明に係るプログラムは、複数のはり要素が結合した3次元はり構造への入力振幅に対する応答としての波動振幅を計算するためのプログラムであって、コンピュータを、入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0と、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、各成分の伝播に伴った位相の変化を表す伝播行列Dとに基づいて、上記の式に従って、応答としての波動振幅を表す、各成分の波動振幅ベクトルaを計算する計算手段として機能させるためのプログラムである。 A program according to the present invention is a program for calculating a wave amplitude as a response to an input amplitude to a three-dimensional beam structure in which a plurality of beam elements are combined, and the computer represents a beam element axis representing the input amplitude. X direction longitudinal wave forward propagation wave, x direction longitudinal wave backward propagation wave, torsional forward propagation wave, torsional backward propagation wave, y direction bending forward propagation wave, y direction bending forward proximity wave, y direction It consists of bending backward propagation wave, bending backward propagation wave in y direction, bending forward propagation wave in z direction, bending forward proximity wave in z direction, bending backward propagation wave in z direction, and bending backward propagation wave in z direction. Based on the wave amplitude vector a 0 , the scattering matrix S representing the transmissivity of the discontinuous portion of the three-dimensional beam structure, and the propagation matrix D representing the phase change accompanying the propagation of each component, the above formula According to the wave as a response Represents the width, a program to function as a calculating means for calculating wave amplitude vector a of each component.

本発明によれば、計算手段が、入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0と、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、各成分の伝播に伴った位相の変化を表す伝播行列Dとに基づいて、上記の式に従って、応答としての波動振幅を表す、各成分の波動振幅ベクトルaを計算する。 According to the present invention, the calculating means represents the input amplitude, the longitudinal wave forward propagation wave in the x direction that is the axial direction of the beam element, the longitudinal wave backward propagation wave in the x direction, the torsional forward propagation wave, the torsional backward propagation wave, bending forward propagation wave in y direction, bending forward proximity wave in y direction, bending backward propagation wave in y direction, bending backward propagation wave in y direction, bending forward propagation wave in z direction, bending forward propagation wave in z direction, z direction Wave bending vector a 0 composed of the components of the bending backward propagation wave and the bending backward proximity wave in the z direction, the scattering matrix S representing the transmissivity of the discontinuous portion of the three-dimensional beam structure, and the propagation of each component On the basis of the propagation matrix D representing the phase change accompanying the above, the wave amplitude vector a of each component representing the wave amplitude as a response is calculated according to the above formula.

このように、3次元はり構造への入力振幅に対する応答として、x方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルを計算することにより、波動振幅の成分別に周波数応答関数を求めることができる。   As described above, as a response to the input amplitude to the three-dimensional beam structure, the longitudinal wave forward propagation wave in the x direction, the longitudinal wave backward propagation wave in the x direction, the torsional forward propagation wave, the torsional backward propagation wave, and the bending forward propagation in the y direction. Wave, bending forward proximity wave in y direction, bending backward propagation wave in y direction, bending backward proximity wave in y direction, bending forward propagation wave in z direction, bending forward proximity wave in z direction, bending backward propagation wave in z direction, By calculating a wave amplitude vector composed of each component of the bending backward receding wave in the z direction, a frequency response function can be obtained for each wave amplitude component.

上記の計算手段は、周波数毎に、各成分の波動振幅ベクトルaを計算し、各成分について、周波数応答関数を求めることができる。   The calculation means can calculate the wave amplitude vector a of each component for each frequency, and obtain a frequency response function for each component.

上記の計算手段は、前記周波数毎に、前記複数のはり要素の各々について、前記はり要素の縦弾性係数、体積質量密度、横弾性係数、断面二次極モーメント、ねじり定数、及び断面積に基づいて、x方向の縦波の波数kL、ねじり波の波数kT、y方向の曲げ波の波数kBy、及びz方向の曲げ波の波数kBzを計算する波数計算手段と、前記周波数毎に、前記複数のはり要素の各々について、前記x方向の縦波の波数kL、前記ねじり波の波数kT、前記y方向の曲げ波の波数kBy、及び前記z方向の曲げ波の波数kBzに基づいて、前進伝播波成分及び後退伝播波成分の各々についての変位波動振幅変換行列Ψ1、Ψ2と、前進波及び後退波の各々についての伝播距離xによる位相変化を表す伝播行列G1(x)、G2(x)と、前進伝播波成分及び後退伝播波成分の各々についての内力波動振幅変換行列Φ1、Φ2とを計算する変換行列伝播行列計算手段と、前記はり要素の各々について、前記はり要素の全体座標系の基底ベクトルei及び要素座標系の基底ベクトルEiに基づいて、不連続部において結合している前記はり要素の各々についての座標変換行列C(i)を計算する座標変換行列計算手段と、前記はり要素の各々について、前記はり要素の前進伝播波の、前記不連続部への入射方向d(i)を計算する入射方向計算手段と、前記周波数毎に、前記はり要素の各々についての、前記変位波動振幅変換行列Ψ1、Ψ2と、前記伝播行列G1(x)、G2(x)と、前記内力波動振幅変換行列Φ1、Φ2と、前記座標変換行列C(i)と、前記入射方向d(i)とに基づいて、前記はり要素の各々についての反射係数rと、不連続部において結合している前記はり要素のペアの各々について透過係数tとを計算する係数計算手段と、前記周波数毎に、前記はり要素の各々についての反射係数rと、前記はり要素のペアの各々について透過係数tとに基づいて、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sを計算する散乱行列計算手段と、前記周波数毎に、前記はり要素の各々についての前記伝播行列G1(x)、G2(x)と、前記はり要素の各々の導波路長さL(i)とに基づいて、前記はり要素の各々の位相情報を表す伝播行列Dを計算する伝播行列計算手段と、前記周波数毎に、前記波動振幅ベクトルa0と、前記散乱行列Sと、前記伝播行列Dとに基づいて、各成分の波動振幅ベクトルaを計算し、各成分について、周波数応答関数を求める周波数応答関数計算手段とを含むことができる。 The calculation means is based on the longitudinal elastic modulus, volume mass density, transverse elastic modulus, cross-sectional secondary pole moment, torsional constant, and cross-sectional area of the beam element for each of the plurality of beam elements for each frequency. A wave number calculating means for calculating the wave number k L of the longitudinal wave in the x direction, the wave number k T of the torsion wave, the wave number k By of the bending wave in the y direction, and the wave number k Bz of the bending wave in the z direction; In addition, for each of the plurality of beam elements, the wave number k L of the longitudinal wave in the x direction, the wave number k T of the torsion wave, the wave number k By of the bending wave in the y direction, and the wave number of the bending wave in the z direction Based on k Bz , a displacement wave amplitude conversion matrix Ψ 1 , Ψ 2 for each of the forward propagation wave component and the backward propagation wave component, and a propagation matrix representing a phase change according to the propagation distance x for each of the forward wave and the backward wave G 1 and (x), G 2 (x ), the forward propagation NamiNaru And internal forces wave amplitude transformation matrix [Phi 1 for each of backward propagating wave components, and the transformation matrix propagation matrix calculation means for calculating the [Phi 2, for each of the beam element, the base vector of the entire coordinate system ei of the beam element and A coordinate transformation matrix calculation means for calculating a coordinate transformation matrix C (i) for each of the beam elements connected at the discontinuity based on the basis vector Ei of the element coordinate system, and for each of the beam elements, An incident direction calculating means for calculating an incident direction d (i) of the forward propagation wave of the beam element to the discontinuity, and the displacement wave amplitude conversion matrix Ψ for each of the beam elements for each frequency. 1 and Ψ 2 , the propagation matrices G 1 (x) and G 2 (x), the internal force wave amplitude conversion matrices Φ 1 and Φ 2 , the coordinate conversion matrix C (i), and the incident direction d ( i) and each of the beam elements A coefficient calculation means for calculating a reflection coefficient r for each of the beam elements coupled in the discontinuity, and a coefficient of coefficient calculation means for calculating the transmission coefficient t for each pair of beam elements, and for each frequency, the reflection coefficient r for each of the beam elements. And a scattering matrix calculation means for calculating a scattering matrix S representing transmission reflectivity of the discontinuous part of the three-dimensional beam structure based on a transmission coefficient t for each pair of beam elements, and for each frequency, Based on the propagation matrices G 1 (x), G 2 (x) for each of the beam elements and the waveguide length L (i) of each of the beam elements, the phase information of each of the beam elements A propagation matrix calculating means for calculating a propagation matrix D representing the wave amplitude vector a of each component based on the wave amplitude vector a 0 , the scattering matrix S, and the propagation matrix D for each frequency. Calculate and for each component It may include a frequency response function computation means for obtaining the wave number response function.

以上説明したように、本発明のシミュレーション装置及びプログラムによれば、3次元はり構造への入力振幅に対する応答として、x方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルを計算することにより、波動振幅の成分別に周波数応答関数を求めることができる、という効果が得られる。   As described above, according to the simulation apparatus and program of the present invention, as a response to the input amplitude to the three-dimensional beam structure, a longitudinal forward propagation wave in the x direction, a longitudinal backward propagation wave in the x direction, and a torsional forward propagation. Wave, torsional backward propagation wave, bending forward propagation wave in y direction, bending forward proximity wave in y direction, bending backward propagation wave in y direction, bending backward propagation wave in y direction, bending forward propagation wave in z direction, z direction By calculating a wave amplitude vector composed of each component of the bending forward proximity wave, the bending backward propagation wave in the z direction, and the bending backward proximity wave in the z direction, a frequency response function can be obtained for each wave amplitude component. An effect is obtained.

本発明の実施の形態に係るシミュレーション装置を示すブロック図である。It is a block diagram which shows the simulation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るシミュレーション装置のシミュレーション処理ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the simulation process routine of the simulation apparatus which concerns on embodiment of this invention. 3次元はり構造の一例を示す図である。It is a figure which shows an example of a three-dimensional beam structure. 周波数応答関数の一例を示す図である。It is a figure which shows an example of a frequency response function. 周波数応答関数の一例を示す図である。It is a figure which shows an example of a frequency response function.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<本発明の実施の形態の概要>
透過・反射係数と形状情報(導波路長さ等)と波動振幅とでレイトレースモデルと呼ばれるモデルを構成できる。このモデルは波動が構造物の不連続部から別の不連続部まで伝播する際の伝播前後の波動振幅の関係を数値的に記述したモデルである。入力が1Nの場合の波動振幅を計算し、波動伝播が無限回起きた時点のある任意位置での各種の波動振幅を個別にみることにより、周波数応答関数における各種波動振幅寄与を評価する。
<Outline of Embodiment of the Present Invention>
A model called a ray trace model can be configured by the transmission / reflection coefficient, shape information (waveguide length, etc.), and wave amplitude. This model is a model that numerically describes the relationship between the wave amplitude before and after propagation when a wave propagates from one discontinuous part of a structure to another discontinuous part. The wave amplitude when the input is 1N is calculated, and the various wave amplitude contributions in the frequency response function are evaluated by individually looking at the various wave amplitudes at an arbitrary position where the wave propagation has occurred infinitely.

<本発明の実施の形態の原理>
次に、波動伝播による波動振幅解析の原理について説明する。
<Principle of Embodiment of the Present Invention>
Next, the principle of wave amplitude analysis by wave propagation will be described.

<3次元はり要素における波動振幅表現>
まず、3次元のはり要素における波動理論を整理する。縦波、ねじり波、曲げ波についての波動振幅と変位および内力の関係を整理し、透過・反射係数の算出に必要な波動振幅から変位および内力への変換行列を導出する。
<Wave amplitude expression in 3D beam element>
First, the wave theory in the three-dimensional beam element is organized. The relationship between wave amplitude, displacement, and internal force for longitudinal waves, torsional waves, and bending waves is organized, and a conversion matrix from wave amplitudes to displacements and internal forces necessary for calculating transmission and reflection coefficients is derived.

<縦波についての波動理論>
はりを伝播する縦波についての運動方程式は次式となる。ここでρは体積質量密度[kg/m3]、Aは断面積[m2]、Eは縦弾性係数[N/m2]を示す。
<Wave theory for longitudinal waves>
The equation of motion for the longitudinal wave propagating through the beam is as follows. Here, ρ represents a volume mass density [kg / m 3 ], A represents a cross-sectional area [m 2 ], and E represents a longitudinal elastic modulus [N / m 2 ].

上式の運動方程式の一般解は、次式の通りである。   The general solution of the above equation of motion is:

ここで、a1Lはxの正の方向へ伝播する前進伝播波の波動振幅、a2Lはxの負の方向へ伝播する後退伝播波の波動振幅を表す。また、内力F(x)は、次式より求まる。 Here, a 1L represents the wave amplitude of the forward propagation wave propagating in the positive direction of x, and a 2L represents the wave amplitude of the backward propagation wave propagating in the negative direction of x. Further, the internal force F (x) is obtained from the following equation.

kLは、縦波の波数[rad/m]であり、次式で定義される。 k L is the wave number [rad / m] of the longitudinal wave, and is defined by the following equation.

<ねじり波についての波動理論>
はり要素の軸方向をx軸とし、断面のx軸周りの変位をs(x,t)とする。また、ねじり波伝播のねじりモーメントをh(x,t)とする。ここでGは横弾性係数[N/m2]、IPは断面二次極モーメント[m4]、Jはねじり定数を示す。線形振動領域では、断面変形が小さく、ねじり波についての運動方程式は次式で表される。
<Wave theory for torsional waves>
The axial direction of the beam element is the x-axis, and the displacement around the x-axis of the cross section is s (x, t). Also, let h (x, t) be a torsional moment for torsional wave propagation. Here, G is the transverse elastic modulus [N / m 2 ], IP is the sectional secondary pole moment [m 4 ], and J is the torsional constant. In the linear vibration region, the sectional deformation is small, and the equation of motion for the torsional wave is expressed by the following equation.

上式の運動方程式の一般解は、次式の通りである。   The general solution of the above equation of motion is:

また、内力H(x)は、次式より求まる。   Further, the internal force H (x) is obtained from the following equation.

ここで、a1Tはxの正の方向へ伝播するねじり前進伝播波の振幅、a2Tはxの負の方向へ伝播するねじり後退伝播波の振幅を表す。このとき、kTはねじり波の波数[rad/m]である。 Here, a 1T represents the amplitude of the torsional forward propagation wave propagating in the positive x direction, and a 2T represents the amplitude of the torsional backward propagation wave propagating in the negative x direction. At this time, k T is the wave number [rad / m] of the torsional wave.

<曲げ波についての波動理論>
曲げ波に関する運動方程式は次式で表すことができる。
<Wave theory for bending waves>
The equation of motion for bending waves can be expressed as:

ここで、Iは断面二次極モーメント[m4]である。本式の運動方程式の解は、次式で得られる。 Here, I is the cross-sectional secondary pole moment [m 4 ]. The solution of the equation of motion of this formula is obtained by the following formula.

ここで、a1Pは曲げ前進伝播波の振幅、a2Pは曲げ後退伝播波の振幅、a1Nは曲げ前進近接波の振幅、a2Nは曲げ後退近接波の振幅を表す。ここで、曲げ波の波数kBは次式の通りである。 Here, a 1P represents the amplitude of the bending forward propagation wave, a 2P represents the amplitude of the bending backward propagation wave, a 1N represents the amplitude of the bending forward proximity wave, and a 2N represents the amplitude of the bending backward propagation wave. Here, the wave number k B of the bending wave is as follows.

このとき、たわみ角θ(x,t)とたわみv(x,t)との関係は次式である。   At this time, the relationship between the deflection angle θ (x, t) and the deflection v (x, t) is as follows.

また、モーメントm(x,t)とせん断力w(x,t)は、それぞれ次式で求まる。   Further, the moment m (x, t) and the shearing force w (x, t) are obtained by the following equations, respectively.

<波動振幅変換行列>
はりの反射・透過係数を求める際に、はりの変位、内力を波動振幅で表すための波動振幅変換行列が必要である。次に、波動振幅変換行列の定義を述べる。
<Wave amplitude conversion matrix>
When calculating the reflection / transmission coefficient of a beam, a wave amplitude conversion matrix for expressing the displacement and internal force of the beam by the wave amplitude is required. Next, the definition of the wave amplitude conversion matrix will be described.

まず、波動振幅ベクトルの前進伝播波成分a1および後退伝播波成分a2を次式の通り定義する。 First, the forward propagation wave component a 1 and the backward propagation wave component a 2 of the wave amplitude vector are defined as follows:

縦波による変位の一般解である式(2)、ねじり波による変位の一般解である式(6)、曲げ波についての変位の一般解である式(10)、式(12)を、前進波a1による変位成分および後退波a2による変位成分に分ける。縦波の変位をU1、U2、 y軸方向の曲げ波のたわみをV1y、V2y、z軸方向の曲げ波のたわみをV1z、V2z、ねじり波の変位をS1、S2、y軸方向のたわみを角Θ1y、Θ2y、z軸方向のたわみ角をΘ1z、Θ2zとする。ここで、変位の一般解についてのベクトルをU、前進波および後退波による変位ベクトルをU1、U2として次式で定義する。 Forward formula (2), which is a general solution of displacement due to longitudinal waves, formula (6), which is a general solution of displacement due to torsional waves, and equations (10) and (12), which are general solutions of displacement for bending waves It is divided into a displacement component due to the wave a 1 and a displacement component due to the backward wave a 2 . Longitudinal wave displacement U 1 , U 2 , y-axis bending wave deflection V 1y , V 2y , z-axis bending wave deflection V 1z , V 2z , torsion wave displacement S 1 , S 2. Deflections in the y-axis direction are angles Θ 1y and Θ 2y , and deflection angles in the z-axis direction are Θ 1z and Θ 2z . Here, a vector for a general solution of displacement is defined as U, and displacement vectors due to forward and backward waves are defined as U 1 and U 2 by the following equations.

これらの定義より、式(2)、式(6)、式(10)、式(12)を用いて、波動振幅の関係をまとめると、次式で表すことができる。   From these definitions, the relationship between the wave amplitudes can be expressed by the following equation using equations (2), (6), (10), and (12).

このとき、Ψ1、 Ψ2はそれぞれ波動振幅の前進伝播波成分および後退伝播波成分についての変位-波動振幅変換行列であり、それぞれ次の2つの式で表すことができる。 At this time, Ψ 1 and Ψ 2 are displacement-wave amplitude conversion matrices for the forward propagation wave component and the backward propagation wave component of the wave amplitude, respectively, and can be expressed by the following two equations, respectively.

また、G1(x)、 G2(x)はそれぞれ、前進波および後退波の伝播距離xによる位相変化をあらわす伝播行列であり、式(20)および式(21)で表される。 G 1 (x) and G 2 (x) are propagation matrices representing phase changes depending on the propagation distance x of the forward wave and the backward wave, respectively, and are represented by Expression (20) and Expression (21).

次に、縦波による内力の解である式(3)、ねじり波による内力の解である式(7)、曲げ波による内力の解である式(13)、式(14)を、前進波および後退波による成分に分ける。縦波の内力F1、F2、y軸方向の曲げ波のせん断力W1y、W2y、z軸方向の曲げ波のせん断力W1z、W2z、ねじり波の内力H1、H2、y軸方向の曲げモーメントM1y、M2y、z軸方向の曲げモーメントM1z、M2zとする。ここで、内力の一般解についてのベクトルをF、前進波および後退波による内力ベクトルをF1、F2として次式で定義する。 Next, Equation (3), which is the solution of internal force due to longitudinal waves, Equation (7), which is the solution of internal forces due to torsional waves, Equations (13) and (14), which are solutions of internal force due to bending waves, And divide into components due to backward waves. Longitudinal wave internal forces F 1 , F 2 , y-axis bending wave shear forces W 1y , W 2y , z-axis bending wave shear forces W 1z , W 2z , torsional wave internal forces H 1 , H 2 , The bending moments M 1y and M 2y in the y- axis direction and the bending moments M 1z and M 2z in the z-axis direction are assumed. Here, the vector for the general solution of the internal force is defined as F, and the internal force vectors due to the forward and backward waves are defined as F 1 and F 2 by the following equations.

これらの定義より、式(3)、式(7)、式(13)、式(14)をまとめると、内力と波動振幅の関係をまとめると、次式の通り表すことができる。   From these definitions, formula (3), formula (7), formula (13), and formula (14) can be summarized, and the relationship between internal force and wave amplitude can be summarized as the following formula.

このときの行列Φ1、Φ2はそれぞれ波動振幅の前進波成分および後退波成分についての内力−波動振幅変換行列であり、それぞれ次の2つの式で表される。ここで、Iyはy軸方向の断面二次極モーメント[m4]、Izはz軸方向の断面二次極モーメント[m4]を示す。 The matrices Φ 1 and Φ 2 at this time are internal force-wave amplitude conversion matrices for the forward wave component and the backward wave component of the wave amplitude, respectively, and are expressed by the following two expressions, respectively. Here, I y represents the sectional secondary pole moment [m 4 ] in the y-axis direction, and I z represents the sectional secondary pole moment [m 4 ] in the z-axis direction.

以上より、縦波、ねじり波、曲げ波の一般解を整理し、波動振幅から変位および内力への変換行列を導出した。   From the above, general solutions of longitudinal waves, torsional waves, and bending waves were arranged, and a conversion matrix from wave amplitude to displacement and internal force was derived.

<不連続部の透過・反射係数の算出>
次に、Nc個の要素が結合する不連続部における反射・透過係数の算出について定式化する。a1 (i)、 a2 (i)は、それぞれ結合要素i ( = 1〜Nc)の要素座標系のx軸の正方向に伝播する前進波と、負の向きに伝播する後退波についての波動振幅ベクトルである。
<Calculation of transmission / reflection coefficient of discontinuity>
Next, the calculation of the reflection / transmission coefficient in the discontinuous portion where N c elements are coupled is formulated. a 1 (i) and a 2 (i) are the forward wave propagating in the positive direction of the x-axis and the backward wave propagating in the negative direction in the element coordinate system of the coupling element i (= 1 to N c ). This is the wave amplitude vector.

不連続部において結合するはり要素i ( = 1〜Nc)の要素座標系から全体座標系への座標変換行列C(i)は、全体座標系の基底ベクトルをe、要素iの要素座標系の基底ベクトルをE(i)として、次式で表される。 The coordinate transformation matrix C (i) from the element coordinate system to the global coordinate system of the beam element i (= 1 to N c ) connected at the discontinuity is e, and the element coordinate system of element i is the base vector of the global coordinate system Let E (i) be the basis vector of

式(17)において不連続部位置をx=0とすると、不連続部で結合するはり要素iの不連続部での変位U(i)は、次式で表される。 If the discontinuous portion position is x = 0 in the equation (17), the displacement U (i) at the discontinuous portion of the beam element i coupled at the discontinuous portion is expressed by the following equation.

不連続部における変位の連続性より、次式が成り立つ。   From the continuity of displacement in the discontinuous portion, the following equation is established.

また、式(23)において不連続部の位置をx = 0とすると、不連続部で結合するはり要素iの不連続部での内力F(i)は、次式で表される。 Further, when the position of the discontinuous portion in equation (23) is x = 0, the internal force F (i) at the discontinuous portion of the beam element i coupled at the discontinuous portion is expressed by the following equation.

不連続部における力の釣り合いより、次式が成立する。   From the balance of force in the discontinuous portion, the following equation is established.

本式におけるd(i)は要素iの前進伝播波の不連続部への入射方向の正負を表しており、次式であらわされる。 In this equation, d (i) represents the positive / negative direction of incidence on the discontinuous portion of the forward propagation wave of the element i, and is expressed by the following equation.

ここで、wI (i)およびwO (i)は、不連続部に対する入射波および反射波を定義する変数であり、式(32)、式(33)で表される。なお、xcは、不連続部の座標、x1 (i)およびx2 (i)は、要素iの構成節点座標であり、x1 (i)からx2 (i)の方向が要素座標系のx軸の正方向である。wI (i)は、不連続部に対する入射する波動振幅ベクトルが要素座標系のx軸の正方向に伝播する前進波成分であるか負の方向に伝播する後退波成分であるかを定める変数であり、1のとき要素iの前進波が不連続部に入射し、2のとき後退波が入射するように要素座標系が定義されていることになる。一方、wO (i)は、不連続部から反射する波動振幅ベクトルを定める変数で、1のとき前進波が不連続部から反射し、2のとき後退波が不連続部から反射するように、要素座標系が定義されていることになる。 Here, w I (i) and w O (i) are variables that define an incident wave and a reflected wave with respect to the discontinuous portion, and are represented by Expression (32) and Expression (33). X c is the coordinates of the discontinuity, x 1 (i) and x 2 (i) are the node coordinates of element i, and the direction from x 1 (i) to x 2 (i) is the element coordinate The positive direction of the x-axis of the system. w I (i) is a variable that determines whether the incident wave amplitude vector for the discontinuity is a forward wave component propagating in the positive direction of the x-axis of the element coordinate system or a backward wave component propagating in the negative direction The element coordinate system is defined so that the forward wave of element i is incident on the discontinuous portion when 1 and the backward wave is incident when 2. On the other hand, w O (i) is a variable that determines the wave amplitude vector reflected from the discontinuous part. When 1, the forward wave reflects from the discontinuous part, and when 2, the backward wave reflects from the discontinuous part. The element coordinate system is defined.

不連続部における変位の連続を表す式(28)および、力のつり合いを表す式(30)を、左辺に不連続部に波動が入射する波動振幅成分、右辺に不連続部から波動振幅が反射される波動振幅成分に整理し、行列表記すると次式で表される。   Equation (28), which represents the continuity of displacement at the discontinuity, and Equation (30), which represents the balance of force, are the wave amplitude component of the wave incident on the discontinuity on the left side and the wave amplitude reflected from the discontinuity on the right side. This is expressed in the following equation when arranged in a matrix and expressed as a matrix.

また、透過・反射係数を用いて、不連続部の波動振幅の変化を表すと次式の通りである。   The change of the wave amplitude of the discontinuity using the transmission / reflection coefficient is expressed by the following equation.

したがって、式(34)および式(35)より、(34)反射係数rおよび透過係数tは、変位−波動振幅変換行列Ψ、内力−波動振幅変換行列Φ、座標変換行列Cを用いて、次式で算出することが可能である。   Therefore, from Equation (34) and Equation (35), (34) reflection coefficient r and transmission coefficient t are expressed as follows using displacement-wave amplitude conversion matrix Ψ, internal force-wave amplitude conversion matrix Φ, and coordinate conversion matrix C: It is possible to calculate with an equation.

<レイトレースモデルの一般化>
次にN個の要素から構成される解析対象のレイトレースモデルを定式化する。はり要素i (=1〜N)を伝播する前進波の波動振幅a1 (i)および後退波の波動振幅成分a2 (i)からなる波動振幅ベクトルa(i)を次式の通り定義する。
<Generalization of ray-trace model>
Next, we formulate a ray-trace model to be analyzed consisting of N elements. A wave amplitude vector a (i) consisting of the wave amplitude a 1 (i) of the forward wave propagating through the beam element i (= 1 to N) and the wave amplitude component a 2 (i) of the backward wave is defined as follows: .

不連続部にて結合されるはり要素iとはり要素jの間の透過・反射の関係について定式化すると、次式のように表すことができる。   When the transmission / reflection relationship between the beam element i and the beam element j coupled at the discontinuous portion is formulated, it can be expressed as the following expression.

ここで、R(i)は、不連続部におけるはり要素iから入射した波動に対する反射係数行列、T(i,j)ははり要素iからはり要素jに波動が透過する際の透過係数行列である。透過係数行列Tおよび反射係数行列Rは、前節の式(36)で算出された透過反射係数と、式(32)で示したwIおよびwOを用いて表すと、不連続部に対する波動ベクトルの入射および反射方向の定義を考慮し、それぞれ、式(39)および式(40)で表される。 Where R (i) is the reflection coefficient matrix for the wave incident from beam element i at the discontinuity, and T (i, j) is the transmission coefficient matrix when the wave is transmitted from beam element i to beam element j. is there. The transmission coefficient matrix T and the reflection coefficient matrix R are expressed as the wave vector for the discontinuity when expressed using the transmission and reflection coefficient calculated in Equation (36) in the previous section and w I and w O shown in Equation (32). In consideration of the definition of the incident and reflection directions of the first and second reflections, they are expressed by the equations (39) and (40), respectively.

以上より、透過・反射の関係が定式化される。系を構成するはり要素iについての反射係数R(i)および、不連続部にて結合されているはり要素iとはり要素jの間の透過係数行列T(i,j)を使用して、次式のような系全体の散乱行列Sを構築することが可能である。 From the above, the relationship between transmission and reflection is formulated. Using the reflection coefficient R (i) for the beam element i constituting the system and the transmission coefficient matrix T (i, j) between the beam element i and the beam element j connected at the discontinuity, It is possible to construct a scattering matrix S for the entire system as follows:

ここで、系全体の要素についての波動振幅ベクトルを並べたaを、次式の通り定義する。   Here, a in which the wave amplitude vectors for the elements of the entire system are arranged is defined as follows.

また、波動が不連続部から発生し、はり要素内をもう一方の不連続部まで伝播することを表す伝播行列Dを次式の通り定義する。   Further, a propagation matrix D representing that a wave is generated from a discontinuous part and propagates in the beam element to the other discontinuous part is defined as follows.

ある波動振幅ベクトルanがはり要素内を伝播し、不連続部に到達し、次に伝播する波動振幅ベクトルan+1に変化する波動モデルをレイトレースモデルと呼び、伝播行列Dと散乱行列Sを使用して次式で表すことができる。 A wave model in which a certain wave amplitude vector a n propagates in a beam element, reaches a discontinuity, and changes to the next propagated wave amplitude vector a n + 1 is called a ray-trace model, and a propagation matrix D and a scattering matrix Using S, it can be expressed as:

レイトレースモデルを用いると、初期波動伝播前後の波動振幅a1の関係は以下のようになる When the ray trace model is used, the relationship between the wave amplitude a 1 before and after the initial wave propagation is as follows.

定常状態の波動振幅aを考えると、複数回伝播した波動振幅(a0,a1,a2…a)が混在する状況であり以下のように定式化できる。 Considering the steady state wave amplitude a, it is a situation where wave amplitudes (a 0 , a 1 , a 2 ... A ) propagated a plurality of times coexist and can be formulated as follows.

これをまとめると以下の式になる。   This can be summarized as follows:

0が構造物の任意箇所に1Nの振幅の加振力を付加された時の初期波動振幅だとすると、上記のaは周波数応答関数を各種波動振幅別に分解した波動振幅ベクトルであり、周波数応答関数の波動振幅寄与を表現している。よって、上式を利用すれば周波数応答関数の波動振幅寄与を求めることが可能である。 If a 0 is the initial wave amplitude when an excitation force having an amplitude of 1N is applied to an arbitrary location of the structure, the above a is a wave amplitude vector obtained by decomposing the frequency response function according to various wave amplitudes. Represents the wave amplitude contribution. Therefore, if the above equation is used, it is possible to obtain the wave amplitude contribution of the frequency response function.

<システム構成>
図1に示すように、本発明の実施の形態に係るシミュレーション装置10は、CPU12、ROM14、RAM16、HDD18、通信インタフェース20、及びこれらを相互に接続するためのバス22を備えている。
<System configuration>
As shown in FIG. 1, a simulation apparatus 10 according to an embodiment of the present invention includes a CPU 12, a ROM 14, a RAM 16, an HDD 18, a communication interface 20, and a bus 22 for connecting them together.

CPU12は、各種プログラムを実行する。ROM14には、各種プログラムやパラメータ等が記憶されている。RAM16は、CPU12による各種プログラムの実行時におけるワークエリア等として用いられる。記録媒体としてのHDD18には、後述する微分計算処理ルーチンを実行するためのプログラムを含む各種プログラムや各種データが記憶されている。   The CPU 12 executes various programs. The ROM 14 stores various programs, parameters, and the like. The RAM 16 is used as a work area when the CPU 12 executes various programs. The HDD 18 as a recording medium stores various programs and various data including a program for executing a later-described differential calculation processing routine.

本実施の形態におけるシミュレーション装置10は、入力として、入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0を受け付ける。また、シミュレーション装置10は、複数のはり要素が結合した3次元はり構造の形状情報として、各はり要素についての縦弾性係数E、体積質量密度ρ、横弾性係数G、断面二次極モーメントIp、ねじり定数J、断面積A、全体座標系の基底ベクトルe、要素座標系の基底ベクトルE(i)、及び導波路長さL(i)を受け付ける。 The simulation apparatus 10 according to the present embodiment has, as inputs, a longitudinal forward wave in the x direction that is an axial direction of the beam element, a longitudinal backward propagation wave in the x direction, a torsional forward propagation wave, and a torsional receding that represent the input amplitude. Propagation wave, bending forward propagation wave in y direction, bending forward proximity wave in y direction, bending backward propagation wave in y direction, bending backward propagation wave in y direction, bending forward propagation wave in z direction, bending forward proximity wave in z direction , A wave amplitude vector a 0 composed of the components of the bending backward propagation wave in the z direction and the bending backward proximity wave in the z direction is received. Further, the simulation apparatus 10 uses the longitudinal elastic modulus E, the volume mass density ρ, the transverse elastic modulus G, the cross-sectional secondary pole moment I p for each beam element as shape information of a three-dimensional beam structure in which a plurality of beam elements are coupled. , Torsional constant J, cross-sectional area A, global coordinate system basis vector e, elementary coordinate system basis vector E (i) , and waveguide length L (i) .

シミュレーション装置10は、周波数毎に、波動振幅ベクトルa0と、3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、はり要素の各々の位相情報を表す伝播行列Dとに基づいて、上記式(47)に従って、応答としての波動振幅を表す、各成分からなる波動振幅ベクトルaを計算し、各成分について、周波数応答関数を求める。 The simulation apparatus 10 is based on the wave amplitude vector a 0 , the scattering matrix S representing the transmissivity of the discontinuous part of the three-dimensional beam structure, and the propagation matrix D representing the phase information of each beam element for each frequency. Then, according to the above equation (47), a wave amplitude vector a composed of each component representing the wave amplitude as a response is calculated, and a frequency response function is obtained for each component.

<シミュレーション装置の動作>
次に、本実施の形態に係るシミュレーション装置10の作用について説明する。
<Operation of simulation device>
Next, the operation of the simulation apparatus 10 according to the present embodiment will be described.

まず、シミュレーション装置10に、波動振幅ベクトルa0と、上述した3次元はり構造の形状情報が入力されると、シミュレーション装置10によって、3次元はり構造の形状モデルが生成される。そして、シミュレーション装置10によって、図2に示すシミュレーション処理ルーチンが実行される。 First, when the wave amplitude vector a 0 and the shape information of the three-dimensional beam structure described above are input to the simulation device 10, the simulation device 10 generates a shape model of the three-dimensional beam structure. Then, the simulation processing routine shown in FIG.

まず、ステップS100において、周波数ω毎に、各はり要素の縦弾性係数E、体積質量密度ρ、横弾性係数G、断面二次極モーメントIp、ねじり定数J、及び断面積Aに基づいて、上記式(4)、(8)、(11)に従って、各はり要素について、x方向の縦波の波数kL、ねじり波の波数kT、y方向の曲げ波の波数kBy、及びz方向の曲げ波の波数kBzを計算する。 First, in step S100, for each frequency ω, based on the longitudinal elastic modulus E, volume mass density ρ, transverse elastic modulus G, cross-sectional secondary pole moment Ip, torsion constant J, and cross-sectional area A of each beam element, According to the equations (4), (8), (11), for each beam element, the longitudinal wave number k L in the x direction, the wave number k T of the torsion wave, the wave number k By of the bending wave in the y direction, and the z direction Calculate the wave number k Bz of the bending wave.

ステップS102では、周波数ω毎に、各はり要素について、x方向の縦波の波数kL、ねじり波の波数kT、y方向の曲げ波の波数kBy、及びz方向の曲げ波の波数kBzに基づいて、上記式(18)〜(21)、(24)、(25)に従って、前進伝播波成分及び後退伝播波成分の各々についての変位波動振幅変換行列Ψ1、Ψ2と、前進波及び後退波の各々についての伝播距離xによる位相変化を表す伝播行列G1(x)、G2(x)と、前進伝播波成分及び後退伝播波成分の各々についての内力波動振幅変換行列Φ1、Φ2とを計算する。 In step S102, for each frequency ω, for each beam element, the wave number k L of the longitudinal wave in the x direction, the wave number k T of the torsion wave, the wave number k By of the bending wave in the y direction, and the wave number k of the bending wave in the z direction. Based on Bz , the displacement wave amplitude transformation matrices Ψ 1 and Ψ 2 for each of the forward propagation wave component and the backward propagation wave component according to the above formulas (18) to (21), (24), and (25), and the forward A propagation matrix G 1 (x), G 2 (x) representing a phase change according to the propagation distance x for each of the wave and the backward wave, and an internal force wave amplitude conversion matrix Φ for each of the forward propagation wave component and the backward propagation wave component 1 and Φ 2 are calculated.

ステップS104では、はり要素の各々についての当該はり要素の全体座標系の基底ベクトルe及び要素座標系の基底ベクトルE(i)に基づいて、上記式(26)に従って、不連続部において結合しているはり要素の各々についての座標変換行列C(i)を計算する。 In step S104, based on the base vector e of the overall coordinate system of the beam element and the base vector E (i) of the element coordinate system for each of the beam elements, the discontinuous portions are combined according to the above equation (26). The coordinate transformation matrix C (i) for each beam element is calculated.

また、はり要素の各々について、3次元はり構造の形状情報に基づいて、上記式(31)に従って、当該はり要素の前進伝播波の、前記不連続部への入射方向d(i)を計算する。 For each beam element, the incident direction d (i) of the forward propagation wave of the beam element to the discontinuous portion is calculated according to the above formula (31) based on the shape information of the three-dimensional beam structure. .

ステップS106では、周波数ω毎に、上記ステップS102で計算された、前進伝播波成分及び後退伝播波成分の各々についての変位波動振幅変換行列Ψ1、Ψ2と、前進波及び後退波の各々についての伝播距離xによる位相変化を表す伝播行列G1(x)、G2(x)と、前進伝播波成分及び後退伝播波成分の各々についての内力波動振幅変換行列Φ1、Φ2と、上記ステップS104で計算された、はり要素の各々についての前記座標変換行列C(i)と、前記はり要素の各々についての前記入射方向d(i)とに基づいて、上記式(36)に従って、はり要素の各々についての反射係数rと、不連続部において結合しているはり要素のペアの各々について透過係数tとを計算する。 In step S106, for each frequency ω, the displacement wave amplitude conversion matrices Ψ 1 and Ψ 2 for each of the forward propagation wave component and the backward propagation wave component calculated in step S102 and each of the forward wave and the backward wave are calculated. Propagation matrices G 1 (x), G 2 (x) representing the phase change due to the propagation distance x, internal force wave amplitude conversion matrices Φ 1 , Φ 2 for each of the forward propagation wave component and the backward propagation wave component, Based on the coordinate transformation matrix C (i) for each beam element and the incident direction d (i) for each beam element calculated in step S104, the beam Calculate the reflection coefficient r for each of the elements and the transmission coefficient t for each pair of beam elements connected at the discontinuity.

そして、ステップS108では、周波数ω毎に、上記ステップS106で計算された、はり要素の各々についての反射係数rと、はり要素のペアの各々について透過係数tとに基づいて、上記式(41)に従って、3次元はり構造の不連続部の透過反射性を表す散乱行列Sを計算する。   In step S108, based on the reflection coefficient r for each beam element and the transmission coefficient t for each beam element pair calculated in step S106 for each frequency ω, the above equation (41) is obtained. Accordingly, the scattering matrix S representing the transmissivity of the discontinuous portion of the three-dimensional beam structure is calculated.

ステップS110では、周波数ω毎に、上記ステップS102で計算された前進波及び後退波の各々についての伝播距離xによる位相変化を表す伝播行列G1(x)、G2(x)と、はり要素の各々の導波路長さL(i)とに基づいて、上記式(43)に従って、はり要素の各々の位相情報を表す伝播行列Dを計算する。 In step S110, for each frequency ω, propagation matrices G 1 (x) and G 2 (x) representing the phase change due to the propagation distance x for each of the forward wave and the backward wave calculated in step S102, and beam elements Based on each waveguide length L (i) , a propagation matrix D representing the phase information of each beam element is calculated according to the above equation (43).

そして、ステップS112では、周波数ω毎に、波動振幅ベクトルa0と、上記ステップS108で計算された散乱行列Sと、上記ステップS110で計算された伝播行列Dとに基づいて、波動振幅ベクトルaを計算する。次のステップS114では、上記ステップS112で周波数ω毎に計算された波動振幅ベクトルaに基づいて、各成分について、周波数応答関数を求め、出力部(図示省略)により出力して、シミュレーション処理ルーチンを終了する。 In step S112, the wave amplitude vector a is calculated for each frequency ω based on the wave amplitude vector a 0 , the scattering matrix S calculated in step S108, and the propagation matrix D calculated in step S110. calculate. In the next step S114, a frequency response function is obtained for each component based on the wave amplitude vector a calculated for each frequency ω in the above step S112, and output by an output unit (not shown) to execute a simulation processing routine. finish.

<実施例>
断面特性が異なる3つのはり要素を結合した3次元はり構造のモデルで波動振幅寄与の例を示す。
<Example>
An example of wave amplitude contribution is shown by a three-dimensional beam structure model in which three beam elements having different cross-sectional characteristics are combined.

図3に示すように、3次元はり構造モデルに対して、入力波動振幅として、拘束条件なしで左端に1Nの調和荷重を負荷している。評価点は加振点(1)とはり中央部(2)である。はり要素の諸元を以下の表1に記す。   As shown in FIG. 3, a harmonic load of 1N is applied to the left end of the three-dimensional beam structure model as an input wave amplitude without any constraint condition. The evaluation points are the excitation point (1) and the center of the beam (2). The specifications of beam elements are shown in Table 1 below.

解析結果を図4、図5に示す。3次元はり構造のすべての成分の波動の波動振幅寄与を表示すると複雑になるため、ここでは低周波の上下方向曲げ振動に着目し、前進伝播波、前進近接波、後退伝播波、後退近接波の周波数応答関数に対する寄与を表示する。図4は、評価点(1)における各成分の周波数応答関数を示しており、図5は、評価点(2)における各成分の周波数応答関数を示している。   The analysis results are shown in FIGS. Since it is complicated to display the wave amplitude contribution of the wave of all components of the three-dimensional beam structure, here we focus on the low-frequency vertical bending vibration, and the forward propagation wave, forward proximity wave, backward propagation wave, backward proximity wave Display the contribution to the frequency response function of. FIG. 4 shows the frequency response function of each component at the evaluation point (1), and FIG. 5 shows the frequency response function of each component at the evaluation point (2).

図4、図5のグラフで示すように、周波数応答関数に対して各種成分の寄与を解析することが可能である。   As shown in the graphs of FIGS. 4 and 5, it is possible to analyze the contribution of various components to the frequency response function.

以上説明したように、本発明の実施の形態に係るシミュレーション装置によれば、3次元はり構造への入力振幅に対する応答として、x方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルを計算することにより、波動振幅の成分別に周波数応答関数を求めることができる。   As described above, according to the simulation apparatus according to the embodiment of the present invention, as a response to the input amplitude to the three-dimensional beam structure, the longitudinal wave forward propagation wave in the x direction, the longitudinal wave backward propagation wave in the x direction, Torsional forward propagation wave, torsional backward propagation wave, bending forward propagation wave in y direction, bending forward proximity wave in y direction, bending backward propagation wave in y direction, bending backward propagation wave in y direction, bending forward propagation wave in z direction, A frequency response function can be obtained for each component of the wave amplitude by calculating a wave amplitude vector composed of each component of the bending forward proximity wave in the z direction, the bending backward movement wave in the z direction, and the bending backward proximity wave in the z direction. it can.

また、周波数応答関数を構造物内の波動振幅成分の寄与として評価することで、振動応答の主原因となる波動を特定でき、効果的な対策を検討することが可能となる。   In addition, by evaluating the frequency response function as the contribution of the wave amplitude component in the structure, it is possible to identify the wave that is the main cause of the vibration response, and to study effective countermeasures.

また、位相の異なる各種波動振幅の重ね合わせにより、任意位置の振動応答を低減する構造を提案することなども可能となる。   It is also possible to propose a structure that reduces the vibration response at an arbitrary position by superimposing various wave amplitudes having different phases.

なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.

本発明のプログラムは、記憶媒体に格納して提供するようにしてもよい。   The program of the present invention may be provided by being stored in a storage medium.

10 シミュレーション装置
12 CPU
14 ROM
16 RAM
18 HDD
10 Simulation device 12 CPU
14 ROM
16 RAM
18 HDD

Claims (4)

複数のはり要素が結合した3次元はり構造への入力振幅に対する応答としての波動振幅を計算するシミュレーション装置であって、
入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0と、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、各成分の伝播に伴った位相の変化を表す伝播行列Dとに基づいて、以下の式に従って、応答としての波動振幅を表す、各成分の波動振幅ベクトルaを計算する計算手段
を含むシミュレーション装置。
ただし、Iは、単位行列である。
A simulation device for calculating a wave amplitude as a response to an input amplitude to a three-dimensional beam structure in which a plurality of beam elements are combined,
Axial longitudinal forward wave, x-direction longitudinal backward wave, torsional forward wave, torsional backward wave, y-direction bending forward wave, y-direction representing the input amplitude. Bending forward proximity wave, y-direction bending backward propagation wave, y-direction bending backward propagation wave, z-direction bending forward propagation wave, z-direction bending forward proximity wave, z-direction bending backward propagation wave, and z-direction A wave amplitude vector a 0 composed of each component of the bending receding proximity wave, a scattering matrix S representing the transmissivity of the discontinuous portion of the three-dimensional beam structure, and a propagation matrix representing a phase change accompanying the propagation of each component A simulation device including a calculation means for calculating a wave amplitude vector a of each component, which represents a wave amplitude as a response, based on D, according to the following equation.
Here, I is a unit matrix.
前記計算手段は、周波数毎に、各成分の波動振幅ベクトルaを計算し、各成分について、周波数応答関数を求める請求項1記載のシミュレーション装置。   The simulation apparatus according to claim 1, wherein the calculation unit calculates a wave amplitude vector a of each component for each frequency and obtains a frequency response function for each component. 前記計算手段は、
前記周波数毎に、前記複数のはり要素の各々について、前記はり要素の縦弾性係数、体積質量密度、横弾性係数、断面二次極モーメント、ねじり定数、及び断面積に基づいて、x方向の縦波の波数kL、ねじり波の波数kT、y方向の曲げ波の波数kBy、及びz方向の曲げ波の波数kBzを計算する波数計算手段と、
前記周波数毎に、前記複数のはり要素の各々について、前記x方向の縦波の波数kL、前記ねじり波の波数kT、前記y方向の曲げ波の波数kBy、及び前記z方向の曲げ波の波数kBzに基づいて、前進伝播波成分及び後退伝播波成分の各々についての変位波動振幅変換行列Ψ1、Ψ2と、前進波及び後退波の各々についての伝播距離xによる位相変化を表す伝播行列G1(x)、G2(x)と、前進伝播波成分及び後退伝播波成分の各々についての内力波動振幅変換行列Φ1、Φ2とを計算する変換行列伝播行列計算手段と、
前記はり要素の各々について、前記はり要素の全体座標系の基底ベクトルei及び要素座標系の基底ベクトルEiに基づいて、不連続部において結合している前記はり要素の各々についての座標変換行列C(i)を計算する座標変換行列計算手段と、
前記はり要素の各々について、前記はり要素の前進伝播波の、前記不連続部への入射方向d(i)を計算する入射方向計算手段と、
前記周波数毎に、前記はり要素の各々についての、前記変位波動振幅変換行列Ψ1、Ψ2と、前記伝播行列G1(x)、G2(x)と、前記内力波動振幅変換行列Φ1、Φ2と、前記座標変換行列C(i)と、前記入射方向d(i)とに基づいて、前記はり要素の各々についての反射係数rと、不連続部において結合している前記はり要素のペアの各々について透過係数tとを計算する係数計算手段と、
前記周波数毎に、前記はり要素の各々についての反射係数rと、前記はり要素のペアの各々について透過係数tとに基づいて、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sを計算する散乱行列計算手段と、
前記周波数毎に、前記はり要素の各々についての前記伝播行列G1(x)、G2(x)と、前記はり要素の各々の導波路長さL(i)とに基づいて、前記はり要素の各々の位相情報を表す伝播行列Dを計算する伝播行列計算手段と、
前記周波数毎に、前記波動振幅ベクトルa0と、前記散乱行列Sと、前記伝播行列Dとに基づいて、各成分の波動振幅ベクトルaを計算し、各成分について、周波数応答関数を求める周波数応答関数計算手段とを含む請求項2記載のシミュレーション装置。
The calculating means includes
For each of the plurality of beam elements for each frequency, the longitudinal element in the x direction is determined based on the longitudinal elastic modulus, volume mass density, transverse elastic modulus, cross-sectional secondary pole moment, torsion constant, and cross-sectional area of the beam element. A wave number calculating means for calculating the wave number k L of the wave, the wave number k T of the torsion wave, the wave number k By of the bending wave in the y direction, and the wave number k Bz of the bending wave in the z direction;
For each of the plurality of beam elements, for each frequency, the longitudinal wave number k L in the x direction, the wave number k T of the torsional wave, the wave number k By of the bending wave in the y direction, and the bending in the z direction Based on the wave number k Bz of the wave, the displacement wave amplitude conversion matrix Ψ 1 , Ψ 2 for each of the forward propagation wave component and the backward propagation wave component, and the phase change due to the propagation distance x for each of the forward wave and the backward wave, Transform matrix propagation matrix calculation means for calculating propagation matrices G 1 (x) and G 2 (x) representing internal force wave amplitude conversion matrices Φ 1 and Φ 2 for each of the forward propagation wave component and the backward propagation wave component; ,
For each of the beam elements, based on the base vector ei of the overall coordinate system of the beam element and the basis vector Ei of the element coordinate system, a coordinate transformation matrix C ( a coordinate transformation matrix calculation means for calculating i) ;
For each of the beam elements, incident direction calculation means for calculating an incident direction d (i) of the forward propagation wave of the beam element to the discontinuity;
For each frequency, the displacement wave amplitude transformation matrices Ψ 1 , Ψ 2 , the propagation matrices G 1 (x), G 2 (x), and the internal force wave amplitude transformation matrix Φ 1 for each beam element. , Φ 2 , the coordinate transformation matrix C (i), and the incident direction d (i) , the reflection coefficient r for each of the beam elements and the beam element coupled at the discontinuity portion Coefficient calculating means for calculating a transmission coefficient t for each of the pairs;
For each frequency, a scattering matrix representing the transmissivity of the discontinuity of the three-dimensional beam structure based on the reflection coefficient r for each of the beam elements and the transmission coefficient t for each of the beam element pairs. A scattering matrix calculating means for calculating S;
For each frequency, the beam elements are based on the propagation matrices G 1 (x), G 2 (x) for each of the beam elements and the waveguide length L (i) of each of the beam elements. Propagation matrix calculation means for calculating a propagation matrix D representing each phase information of
For each frequency, based on the wave amplitude vector a 0 , the scattering matrix S, and the propagation matrix D, a wave amplitude vector a of each component is calculated, and a frequency response for obtaining a frequency response function for each component The simulation apparatus according to claim 2, further comprising function calculation means.
複数のはり要素が結合した3次元はり構造への入力振幅に対する応答としての波動振幅を計算するためのプログラムであって、
コンピュータを、
入力振幅を表す、はり要素の軸方向であるx方向の縦波前進伝播波、x方向の縦波後退伝播波、ねじり前進伝播波、ねじり後退伝播波、y方向の曲げ前進伝播波、y方向の曲げ前進近接波、y方向の曲げ後退伝播波、y方向の曲げ後退近接波、z方向の曲げ前進伝播波、z方向の曲げ前進近接波、z方向の曲げ後退伝播波、及びz方向の曲げ後退近接波の各成分からなる波動振幅ベクトルa0と、前記3次元はり構造の不連続部の透過反射性を表す散乱行列Sと、各成分の伝播に伴った位相の変化を表す伝播行列Dとに基づいて、以下の式に従って、応答としての波動振幅を表す、各成分の波動振幅ベクトルaを計算する計算手段として機能させるためのプログラム。
ただし、Iは、単位行列である。
A program for calculating a wave amplitude as a response to an input amplitude to a three-dimensional beam structure in which a plurality of beam elements are combined,
Computer
Axial longitudinal forward wave, x-direction longitudinal backward wave, torsional forward wave, torsional backward wave, y-direction bending forward wave, y-direction representing the input amplitude. Bending forward proximity wave, y-direction bending backward propagation wave, y-direction bending backward propagation wave, z-direction bending forward propagation wave, z-direction bending forward proximity wave, z-direction bending backward propagation wave, and z-direction A wave amplitude vector a 0 composed of each component of the bending receding proximity wave, a scattering matrix S representing the transmissivity of the discontinuous portion of the three-dimensional beam structure, and a propagation matrix representing a phase change accompanying the propagation of each component A program for functioning as a calculation means for calculating a wave amplitude vector a of each component, which represents a wave amplitude as a response, based on D, according to the following equation.
Here, I is a unit matrix.
JP2016052739A 2016-03-16 2016-03-16 Simulation device and program Expired - Fee Related JP6664690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052739A JP6664690B2 (en) 2016-03-16 2016-03-16 Simulation device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052739A JP6664690B2 (en) 2016-03-16 2016-03-16 Simulation device and program

Publications (2)

Publication Number Publication Date
JP2017166992A true JP2017166992A (en) 2017-09-21
JP6664690B2 JP6664690B2 (en) 2020-03-13

Family

ID=59913280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052739A Expired - Fee Related JP6664690B2 (en) 2016-03-16 2016-03-16 Simulation device and program

Country Status (1)

Country Link
JP (1) JP6664690B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327358A (en) * 1991-08-07 1994-07-05 The Texas A&M University System Apparatus and method for damage detection
JPH0916651A (en) * 1995-06-30 1997-01-17 Fujitsu Ltd Simulation method
JP2003083840A (en) * 2001-09-17 2003-03-19 Hitachi Ltd Vibration testing device and vibration response evaluation method
JP2005069785A (en) * 2003-08-21 2005-03-17 National Institute Of Information & Communication Technology Laminated structure analytical method and laminated structure analytical instrument for double refraction medium, and computer-readable record medium in which its program is recorded
JP2009109235A (en) * 2007-10-26 2009-05-21 Mizuho Information & Research Institute Inc System, method, and program for cantilever evaluation
JP2015080061A (en) * 2013-10-16 2015-04-23 三菱電機株式会社 Device and system for designing wireless network station installation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327358A (en) * 1991-08-07 1994-07-05 The Texas A&M University System Apparatus and method for damage detection
JPH0916651A (en) * 1995-06-30 1997-01-17 Fujitsu Ltd Simulation method
JP2003083840A (en) * 2001-09-17 2003-03-19 Hitachi Ltd Vibration testing device and vibration response evaluation method
JP2005069785A (en) * 2003-08-21 2005-03-17 National Institute Of Information & Communication Technology Laminated structure analytical method and laminated structure analytical instrument for double refraction medium, and computer-readable record medium in which its program is recorded
JP2009109235A (en) * 2007-10-26 2009-05-21 Mizuho Information & Research Institute Inc System, method, and program for cantilever evaluation
JP2015080061A (en) * 2013-10-16 2015-04-23 三菱電機株式会社 Device and system for designing wireless network station installation

Also Published As

Publication number Publication date
JP6664690B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
Renno et al. Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach
Song The scaled boundary finite element method in structural dynamics
Shen et al. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures
Ng et al. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates
Renno et al. On the forced response of waveguides using the wave and finite element method
Poddar et al. Scattering of Lamb waves from a discontinuity: An improved​ analytical approach
Samaratunga et al. Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates
Chouvion et al. In-plane free vibration analysis of combined ring-beam structural systems by wave propagation
Samaratunga et al. Wave propagation analysis in laminated composite plates with transverse cracks using the wavelet spectral finite element method
Fabro et al. Wave propagation in slowly varying waveguides using a finite element approach
Ma et al. A hybrid wave propagation and statistical energy analysis on the mid-frequency vibration of built-up plate systems
Shang et al. Dynamic analysis of Euler–Bernoulli beam problems using the generalized finite element method
Awrejcewicz et al. On the general theory of chaotic dynamics of flexible curvilinear Euler–Bernoulli beams
Eftekhari et al. Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates
Li et al. Modelling of the high-frequency fundamental symmetric Lamb wave using a new boundary element formulation
Fabro et al. Uncertainty analysis of band gaps for beams with periodically distributed resonators produced by additive manufacturing
Deng et al. Sound waves in continuum models of periodic sonic black holes
Lajili et al. Composite beam identification using a variant of the inhomogeneous wave correlation method in presence of uncertainties
Lucchesi et al. On the dynamics of viscous masonry beams
Takiuti et al. Wave scattering from discontinuities related to corrosion-like damage in one-dimensional waveguides
De Domenico et al. Computational aspects of a new multi‐scale dispersive gradient elasticity model with micro‐inertia
JP6664690B2 (en) Simulation device and program
Liu et al. A highly accurate spectral dynamic stiffness method for efficient broadband modal and dynamic response analysis of membranes assemblies with arbitrary boundary conditions
CN116227259A (en) Correction boundary element solution method for lamb wave mode conversion and scattering in bending plate
Lopes et al. On the frequencies for structural health monitoring in plates with symmetrical damage: An analytical approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6664690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees