JP2017162551A - Earthquake resistant polymer bushing - Google Patents

Earthquake resistant polymer bushing Download PDF

Info

Publication number
JP2017162551A
JP2017162551A JP2016043001A JP2016043001A JP2017162551A JP 2017162551 A JP2017162551 A JP 2017162551A JP 2016043001 A JP2016043001 A JP 2016043001A JP 2016043001 A JP2016043001 A JP 2016043001A JP 2017162551 A JP2017162551 A JP 2017162551A
Authority
JP
Japan
Prior art keywords
earthquake
flexible conductor
resistant polymer
tube
bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016043001A
Other languages
Japanese (ja)
Inventor
和宏 辻
Kazuhiro Tsuji
和宏 辻
田中 直樹
Naoki Tanaka
直樹 田中
佐藤 健次
Kenji Sato
健次 佐藤
健悟 樫原
Kengo Kashihara
健悟 樫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016043001A priority Critical patent/JP2017162551A/en
Publication of JP2017162551A publication Critical patent/JP2017162551A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resistant polymer bushing having enhanced vibration attenuation factor.SOLUTION: The earthquake resistant polymer bushing generates earthquake-proof effects by arranging a center tube 4 in a center part of a polymer porcelain tube 1, hanging a plastic conductor 5 inside of the center tube 4 and vibrating the plastic conductor 5 inside of the center tube 4 when earthquake is generated. Space δ between the plastic conductor 5 and an inner wall of the center tube 4 is about 5 to 20 mm. A lower part of the plastic conductor 5 may be fixed to the center tube 4 or hung without fixing.SELECTED DRAWING: Figure 2

Description

本発明は、耐震性に優れたポリマーブッシングに関するものである。   The present invention relates to a polymer bushing excellent in earthquake resistance.

2011年3月の東北地方太平洋沖地震において、多くの電気設備が被害を受けた。なかでも電力流通の要である主変圧器に用いられている旧タイプの気中−油中ブッシングでは想定以上の地震動により磁器破壊や継続漏油が発生し、供給支障に至るケースも散見された。   In the 2011 off the Pacific coast of Tohoku Earthquake, many electrical facilities were damaged. In particular, in the old type air-oil bushing used for the main transformer, which is the key to power distribution, there were some cases in which porcelain destruction and continuous oil leakage occurred due to earthquake motion more than expected, leading to supply failure. .

昨今の磁器製ブッシングは、磁器強度の向上、油密パッキンの脱落性が改善されており、上記の震災レベルでは同様の被害に至らないことが確認されている。その一例が特許文献1に記載されている。しかし電力流通設備のコストダウンや今後30年以内に発生するとされている震度6強以上の地震に耐える更なる耐震強化が求められており、高度成長期に設置された多くの老朽変圧器の更新時には、新技術を適用したブッシングが求められている。   Recent porcelain bushings have improved porcelain strength and improved oil-tight packing, and it has been confirmed that similar damage will not occur at the above-mentioned earthquake level. One example thereof is described in Patent Document 1. However, cost reduction of power distribution facilities and further seismic strengthening that can withstand earthquakes with a seismic intensity of 6 or higher that are expected to occur within the next 30 years are required, and many old transformers installed during the high growth period have been renewed. At times, bushings that apply new technologies are required.

磁器製ブッシングに比較してポリマーブッシングは軽量であるため、耐震性の点で有利であると考えられている。しかしポリマーは磁器に比べて剛性が低く各部品結合部の振動抵抗が低いため、振動が減衰しにくく応答倍率が高くなり耐震上不利になるという欠点がある。   Compared to porcelain bushings, polymer bushings are lightweight and are considered advantageous in terms of earthquake resistance. However, since the polymer is less rigid than the porcelain and the vibration resistance of each component joint is low, there is a drawback that the vibration is difficult to attenuate and the response magnification becomes high, which is disadvantageous in terms of earthquake resistance.

ここで応答倍率とは、加振時の地表面加速度に対する製品重心点加速度の倍数を意味する。図1のグラフは振動減衰率hと応答倍率との関係を示すもので、振動減衰率hが小さいほど応答倍率が大きくなることが示されている。   Here, the response magnification means a multiple of the product center-of-gravity point acceleration with respect to the ground surface acceleration during vibration. The graph of FIG. 1 shows the relationship between the vibration attenuation rate h and the response magnification, and shows that the response magnification increases as the vibration attenuation rate h decreases.

上記したように、ポリマーブッシングは軽量であるという利点があるがその半面、磁器製ブッシングに比べて振動減衰率が小さいため、地震発生時の応答倍率が高くなるという欠点があった。   As described above, the polymer bushing has an advantage that it is lightweight, but on the other hand, since the vibration damping rate is smaller than that of the porcelain bushing, there is a drawback that the response magnification at the time of occurrence of an earthquake is increased.

特開平5−47569号公報JP-A-5-47569

従って本発明の目的は上記した従来の問題点を解決して、振動減衰率を向上させた耐震性ポリマーブッシングを提供することである。   Accordingly, an object of the present invention is to provide an earthquake-resistant polymer bushing having an improved vibration damping rate by solving the above-mentioned conventional problems.

上記の課題を解決するためになされた本発明の耐震性ポリマーブッシングは、ポリマー碍管の中心部に中心管を配置し、この中心管の内部に可撓導体を吊下げ、地震発生時に可撓導体を中心管の内部で揺動させることにより、制震効果を生じさせることを特徴とするものである。   The earthquake-resistant polymer bushing of the present invention, which has been made to solve the above-mentioned problems, has a central tube disposed in the center of a polymer pipe, and a flexible conductor is suspended inside the central tube. The vibration control effect is produced by swinging the inside of the central tube.

なお、前記可撓導体と中心管の内壁との間に、片側5〜20mmの空隙を持たせた構造とすることが好ましい。前記可撓導体の下部は、中心管に固定した構造、あるいは中心管に固定せず垂下させた構造とすることができる。前記中心管をアルミニウム管とすることができ、前記可撓導体を通電性能が良い銅の撚り線からなるものとすることができる。   In addition, it is preferable to set it as the structure which gave the space | gap of 5-20 mm on one side between the said flexible conductor and the inner wall of a center pipe | tube. The lower portion of the flexible conductor can be a structure fixed to the central tube, or a structure suspended without being fixed to the central tube. The central tube can be an aluminum tube, and the flexible conductor can be made of a copper stranded wire having good current-carrying performance.

本発明の耐震性ポリマーブッシングは、ポリマー碍管の中心部に配置された中心管の内部に可撓導体を吊下げたものであり、地震発生時に可撓導体を中心管の内部で揺動させることにより、制震効果を生じさせることができる。このためポリマーがい管全体の振動減衰率が大きくなり、耐震性を向上させることができる。   The earthquake-resistant polymer bushing according to the present invention has a flexible conductor suspended inside a central tube arranged at the center of the polymer rod, and causes the flexible conductor to swing inside the central tube when an earthquake occurs. Therefore, it is possible to produce a vibration control effect. For this reason, the vibration damping rate of the entire polymer insulation pipe is increased, and the earthquake resistance can be improved.

正弦n波擬共振時の加速度応答倍率のグラフであり、hは振動減衰率である。It is a graph of the acceleration response magnification at the time of sine n-wave quasi-resonance, and h is a vibration damping factor. 実施形態の耐震性ポリマーブッシングを示す部分断面図である。It is a fragmentary sectional view which shows the earthquake-resistant polymer bushing of embodiment. 中心導体の水平断面図である。It is a horizontal sectional view of a center conductor. 中心管の内部における可撓導体の周期的な動きを示す説明図である。It is explanatory drawing which shows the periodic motion of the flexible conductor inside a center pipe | tube. 空隙δと加速度との関係を示すグラフである。It is a graph which shows the relationship between the space | gap (delta) and acceleration. ブッシング基部モーメントのグラフである。It is a graph of a bushing base moment.

以下に本発明の実施形態を説明する。
図2は本発明の実施形態の耐震性ポリマーブッシングを示す部分断面図であり、1はポリマー碍管、2はその下部金具である。ポリマー碍管1はFRP製の絶縁筒3の外周にシリコンゴムをモールド成型したものが一般的であり、その内部にはSFガス、窒素ガスなどの絶縁ガスが充填されている。
Embodiments of the present invention will be described below.
FIG. 2 is a partial cross-sectional view showing an earthquake-resistant polymer bushing according to an embodiment of the present invention. The polymer pipe 1 is generally formed by molding silicon rubber on the outer periphery of an insulating tube 3 made of FRP, and the inside thereof is filled with an insulating gas such as SF 6 gas or nitrogen gas.

本発明の耐震性ポリマーブッシングの中心導体は、ポリマー碍管1の中心部に配置された中心管4とその内部に吊下げられた可撓導体5とからなる。図3にその水平断面図を示す。なお、6は中心管4の外周に形成された電界緩和用のコンデンサコアである。本発明の別の実施形態としては電解緩和用のコンデンサコアが無いポリマーブッシング(ガスブッシング)もある。   The center conductor of the earthquake-resistant polymer bushing of the present invention comprises a center tube 4 disposed at the center of the polymer rod tube 1 and a flexible conductor 5 suspended therein. FIG. 3 shows a horizontal sectional view thereof. Reference numeral 6 denotes a capacitor core for electric field relaxation formed on the outer periphery of the central tube 4. Another embodiment of the present invention is a polymer bushing (gas bushing) that does not have a capacitor core for electrolytic relaxation.

本実施形態では、中心管4はアルミニウム管からなる。ブッシングの一般的な中心導体としては、導電率が大きい銅管またはアルミニウム管が用いられる。アルミニウム管は軽量であるが、導電率は銅管の60%程度である。しかし本発明では電流は可撓導体5を流れるので、中心管4としては銅管よりも導電率が小さいアルミニウム管を用いても問題はない。   In the present embodiment, the center tube 4 is made of an aluminum tube. As a general central conductor of the bushing, a copper tube or an aluminum tube having a high conductivity is used. The aluminum tube is light, but the conductivity is about 60% of that of the copper tube. However, since current flows through the flexible conductor 5 in the present invention, there is no problem even if an aluminum tube having a lower conductivity than the copper tube is used as the center tube 4.

中心管4の外径Φaは、その表面の電界強度がブッシングに封入された絶縁ガスの絶縁破壊電圧(μ−3δ)以下となるように設定される。すなわち、中心管4の曲率半径が小さくなると表面の電界強度が上昇するため、154kVや275kVの電圧階級のブッシングにおいては、中心管3の外径Φaは60〜100mm程度とすることが好ましい。   The outer diameter Φa of the central tube 4 is set so that the electric field strength on the surface thereof is equal to or lower than the dielectric breakdown voltage (μ−3δ) of the insulating gas sealed in the bushing. That is, since the electric field strength of the surface increases as the radius of curvature of the central tube 4 decreases, the outer diameter Φa of the central tube 3 is preferably about 60 to 100 mm in the 154 kV or 275 kV voltage class bushings.

可撓導体5は導電性に優れた銅の撚り線からなることが好ましい。可撓導体5は表面に微細な凹凸があるため高電界の場所では使用することができないが、本発明では金属製の中心管4の内部に配置されるのでシールドされ表面の凹凸による放電のおそれはない。   The flexible conductor 5 is preferably made of a copper stranded wire having excellent conductivity. Since the flexible conductor 5 has fine irregularities on the surface, it cannot be used in a place with a high electric field. However, in the present invention, since the flexible conductor 5 is arranged inside the metal central tube 4, it is shielded and discharge due to the irregularities on the surface is prevented. It is not.

可撓導体5の断面積は、通電容量に応じて設定され、その外径Φbが決定される。すなわち、通電発熱による温度上昇が電線の許容温度以下となるように、可撓導体5の外径Φbが決定される。   The cross-sectional area of the flexible conductor 5 is set according to the current carrying capacity, and its outer diameter Φb is determined. That is, the outer diameter Φb of the flexible conductor 5 is determined so that the temperature rise due to the energization heat generation is not more than the allowable temperature of the electric wire.

本発明では可撓導体5を中心管4の内部で揺動させる必要があるため、可撓導体5と中心管4の内壁との間に、空隙δを持たる必要がある。この空隙δが小さ過ぎると可撓導体4の揺動が不十分となる。またこの空隙δが大きすぎると中心管3を大径化しなければならず、ブッシングの太径化やコストアップを招くので好ましくない。空隙δの好ましい範囲については後述する。   In the present invention, since it is necessary to swing the flexible conductor 5 inside the center tube 4, it is necessary to have a gap δ between the flexible conductor 5 and the inner wall of the center tube 4. If the gap δ is too small, the swing of the flexible conductor 4 becomes insufficient. On the other hand, if the gap δ is too large, the diameter of the central tube 3 must be increased, which increases the diameter of the bushing and increases the cost. A preferable range of the gap δ will be described later.

なお、可撓導体5の下部は中心管4に固定した構造としても、中心管4に固定せず垂下させた構造としてもよい。しかし以下に説明する制震効果を高めるためには、中心管4に固定する方が好ましい。なお可撓導体5には自重による張力が加わるが、強い外部張力を加えることは好ましくない。強い外部張力を加えると、可撓導体5の揺動が妨げられ、以下に述べる制震効果が得られなくなるからである。   Note that the lower portion of the flexible conductor 5 may be fixed to the central tube 4 or may be suspended from the central tube 4 without being fixed. However, in order to enhance the vibration control effect described below, it is preferable to fix to the central tube 4. Although the flexible conductor 5 is tensioned by its own weight, it is not preferable to apply a strong external tension. This is because, if a strong external tension is applied, the swinging of the flexible conductor 5 is hindered and the vibration control effect described below cannot be obtained.

このように構成された本発明の耐震性ポリマーブッシングは地震発生時に揺動し、特に地震波と共振したときに大きく振動する。しかし可撓導体5は柔軟性があるため、中心管4よりも遅れて中心管4の内部で揺動する。その結果、図4の水平断面図に示すように、可撓導体5は中心管4の両側の内面に交互に押し付けられる。このとき可撓導体5の質量と反転加速度の積が中心管4に作用して制震効果を発揮する。154kV級のブッシングにおいては、最大振幅は20mm程度であるから、空隙δは以下に述べるようにこの値を考慮して現実的な値に設定すべきである。   The earthquake-resistant polymer bushing of the present invention configured as described above swings when an earthquake occurs, and particularly vibrates greatly when resonating with an earthquake wave. However, since the flexible conductor 5 is flexible, it swings inside the central tube 4 later than the central tube 4. As a result, as shown in the horizontal sectional view of FIG. 4, the flexible conductors 5 are alternately pressed against the inner surfaces on both sides of the central tube 4. At this time, the product of the mass of the flexible conductor 5 and the reversal acceleration acts on the central tube 4 to exert a vibration control effect. In the 154 kV class bushing, the maximum amplitude is about 20 mm. Therefore, the air gap δ should be set to a realistic value in consideration of this value as described below.

154kVや275kVの電圧階級のブッシングの固有振動数から、可撓導体5が10Hzで中心管4の内部で移動したと想定すると、空隙δと可撓導体5の加速度との間には図5に示す関係がある。   From the natural frequency of the bushing of the voltage class of 154 kV or 275 kV, assuming that the flexible conductor 5 moves inside the central tube 4 at 10 Hz, the gap δ and the acceleration of the flexible conductor 5 are shown in FIG. There is a relationship to show.

154kVのポリマーブッシングのJEAG規格により、地震発生時にはポリマーブッシングの重心点加速度は2G程度、質量効果から2000N・G程度の振動力となる。このためポリマーブッシングの耐震性能を10%改善するには200N・G程度の制動力が必要である。   According to the JEAG standard for a polymer bushing of 154 kV, the acceleration of the center of gravity of the polymer bushing is about 2 G and an oscillation force of about 2000 N · G due to the mass effect when an earthquake occurs. Therefore, a braking force of about 200 N · G is required to improve the seismic performance of the polymer bushing by 10%.

一方、可撓導体5の重量は30N/m程度、154kVのポリマーブッシングの気中側寸法は2m程度であるから可撓導体5の重量は60Nとなり、2Gの加速度で120N・G、5Gの加速度で300N・Gの制動力となる。このため200N・G程度の制動力を得るためには3.3Gの加速度で可撓導体5を中心管4の内壁に押し付ければよい。図5のグラフからこのためには空隙δを約8mmとすればよい。   On the other hand, the weight of the flexible conductor 5 is about 30 N / m, and the air-side dimension of the polymer bushing of 154 kV is about 2 m. Therefore, the weight of the flexible conductor 5 is 60 N, and acceleration of 120 N · G and 5 G at 2 G acceleration. The braking force is 300 N · G. Therefore, in order to obtain a braking force of about 200 N · G, the flexible conductor 5 may be pressed against the inner wall of the central tube 4 with an acceleration of 3.3 G. For this purpose, the gap δ may be about 8 mm from the graph of FIG.

空隙δを拡大すれば、加速度はより大きくなり制動力が増加するが、その半面中心管4を大径化する必要を生じ、ブッシングの大型化の要因となる。したがって現実的には、空隙δは5〜20mm程度とすることが好ましい。   If the gap δ is enlarged, the acceleration increases and the braking force increases. However, it is necessary to increase the diameter of the half-surface center tube 4, which causes an increase in the size of the bushing. Therefore, in practice, the gap δ is preferably about 5 to 20 mm.

このような可撓導体5による制震効果の結果、振動減衰率が大きくなり、図6のグラフに示すようにブッシングの基部モーメントは減少し、耐震性が向上する。   As a result of such a vibration control effect by the flexible conductor 5, the vibration damping rate increases, the base moment of the bushing decreases as shown in the graph of FIG. 6, and the earthquake resistance is improved.

以上に説明したように、本発明の耐震性ポリマーブッシングは、地震発生時に中心管4と可撓導体5とが同期せずに振動するように設計したものである。このため、可撓導体5の質量と加速度から発現する制震力により振動減衰率が増加しブッシングの基部の曲げモーメントを軽減することができる利点がある。   As described above, the earthquake-resistant polymer bushing of the present invention is designed so that the central tube 4 and the flexible conductor 5 vibrate without being synchronized when an earthquake occurs. For this reason, there is an advantage that the vibration damping rate is increased by the damping force generated from the mass and acceleration of the flexible conductor 5 and the bending moment of the base of the bushing can be reduced.

1 ポリマー碍管
2 下部金具
3 絶縁筒
4 中心管
5 可撓導体
6 コンデンサコア
DESCRIPTION OF SYMBOLS 1 Polymer soot pipe 2 Lower metal fittings 3 Insulation cylinder 4 Center pipe 5 Flexible conductor 6 Capacitor core

Claims (6)

ポリマー碍管の中心部に中心管を配置し、この中心管の内部に可撓導体を吊下げ、地震発生時に可撓導体を中心管の内部で揺動させることにより、ポリマーがい管に制震効果を生じさせることを特徴とする耐震性ポリマーブッシング。   A central pipe is placed in the center of the polymer pipe, a flexible conductor is suspended inside the central pipe, and the flexible conductor is oscillated inside the central pipe in the event of an earthquake. An earthquake-resistant polymer bushing characterized by 前記可撓導体と中心管の内壁との間に、片側5〜20mmの空隙を持たせたことを特徴とする請求項1に記載の耐震性ポリマーブッシング。   The earthquake-resistant polymer bushing according to claim 1, wherein a gap of 5 to 20 mm on one side is provided between the flexible conductor and the inner wall of the central tube. 前記可撓導体の下部を、最下部金具に固定したことを特徴とする請求項1または2に記載の耐震性ポリマーブッシング。   The earthquake-resistant polymer bushing according to claim 1 or 2, wherein a lower portion of the flexible conductor is fixed to a lowermost metal fitting. 前記可撓導体の下部を、最下部金具に固定せず垂下させたことを特徴とする請求項1または2に記載の耐震性ポリマーブッシング。   The earthquake-resistant polymer bushing according to claim 1 or 2, wherein a lower portion of the flexible conductor is suspended without being fixed to a lowermost metal fitting. 前記中心管がアルミニウム管であることを特徴とする請求項1〜4の何れかに記載の耐震性ポリマーブッシング。   The earthquake-resistant polymer bushing according to any one of claims 1 to 4, wherein the central tube is an aluminum tube. 前記可撓導体が銅の撚り線からなるものであることを特徴とする請求項1〜5の何れかに記載の耐震性ポリマーブッシング。   The earthquake-resistant polymer bushing according to any one of claims 1 to 5, wherein the flexible conductor is a copper stranded wire.
JP2016043001A 2016-03-07 2016-03-07 Earthquake resistant polymer bushing Pending JP2017162551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016043001A JP2017162551A (en) 2016-03-07 2016-03-07 Earthquake resistant polymer bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043001A JP2017162551A (en) 2016-03-07 2016-03-07 Earthquake resistant polymer bushing

Publications (1)

Publication Number Publication Date
JP2017162551A true JP2017162551A (en) 2017-09-14

Family

ID=59858115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043001A Pending JP2017162551A (en) 2016-03-07 2016-03-07 Earthquake resistant polymer bushing

Country Status (1)

Country Link
JP (1) JP2017162551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923342A (en) * 2018-05-28 2018-11-30 中国电力科学研究院有限公司 A kind of GIS outlet casing tube with damping function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923342A (en) * 2018-05-28 2018-11-30 中国电力科学研究院有限公司 A kind of GIS outlet casing tube with damping function
CN108923342B (en) * 2018-05-28 2021-11-02 中国电力科学研究院有限公司 GIS outlet sleeve with damping function

Similar Documents

Publication Publication Date Title
JP6045710B2 (en) Composite transmission tower for power grid transmission lines and its composite brace structure
KR101195889B1 (en) Hermetically-sealed insulated device
US7939752B2 (en) Elongated member and use thereof
JP2010537129A (en) Equipment with seismic reinforcement parts
CN105229760A (en) Hv instrument transformer
JPWO2016080018A1 (en) Gas insulated switchgear
JP2017162551A (en) Earthquake resistant polymer bushing
KR20130118461A (en) Sf6 reduced eco-friendly 245kv voltage transformer for gas insulation switchgear
WO2018042690A1 (en) Gas-insulated switchgear and method for capturing metal impurities inside gas-insulated switchgear
US3270305A (en) Shielded housing with vibration control
CN102801123B (en) 20KV sleeve
KR101121868B1 (en) Bushing for a transformer
US8189323B2 (en) Gas-insulated switchgear apparatus
RU2398301C1 (en) Three-phase current-limiting reactor for motor smooth-starter
CN102570366B (en) Anti-vibration hammer for power transmission line
JP2023543238A (en) High voltage equipment and methods for increasing dielectric strength in high voltage equipment
CN202840432U (en) Bell jar type vibration-proof hammer
RU163555U1 (en) FIBER OPTICAL CABLE SUSPENSION ASSEMBLY ON THE SUPPORT OF THE CONTACT NETWORK OF RAILWAY SITES
CN103443875B (en) There is the high voltage bushing of the support for conductor
JP2005333754A (en) Cable termination part and bushing for power apparatus
RU209764U1 (en) Adaptive magnetorheological damper of dance and vibration of wires of overhead power lines
CN217977181U (en) Converter valve device
RU2812342C1 (en) Damper of swinging, suboscillations and vibration of split wires of overhead power lines
CN117526206A (en) Electromagnetic damping device for inhibiting low-frequency large-amplitude vibration of transmission line
Metwally et al. Factors affecting the dynamics of wire particles in gas‐insulated systems