JP2017165662A - Method for producing 3-methyl cycloalkenones - Google Patents

Method for producing 3-methyl cycloalkenones Download PDF

Info

Publication number
JP2017165662A
JP2017165662A JP2016050290A JP2016050290A JP2017165662A JP 2017165662 A JP2017165662 A JP 2017165662A JP 2016050290 A JP2016050290 A JP 2016050290A JP 2016050290 A JP2016050290 A JP 2016050290A JP 2017165662 A JP2017165662 A JP 2017165662A
Authority
JP
Japan
Prior art keywords
catalyst
methylcycloalkenones
condensation reaction
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016050290A
Other languages
Japanese (ja)
Other versions
JP6502884B2 (en
Inventor
銅谷 正晴
Masaharu Dotani
正晴 銅谷
由樹 星野
Yuki Hoshino
由樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Earthtech Inc
Original Assignee
Toho Earthtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Earthtech Inc filed Critical Toho Earthtech Inc
Priority to JP2016050290A priority Critical patent/JP6502884B2/en
Publication of JP2017165662A publication Critical patent/JP2017165662A/en
Application granted granted Critical
Publication of JP6502884B2 publication Critical patent/JP6502884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing 3-methyl cycloalkenones in which the 3-methyl cycloalkenones that have different numbers of carbon atoms from 3-methyl cyclopentadecenone can economically be produced.SOLUTION: The 3-methyl cycloalkenones having n of an integer from 7 to 11, 13 and 14 is produced by an intramolecular condensation reaction of an aliphatic diketone represented by a chemical formula of CHCO(CH)COCHand in which n is an integer of 7 to 11, 13 and 14. In the intramolecular condensation reaction, it is preferable to use a catalyst which is at least one of magnesium oxide, calcium oxide and zinc oxide and has a BET specific surface area of 10 m/g or less. Further, it is preferable that the partial pressure of the aliphatic diketone raw material is 50 mm HO or more and 500 mm HO or less.SELECTED DRAWING: None

Description

本発明は、例えば香料中間体等として有用な3−メチルシクロアルケノン類の製造方法に関する。   The present invention relates to a method for producing 3-methylcycloalkenones useful as, for example, a fragrance intermediate.

従来、3−メチルシクロアルケノン類としては、香料として有用なムスコンの合成中間体である3−メチルシクロペンタデセノンが知られている。   Conventionally, as 3-methylcycloalkenones, 3-methylcyclopentadenone, a synthetic intermediate of muscone useful as a fragrance, is known.

このような香料の合成中間体の製造方法としては、シクロドデカトリエンを過酸化物によるエポキシ化、および、それに続く転位反応によって12員環の環状不飽和エノンである(E,E)−4,8−シクロドデカジエン−1−オンを製造する方法がある(例えば、特許文献1参照。)。   As a method for producing such a fragrance synthetic intermediate, cyclododecatriene is a 12-membered cyclic unsaturated enone by epoxidation of a peroxide with a peroxide and subsequent rearrangement reaction (E, E) -4, There is a method for producing 8-cyclododecadien-1-one (for example, see Patent Document 1).

また、8から16員環の環状アルケンを原料とし、一酸化二窒素を用いて酸化反応を行うことによって、環状不飽和ケトンを製造する方法がある(例えば、特許文献2参照。)。   Further, there is a method for producing a cyclic unsaturated ketone by using an 8- to 16-membered cyclic alkene as a raw material and performing an oxidation reaction using dinitrogen monoxide (for example, see Patent Document 2).

さらに、触媒として酸化亜鉛、酸化マグネシウムおよび酸化カルシウムのいずれかを用いて2,15−ヘキサデカンジオンを分子内環化させて、3−メチルシクロペンタデセノン類を製造する方法がある(例えば、特許文献3参照。)。   Furthermore, there is a method for producing 3-methylcyclopentadecenones by intramolecular cyclization of 2,15-hexadecanedione using any of zinc oxide, magnesium oxide and calcium oxide as a catalyst (for example, patents). Reference 3).

特表2014−520130号公報Special table 2014-520130 gazette 特表2012−516301号公報Special table 2012-516301 gazette 国際公開第2010/109650号International Publication No. 2010/109650

ここで、大環状アルカノン類は環の炭素数が異なるとその香気も変化するため、ムスコン合成中間体である3−メチルシクロペンタデセノンと環の炭素数が異なる3−メチルシクロアルケノン類は、産業上有用な新たな香料の合成中間体として期待されている。   Here, since the aromaticity of macrocyclic alkanones changes when the carbon number of the ring is different, 3-methylcyclopentadenone, which is a Muscon synthesis intermediate, and 3-methylcycloalkenones having a different ring carbon number, It is expected as an industrially useful synthetic intermediate for new perfumes.

しかしながら、上述の特許文献1ないし3では、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノンについて記載されておらず不明である。   However, in the above-mentioned Patent Documents 1 to 3, 3-methylcycloalkenone having a different carbon number from 3-methylcyclopentadecenone is not described and is unclear.

具体的には、特許文献1の方法では、ブタジエン3量体である(E,E,E)−1,4,8−シクロドデカトリエンという12員環化合物を予め原料に用いることから、12員環化合物以外を製造できない。また、m−クロロ過安息香酸という一般的に高価な過酸化物を化学量論量使用することから、コストが上昇し経済的ではない。   Specifically, in the method of Patent Document 1, a 12-membered ring compound called (E, E, E) -1,4,8-cyclododecatriene, which is a butadiene trimer, is used as a raw material in advance. Other than ring compounds cannot be produced. Further, since a stoichiometric amount of a generally expensive peroxide called m-chloroperbenzoic acid is used, the cost increases and it is not economical.

特許文献2の方法では、8から16員環の環状アルケンを原料に用い、日本で指定薬物である特殊な一酸化二窒素を酸化剤に用いており、工業的ではない。   In the method of Patent Document 2, an 8- to 16-membered cyclic alkene is used as a raw material, and special dinitrogen monoxide which is a designated drug in Japan is used as an oxidizing agent, which is not industrial.

また、原料である環状アルケンの製造方法として、シクロオクテンやシクロヘプテンの複分解によって得られることが例示されているが、酸化レニウム等を担持した触媒を使用する必要がある。このレニウムは、レアメタルの一種であり、非常に高価である。そのため、コストが上昇し経済的ではない。   Further, as a method for producing a cyclic alkene as a raw material, it is exemplified that it is obtained by metathesis of cyclooctene or cycloheptene, but it is necessary to use a catalyst supporting rhenium oxide or the like. This rhenium is a kind of rare metal and is very expensive. Therefore, the cost increases and it is not economical.

特許文献3の方法は、2,15−ヘキサデカンジオンのみを原料に用いた気相分子内縮合反応であり、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン化合物については不明である。   The method of Patent Document 3 is a gas phase intramolecular condensation reaction using only 2,15-hexadecanedione as a raw material, and the 3-methylcycloalkenone compound having a different carbon number from 3-methylcyclopentadecenone is unknown. It is.

そして、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン化合物に関する技術については、あまり明らかにされていないのが現状である。   And the present condition is not so clear about the technique regarding the 3-methylcycloalkenone compound in which carbon number differs from 3-methylcyclopentadecenone.

本発明はこのような点に鑑みなされたもので、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン類を経済的に製造できる3−メチルシクロアルケノン類の製造方法を提供することを目的とする。   The present invention has been made in view of these points, and provides a method for producing 3-methylcycloalkenones capable of economically producing 3-methylcycloalkenones having a carbon number different from that of 3-methylcyclopentadecenone. The purpose is to do.

請求項1に記載された3−メチルシクロアルケノン類の製造方法は、CHCO(CHCOCHの化学式で示され、nが7ないし11、13および14の整数である脂肪族ジケトンの分子内縮合反応により、化学式(1)で示され、nが7ないし11、13および14の整数である3−メチルシクロアルケノン類を製造するものである。

Figure 2017165662
The method for producing 3-methylcycloalkenones according to claim 1 is an aliphatic diketone represented by the chemical formula CH 3 CO (CH 2 ) n COCH 3 , wherein n is an integer of 7 to 11, 13 and 14. By the intramolecular condensation reaction, 3-methylcycloalkenones represented by the chemical formula (1) and n is an integer of 7 to 11, 13 and 14 are produced.
Figure 2017165662

請求項2に記載された3−メチルシクロアルケノン類の製造方法は、請求項1記載の3−メチルシクロアルケノン類の製造方法において、気相で脂肪族ジケトンの分子内縮合反応するものである。   The method for producing 3-methylcycloalkenones described in claim 2 is the method for producing 3-methylcycloalkenones according to claim 1, wherein an intramolecular condensation reaction of an aliphatic diketone is carried out in the gas phase.

請求項3に記載された3−メチルシクロアルケノン類の製造方法は、請求項1または2記載の3−メチルシクロアルケノン類の製造方法において、BET比表面積が10m/g以下の触媒を用いて分子内縮合反応するものである。 The method for producing 3-methylcycloalkenones according to claim 3 is the method for producing 3-methylcycloalkenones according to claim 1 or 2, wherein a catalyst having a BET specific surface area of 10 m 2 / g or less is used. It undergoes an intramolecular condensation reaction.

請求項4に記載された3−メチルシクロアルケノン類の製造方法は、請求項1ないし3いずれか一記載の3−メチルシクロアルケノン類の製造方法において、酸化マグネシウム、酸化カルシウムおよび酸化亜鉛のうちの少なくとも1種を触媒として用いて分子内縮合反応するものである。   The method for producing 3-methylcycloalkenones according to claim 4 is the method for producing 3-methylcycloalkenones according to any one of claims 1 to 3, wherein magnesium oxide, calcium oxide and zinc oxide are used. Intramolecular condensation reaction is performed using at least one kind as a catalyst.

請求項5に記載された3−メチルシクロアルケノン類の製造方法は、請求項1ないし4いずれか一記載の3−メチルシクロアルケノン類の製造方法において、脂肪族ジケトンの原料分圧が50mmHO以上500mmHO以下で分子内縮合反応するものである。 The method for producing 3-methylcycloalkenones according to claim 5 is the method for producing 3-methylcycloalkenones according to any one of claims 1 to 4, wherein the raw material partial pressure of the aliphatic diketone is 50 mmH 2 O. It is an intramolecular condensation reaction at 500 mmH 2 O or less.

本発明によれば、脂肪族ジケトンの分子内縮合反応を行うため、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン類を経済的に製造できる。   According to the present invention, since an intramolecular condensation reaction of an aliphatic diketone is performed, 3-methylcycloalkenones having a carbon number different from that of 3-methylcyclopentadecenone can be produced economically.

以下、本発明に係る一実施の形態の3−メチルシクロアルケノン類の製造方法を説明する。   Hereinafter, a method for producing 3-methylcycloalkenones according to an embodiment of the present invention will be described.

3−メチルシクロアルケノン類は、触媒を充填した反応管へ、原料である脂肪族ジケトン類を導入し、分子内縮合反応を行うことにより得られる。   3-Methylcycloalkenones can be obtained by introducing aliphatic diketones as raw materials into a reaction tube filled with a catalyst and conducting an intramolecular condensation reaction.

3−メチルシクロアルケノン類は、化学式(1)で示される。なお、この化学式におけるnは、7ないし11、13および14の整数である。

Figure 2017165662
3-Methylcycloalkenones are represented by chemical formula (1). Note that n in this chemical formula is an integer of 7 to 11, 13, and 14.
Figure 2017165662

原料である脂肪族ジケトン類は、CHCO(CHCOCHの化学式で示される。なお、この化学式におけるnは、7ないし11、13および14の整数である。 The aliphatic diketone as a raw material is represented by a chemical formula of CH 3 CO (CH 2 ) n COCH 3 . Note that n in this chemical formula is an integer of 7 to 11, 13, and 14.

なお、脂肪族ジケトン類としては、例えば脂肪族ジヨウ化物とケトン類とを無機アルカリ化合物の存在下にて反応させる脂肪族ジケトンの製造方法にて製造される脂肪族ジケトンを用いてもよい。   In addition, as aliphatic diketones, you may use the aliphatic diketone manufactured with the manufacturing method of the aliphatic diketone which makes an aliphatic diiodide and ketones react in presence of an inorganic alkali compound, for example.

また、上述のような脂肪族ジケトン類を用いて分子内縮合反応により3−メチルシクロアルケノン類を製造する際には、原料である脂肪族ジケトン類は、触媒を充填した反応管へ気相であるガス状に導入して、気相で分子内縮合反応を行うことが好ましい。   Further, when 3-methylcycloalkenones are produced by intramolecular condensation reaction using the aliphatic diketones as described above, the aliphatic diketone as a raw material is introduced into the reaction tube filled with the catalyst in the gas phase. It is preferable to introduce into a certain gaseous state and perform an intramolecular condensation reaction in the gas phase.

触媒は、元素周期律表第2族の金属酸化物であり、特に、酸化マグネシウム、酸化カルシウムおよび酸化亜鉛が好ましい。   The catalyst is a metal oxide of Group 2 of the Periodic Table of Elements, and magnesium oxide, calcium oxide and zinc oxide are particularly preferable.

これらの触媒としての金属酸化物は、単独で用いても混合物を用いてもよく、さらに、反応に不活性な成型剤とともに用いてもよい。   These metal oxides as the catalyst may be used singly or as a mixture, and may be used together with a molding agent that is inert to the reaction.

なお、触媒の形状は、通常はペレットまたは錠剤であるが、これらには限定されず、適宜変更可能である。   In addition, although the shape of a catalyst is usually a pellet or a tablet, it is not limited to these, It can change suitably.

このような触媒は、BET比表面積が10m/gより大きいと、原料である脂肪族ジケトン類が触媒上で分子間縮合反応しやすくなり、収率の低下を招く可能性がある。したがって、触媒は、BET比表面積が10m/g以下であると、工業的に十分な収率を確保できるとともに、触媒の劣化を抑制できるので好ましい。 In such a catalyst, if the BET specific surface area is larger than 10 m 2 / g, aliphatic diketones as raw materials are likely to undergo an intermolecular condensation reaction on the catalyst, which may lead to a decrease in yield. Therefore, it is preferable that the catalyst has a BET specific surface area of 10 m 2 / g or less because an industrially sufficient yield can be secured and deterioration of the catalyst can be suppressed.

分子内縮合反応では、副反応として生じる分子間縮合反応を抑制するために、溶媒または不活性ガスが用いられ、原料の脂肪族ジケトン類は、溶媒に溶解し、不活性ガスのキャリア下にて、蒸発管または蒸発缶等の蒸発部にて気化させた後、触媒を充填した反応管へ導入されることが好ましい。   In the intramolecular condensation reaction, a solvent or an inert gas is used in order to suppress the intermolecular condensation reaction that occurs as a side reaction, and the starting aliphatic diketone is dissolved in the solvent under an inert gas carrier. It is preferably introduced into a reaction tube filled with a catalyst after vaporization in an evaporation section such as an evaporation tube or an evaporator.

溶媒としては、通常では炭化水素類が用いられ、特に、炭素数6〜14の炭化水素類が好適であるが、反応に不活性なものであれば適宜用いることができる。具体的には、例えば、トルエン、キシレン、デカリン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカンおよびテトラデカン等を溶媒として用いることができる。なお、溶媒の使用量は、多過ぎると経済的ではなく、少な過ぎると副反応を抑制できなくなる。   As the solvent, hydrocarbons are usually used. Particularly, hydrocarbons having 6 to 14 carbon atoms are suitable, but any solvents that are inert to the reaction can be used as appropriate. Specifically, for example, toluene, xylene, decalin, hexane, heptane, octane, nonane, decane, dodecane, and tetradecane can be used as the solvent. If the amount of solvent used is too large, it is not economical, and if it is too small, side reactions cannot be suppressed.

不活性ガスとしては、例えば二酸化炭素および窒素等が用いられるが、反応に不活性なものであれば適宜用いることができる。なお、不活性ガスの使用量は、多過ぎると経済的ではなく、少な過ぎると副反応を抑制できなくなるので、通常は、原料の脂肪族ジケトン類1gに対して、0.2L以上20L以下で不活性ガスが用いられる。   For example, carbon dioxide and nitrogen are used as the inert gas, and any inert gas can be used as long as it is inert to the reaction. If the amount of the inert gas used is too large, it is not economical, and if it is too small, side reactions cannot be suppressed. Therefore, it is usually 0.2 L or more and 20 L or less with respect to 1 g of the aliphatic diketone as a raw material. An inert gas is used.

分子内縮合反応では、原料である脂肪族ジケトン類の原料分圧が500mmHOを超えると、原料である脂肪族ジケトンの触媒上での分子間縮合反応が多くなり収率低下を招く。一方、脂肪族ジケトン類の原料分圧が50mmHO未満であると、原料である脂肪族ジケトンの濃度が薄くなり、収量が低下して経済的ではない。したがって、分子内縮合反応では、原料である脂肪族ジケトン類の原料分圧が50mmHO以上500mmHO以下であると好ましい。 In the intramolecular condensation reaction, when the raw material partial pressure of the aliphatic diketone as the raw material exceeds 500 mmH 2 O, the intermolecular condensation reaction on the catalyst of the aliphatic diketone as the raw material increases, resulting in a decrease in yield. On the other hand, when the raw material partial pressure of the aliphatic diketone is less than 50 mmH 2 O, the concentration of the aliphatic diketone as the raw material becomes thin, and the yield decreases, which is not economical. Therefore, in the intramolecular condensation reaction, the raw material partial pressure of the aliphatic diketone as the raw material is preferably 50 mmH 2 O or more and 500 mmH 2 O or less.

蒸発部の温度は、通常は200℃以上350℃以下の範囲で調整されるが、この範囲に限定されず、原料である肪族ジケトン類が全量気化する温度であればよい。   The temperature of the evaporating part is usually adjusted in the range of 200 ° C. or higher and 350 ° C. or lower, but is not limited to this range, and any temperature may be used as long as the aliphatic diketone as a raw material is vaporized.

反応温度は、低過ぎると反応が進行しにくく、高過ぎると分解反応が生じるので、通常は300℃以上400℃以下の範囲で管理するが、350℃以上380℃以下の範囲で管理するとより好ましい。   If the reaction temperature is too low, the reaction hardly proceeds, and if it is too high, a decomposition reaction occurs. Therefore, the reaction temperature is usually controlled in the range of 300 ° C. to 400 ° C., but more preferably in the range of 350 ° C. to 380 ° C. .

原料である脂肪族ジケトン類の触媒への導入速度は、速過ぎると脂肪族ジケトン類の転化率が低下し、遅過ぎると副反応が多くなって、3−メチルシクロアルケノン類の選択率の低下および触媒活性の低下が生じる。そのため、通常は、原料の脂肪族ジケトン類のLHSVが0.002以上0.10以下の範囲で調整する。   If the feed rate of the aliphatic diketone as a raw material is too fast, the conversion rate of the aliphatic diketone will decrease, and if it is too slow, side reactions will increase and the selectivity of 3-methylcycloalkenones will decrease. And a decrease in catalytic activity occurs. For this reason, usually, the LHSV of the starting aliphatic diketones is adjusted in the range of 0.002 to 0.10.

分子内縮合反応での原料の脂肪族ジケトン類の転化率は、高いほど目的物である3−メチルシクロアルケノン類の選択率が低下し、低いほど目的物である3−メチルシクロアルケノン類の選択率は向上するものの、低過ぎると経済的ではないので、40%以上80%以下とすることが好ましい。   The higher the conversion rate of the starting aliphatic diketones in the intramolecular condensation reaction, the lower the selectivity of the target 3-methylcycloalkenones, and the lower the lower the selection of the target 3-methylcycloalkenones. Although the rate is improved, it is not economical if it is too low.

反応中は、反応時間の経過とともに触媒活性が徐々に低下するが、反応温度を徐々に上昇させることにより、触媒再賦活化までの触媒使用時間を長くすることができるので好ましい。   During the reaction, the catalyst activity gradually decreases as the reaction time elapses, but it is preferable to gradually increase the reaction temperature because the catalyst use time until catalyst reactivation can be extended.

なお、反応温度を380℃まで上昇させても3−メチルシクロアルケノン類の選択率が上がらなくなり、触媒活性が低下してきた時点で原料の供給を停止し、触媒の再賦活化を行う。   Even when the reaction temperature is increased to 380 ° C., the selectivity of 3-methylcycloalkenones is not increased, and when the catalytic activity is lowered, the supply of raw materials is stopped and the catalyst is reactivated.

触媒の再賦活化は、触媒層への空気または酸素を導入し、触媒層に蓄積した高沸点副生成物を焼却除去するものである。なお、触媒層への空気の導入速度は適宜設定できる。また、再賦活化の温度は400℃以上であり、好ましくは450℃以上500℃以下である。   In the reactivation of the catalyst, air or oxygen is introduced into the catalyst layer, and high boiling point by-products accumulated in the catalyst layer are removed by incineration. In addition, the air introduction speed into the catalyst layer can be set as appropriate. The reactivation temperature is 400 ° C. or higher, preferably 450 ° C. or higher and 500 ° C. or lower.

反応生成物は、20℃以上60℃以下の範囲で捕集することにより液状で得られる。なお、この反応生成物の主組成物は、使用した溶媒、3−メチルシクロアルケノン類および未反応脂肪族ジケトン類である。   The reaction product is obtained in a liquid state by collecting in the range of 20 ° C. or more and 60 ° C. or less. The main composition of the reaction product is the solvent used, 3-methylcycloalkenones and unreacted aliphatic diketones.

また、得られた液状の反応生成物(反応生成液)を更に冷却することにより、未反応脂肪族ジケトン類の大部分を晶出分離できる。なお、回収した未反応脂肪族ジケトン類は循環利用可能である。   Further, by further cooling the obtained liquid reaction product (reaction product liquid), most of the unreacted aliphatic diketones can be crystallized and separated. The recovered unreacted aliphatic diketones can be recycled.

未反応ジケトン類の大部分を分離した後の3−メチルシクロアルケノン類含有液からは、蒸留等での分離により、容易に3−メチルシクロアルケノン類を取得できる。   From the 3-methylcycloalkenone-containing liquid after separating most of the unreacted diketones, 3-methylcycloalkenones can be easily obtained by separation by distillation or the like.

このように、脂肪族ジケトンの分子内縮合反応で得られる3−メチルシクロアルケノン類とは、(E)−3−メチル−2−シクロアルケノン、(Z)−3−メチル−2−シクロアルケノン、(E)−3−メチル−3−シクロアルケノン、(Z)−3−メチル−3−シクロアルケノン、および、3−メチレン−シクロアルカノンであり、少なくとも(E)−3−メチル−2−シクロアルケノンおよび(Z)−3−メチル−2−シクロアルケノンを含有している。   Thus, 3-methylcycloalkenones obtained by intramolecular condensation reaction of aliphatic diketones include (E) -3-methyl-2-cycloalkenone, (Z) -3-methyl-2-cycloalkenone, (E) -3-methyl-3-cycloalkenone, (Z) -3-methyl-3-cycloalkenone, and 3-methylene-cycloalkanone, and at least (E) -3-methyl-2-cyclo Contains alkenone and (Z) -3-methyl-2-cycloalkenone.

そして、上記3−メチルシクロアルケノン類の製造方法によれば、脂肪族ジケトン類を分子内縮合反応により3−メチルシクロアルケノン類にするため、出発原料として2,15−ヘキサデカンジオンとは炭素鎖の数が異なる脂肪族ジケトンを用いて、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン類を製造できる。すなわち、例えば特殊な溶媒や設備等を用いず、特殊な処理等行わなくても、3−メチルシクロペンタデセノンとは炭素数が異なる3−メチルシクロアルケノン類を経済的に製造できる。   According to the method for producing 3-methylcycloalkenones, 2,15-hexadecanedione as a starting material is a carbon chain because aliphatic diketones are converted into 3-methylcycloalkenones by intramolecular condensation reaction. Using an aliphatic diketone having a different number, 3-methylcycloalkenones having a carbon number different from that of 3-methylcyclopentadecenone can be produced. That is, for example, 3-methylcycloalkenones having a carbon number different from that of 3-methylcyclopentadecenone can be economically produced without using a special solvent, equipment, or the like and without performing a special treatment.

特に、気相縮合反応により3−メチルシクロアルケノン類を製造することにより、特殊な溶媒を使用する必要がなく、また、分子間縮合反応を抑制するために大希釈にする必要等がないので、容易かつ経済的に3−メチルシクロアルケノン類を製造できる。   In particular, by producing 3-methylcycloalkenones by gas phase condensation reaction, it is not necessary to use a special solvent, and it is not necessary to make a large dilution in order to suppress intermolecular condensation reaction. 3-methylcycloalkenones can be produced easily and economically.

また、触媒として、元素周期律表第2族の単成分の金属酸化物である酸化マグネシウム、酸化カルシウムおよび酸化亜鉛のうちの少なくとも1種を用いることにより、これらの化合物は一般的に入手しやすく、分子内縮合反応を安定して進行できるので、経済的に3−メチルシクロアルケノン類を製造できる。   In addition, these compounds are generally easily available by using at least one of magnesium oxide, calcium oxide, and zinc oxide, which is a single component metal oxide of Group 2 of the Periodic Table of Elements, as a catalyst. Since the intramolecular condensation reaction can proceed stably, 3-methylcycloalkenones can be produced economically.

さらに、BET比表面積が10m/g以下の触媒を用いることにより、触媒上での分子間縮合反応の増加による収率の低下を抑制できるとともに、触媒の劣化を抑制できるので、分子内縮合反応により3−メチルシクロアルケノン類を効率的に製造できる。 Furthermore, by using a catalyst having a BET specific surface area of 10 m 2 / g or less, a decrease in yield due to an increase in intermolecular condensation reaction on the catalyst can be suppressed, and deterioration of the catalyst can be suppressed. Thus, 3-methylcycloalkenones can be efficiently produced.

また、原料である脂肪族ジケトン類の原料分圧が50mmHO以上500mmHO以下であることにより、触媒上での分子間縮合反応の増加による収率の低下を抑制できるとともに、脂肪族ジケトンの濃度低下による収量の低下を抑制できる。 In addition, since the raw material partial pressure of the aliphatic diketone as the raw material is 50 mmH 2 O or more and 500 mmH 2 O or less, a decrease in yield due to an increase in intermolecular condensation reaction on the catalyst can be suppressed, and the aliphatic diketone Yield reduction due to decrease in the concentration of can be suppressed.

さらに、上述の分子内縮合反応による3−メチルシクロアルケノン類の製造方法では、未反応脂肪族ジケトン類を回収しやすいため、この回収した未反応脂肪族ジケトン類を循環利用することにより、原料である脂肪族ジケトン類を無駄なくし使用でき、より経済的に3−メチルシクロアルケノン類を製造できる。   Furthermore, in the method for producing 3-methylcycloalkenones by the intramolecular condensation reaction described above, unreacted aliphatic diketones are easily recovered. Therefore, the recovered unreacted aliphatic diketones are recycled and used as a raw material. Certain aliphatic diketones can be used without waste, and 3-methylcycloalkenones can be produced more economically.

以下、本実施例および比較例について説明する。   Hereinafter, this example and a comparative example will be described.

まず、参考として、3−メチルシクロアルケノン類の製造に用いる脂肪族ジケトン類の製造について説明する。   First, for reference, the production of aliphatic diketones used for the production of 3-methylcycloalkenones will be described.

撹拌機、温度計および還流冷却器を付した2Lの三ツ口フラスコに、1,6−ジヨードヘキサン169g(0.5モル)、アセト酢酸エチル520g(4モル)、エタノール1Lおよび炭酸カリウム89.8(0.65モル)を秤取し、全還流下にて4時間反応を行った。   To a 2 L three-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 169 g (0.5 mol) of 1,6-diiodohexane, 520 g (4 mol) of ethyl acetoacetate, 1 L of ethanol and 89.8 potassium carbonate were added. (0.65 mol) was weighed and reacted under total reflux for 4 hours.

反応終了後、溶媒として使用したエタノールを留去し、室温へ冷却して5%硫酸700mLを添加し分液した。   After completion of the reaction, ethanol used as a solvent was distilled off, cooled to room temperature, and 700 mL of 5% sulfuric acid was added for liquid separation.

分液後、上層の有機層の減圧蒸留により過剰に用いたアセト酢酸エチルを留去し、ジエチル−2,9−ジアセチル−1,10−デカンジオエート含有油状物を204g得た。   After liquid separation, the ethyl acetoacetate used in excess was distilled off by vacuum distillation of the upper organic layer to obtain 204 g of an oil containing diethyl-2,9-diacetyl-1,10-decandioate.

上述のように得られた油状物の全量および10%水酸化ナトリウム水溶液800g(2モル)を、撹拌機、温度計および還流冷却器を付した2L三ツ口フラスコに加え、室温にて5時間撹拌後、50%硫酸210gを添加し3時間全還流して脱炭酸反応を行った。   The total amount of the oily substance obtained as described above and 800 g (2 mol) of 10% aqueous sodium hydroxide solution were added to a 2 L three-necked flask equipped with a stirrer, thermometer and reflux condenser, and stirred at room temperature for 5 hours. Then, 210 g of 50% sulfuric acid was added and the whole was refluxed for 3 hours to carry out a decarboxylation reaction.

脱炭酸反応終了後、室温まで冷却し、固形物を濾過および水洗後、乾燥させて微黄色の結晶97.4gを得た。得られた結晶の組成をガスクロマトグラフィにて分析した結果、1,6−ジヨードヘキサンの濃度が0質量%であり、2,11−ドデカンジオンの濃度が90質量%であった。   After completion of the decarboxylation reaction, the mixture was cooled to room temperature, and the solid was filtered, washed with water, and dried to obtain 97.4 g of slightly yellow crystals. As a result of analyzing the composition of the obtained crystal by gas chromatography, the concentration of 1,6-diiodohexane was 0% by mass and the concentration of 2,11-dodecanedione was 90% by mass.

したがって、1,6−ジヨードヘキサンの転化率は100%で、2,11−ドデカンジオンの選択率は89%となり、仕込み1,6−ジヨードヘキサンに対する2,11−ドデカンジオンの収率は89%であった。   Therefore, the conversion of 1,6-diiodohexane was 100%, the selectivity for 2,11-dodecanedione was 89%, and the yield of 2,11-dodecanedione with respect to 1,6-diiodohexane charged was It was 89%.

また、得られた粗2,11−ドデカンジオンの全量を90%エタノールを用いて再結晶精製し、純度99.5%以上の精製2,11−ドデカンジオン79gを得た。   Further, the entire amount of the obtained crude 2,11-dodecanedione was recrystallized and purified using 90% ethanol to obtain 79 g of purified 2,11-dodecanedione having a purity of 99.5% or more.

そして、以下の各実施例のように、触媒の存在下にて、上述のように製造した2,11−ドデカンジオンを気相で分子内縮合反応を行い、3−メチルシクロウンデセノン類を製造した。   Then, as in the following examples, in the presence of a catalyst, 2,11-dodecanedione produced as described above is subjected to an intramolecular condensation reaction in the gas phase to produce 3-methylcycloundecenones. did.

[実施例1]
22mmφ、長さ40cmカラムにおいて、3〜4mmφの磁製ラシヒ40mLを上部に充填し、触媒としてBET比表面積が5.2m/gの酸化亜鉛ペレット(3〜5mmφ)60mLを下部に充填し、ラシヒ層温度が315℃となり、触媒層温度が360℃となるように加熱した。
[Example 1]
In a 22 mmφ, 40 cm long column, 40 mL of 3-4 mmφ porcelain Rashihi was filled at the top, and 60 mL of zinc oxide pellets (3-5 mmφ) having a BET specific surface area of 5.2 m 2 / g as a catalyst were filled at the bottom. It heated so that Raschig layer temperature might be set to 315 degreeC and catalyst layer temperature might be set to 360 degreeC.

この加熱したカラムへ、不活性ガスとしての窒素(3L/時間)キャリア下にて、4質量%の2,11−ドデカンジオンを溶解したn−ヘプタン溶液を25g/時間の速度で導入して分子内縮合反応を行った。なお、2,11−ドデカンジオン原料分圧は130mmHOであった。また、反応生成物を30〜50℃へ冷却して捕集した。 An n-heptane solution in which 4% by mass of 2,11-dodecanedione was dissolved was introduced into this heated column under a nitrogen (3 L / hour) carrier as an inert gas at a rate of 25 g / hour. An internal condensation reaction was performed. The 2,11-dodecanedion raw material partial pressure was 130 mmH 2 O. Moreover, the reaction product was cooled to 30 to 50 ° C. and collected.

そして、6時間の連続反応を行い、反応生成液をガスクロマトグラフィにて分析したところ、2,11−ドデカンジオンの転化率は78%であり、3−メチルシクロウンデセノン類の選択率は74%であった。   Then, a continuous reaction was performed for 6 hours, and the reaction product solution was analyzed by gas chromatography. As a result, the conversion of 2,11-dodecanedione was 78%, and the selectivity for 3-methylcycloundecenones was 74%. Met.

よって、仕込みの2,11−ドデカンジオンに対する3−メチルシクロウンデセノン類の収率は、58%であった。   Therefore, the yield of 3-methylcycloundecenones relative to the charged 2,11-dodecanedione was 58%.

[実施例2および実施例3]
触媒として元素周期律表第2族の化合物である酸化カルシウムまたは酸化マグネシウムを用いたこと以外は、上記実施例1と同様にして反応を行った。これら実施例1ないし実施例3の結果を表1に示す。
[Example 2 and Example 3]
The reaction was carried out in the same manner as in Example 1 except that calcium oxide or magnesium oxide, which is a compound of Group 2 of the Periodic Table of Elements, was used as the catalyst. The results of Examples 1 to 3 are shown in Table 1.

Figure 2017165662
Figure 2017165662

[実施例4ないし実施例7]
脂肪族ジケトン類として、2,11−ドデカンジオン以外の脂肪族ジケトンを用いたこと、および、脂肪族ジケトンを溶解した溶媒を変更した以外は、上記実施例1と同様にして反応を行った。これら実施例4ないし実施例7の結果を表2に示す。
[Examples 4 to 7]
The reaction was carried out in the same manner as in Example 1 except that an aliphatic diketone other than 2,11-dodecanedione was used as the aliphatic diketone and that the solvent in which the aliphatic diketone was dissolved was changed. The results of Examples 4 to 7 are shown in Table 2.

Figure 2017165662
Figure 2017165662

[実施例8]
3〜4mmφの磁製ラシヒ50mL充填管(22mmφ、長さ30cm)であるラシヒ充填管を上部に設置し、触媒としてBET比表面積6.1m/gの3〜5mmφ酸化亜鉛ペレット80mL充填管(22mφ、長さ40cm)である触媒充填管を下部に配置し、ラシヒ充填管を320℃に加熱し、触媒充填管を360℃に加熱した。
[Example 8]
A 3 to 4 mmφ porcelain Rashihi 50 mL filling tube (22 mmφ, 30 cm long) was installed at the top, and a 3 to 5 mm φ zinc oxide pellet 80 mL filling tube having a BET specific surface area of 6.1 m 2 / g as a catalyst ( A catalyst packed tube having a diameter of 22 mφ and a length of 40 cm was disposed at the bottom, the Raschig packed tube was heated to 320 ° C., and the catalyst packed tube was heated to 360 ° C.

また、ラシヒ充填管へ窒素(3L/時間)キャリア下にて、4質量%の2,11−ドデカンジオンを溶解したn−ヘプタン溶液を30g/時間の速度で導入して分子内縮合反応を行った。なお、2,11−ドデカンジオン原料分圧は150mmHOであった。また、反応生成物を30〜50℃へ冷却して捕集した。 Also, an intramolecular condensation reaction is performed by introducing an n-heptane solution in which 4% by mass of 2,11-dodecanedione is dissolved at a rate of 30 g / hr into a Raschig filled tube under a nitrogen (3 L / hr) carrier. It was. The 2,11-dodecanedion raw material partial pressure was 150 mmH 2 O. Moreover, the reaction product was cooled to 30 to 50 ° C. and collected.

そして、10時間の連続反応を行い、反応生成液をガスクロマトグラフィにて分析したところ、2,11−ドデカンジオンの転化率は76%であり、3−メチルシクロウンデセノン類の選択率は80%であった。   Then, a continuous reaction was performed for 10 hours, and the reaction product solution was analyzed by gas chromatography. As a result, the conversion of 2,11-dodecanedione was 76%, and the selectivity for 3-methylcycloundecenones was 80%. Met.

よって、仕込みの2,11−ドデカンジオンに対する3−メチルシクロウンデセノン類の収率は、61%であった。   Therefore, the yield of 3-methylcycloundecenones relative to the charged 2,11-dodecanedione was 61%.

反応終了後、ラシヒ充填層および触媒充填層を点検したところ、ラシヒ層にタール状物が付着し、触媒層は上部が白色から灰色へ変色していた。   After completion of the reaction, the Raschig packed bed and the catalyst packed bed were inspected. As a result, tar-like substances adhered to the Raschig layer, and the upper part of the catalyst layer was changed from white to gray.

また、ラシヒ充填層および触媒充填層を450〜500℃へ加熱し、空気を0.5L/分の速度で導入して、タール状物の焼却および触媒の再賦活化を行った後、再度上述の分子内縮合反応を行った。   Further, the Raschig packed bed and the catalyst packed bed are heated to 450 to 500 ° C., air is introduced at a rate of 0.5 L / min, incineration of tar-like materials and reactivation of the catalyst, and then the above-mentioned again. The intramolecular condensation reaction was performed.

そして、反応生成液をガスクロマトグラフィにて分析したところ、2,11−ドデカンジオンの転化率は、75%であり、3−メチルシクロウンデセノン類の選択率は79%であった。   When the reaction product liquid was analyzed by gas chromatography, the conversion of 2,11-dodecanedione was 75%, and the selectivity for 3-methylcycloundecenones was 79%.

よって、仕込みの2,11−ドデカンジオンに対する3−メチルシクロウンデセノン類の収率は、59%であった。   Therefore, the yield of 3-methylcycloundecenones relative to the charged 2,11-dodecanedione was 59%.

このような、再賦活化を伴う反応を繰り返し、合計5回の反応を行ったが、触媒の活性低下は認められず、5回目の反応における反応生成液をガスクロマトグラフィにて分析したところ、2,11−ドデカンジオンの転化率は76%であり、3−メチルシクロウンデセノン類の選択率は80%であった。   Such a reaction with reactivation was repeated, and the reaction was repeated 5 times in total. However, no decrease in the activity of the catalyst was observed, and the reaction product solution in the 5th reaction was analyzed by gas chromatography. , 11-dodecanedione conversion was 76% and 3-methylcycloundecenone selectivity was 80%.

よって、仕込みの2,11−ドデカンジオンに対する3−メチルシクロウンデセノン類の収率は、61%であった。   Therefore, the yield of 3-methylcycloundecenones relative to the charged 2,11-dodecanedione was 61%.

[比較例1]
22mmφ、長さ40cmのカラムにおいて、3〜4mmφの磁製ラシヒ40mLを上部に充填し、触媒としてBET比表面積31.2m/gの酸化亜鉛ペレット(3〜5mmφ)60mLを下部に充填し、ラシヒ層温度が315℃となり、触媒層温度が360℃となるように加熱した。
[Comparative Example 1]
In a 22 mmφ, 40 cm long column, 40 mL of 3-4 mmφ porcelain Rashihi was filled at the top, and 60 mL of zinc oxide pellets (3-5 mmφ) having a BET specific surface area of 31.2 m 2 / g were filled at the bottom as a catalyst. It heated so that Raschig layer temperature might be set to 315 degreeC and catalyst layer temperature might be set to 360 degreeC.

この加熱したカラムへ、不活性ガスとしての窒素(3L/時間)キャリア下にて、4質量%2,11−ドデカンジオンを溶解したn−ヘプタン溶液を25g/時間の速度で導入して分子内縮合反応を行った。なお、2,11−ドデカンジオン原料分圧は140mmHOであった。また、反応生成物を30〜50℃へ冷却して捕集した。 An n-heptane solution in which 4% by mass of 2,11-dodecanedione was dissolved at a rate of 25 g / hour was introduced into this heated column under a nitrogen (3 L / hour) carrier as an inert gas at a rate of 25 g / hour. A condensation reaction was performed. The 2,11-dodecanedion raw material partial pressure was 140 mmH 2 O. Moreover, the reaction product was cooled to 30 to 50 ° C. and collected.

そして、6時間の連続反応を行い、反応生成液をガスクロマトグラフィにて分析したところ、2,11−ドデカンジオンの転化率は89%であり、3−メチルシクロウンデセノン類の選択率は38%であった。   Then, a continuous reaction was performed for 6 hours, and the reaction product solution was analyzed by gas chromatography. As a result, the conversion of 2,11-dodecanedione was 89%, and the selectivity for 3-methylcycloundecenones was 38%. Met.

よって、仕込みの2,11−ドデカンジオンに対する3−メチルシクロウンデセノン類の収率は、34%であった。   Therefore, the yield of 3-methylcycloundecenones relative to the charged 2,11-dodecanedione was 34%.

[比較例2および比較例3]
触媒として元素周期律表第2族の化合物である酸化カルシウムまたは酸化マグネシウムを用いたこと以外は、上記比較例1と同様にして反応を行った。これら比較例1ないし比較例3の結果を表3に示す。
[Comparative Example 2 and Comparative Example 3]
The reaction was performed in the same manner as in Comparative Example 1 except that calcium oxide or magnesium oxide, which is a compound of Group 2 of the Periodic Table of Elements, was used as the catalyst. The results of Comparative Examples 1 to 3 are shown in Table 3.

Figure 2017165662
Figure 2017165662

[比較例4および比較例5]
脂肪族ジケトン類として、2,11−ドデカンジオン以外の脂肪族ジケトンを用いたこと、および、脂肪族ジケトンを溶解した溶媒を変更した以外は、上記比較例1と同様にして反応を行った。これら比較例4および比較例5の結果を表4に示す。
[Comparative Example 4 and Comparative Example 5]
The reaction was conducted in the same manner as in Comparative Example 1 except that an aliphatic diketone other than 2,11-dodecanedione was used as the aliphatic diketone, and the solvent in which the aliphatic diketone was dissolved was changed. The results of Comparative Example 4 and Comparative Example 5 are shown in Table 4.

Figure 2017165662
Figure 2017165662

Claims (5)

CHCO(CHCOCHの化学式で示され、nが7ないし11、13および14の整数である脂肪族ジケトンの分子内縮合反応により、
化学式(1)で示され、nが7ないし11、13および14の整数である3−メチルシクロアルケノン類を製造する
Figure 2017165662
ことを特徴とする3−メチルシクロアルケノン類の製造方法。
By an intramolecular condensation reaction of an aliphatic diketone represented by the chemical formula CH 3 CO (CH 2 ) n COCH 3 , wherein n is an integer of 7 to 11, 13 and 14,
3-methylcycloalkenones represented by the chemical formula (1), wherein n is an integer of 7 to 11, 13, and 14 are produced.
Figure 2017165662
A process for producing 3-methylcycloalkenones characterized by the above.
気相で脂肪族ジケトンの分子内縮合反応する
ことを特徴とする請求項1記載の3−メチルシクロアルケノン類の製造方法。
The method for producing 3-methylcycloalkenones according to claim 1, wherein an intramolecular condensation reaction of an aliphatic diketone is performed in a gas phase.
BET比表面積が10m/g以下の触媒を用いて分子内縮合反応する
ことを特徴とする請求項1または2記載の3−メチルシクロアルケノン類の製造方法。
The method for producing a 3-methylcycloalkenone according to claim 1 or 2, wherein an intramolecular condensation reaction is carried out using a catalyst having a BET specific surface area of 10 m 2 / g or less.
酸化マグネシウム、酸化カルシウムおよび酸化亜鉛のうちの少なくとも1種を触媒として用いて分子内縮合反応する
ことを特徴とする請求項1ないし3いずれか一記載の3−メチルシクロアルケノン類の製造方法。
The method for producing a 3-methylcycloalkenone according to any one of claims 1 to 3, wherein an intramolecular condensation reaction is performed using at least one of magnesium oxide, calcium oxide and zinc oxide as a catalyst.
脂肪族ジケトンの原料分圧が50mmHO以上500mmHO以下で分子内縮合反応する
ことを特徴とする請求項1ないし4いずれか一記載の3−メチルシクロアルケノン類の製造方法。
The method for producing a 3-methylcycloalkenone according to any one of claims 1 to 4, wherein an intramolecular condensation reaction is performed at a raw material partial pressure of the aliphatic diketone of 50 mmH 2 O to 500 mmH 2 O.
JP2016050290A 2016-03-14 2016-03-14 Process for producing 3-methylcycloalkenones Expired - Fee Related JP6502884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050290A JP6502884B2 (en) 2016-03-14 2016-03-14 Process for producing 3-methylcycloalkenones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050290A JP6502884B2 (en) 2016-03-14 2016-03-14 Process for producing 3-methylcycloalkenones

Publications (2)

Publication Number Publication Date
JP2017165662A true JP2017165662A (en) 2017-09-21
JP6502884B2 JP6502884B2 (en) 2019-04-17

Family

ID=59908634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050290A Expired - Fee Related JP6502884B2 (en) 2016-03-14 2016-03-14 Process for producing 3-methylcycloalkenones

Country Status (1)

Country Link
JP (1) JP6502884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087184A (en) * 2016-11-24 2018-06-07 国立大学法人 新潟大学 (E)-3-methyl-2-cycloalkenone compound, 3-halo-3-methylcycloalkanone compound and method for producing (R)-3-methylcycloalkanone compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115514A (en) * 2002-09-20 2004-04-15 Symrise Gmbh & Co Kg Method for manufacturing macrocyclic ketone and lactone
JP2004527497A (en) * 2001-02-22 2004-09-09 ジボダン エス エー Method for producing macrocyclic ketone
JP2009137876A (en) * 2007-12-06 2009-06-25 Daicel Chem Ind Ltd Method for producing carbonyl group-containing compound and large cyclic ketone
WO2010109650A1 (en) * 2009-03-27 2010-09-30 Doya Masaharu Process for production of 3-methyl-cyclopentadecenone, process for production of r/s-muscone, and process for production of optically active muscone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527497A (en) * 2001-02-22 2004-09-09 ジボダン エス エー Method for producing macrocyclic ketone
JP2004115514A (en) * 2002-09-20 2004-04-15 Symrise Gmbh & Co Kg Method for manufacturing macrocyclic ketone and lactone
JP2009137876A (en) * 2007-12-06 2009-06-25 Daicel Chem Ind Ltd Method for producing carbonyl group-containing compound and large cyclic ketone
WO2010109650A1 (en) * 2009-03-27 2010-09-30 Doya Masaharu Process for production of 3-methyl-cyclopentadecenone, process for production of r/s-muscone, and process for production of optically active muscone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, G. ET AL., CHINESE JOURNAL OF CHEMISTRY, vol. 26, JPN6018024677, 2008, pages 2249 - 2255, ISSN: 0003827635 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087184A (en) * 2016-11-24 2018-06-07 国立大学法人 新潟大学 (E)-3-methyl-2-cycloalkenone compound, 3-halo-3-methylcycloalkanone compound and method for producing (R)-3-methylcycloalkanone compound

Also Published As

Publication number Publication date
JP6502884B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6161664B2 (en) Method for producing cyclododecanone
EP3116848B1 (en) Process involving cross metathesis of olefins
JP6180473B2 (en) Method for producing cyclododecanone
Wang et al. Transition metal salt-mediated radical reactions of [60] fullerene
JP5108880B2 (en) Method for producing cyclic ketone
JP5824056B2 (en) Process for preparing ketones, especially macrocyclic ketones
KR20110110359A (en) Method for producing pure cyclododecanone
Ichikawa et al. Synthesis of novel organoselenium as catalyst for Baeyer–Villiger oxidation with 30% H2O2
JP4929402B2 (en) Method for producing 3-methyl-cyclopentadecenones, method for producing R / S-muscone and method for producing optically active muscone
WO2016167698A1 (en) Catalysed baeyer-villiger oxidation of cyclic ketones
KR101390580B1 (en) Method for the production of cyclic ketones
Seki et al. Synthesis of phthalide–skeleton using selective intramolecular Tishchenko reaction over solid base catalysts
JP6502884B2 (en) Process for producing 3-methylcycloalkenones
KR20010043496A (en) Process for the Preparation of Esters or Lactones
Chin et al. Conia-ene annulation of the α-cyano β-TMS-capped alkynyl cycloalkanone system and its synthetic application
Chaminade et al. Aluminium triflate-catalysed regioselective cycloisomerisation of non-activated unsaturated oximes
JP6595377B2 (en) Method for producing 3-methylcyclopentadecenones
Hu et al. Efficient and convenient oxidation of aldehydes and ketones to carboxylic acids and esters with H 2 O 2 catalyzed by Co 4 HP 2 Mo 15 V 3 O 62 in ionic liquid [TEBSA][BF 4]
JP2002060367A (en) Method for producing 2-vinylcyclododecanone
RU2425040C1 (en) Method of producing 2,3-epoxypinane from turpentine
US6433229B1 (en) Method of producing cyclic, α, β-unsaturated ketones
Hsieh et al. Palladium (ii) acetate mediated oxidative cyclization of ω-unsaturated α-cyano ketones for facile construction of methylenecyclohexane ring system
JP2016124868A (en) ω-HYDROXY FATTY ACID ESTER AND METHOD FOR PRODUCING PRECURSOR COMPOUND THEREOF
JP4733906B2 (en) Method for converting cyclododecane-1,2-dione to cyclododecanone
US3379768A (en) Method of producing hydratropic aldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180810

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees