JP2017161694A - Heat-resistant optical fiber cable - Google Patents

Heat-resistant optical fiber cable Download PDF

Info

Publication number
JP2017161694A
JP2017161694A JP2016045344A JP2016045344A JP2017161694A JP 2017161694 A JP2017161694 A JP 2017161694A JP 2016045344 A JP2016045344 A JP 2016045344A JP 2016045344 A JP2016045344 A JP 2016045344A JP 2017161694 A JP2017161694 A JP 2017161694A
Authority
JP
Japan
Prior art keywords
optical fiber
heat
metal tube
fiber cable
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016045344A
Other languages
Japanese (ja)
Inventor
順一 衣袋
Junichi Ifukuro
順一 衣袋
上野 修一
Shuichi Ueno
修一 上野
豊 大宮
Yutaka Omiya
豊 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2016045344A priority Critical patent/JP2017161694A/en
Publication of JP2017161694A publication Critical patent/JP2017161694A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant optical fiber cable which allows for quickly measuring temperature even when used for a fire sensor and is free from long-term optical propagation loss even in a high-temperature environment.SOLUTION: A heat-resistant optical fiber comprises an optical fiber that is inserted through a metal tube while securing a gap and extra length therein, the metal tube having an outer surface with a black coating. The optical fiber inserted through the metal tube is covered with a polyimide resin having a carbonized surface.SELECTED DRAWING: Figure 1

Description

本発明は、光ファイバによる温度計測および高温環境下での光ファイバ通信等に利用される耐熱光ファイバケーブルに関し、特に火災時等の高温計測に用いられる耐熱光ファイバケーブルに関する。   The present invention relates to a heat-resistant optical fiber cable used for temperature measurement using an optical fiber and optical fiber communication in a high-temperature environment, and more particularly to a heat-resistant optical fiber cable used for high-temperature measurement in a fire or the like.

光ファイバケーブルは、ケーブル化や使用時の温度や湿度等の環境変化に対しても、長時間に亘って伝送損失の悪化や光ファイバに破断がないように、光ファイバ本来の光伝送特性や機械的強度特性を維持するために、ケーブル構造や使用環境に応じて光ファイバ表面に各種の被覆が用いられている。   The optical fiber cable can be used for the original optical transmission characteristics of the optical fiber to prevent deterioration of transmission loss and breakage of the optical fiber over a long period of time even when the cable is used or the environment changes such as temperature and humidity during use. In order to maintain the mechanical strength characteristics, various coatings are used on the surface of the optical fiber according to the cable structure and the use environment.

耐熱光ファイバケーブルにおいては、コアおよびクラッドからなる光ファイバの外周面に各種材料を被覆して耐熱性を確保している。例えば特開平8−15585号公報(特許文献1)には、光ファイバの外周部に樹脂層を設け、さらにその外周部にカーボン層を有する耐熱光ファイバの開示がある。また、特開平9−258076号公報(特許文献2)には、光ファイバの外周部を被覆するカーボン薄層とこのカーボン薄層を被覆する金属層からなる耐熱光ファイバケーブルの開示がある。さらに、特開平10−186193号公報(特許文献3)には、光ファイバをバインダーを含む粉末セラミックで保護した光ファイバケーブルの開示がある。   In heat-resistant optical fiber cables, various materials are coated on the outer peripheral surface of an optical fiber composed of a core and a clad to ensure heat resistance. For example, Japanese Patent Laid-Open No. 8-15585 (Patent Document 1) discloses a heat-resistant optical fiber in which a resin layer is provided on the outer peripheral portion of an optical fiber and a carbon layer is further provided on the outer peripheral portion. Japanese Laid-Open Patent Publication No. 9-258076 (Patent Document 2) discloses a heat-resistant optical fiber cable comprising a carbon thin layer covering an outer peripheral portion of an optical fiber and a metal layer covering the carbon thin layer. Furthermore, Japanese Patent Laid-Open No. 10-186193 (Patent Document 3) discloses an optical fiber cable in which an optical fiber is protected with a powder ceramic containing a binder.

しかし、特許文献1、特許文献2および特許文献3に開示されている耐熱光ファイバケーブルは、火災時のセンサとして用いた場合は、短時間で温度を計測することができず、また、400℃を超える高温になると短時間で光伝送損失が生じるという問題があった。   However, when the heat-resistant optical fiber cables disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 are used as a sensor at the time of a fire, the temperature cannot be measured in a short time, and 400 ° C. There is a problem that optical transmission loss occurs in a short time when the temperature is higher than.

一方、特開2000−131570号公報(特許文献4)には、光ファイバの外周部の内側にニッケル層、外側に金層の2層構造を形成し、螺旋状の構造を持つ保護用金属管に挿入した光ファイバケーブルの開示がある。しかし、特許文献4に記載の光ファイバケーブルによれば使用環境が400℃を超える環境においても光伝送損失が生じることはないが、火災時のセンサとして用いた場合は、短時間で温度を計測することができないという問題があった。   On the other hand, Japanese Patent Laid-Open No. 2000-131570 (Patent Document 4) discloses a protective metal tube having a spiral structure in which a two-layer structure of a nickel layer is formed inside an outer peripheral portion of an optical fiber and a gold layer is formed outside. Discloses an optical fiber cable inserted into the cable. However, according to the optical fiber cable described in Patent Document 4, there is no optical transmission loss even in an environment where the usage environment exceeds 400 ° C. However, when used as a sensor at the time of a fire, the temperature is measured in a short time. There was a problem that could not be done.

さらに、特開平7−133138号公報(特許文献5)には、プラスチック被覆の光ファイバを張力を与えた状態で加熱処理し、加熱処理により発生したプラスチック被覆の熱分解ガスを除去しながらプラスチック被覆を「か焼」(calcination)した光ファイバを金属管内に挿入する耐熱光ファイバの製造技術の開示がある。しかし、特許文献5に記載の技術を用いて製造した耐熱光ファイバでも、火災時のセンサとして用いた場合は、短時間で温度を計測することができないという問題があった。   Further, Japanese Patent Laid-Open No. 7-133138 (Patent Document 5) discloses that a plastic coating optical fiber is subjected to a heat treatment in a tensioned state, and a plastic coating is produced while removing a pyrolysis gas generated by the heat treatment. There is a disclosure of a heat-resistant optical fiber manufacturing technique in which an optical fiber that has been “calcinated” is inserted into a metal tube. However, even a heat-resistant optical fiber manufactured using the technique described in Patent Document 5 has a problem that the temperature cannot be measured in a short time when used as a sensor in the event of a fire.

特開平8−15585号公報JP-A-8-15585 特開平9−258076号公報Japanese Patent Laid-Open No. 9-258076 特開平10−186193号公報Japanese Patent Laid-Open No. 10-186193 特開2000−131570号公報JP 2000-131570 A 特開平7−133138号公報JP-A-7-133138

本発明は、上記課題を解決するためになされたものであり、光ファイバによる温度計測に利用される耐熱光ファイバケーブルで、特に火災時のセンサに用いた場合においても短時間で温度を計測でき、さらに、高温環境下においても長時間光伝送損失が生じない耐熱光ファイバケーブルを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a heat-resistant optical fiber cable used for temperature measurement by an optical fiber, and can measure temperature in a short time even when used for a sensor in case of fire. It is another object of the present invention to provide a heat-resistant optical fiber cable that does not cause optical transmission loss for a long time even in a high temperature environment.

本発明者らは、上記課題を解決するために、耐熱性に優れる金属管内に光ファイバを挿入した光ファイバケーブルで、輻射熱による温度を短時間で計測する手段について詳細に検討した。   In order to solve the above-mentioned problems, the present inventors have studied in detail a means for measuring the temperature due to radiant heat in a short time with an optical fiber cable in which an optical fiber is inserted into a metal tube having excellent heat resistance.

その結果、金属管の表面を黒く着色することによって短時間で温度を計測できることを見出した。また、光ファイバ表面に被覆したポリイミド樹脂の表面を炭化させて隙間および余長をたせることにより、高温環境下においても長時間光伝送損失がない耐熱光ファイバケーブルが得られることを見出した。   As a result, it was found that the temperature can be measured in a short time by coloring the surface of the metal tube black. It was also found that a heat-resistant optical fiber cable having no optical transmission loss for a long time even in a high temperature environment can be obtained by carbonizing the surface of the polyimide resin coated on the surface of the optical fiber to create a gap and an extra length.

そこで本発明の耐熱光ファイバケーブルは、金属管内に光ファイバが隙間および余長をもって挿入した耐熱光ファイバケーブルの、該金属管の外面を黒色処理したものとする。
また、金属管に挿入された光ファイバは、ポリイミド樹脂が被覆され、該ポリイミド樹脂は表面が炭化されていることを特徴とする。
Therefore, the heat-resistant optical fiber cable of the present invention is such that the outer surface of the metal tube of the heat-resistant optical fiber cable in which the optical fiber is inserted into the metal tube with a gap and a surplus length is blackened.
The optical fiber inserted into the metal tube is coated with a polyimide resin, and the surface of the polyimide resin is carbonized.

さらに、金属管が、外径0.9〜3.6mm、肉厚0.1〜0.3mmであることを特徴とする。   Furthermore, the metal tube has an outer diameter of 0.9 to 3.6 mm and a wall thickness of 0.1 to 0.3 mm.

本発明の耐熱光ファイバケーブルによれば、金属管の外面が黒色に着色されているので、火災時の輻射熱を金属管が吸収して挿入されている光ファイバに短時間に伝達できて温度の計測時間が早くなる。また、光ファイバに被覆されたポリイミド樹脂の表層部が炭化されているので、製鋼炉設備等の高温環境下においても光ファイバ表面からHを発生することがない。したがって、Hがクラッドまたはコアに吸収されることがないので、長時間温度を測定しても光ファイバの光伝送損失が増加することがない耐熱光ファイバケーブルを提供することができる。 According to the heat-resistant optical fiber cable of the present invention, since the outer surface of the metal tube is colored black, the radiant heat at the time of fire can be transferred to the optical fiber inserted by the metal tube in a short time, and the temperature of Measurement time is faster. Further, since the surface portion of the polyimide resin coated on the optical fiber is carbonized, H 2 is not generated from the surface of the optical fiber even in a high temperature environment such as a steelmaking furnace facility. Therefore, since H 2 is not absorbed by the cladding or the core, it is possible to provide a heat-resistant optical fiber cable in which the optical transmission loss of the optical fiber does not increase even when the temperature is measured for a long time.

本発明の耐熱光ファイバケーブルの横断面の拡大図である。It is an enlarged view of the cross section of the heat-resistant optical fiber cable of this invention. 本発明の耐熱光ファイバケーブルの長手方向の一部拡大図であり、金属管1は縦断面を示す。1 is a partially enlarged view of a heat-resistant optical fiber cable of the present invention in a longitudinal direction, and a metal tube 1 shows a longitudinal section. 本発明の耐熱光ファイバケーブルを用いた、輻射熱を利用する温度計測の状態を示すブロック図である。It is a block diagram which shows the state of the temperature measurement using a radiant heat using the heat-resistant optical fiber cable of this invention.

以下、本発明を詳細に説明する。本発明の耐熱光ファイバケーブルは、光ファイバが隙間および余長をもって挿入された金属管の外面が黒色である。黒色処理のない金属管の外面は、金属光沢を有しているので輻射熱を反射して金属管の温度が上昇するのに時間を要し、金属管内の光ファイバへの熱伝導も遅くなる。一方、金属管外面を黒色に処理すると、金属管が輻射熱を吸収しやすく温度の上昇を早くすることができる。したがって、金属管内の光ファイバへの熱伝導も早くなり、火災時などの場合も早期に警報を発することができる。   Hereinafter, the present invention will be described in detail. In the heat-resistant optical fiber cable of the present invention, the outer surface of the metal tube into which the optical fiber is inserted with a gap and an extra length is black. Since the outer surface of the metal tube without the black treatment has a metallic luster, it takes time for the temperature of the metal tube to rise by reflecting radiant heat, and the heat conduction to the optical fiber in the metal tube is also delayed. On the other hand, when the outer surface of the metal tube is processed to black, the metal tube can easily absorb the radiant heat, and the temperature rise can be accelerated. Therefore, heat conduction to the optical fiber in the metal tube is accelerated, and an alarm can be issued early even in the event of a fire.

金属管表面の黒色処理は、例えばシリコーン樹脂、モリブデンやグラファイト等耐熱性を有する黒色塗料の塗布、黒色のニッケルやクロムめっき処理等である。   The black treatment on the surface of the metal tube is, for example, application of a heat-resistant black paint such as silicone resin, molybdenum or graphite, or black nickel or chromium plating treatment.

金属管に挿入された光ファイバは、光ファイバに被覆されたポリイミド樹脂の表層部が炭化しているので、火災時や製鋼炉設備等の高温環境下においても光ファイバ表面からHを発生することがない。したがって、Hがクラッドまたはコアに吸収されることがないので、光ファイバの光伝送損失が増加することがない。一方、被覆されているポリイミド樹脂が炭化されていないと、金属管内に挿入した耐熱光ファイバケーブルを高温環境下で使用すると、光ファイバ表面の樹脂からHが発生して光ファイバのクラッドまたはコアに吸収されて光伝送損失が増加するようになる。 The optical fiber inserted into the metal tube is carbonized on the surface layer of the polyimide resin coated on the optical fiber, so that H 2 is generated from the surface of the optical fiber even in a fire or in a high temperature environment such as a steelmaking furnace facility. There is nothing. Therefore, since H 2 is not absorbed by the cladding or the core, the optical transmission loss of the optical fiber does not increase. On the other hand, if the coated polyimide resin is not carbonized, when a heat-resistant optical fiber cable inserted into a metal tube is used in a high temperature environment, H 2 is generated from the resin on the surface of the optical fiber, and the cladding or core of the optical fiber. As a result, the optical transmission loss increases.

図1に、本発明の一実施例の耐熱光ファイバケーブルを示す。表面に黒色処理を施した金属管1内に光ファイバ2が隙間を持って挿入されている。光ファイバ2は、コア3およびクラッド4の外周部を、ポリイミド樹脂5で被覆してそれを炭化処理したものである。   FIG. 1 shows a heat-resistant optical fiber cable according to an embodiment of the present invention. An optical fiber 2 is inserted with a gap into a metal tube 1 whose surface is black-treated. The optical fiber 2 is obtained by coating the outer periphery of the core 3 and the clad 4 with a polyimide resin 5 and carbonizing it.

図2は、金属管1内で光ファイバ2が金属管1長手方向に余長(うねり)を持って挿入されている状態を示す。光ファイバ2が余長を持って金属管1に挿入されているので、高温環境下で使用した場合においても熱膨張の差によって金属管1が光ファイバ2よりも大きく伸びても光ファイバ2に張力が加わることがない。   FIG. 2 shows a state in which the optical fiber 2 is inserted in the metal tube 1 with a surplus length (swell) in the longitudinal direction of the metal tube 1. Since the optical fiber 2 is inserted into the metal tube 1 with a surplus length, even when used in a high temperature environment, even if the metal tube 1 extends more than the optical fiber 2 due to a difference in thermal expansion, No tension is applied.

金属管1は、外径0.9〜3.6mm、肉厚0.1〜0.3mmであることが好ましい。金属管の外径0.9mm未満および肉厚0.1mm未満であると、製造コストが高くなるとともに、金属管内に光ファイバを挿入することも困難となる。また、外径が0.9mm未満であると、黒色処理を施しても輻射熱の吸収面積が狭くなり金属管の温度が上昇するのに時間を要し、金属管内の光ファイバへの熱伝導も遅くなるので温度を短時間で計測することができない。一方、金属管の外径が3.6mmを超えると、輻射熱の吸収面積は広くなるが、金属管内の空隙が大きくなって光ファイバへの熱伝導が遅くなり温度を短時間で計測することができない。さらに、金属管の肉厚が0.3mmを超えると、金属管自体の熱伝導が遅くなって光ファイバへの熱伝導が遅くなり温度を短時間で計測することができない。
なお、本発明の耐熱光ファイバケーブルに用いる金属管1は、鋼、ステンレス鋼、銅およびアルミニウム等の材質で、継目のない金属管を用いる。
The metal tube 1 preferably has an outer diameter of 0.9 to 3.6 mm and a wall thickness of 0.1 to 0.3 mm. When the outer diameter of the metal tube is less than 0.9 mm and the wall thickness is less than 0.1 mm, the manufacturing cost increases and it becomes difficult to insert the optical fiber into the metal tube. Also, if the outer diameter is less than 0.9 mm, it takes time to increase the temperature of the metal tube due to the reduced radiant heat absorption area even if the black treatment is performed, and heat conduction to the optical fiber in the metal tube is also required. Since it becomes late, temperature cannot be measured in a short time. On the other hand, if the outer diameter of the metal tube exceeds 3.6 mm, the radiant heat absorption area increases, but the gap in the metal tube becomes larger, the heat conduction to the optical fiber becomes slower, and the temperature can be measured in a short time. Can not. Furthermore, if the thickness of the metal tube exceeds 0.3 mm, the heat conduction of the metal tube itself is delayed, the heat conduction to the optical fiber is delayed, and the temperature cannot be measured in a short time.
The metal tube 1 used for the heat-resistant optical fiber cable of the present invention is a seamless metal tube made of steel, stainless steel, copper, aluminum or the like.

本発明の耐熱光ファイバケーブルに用いる炭化したポリイミド樹脂を被覆した光ファイバは、コア直径10〜50μm、クラッド直径100〜150μmであることが好ましい。   The optical fiber coated with the carbonized polyimide resin used for the heat-resistant optical fiber cable of the present invention preferably has a core diameter of 10 to 50 μm and a cladding diameter of 100 to 150 μm.

また、本発明の耐熱光ファイバケーブルは、例えば特開昭62−44010号公報に開示されている方法で表面を黒色処理された金属管1内に前記光ファイバを振動挿入して製造されるが、光ファイバ表面に炭化したポリイミド樹脂が被覆してあるので、金属管との摩擦による光ファイバのクラッドまたはコアにマイクロベンディングや微小な傷が生じることがなく、光伝送損失が増加することがない。以下、本発明の耐熱光ファイバケーブルを具体的に説明する。   The heat-resistant optical fiber cable of the present invention is manufactured by, for example, inserting the optical fiber into a metal tube 1 whose surface is blackened by the method disclosed in Japanese Patent Laid-Open No. 62-44010. Since the surface of the optical fiber is coated with carbonized polyimide resin, the optical fiber cladding or core due to friction with the metal tube does not cause microbending or micro-scratches, and optical transmission loss does not increase. . Hereinafter, the heat-resistant optical fiber cable of the present invention will be specifically described.

表1に示す各種外径および肉厚のステンレス鋼(SUS304)製の継目無管100m長さの外面にモリブデンとグラファイトを含む塗料で厚さ5μmの黒色塗装を施した。なお、比較のために外面に塗装を施さないステンレス鋼管も用いた。   The outer surface of a seamless pipe made of stainless steel (SUS304) having various outer diameters and thicknesses shown in Table 1 and having a thickness of 5 m was painted with a paint containing molybdenum and graphite. For comparison, a stainless steel pipe whose outer surface was not coated was also used.

前記金属管に余長をもって、コア直径50μm、クラッド直径125μmにポリイミド樹脂を30μm被覆した光ファイバを、光ファイバ表面のポリイミド樹脂を炭化処理して挿入し耐熱光ファイバケーブルとした。なお、比較のために光ファイバ表面のポリイミド樹脂を炭化処理しない光ファイバも用いた。   An optical fiber having an extra length in the metal tube, a core diameter of 50 μm, a clad diameter of 125 μm and a polyimide resin of 30 μm was inserted by carbonizing the polyimide resin on the surface of the optical fiber to obtain a heat-resistant optical fiber cable. For comparison, an optical fiber that does not carbonize polyimide resin on the surface of the optical fiber was also used.

上記の耐熱光ファイバケーブルを用いて、図3に示すように600Wの電熱器6を立て向きに4台設置(合計長さ1000mm)し、電熱器6のヒータ7から20mm離して耐熱光ファイバケーブル8を電熱器6のヒータ7と平行に設置し、ヒータ7に通電と同時にラマン散乱光式測定器ROTDR(Raman Optical Time Domain Reflectmeter)およびパソコンPCを用いてヒータ7からの輻射熱による温度の上昇速度を測定した。評価は、常温(8℃)から50℃までの到達時間が15秒以下を良好とした。   Using the above heat-resistant optical fiber cable, as shown in FIG. 3, four 600 W electric heaters 6 are installed upright (total length 1000 mm), and 20 mm away from the heater 7 of the electric heater 6, the heat-resistant optical fiber cable 8 is installed in parallel with the heater 7 of the electric heater 6, and when the heater 7 is energized, the temperature rise rate due to the radiant heat from the heater 7 using a Raman scattered light measuring device ROTDR (Raman Optical Time Domain Reflectmeter) and a personal computer PC Was measured. Evaluation made the arrival time from normal temperature (8 degreeC) to 50 degreeC 15 seconds or less favorable.

また、該耐熱光ファイバケーブルの20mを雰囲気温度500℃の均熱炉内に設置し、24時間連続して光パルス試験機OTDR(Optical Time Domain Reflectmeter)を用いて伝送損失を計測した。評価は、最大伝送損失が−5dB/km以下を良好とした。それらの結果も表1にまとめて示す。   Further, 20 m of the heat-resistant optical fiber cable was placed in a soaking furnace having an ambient temperature of 500 ° C., and transmission loss was measured using an optical pulse tester OTDR (Optical Time Domain Reflectmeter) for 24 hours continuously. Evaluation evaluated that the maximum transmission loss was -5 dB / km or less. The results are also summarized in Table 1.

Figure 2017161694
Figure 2017161694

表1中No.1〜No.4が本発明例、No.5〜No.7は比較例である。本発明例であるNo.1〜No.4は、金属管外面に黒色処理が有り、ステンレス鋼管の外径および肉厚が適正で、光ファイバ表面のポリイミド樹脂も炭化処理されているので、電熱器のヒータからの輻射熱による温度の上昇速度が速く、均熱炉内における伝送損失量も少ないなど極めて満足な結果であった。   No. in Table 1 1-No. No. 4 is an example of the present invention. 5-No. 7 is a comparative example. No. which is an example of the present invention. 1-No. No. 4 has a black treatment on the outer surface of the metal tube, the outer diameter and thickness of the stainless steel tube are appropriate, and the polyimide resin on the optical fiber surface is also carbonized, so the rate of temperature rise due to radiant heat from the heater of the electric heater The results were very satisfactory, such as fast and low transmission loss in the soaking furnace.

比較例中No.5は、金属管外面に黒色処理が無いので、電熱器のヒータからの輻射熱による温度の上昇速度が遅くなった。なお、光ファイバ表面のポリイミド樹脂は炭化処理されているので、均熱炉内における伝送損失量は少なかった。   No. in the comparative examples. No. 5 had no black treatment on the outer surface of the metal tube, so the rate of temperature increase due to radiant heat from the heater of the electric heater was slow. Since the polyimide resin on the surface of the optical fiber was carbonized, the amount of transmission loss in the soaking furnace was small.

No.6は、金属管外面に黒色処理が無いので、電熱器のヒータからの輻射熱による温度の上昇速度が遅くなった。また、光ファイバ表面のポリイミド樹脂が炭化処理されていないので、均熱炉内における伝送損失量も大きくなった。   No. No. 6 had no black treatment on the outer surface of the metal tube, so the rate of temperature increase due to radiant heat from the heater of the electric heater was slow. Moreover, since the polyimide resin on the surface of the optical fiber is not carbonized, the transmission loss amount in the soaking furnace is also increased.

No.7は、金属管外面に黒色処理が無く外径および肉厚も大きいので、電熱器のヒータからの輻射熱による温度の上昇速度が非常に遅くなった。また、光ファイバ表面のポリイミド樹脂が炭化処理されていないので、均熱炉内における伝送損失量も大きくなった。   No. No. 7 has no black treatment on the outer surface of the metal tube and has a large outer diameter and thickness, so that the rate of temperature increase due to radiant heat from the heater of the electric heater became very slow. Moreover, since the polyimide resin on the surface of the optical fiber is not carbonized, the transmission loss amount in the soaking furnace is also increased.

1:金属管
2:光ファイバ
3:コア
4:クラッド
5:炭化層を有するポリイミド樹脂
6:電熱器
7:ヒータ
8:耐熱光ファイバケーブル
1: Metal tube 2: Optical fiber 3: Core 4: Cladding 5: Polyimide resin with carbonized layer 6: Electric heater 7: Heater 8: Heat-resistant optical fiber cable

Claims (3)

金属管内に光ファイバが隙間および余長をもって挿入された耐熱光ファイバケーブルにおいて、金属管は外面が黒色処理されていることを特徴とする耐熱光ファイバケーブル。   A heat-resistant optical fiber cable in which an optical fiber is inserted into a metal tube with a gap and an extra length, wherein the outer surface of the metal tube is blackened. 金属管に挿入された光ファイバは、ポリイミド樹脂が被覆され、該ポリイミド樹脂は表面が炭化されていることを特徴とする請求項1に記載の耐熱光ファイバケーブル。   The heat-resistant optical fiber cable according to claim 1, wherein the optical fiber inserted into the metal tube is coated with polyimide resin, and the surface of the polyimide resin is carbonized. 金属管は、外径0.9〜3.6mm、肉厚0.1〜0.3mmであることを特徴とする請求項1または請求項2に記載の耐熱光ファイバケーブル。   The heat-resistant optical fiber cable according to claim 1 or 2, wherein the metal tube has an outer diameter of 0.9 to 3.6 mm and a wall thickness of 0.1 to 0.3 mm.
JP2016045344A 2016-03-09 2016-03-09 Heat-resistant optical fiber cable Pending JP2017161694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045344A JP2017161694A (en) 2016-03-09 2016-03-09 Heat-resistant optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045344A JP2017161694A (en) 2016-03-09 2016-03-09 Heat-resistant optical fiber cable

Publications (1)

Publication Number Publication Date
JP2017161694A true JP2017161694A (en) 2017-09-14

Family

ID=59856911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045344A Pending JP2017161694A (en) 2016-03-09 2016-03-09 Heat-resistant optical fiber cable

Country Status (1)

Country Link
JP (1) JP2017161694A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334504A (en) * 1987-03-30 1988-02-15 Mitsubishi Cable Ind Ltd Optical fiber
JPH03284709A (en) * 1990-03-30 1991-12-16 Hitachi Cable Ltd Measuring optical fiber
JPH0511035U (en) * 1991-07-22 1993-02-12 株式会社フジクラ Distributed optical fiber temperature sensor
JPH0727951A (en) * 1993-07-07 1995-01-31 Nippon Steel Weld Prod & Eng Co Ltd Heat-resistant optical fiber and heat-resistant optical fiber cable
JPH07133138A (en) * 1993-11-08 1995-05-23 Nippon Steel Weld Prod & Eng Co Ltd Production of heat resistant optical fiber
JPH07272156A (en) * 1994-03-29 1995-10-20 Hochiki Corp Fire alarming system
US20130098528A1 (en) * 2011-10-19 2013-04-25 Weatherford/Lamb, Inc. Methods and apparatus for controlling excess fiber length (efl) in armored cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334504A (en) * 1987-03-30 1988-02-15 Mitsubishi Cable Ind Ltd Optical fiber
JPH03284709A (en) * 1990-03-30 1991-12-16 Hitachi Cable Ltd Measuring optical fiber
JPH0511035U (en) * 1991-07-22 1993-02-12 株式会社フジクラ Distributed optical fiber temperature sensor
JPH0727951A (en) * 1993-07-07 1995-01-31 Nippon Steel Weld Prod & Eng Co Ltd Heat-resistant optical fiber and heat-resistant optical fiber cable
JPH07133138A (en) * 1993-11-08 1995-05-23 Nippon Steel Weld Prod & Eng Co Ltd Production of heat resistant optical fiber
JPH07272156A (en) * 1994-03-29 1995-10-20 Hochiki Corp Fire alarming system
US20130098528A1 (en) * 2011-10-19 2013-04-25 Weatherford/Lamb, Inc. Methods and apparatus for controlling excess fiber length (efl) in armored cable

Similar Documents

Publication Publication Date Title
JP2795146B2 (en) Double coated optical fiber for temperature measurement
JP5038220B2 (en) FBG temperature sensor
JP2007322893A (en) Optical fiber core wire and its evaluation method
KR20080038455A (en) The method for continuously measuring melting steel temperature and measuring temperature pipe
JP2017161694A (en) Heat-resistant optical fiber cable
JP4264301B2 (en) Diagnostic method for temperature sensor, refractory and refractory lining
CN109870780B (en) A kind of stress response composite cable
CN203300272U (en) High-temperature and strong-radiation resistance low-noise cable capable of detecting minimal signals
McLaren et al. Radiation effects in precision resistance thermometry: I. Radiation losses in transparent thermometer sheaths
JPH06221927A (en) Optical fiber thermometer
CN204389751U (en) The micro-cable of a kind of fire-resistant intelligence
JP2786811B2 (en) Temperature measurement method
CN107941848A (en) The apparatus and method for directly measuring block materials thermal barrier coating adiabatic temperature
JP6529038B2 (en) Heat resistant optical fiber cable and method of manufacturing the same
JPH0380252B2 (en)
Sohma et al. Heat-resistant thin optical fiber for sensing in high-temperature environments
CN206450340U (en) A kind of temperature sensing optic cable positioned by deformation
JP2008215933A (en) State evaluation method of measuring object
CN106840451B (en) A kind of helix TWT slow wave arrangement works thermometry and device
JP2015121471A (en) Optical cable for high-temperature environment
JPS6269131A (en) Optical fiber temperature sensor
JP6362971B2 (en) Tube temperature measuring device and method for manufacturing tube temperature measuring device
Jacobsen et al. 500° C-Rated Optical Fibers for High Temperature Applications
Bulot et al. Study of a charged silicone coating applied on fiber Bragg grating sensors for protection up to 470° C
Cherpak et al. Dependence of optical attenuation on radiation wavelength and waveguide geometry in copper-coated optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190813