JP2017161127A - Vapor compression type refrigerator and control method for the same - Google Patents

Vapor compression type refrigerator and control method for the same Download PDF

Info

Publication number
JP2017161127A
JP2017161127A JP2016044384A JP2016044384A JP2017161127A JP 2017161127 A JP2017161127 A JP 2017161127A JP 2016044384 A JP2016044384 A JP 2016044384A JP 2016044384 A JP2016044384 A JP 2016044384A JP 2017161127 A JP2017161127 A JP 2017161127A
Authority
JP
Japan
Prior art keywords
cooling water
temperature difference
condenser
heat transfer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016044384A
Other languages
Japanese (ja)
Other versions
JP6682301B2 (en
Inventor
和島 一喜
Kazuyoshi Wajima
一喜 和島
良枝 栂野
Yoshie Tsugano
良枝 栂野
直也 三吉
Naoya Miyoshi
直也 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016044384A priority Critical patent/JP6682301B2/en
Priority to CN201780006418.5A priority patent/CN108474601B/en
Priority to PCT/JP2017/009100 priority patent/WO2017154934A1/en
Priority to US16/070,050 priority patent/US20190024957A1/en
Publication of JP2017161127A publication Critical patent/JP2017161127A/en
Application granted granted Critical
Publication of JP6682301B2 publication Critical patent/JP6682301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor compression type refrigerator enabling energy consumption for separation of non-condensable gas from refrigerant and discharging the non-condensable gas to be suppressed as much as possible.SOLUTION: The vapor compression type refrigerator comprises a bleeding device 40 and a control unit. The bleeding device 40 includes: a cooling unit that cools gas bled from a condenser 5 to condense condensable gas; and an exhaust pump 48 for discharging the non-condensable gas separated without being condensed by the cooling unit to the outside. The control unit calculates the current temperature difference which is the difference between: the current saturation temperature in the condenser 5 and the current outlet temperature of the cooling water heat transfer tube 5a; and the planned temperature difference, and calculates the current rise in the temperature difference due to the contamination inside the tube using information on rise in temperature difference due to contamination inside the tube, which is the difference between the saturation temperature in the condenser 5 and the outlet temperature of the cooling water heat transfer tube 5a, which is determined in advance on the assumption of contamination inside the tube of the cooling water heat transfer tube 5a. The control unit causes the bleeding device 40 to operate when the increase of the current temperature difference from the planned temperature difference becomes larger than the current increase of the temperature difference due to the contamination inside the tube by a predetermined value or more.SELECTED DRAWING: Figure 1

Description

本発明は、不凝縮ガスを凝縮器から抽気する抽気装置を備えた蒸気圧縮式冷凍機及びその制御方法に関するものである。   TECHNICAL FIELD The present invention relates to a vapor compression refrigerator equipped with an extraction device for extracting noncondensable gas from a condenser and a control method thereof.

運転中の作動圧力が機内で一部が大気圧以下となる冷媒を用いる冷熱機器においては、大気圧以下となる部位より空気等の不凝縮ガスが機内に侵入し、圧縮機等を通ったあと凝縮器に滞留する。凝縮器に不凝縮ガスが滞留すると、この不凝縮ガスが伝熱抵抗となり凝縮器における冷媒の凝縮性能が阻害され、冷熱機器としての性能が低下する。このため、抽気装置を用いて凝縮器から不凝縮ガスを機外へ排出することにより、正常な性能が確保される。抽気装置は、冷媒ガスとの混合ガスとして不凝縮ガスを抽気装置内に引き込み、混合ガスが冷却されて冷媒のみが凝縮して冷凍機内に戻されることにより、不凝縮ガスは分離・蓄積され、排気ポンプ等で機外へ排出される(下記特許文献1及び2参照)。   In refrigeration equipment that uses refrigerant whose operating pressure during operation is partly lower than atmospheric pressure in the machine, after non-condensable gas such as air enters the machine and passes through the compressor etc. Stay in the condenser. If the non-condensable gas stays in the condenser, the non-condensable gas becomes a heat transfer resistance, the refrigerant condensing performance in the condenser is hindered, and the performance as a cooling device is lowered. For this reason, normal performance is ensured by discharging non-condensable gas from the condenser to the outside of the apparatus using the bleeder. The extraction device draws non-condensable gas into the extraction device as a mixed gas with the refrigerant gas, and the mixed gas is cooled and only the refrigerant is condensed and returned to the refrigerator, whereby the non-condensable gas is separated and accumulated, It is discharged out of the machine by an exhaust pump or the like (see Patent Documents 1 and 2 below).

特開2001−50618号公報Japanese Patent Laid-Open No. 2001-50618 特開2006−38346号公報JP 2006-38346 A

しかし、不凝縮ガスとともに抽気装置へ吸引される冷媒を凝縮・分離するためには一定の冷却熱量が必要となる。冷却を行う手段として、冷水や機内冷媒等の低温媒体を用いて冷却する方法や電気式の冷却装置を用いて冷却する方法がある。低温媒体を用いる場合は、冷凍機で冷却した媒体を加熱することとなり機器としての効率の損失となる。電気式の冷却を行う場合には一定の動力が消費される。ゆえに、抽気装置は、不要な動力の消費を避けるために、必要な場合のみに自動で運転されることが望ましい。   However, in order to condense and separate the refrigerant sucked into the extraction device together with the non-condensable gas, a certain amount of cooling heat is required. As means for cooling, there are a method of cooling using a low-temperature medium such as cold water or an in-machine refrigerant, and a method of cooling using an electric cooling device. When a low temperature medium is used, the medium cooled by the refrigerator is heated, resulting in a loss of efficiency as a device. When electric cooling is performed, a certain amount of power is consumed. Therefore, it is desirable that the bleeder be automatically operated only when necessary to avoid unnecessary power consumption.

水冷却式の凝縮器において、凝縮性能の低下を検知するために、凝縮器の飽和温度と冷却水温度の差異を検出し、その温度差が計画の温度差から上昇しているかを監視することが可能であるが、凝縮器は伝熱面(冷却水側)の汚れによっても凝縮性能が低下するため、不凝縮ガスによる性能低下との分離が困難である。   To detect a decrease in condensation performance in a water-cooled condenser, detect the difference between the saturation temperature of the condenser and the cooling water temperature and monitor whether the temperature difference rises from the planned temperature difference. However, since the condensation performance of the condenser deteriorates due to contamination on the heat transfer surface (cooling water side), it is difficult to separate the condenser from the deterioration of performance due to non-condensable gas.

本発明は、このような事情に鑑みてなされたものであって、不凝縮ガスを冷媒から分離して排出する際の消費エネルギーを可及的に抑えることができる蒸気圧縮式冷凍機及びその制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a vapor compression refrigerator that can suppress energy consumption when separating and discharging non-condensable gas from a refrigerant as much as possible, and its control. It aims to provide a method.

上記課題を解決するために、本発明の蒸気圧縮式冷凍機及びその制御方法は以下の手段を採用する。
すなわち、本発明にかかる蒸気圧縮式冷凍機は、冷媒を圧縮する圧縮機と、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器内で冷媒と熱交換する冷却水を流通させる冷却水用伝熱管と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器からガスを抽気し、該ガスを冷却して凝縮ガスを凝縮させる冷却部および該冷却部によって凝縮されずに分離された不凝縮ガスを外部に排出する排出部を有する抽気装置と、該抽気装置を制御する制御部とを備え、前記制御部は、前記凝縮器における現在の飽和温度と前記冷却水用伝熱管の現在の出口温度との差分である現在温度差と計画値である計画温度差とを演算し、前記冷却水用伝熱管の管内汚れを想定して予め決定された前記凝縮器における飽和温度と前記冷却水用伝熱管の出口温度との差分である管内汚れによる温度差上昇の情報を用いて現在管内汚れによる温度差上昇を演算し、前記現在温度差の前記計画温度差からの上昇が前記現在管内汚れによる温度差上昇よりも所定値以上大きくなった場合に、前記抽気装置を動作させることを特徴とする。
In order to solve the above problems, the vapor compression refrigerator and the control method thereof according to the present invention employ the following means.
That is, a vapor compression refrigerator according to the present invention distributes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and cooling water that exchanges heat with the refrigerant in the condenser. A cooling water heat transfer tube to be expanded, an expansion valve for expanding the liquid refrigerant introduced from the condenser, an evaporator for evaporating the refrigerant expanded by the expansion valve, and gas extracted from the condenser, A bleeder having a cooling part for condensing condensed gas and a non-condensable gas separated without being condensed by the cooling part, and a control part for controlling the bleeder. The controller calculates a current temperature difference that is a difference between a current saturation temperature in the condenser and a current outlet temperature of the cooling water heat transfer tube and a planned temperature difference that is a planned value, and the cooling water. Assuming dirt in the heat transfer tube Using the information on the temperature difference increase due to dirt in the pipe, which is the difference between the saturated temperature in the condenser determined in advance and the outlet temperature of the cooling water heat transfer pipe, the temperature difference rise due to the current pipe dirt is calculated, and the current temperature The bleeder is operated when an increase in the difference from the planned temperature difference is greater than a predetermined value more than a temperature difference increase due to the current pipe contamination.

凝縮器の凝縮性能の低下は、冷却水用伝熱管内の管内汚れによる伝熱阻害と、不凝縮ガスの凝縮器内での滞留による伝熱阻害とが考えられる。
凝縮器における現在の飽和温度と冷却水用伝熱管の現在の出口温度との差分である現在温度差が計画値である計画温度差よりも上昇する場合には、管内汚れと不凝縮ガス滞留との両方の影響が反映されている。一方、管内汚れによる温度差上昇は、伝熱管内に冷却水を流通させる予備試験等によって把握しておくことが可能である。したがって、現在温度差から現在管内汚れによる温度差上昇を引いた値が不凝縮ガス滞留による凝縮性能の低下と評価できる。そこで、現在温度差が計画温度差と現在管内汚れ温度差上昇分の合算値よりも大きくなった場合に、不凝縮ガス滞留による凝縮性能低下と判断して、抽気装置を動作させることとした。これにより、不凝縮ガスが凝縮器内に所定量以上滞留した場合に限って抽気装置を動作させることができるので、無駄なエネルギー消費を抑制し、全体効率の良い蒸気圧縮式冷凍機を実現できる。
なお、凝縮器の飽和温度は、凝縮器に設けた圧力センサから得られる圧力値から得ることができる。
The decrease in the condensation performance of the condenser may be due to heat transfer inhibition due to dirt in the cooling water heat transfer pipe and heat transfer inhibition due to retention of non-condensable gas in the condenser.
If the current temperature difference, which is the difference between the current saturation temperature in the condenser and the current outlet temperature of the cooling water heat transfer tube, is higher than the planned temperature difference, which is the planned value, dirt in the tube and non-condensable gas retention Both effects are reflected. On the other hand, an increase in temperature difference due to dirt in the tube can be grasped by a preliminary test or the like in which cooling water is circulated in the heat transfer tube. Therefore, a value obtained by subtracting the temperature difference increase due to the current pipe contamination from the current temperature difference can be evaluated as a decrease in condensation performance due to non-condensable gas retention. Therefore, when the current temperature difference becomes larger than the sum of the planned temperature difference and the current increase in the in-pipe dirt temperature difference, it is determined that the condensation performance is reduced due to non-condensable gas retention, and the bleeder is operated. As a result, the extraction device can be operated only when a predetermined amount or more of non-condensable gas stays in the condenser, so that wasteful energy consumption can be suppressed and a vapor compression refrigerator with high overall efficiency can be realized. .
The saturation temperature of the condenser can be obtained from a pressure value obtained from a pressure sensor provided in the condenser.

さらに、本発明の蒸気圧縮式冷凍機では、前記冷却水用伝熱管の前記凝縮器における出入口間の差圧を検出する差圧センサを備え、前記管内汚れによる温度差上昇は、前記差圧センサにて得られた現在の差圧の計画値からの上昇分に基づいて決定されていることを特徴とする。   Further, the vapor compression refrigerator of the present invention further includes a differential pressure sensor that detects a differential pressure between the inlet and outlet of the condenser of the cooling water heat transfer tube, and the temperature difference increase due to dirt in the tube is detected by the differential pressure sensor. It is determined based on the amount of increase from the planned value of the current differential pressure obtained in (1).

冷却水用伝熱管内の管内汚れは、伝熱管内への付着物によるものであり、付着物が伝熱管内の流路を狭めることにより、凝縮器における冷却水用伝熱管の出入口間の差圧は計画値よりも上昇する。そこで、計画値からの差圧上昇値に基づいて管内汚れ温度差を決定することで、管内汚れを精度良く見積もることができる。   The dirt in the heat transfer pipe for cooling water is due to the deposits in the heat transfer pipe, and the deposits narrow the flow path in the heat transfer pipe, thereby causing a difference between the inlet and outlet of the heat transfer pipe for cooling water in the condenser. The pressure rises above the planned value. Therefore, by determining the pipe dirt temperature difference based on the differential pressure increase value from the planned value, the pipe dirt can be accurately estimated.

さらに、本発明の蒸気圧縮式冷凍機では、前記冷却水用伝熱管内を流れる冷却水の流量を計測する冷却水流量センサを備え、前記管内汚れの温度差上昇は、前記冷却水流量センサにて得られた流量に基づいて決定されることを特徴とする。   The vapor compression refrigerator of the present invention further includes a cooling water flow sensor for measuring a flow rate of the cooling water flowing in the cooling water heat transfer pipe, and the temperature difference increase of the dirt in the pipe is caused by the cooling water flow sensor. It is determined based on the flow rate obtained in the above.

管内汚れ温度差上昇は差圧上昇に依存し、差圧は流量に依存するので、冷却水流量センサで得られた流量と差圧に基づいて管内汚れ温度差上昇を決定することとした。これにより、管内汚れを精度良く見積もることができる。   The increase in the dirt temperature in the pipe depends on the rise in the differential pressure, and the pressure difference depends on the flow rate. Therefore, the increase in the dirt temperature in the pipe is determined based on the flow rate and the differential pressure obtained by the cooling water flow sensor. Thereby, the dirt in the pipe can be accurately estimated.

さらに、本発明の蒸気圧縮式冷凍機では、前記蒸発器内で冷媒と熱交換する冷水を流通させる冷水用伝熱管と、該冷水用伝熱管内を流れる冷水の流量を計測する冷水流量センサと、前記冷水用伝熱管の冷水の出入口温度を計測する温度センサと、前記冷却水伝熱管の冷却水の出入口温度を計測する温度センサを備え、前記制御部は、前記冷水流量センサから得られた冷水流量と、前記蒸発器における前記冷水用伝熱管の冷水出入口温度差から演算される冷凍能力と、前記圧縮機に入力される動力と、前記凝縮器における前記冷却水用伝熱管の冷却水出入口温度差とに基づいて、熱バランスから前記冷却水用伝熱管内を流れる冷却水流量を演算し、前記管内汚れによる温度差上昇は、前記冷却水流量に基づいて決定されることを特徴とする。   Furthermore, in the vapor compression refrigerator of the present invention, a chilled water heat transfer tube that circulates chilled water that exchanges heat with the refrigerant in the evaporator, a chilled water flow rate sensor that measures the flow rate of the chilled water flowing in the chilled water heat transfer tube, and A temperature sensor that measures the inlet / outlet temperature of the chilled water in the heat transfer pipe for cold water, and a temperature sensor that measures the inlet / outlet temperature of the cooling water in the cooling water heat transfer pipe, wherein the control unit is obtained from the chilled water flow rate sensor. The cooling water flow rate, the refrigeration capacity calculated from the cold water inlet / outlet temperature difference of the cold water heat transfer tube in the evaporator, the power input to the compressor, and the cooling water inlet / outlet of the cooling water heat transfer tube in the condenser Based on the temperature difference, a flow rate of cooling water flowing in the heat transfer pipe for cooling water is calculated from a heat balance, and an increase in temperature difference due to dirt in the pipe is determined based on the flow rate of cooling water. .

冷却水の流量を計測する冷却水流量センサがない場合、冷水流量センサから得られた冷水流量と、冷水出入口温度差と、圧縮機に入力される動力と、冷却水出入口温度差とに基づいて、熱バランスから冷却水流量を演算することができる。これにより、冷却水流量センサを省略してコストを下げることができる。
なお、冷水流量センサもない場合には、冷水の差圧と、冷水用伝熱管の損失係数を用いることによって冷水流量を演算することができる。
If there is no cooling water flow sensor to measure the cooling water flow rate, it is based on the cold water flow rate obtained from the cold water flow sensor, the cold water inlet / outlet temperature difference, the power input to the compressor, and the cooling water inlet / outlet temperature difference. The coolant flow rate can be calculated from the heat balance. Thereby, a cooling water flow sensor can be omitted and cost can be reduced.
When there is no chilled water flow rate sensor, the chilled water flow rate can be calculated by using the chilled water differential pressure and the loss coefficient of the chilled water heat transfer tube.

また、本発明の蒸気圧縮式冷凍機の制御方法は、冷媒を圧縮する圧縮機と、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器内で冷媒と熱交換する冷却水を流通させる冷却水用伝熱管と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器からガスを抽気し、該ガスを冷却して凝縮ガスを凝縮させる冷却部および該冷却部によって凝縮されずに分離された不凝縮ガスを外部に排出する排出部を有する抽気装置と、を備えた蒸気圧縮式冷凍機の制御方法であって、前記凝縮器における現在の飽和温度と前記冷却水用伝熱管の現在の出口温度との差分である現在温度差と計画値である計画温度差とを演算し、前記冷却水用伝熱管の管内汚れを想定して予め決定された前記凝縮器における飽和温度と前記冷却水用伝熱管の出口温度との差分である管内汚れ温度差上昇の情報を用いて現在管内汚れによる温度差上昇を演算し、前記現在温度差の前記計画温度差からの上昇が前記現在管内汚れによる温度差上昇よりも所定値以上大きくなった場合に、前記抽気装置を動作させることを特徴とする。   Further, the control method of the vapor compression refrigerator of the present invention includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and cooling water that exchanges heat with the refrigerant in the condenser. A cooling water heat transfer tube that circulates, an expansion valve that expands the liquid refrigerant led from the condenser, an evaporator that evaporates the refrigerant expanded by the expansion valve, and a gas is extracted from the condenser, A vapor compression refrigeration machine comprising: a cooling unit that cools the gas to condense condensed gas; and a bleeder that has a discharge unit that discharges uncondensed gas that has not been condensed by the cooling unit to the outside. A control method, wherein a current temperature difference that is a difference between a current saturation temperature in the condenser and a current outlet temperature of the cooling water heat transfer tube and a planned temperature difference that is a planned value are calculated, and the cooling water Assuming dirt inside the heat transfer tube Using the information on the increase in the fouling temperature difference in the pipe, which is the difference between the determined saturation temperature in the condenser and the outlet temperature of the heat transfer pipe for cooling water, the temperature difference rise due to the fouling in the current pipe is calculated, and the current temperature difference The bleeder is operated when an increase from the planned temperature difference is greater than a predetermined value by a value greater than a temperature difference increase due to the current pipe contamination.

不凝縮ガスが凝縮器内に所定量以上滞留した場合に限って抽気装置及び冷却装置を動作させることとしたので、不凝縮ガスを冷媒から分離して排出する際の消費エネルギーを可及的に抑えることができる。   Since the extraction device and the cooling device are operated only when a predetermined amount or more of non-condensable gas stays in the condenser, energy consumption when separating and discharging the non-condensable gas from the refrigerant is made as much as possible. Can be suppressed.

本発明の一実施形態に係るターボ冷凍機を示した概略構成図である。It is the schematic block diagram which showed the turbo refrigerator based on one Embodiment of this invention. 制御部の制御ブロック図である。It is a control block diagram of a control part. 冷却水出口における温度差に対して冷却水圧力損失を示したグラフである。It is the graph which showed the cooling water pressure loss with respect to the temperature difference in a cooling water exit. 本発明の一実施形態に係る抽気装置の起動及び停止制御を示したフローチャートである。It is the flowchart which showed starting and stop control of the extraction apparatus which concerns on one Embodiment of this invention. 抽気装置の起動及び停止のタイミングを示したグラフである。It is the graph which showed the timing of starting and a stop of a bleeder.

以下に、本発明にかかる実施形態について、図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1に示されているように、ターボ冷凍機1は、冷媒を圧縮するターボ圧縮機3と、ターボ圧縮機3によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器5と、凝縮器5から導かれた液冷媒を膨張させる膨張弁7と、膨張弁7によって膨張された液冷媒を蒸発させる蒸発器9とを備えている。
冷媒としては、例えばHFO−1233zd(E)といった低圧冷媒が用いられており、運転中には蒸発器等の低圧部が大気圧以下となる。
As shown in FIG. 1, the turbo refrigerator 1 includes a turbo compressor 3 that compresses a refrigerant, a condenser 5 that condenses a high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 3, and a condenser 5. The expansion valve 7 expands the liquid refrigerant introduced from the expansion valve 7 and the evaporator 9 evaporates the liquid refrigerant expanded by the expansion valve 7.
As the refrigerant, for example, a low-pressure refrigerant such as HFO-1233zd (E) is used, and a low-pressure part such as an evaporator becomes an atmospheric pressure or lower during operation.

ターボ圧縮機3は、遠心式圧縮機であり、インバータによって回転数制御された電動機11によって駆動されている。インバータは、制御部(図示せず)によってその出力が制御されている。電動機11の入力電力Wは電力計13によって計測され、計測結果は図示しない制御部へと送られるようになっている。   The turbo compressor 3 is a centrifugal compressor, and is driven by an electric motor 11 whose rotational speed is controlled by an inverter. The output of the inverter is controlled by a control unit (not shown). The input power W of the electric motor 11 is measured by the wattmeter 13 and the measurement result is sent to a control unit (not shown).

ターボ圧縮機3は、回転軸3b周りに回転する羽根車3aを備えている。回転軸3bには、増速歯車15を介して電動機11から回転動力が伝達される。   The turbo compressor 3 includes an impeller 3a that rotates around a rotation shaft 3b. Rotational power is transmitted from the electric motor 11 to the rotary shaft 3b via the speed increasing gear 15.

凝縮器5は、例えばシェルアンドチューブ型とされた熱交換器とされている。
凝縮器5には、冷媒を冷却するための冷却水が内部を流通する冷却水用伝熱管5aが挿通されている。冷却水用伝熱管5aには、冷却水往き配管6aと冷却水戻り配管6bとが接続されている。冷却水往き配管6aを介して凝縮器5に導かれた冷却水は、冷却水戻り配管6bを介して図示しない冷却塔に導かれ外部へと排熱した後に、冷却水往き配管6aを介して再び凝縮器5へと導かれるようになっている。
冷却水往き配管6aには、冷却水を送水する冷却水ポンプ20と、冷却水流量GWCを計測する冷却水流量センサ22と、冷却水入口温度TWCIを計測する冷却水入口温度センサ24とが設けられている。冷却水戻り配管6bには、冷却水出口温度TWCOを計測する冷却水出口温度センサ26が設けられている。また、冷却水往き配管6aと冷却水戻り配管6bとの間には、冷却水の出入口の差圧PDcを計測する冷却水差圧センサ28が設けられている。
凝縮器5には、凝縮器5内の冷媒の凝縮器圧力Pcを計測する凝縮器圧力センサ29が設けられている。
これらセンサ22,24,26,28,29の計測値は、制御部へと送信されるようになっている。
The condenser 5 is a heat exchanger that is, for example, a shell and tube type.
The condenser 5 is inserted with a cooling water heat transfer tube 5a through which cooling water for cooling the refrigerant flows. A cooling water forward pipe 6a and a cooling water return pipe 6b are connected to the cooling water heat transfer pipe 5a. The cooling water guided to the condenser 5 via the cooling water return pipe 6a is guided to a cooling tower (not shown) via the cooling water return pipe 6b and exhausted to the outside, and then is discharged via the cooling water return pipe 6a. It is led to the condenser 5 again.
A cooling water pump 20 that supplies cooling water, a cooling water flow sensor 22 that measures the cooling water flow rate GWC, and a cooling water inlet temperature sensor 24 that measures the cooling water inlet temperature TWCI are provided in the cooling water going pipe 6a. It has been. The cooling water return pipe 6b is provided with a cooling water outlet temperature sensor 26 for measuring the cooling water outlet temperature TWCO. Further, a cooling water differential pressure sensor 28 that measures the differential pressure PDc at the inlet / outlet of the cooling water is provided between the cooling water going-out pipe 6a and the cooling water return pipe 6b.
The condenser 5 is provided with a condenser pressure sensor 29 that measures the condenser pressure Pc of the refrigerant in the condenser 5.
The measured values of these sensors 22, 24, 26, 28, and 29 are transmitted to the control unit.

膨張弁7は、電動式とされており、制御部によって開度が任意に設定されるようになっている。   The expansion valve 7 is electrically operated, and the opening degree is arbitrarily set by the control unit.

蒸発器9は、例えばシェルアンドチューブ型とされた熱交換器とされている。
蒸発器9には、冷媒と熱交換する冷水が内部を流通する冷水用伝熱管9aが挿通されている。冷水用伝熱管9aには、冷水往き配管10aと冷水戻り配管10bとが接続されている。冷水往き配管10aを介して蒸発器9に導かれた冷水は、定格温度(例えば7℃)まで冷却され、冷水戻り配管10bを介して図示しない外部負荷に導かれて冷熱を供給した後に、冷水往き配管10aを介して再び蒸発器9へと導かれるようになっている。
冷水往き配管10aには、冷水を送水する冷水ポンプ30と、冷水流量GWEを計測する冷水流量センサ32と、冷水入口温度TWEIを計測する冷水入口温度センサ34とが設けられている。冷水戻り配管10bには、冷水出口温度TWEOを計測する冷水出口温度センサ36が設けられている。また、冷水往き配管10aと冷水戻り配管10bとの間には、冷水の出入口の差圧PDeを計測する冷水差圧センサ38が設けられている。
これらセンサ32,34,36,38の計測値は、制御部へと送信されるようになっている。
The evaporator 9 is a heat exchanger of, for example, a shell and tube type.
The evaporator 9 is inserted with a cold water heat transfer tube 9a through which cold water that exchanges heat with the refrigerant flows. The cold water heat transfer pipe 9a is connected with a cold water forward pipe 10a and a cold water return pipe 10b. The chilled water led to the evaporator 9 through the chilled water outgoing pipe 10a is cooled to a rated temperature (for example, 7 ° C.), and is led to an external load (not shown) through the chilled water return pipe 10b to supply cold heat. It is led again to the evaporator 9 via the forward piping 10a.
The chilled water delivery pipe 10a is provided with a chilled water pump 30 for feeding chilled water, a chilled water flow rate sensor 32 for measuring the chilled water flow rate GWE, and a chilled water inlet temperature sensor 34 for measuring the chilled water inlet temperature TWEI. The cold water return pipe 10b is provided with a cold water outlet temperature sensor 36 for measuring the cold water outlet temperature TWEO. Further, a chilled water differential pressure sensor 38 for measuring the differential pressure PDe at the inlet / outlet of the chilled water is provided between the chilled water outgoing pipe 10a and the chilled water return pipe 10b.
The measurement values of these sensors 32, 34, 36, and 38 are transmitted to the control unit.

凝縮器5と蒸発器9との間には、抽気装置40が設けられている。抽気装置40には、凝縮器5から不凝縮ガスを含む冷媒(凝縮ガス)を導く抽気配管42が接続されている。また、抽気装置40には、凝縮させた液冷媒を蒸発器9へ導く液冷媒配管44が接続されている。また、抽気装置40には、不凝縮ガスを外部へ排出する排出配管46が接続されており、この排出配管46には排気ポンプ(排出部)48が設けられている。排気ポンプ48の動作は、制御部によって制御される。
また、抽気装置40は、矢印49で示すように、抽気装置40内に導かれた不凝縮ガスを含む冷媒を冷却するための冷熱が供給されるようになっている。冷熱を供給するための冷却部としては、ターボ冷凍機1とは別の冷凍サイクルを有する冷凍機、冷水を供給する手段、ターボ冷凍機1内の冷媒を供給する手段、ペルチェ素子による冷却手段等が挙げられる。これらの冷却部の動作は、図示しない制御部によって行われる。
An extraction device 40 is provided between the condenser 5 and the evaporator 9. The extraction device 40 is connected to an extraction piping 42 that guides a refrigerant (condensed gas) containing non-condensable gas from the condenser 5. In addition, a liquid refrigerant pipe 44 that guides the condensed liquid refrigerant to the evaporator 9 is connected to the extraction device 40. The bleeder 40 is connected to a discharge pipe 46 for discharging non-condensable gas to the outside. The discharge pipe 46 is provided with an exhaust pump (discharge unit) 48. The operation of the exhaust pump 48 is controlled by the control unit.
Further, as shown by an arrow 49, the bleeder 40 is supplied with cold heat for cooling the refrigerant containing the non-condensable gas introduced into the bleeder 40. As a cooling unit for supplying cold heat, a refrigerator having a refrigeration cycle different from the turbo refrigerator 1, a means for supplying cold water, a means for supplying refrigerant in the turbo refrigerator 1, a cooling means by a Peltier element, etc. Is mentioned. The operations of these cooling units are performed by a control unit (not shown).

制御部は、ターボ冷凍機1の運転に関する制御を行い、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。   The control unit performs control related to the operation of the turbo chiller 1, and includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Yes. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.

図2には、制御部のブロック図が示されている。
記憶部50には、後述するように、抽気装置40の動作を判断するためのデータが格納されている。
運転状態演算部52には、上述した各センサからの計測値と、記憶部50からのデータとが入力され、抽気装置40の動作を判断するための各種演算が行われる。
運転状態判断部54では、運転状態演算部52から得られた情報から、抽気装置40の動作の判断を行う。
制御指令部56では、運転状態判断部54からの出力に基づいて、抽気装置40の起動や停止の指令を行う。
FIG. 2 shows a block diagram of the control unit.
The storage unit 50 stores data for determining the operation of the extraction device 40 as will be described later.
The operation value calculation unit 52 receives the measurement values from the above-described sensors and the data from the storage unit 50, and performs various calculations for determining the operation of the bleeder 40.
The operation state determination unit 54 determines the operation of the bleeder 40 from the information obtained from the operation state calculation unit 52.
In the control command unit 56, a command to start or stop the extraction device 40 is issued based on the output from the operation state determination unit 54.

次に、図3を用いて、抽気装置40の起動や停止の判断を行う考え方を説明する。
図3において、横軸は冷却水出口温度TWCOと凝縮器圧力Pcから算出される凝縮器飽和温度TCsとの温度差の計画からの上昇値を示す。縦軸は、冷却水圧力損失の計画値からの上昇であり、冷却水用伝熱管5aの冷却水の汚れによる出入口間の圧力差上昇を示す。このように、図3は、管内汚れによって熱抵抗が増加することを示した管内汚れ温度差情報を表す。この汚れを加味した圧力差上昇は、予備試験等によって取得しておくことができる。
Next, the concept of determining whether to start or stop the extraction device 40 will be described with reference to FIG.
In FIG. 3, the horizontal axis represents an increase value from the plan of the temperature difference between the cooling water outlet temperature TWCO and the condenser saturation temperature TCs calculated from the condenser pressure Pc. The vertical axis is an increase from the planned value of the cooling water pressure loss, and shows an increase in pressure difference between the inlet and outlet due to contamination of the cooling water in the cooling water heat transfer tube 5a. As described above, FIG. 3 shows the in-tube fouling temperature difference information indicating that the thermal resistance increases due to the fouling in the tube. The increase in pressure difference taking this dirt into account can be obtained by a preliminary test or the like.

そして、例えば冷却水差圧センサ28で計測した差圧PDcの計画値からの上昇が4kPaであった場合、図3によると、汚れによる圧力損失による温度差上昇は約1℃となる。しかし、実際に温度センサ24,26で計測した冷却水の出入口温度差(TWCO−TWCI)の計画値からの上昇が2℃であった場合、温度上昇の差異分の1℃は、不凝縮ガスによる凝縮性の劣化と考える。この温度上昇が所定値以上となった場合に、抽気装置40を起動するように制御部からの指令が行われる。   For example, when the increase from the planned value of the differential pressure PDc measured by the cooling water differential pressure sensor 28 is 4 kPa, according to FIG. 3, the temperature difference increase due to pressure loss due to dirt is about 1 ° C. However, when the rise of the cooling water inlet / outlet temperature difference (TWCO-TWCI) actually measured by the temperature sensors 24 and 26 is 2 ° C., 1 ° C. of the difference in temperature rise is a non-condensable gas. This is considered to be a deterioration of the condensability due to. When this temperature rise exceeds a predetermined value, a command is issued from the control unit so as to activate the bleeder 40.

図4には、抽気装置40の具体的な制御が示されている。
先ず、ステップS1のように、ターボ冷凍機1が通常運転されていることを前提とする。このとき、抽気装置40は停止されている。
そして、制御部は、ステップS2のように、下式を満たすか否かを判断する。
(TDact−TDsp)−ΔTDf>ΔTDset1 ・・・(1)
FIG. 4 shows specific control of the bleeder 40.
First, it is assumed that the turbo chiller 1 is normally operated as in step S1. At this time, the bleeder 40 is stopped.
And a control part judges whether the following formula is satisfy | filled like step S2.
(TDact−TDsp) −ΔTDf> ΔTDset1 (1)

式(1)のTDactは、凝縮器圧力Pcの飽和温度と冷却水出口温度TWCOとの差(計測値)[℃]である。ここで、TDact=TCs−TWCOである。
TCsは、凝縮器圧力飽和温度[℃]であり、凝縮器圧力Pcの関数で与えられる。
冷却水出口温度TWCOは、冷却水出口温度センサ26で計測された計測値である。
TDact of the formula (1) is a difference (measured value) [° C.] between the saturation temperature of the condenser pressure Pc and the cooling water outlet temperature TWCO. Here, TDact = TCs−TWCO.
TCs is the condenser pressure saturation temperature [° C.] and is given as a function of the condenser pressure Pc.
The cooling water outlet temperature TWCO is a measured value measured by the cooling water outlet temperature sensor 26.

式(1)のTDspは、正常時の凝縮器飽和温度と冷却水出口温度との差(設定値)[℃]である。ここで、正常時とは、凝縮器5内に不凝縮ガスが存在せず、かつ冷却水用伝熱管5aに汚れがないときを意味する。
TDspは、TDsp=f(Qr)という式で表され、冷凍機負荷率Qr(=Qact/Qsp)の関数とされる。ここで、Qactは冷凍能力の実測値[kW]であり、Qspは定格の冷凍能力[kW]である。
The TDsp in the formula (1) is a difference (set value) [° C.] between the normal condenser saturation temperature and the cooling water outlet temperature. Here, the normal time means that no non-condensable gas exists in the condenser 5 and the cooling water heat transfer tube 5a is not contaminated.
TDsp is expressed by the equation TDsp = f (Qr), and is a function of the refrigerator load factor Qr (= Qact / Qsp). Here, Qact is the actual measurement value [kW] of the refrigeration capacity, and Qsp is the rated refrigeration capacity [kW].

式(1)のΔTDfは、冷却水用伝熱管5aの管内汚れによる温度差の上昇(設定値)[℃]である。ここで、ΔTDfは、ΔTDf=f(ΔPDc)という式で表される。
ΔPDcは、冷却水圧力の計画値からの上昇分を意味し、冷却水用伝熱管5aの出入口間の差圧上昇[kPa]である。ΔPDcは、ΔPDc=PDcact−PDcspという式で表される。
PDcactは、冷却水差圧センサ28によって計測された冷却水用伝熱管5aの出入口間の差圧[kPa]である。
PDcspは、流量に対する冷却水用伝熱管5aの庄力損失の仕様値[kPa]であり、冷却水用伝熱管5aに汚れがない状態の圧力損失を意味する。したがって、PDcspは、冷却水流量GWC[m/h]の関数となる。
ΔTDf in the equation (1) is an increase (set value) [° C.] of a temperature difference due to contamination in the cooling water heat transfer tube 5a. Here, ΔTDf is expressed by an equation: ΔTDf = f (ΔPDc).
ΔPDc means an increase from the planned value of the cooling water pressure, and is a differential pressure increase [kPa] between the inlet and outlet of the cooling water heat transfer tube 5a. ΔPDc is expressed by an equation: ΔPDc = PDcact−PDcsp.
PDcact is a differential pressure [kPa] between the inlet and outlet of the cooling water heat transfer tube 5 a measured by the cooling water differential pressure sensor 28.
PDcsp is a specification value [kPa] of the loss of the cooling water heat transfer pipe 5a with respect to the flow rate, and means a pressure loss in a state where the cooling water heat transfer pipe 5a is not contaminated. Therefore, PDcsp is a function of the cooling water flow rate GWC [m 3 / h].

式(1)のΔTDset1は、抽気装置40の運転が必要と判断する設定値であり、予備試験等によって予め決定される。   ΔTDset1 in equation (1) is a setting value that determines that the operation of the bleeder 40 is necessary, and is determined in advance by a preliminary test or the like.

式(1)から分かるように、凝縮器飽和温度と冷却水出口温度TWCOの温度差の計画値からの上昇分(TDact−TDsp)から、冷却水用伝熱管5aの管内汚れの影響(ΔTDf)を差し引いた温度差上昇が、設定値であるΔTDset1以上となった場合に、凝縮器5内の不凝縮ガスによる性能低下が大きいと判断して抽気装置40を運転する。
したがって、式(1)を満たした場合に、ステップS3へと進み、制御部は、抽気装置40を起動する。このときに初めて抽気装置40に電力が投入されることになる。
As can be seen from the equation (1), from the rise (TDact−TDsp) from the planned value of the temperature difference between the condenser saturation temperature and the cooling water outlet temperature TWCO, the influence of the dirt in the cooling water heat transfer pipe 5a (ΔTDf) When the temperature difference increase obtained by subtracting is equal to or larger than the set value ΔTDset1, it is determined that the performance degradation due to the non-condensable gas in the condenser 5 is large, and the extraction device 40 is operated.
Therefore, when Formula (1) is satisfy | filled, it progresses to step S3 and a control part starts the extraction apparatus 40. FIG. At this time, the bleeder 40 is powered on for the first time.

そして、制御部は、ステップS4のように、下式を満たすか否かを判断する。
(TDact−TDsp)−ΔTDf<ΔTDset2 ・・・(2)
式(2)の左辺は、式(1)と同様である。
式(2)を満たせば、制御部は、抽気装置40を停止させる(ステップS5)。
なお、ΔTDset2は、ΔTDset1よりも所定温度だけ小さい値とされる。これにより、図5に示したように、抽気運転開始および抽気運転停止の条件に温度差を与えて、起動及び停止が頻繁に生じないようにしている。
And a control part judges whether the following formula is satisfy | filled like step S4.
(TDact−TDsp) −ΔTDf <ΔTDset2 (2)
The left side of Formula (2) is the same as Formula (1).
If Expression (2) is satisfied, the control unit stops the bleeder 40 (step S5).
Note that ΔTDset2 is a value smaller than ΔTDset1 by a predetermined temperature. As a result, as shown in FIG. 5, a temperature difference is given to the conditions for starting the extraction operation and stopping the extraction operation so that the start and stop are not frequently generated.

本実施形態によれば、以下の作用効果を奏する。
凝縮器5における現在の飽和温度と冷却水用伝熱管5aの現在の出口温度TWCOとの差分である現在温度差TDactの計画からの上昇分には、管内汚れと不凝縮ガス滞留との両方の影響が反映されていることに着目した。
一方、管内汚れによる温度差の上昇ΔTDfは、冷却水用伝熱管5a内に冷却水を流通させる予備試験等によって把握しておくことが可能である。
したがって、現在温度差TDactと計画の温度差TDspとの差分から、現在管内汚れによる温度差上昇ΔTDfを引いた値が不凝縮ガス滞留による凝縮性能の低下と評価できる。
そこで、現在温度差TDactと計画の温度差TDspとの差分が現在管内汚れによる温度差上昇ΔTDfよりも所定値以上大きくなった場合に、不凝縮ガス滞留による凝縮性能低下と判断して、抽気装置40を動作させることとした。これにより、不凝縮ガスが凝縮器5内に所定量以上滞留した場合に限って抽気装置40を動作させることができるので、無駄なエネルギー消費を抑制できる、全体効率の良いターボ冷凍機1を実現できる。
According to this embodiment, there exist the following effects.
The increase from the plan of the current temperature difference TDact, which is the difference between the current saturation temperature in the condenser 5 and the current outlet temperature TWCO of the cooling water heat transfer tube 5a, includes both the contamination in the tube and the retention of non-condensable gas. We focused on the effect being reflected.
On the other hand, the temperature difference increase ΔTDf due to the contamination in the tube can be grasped by a preliminary test or the like in which the cooling water is circulated in the cooling water heat transfer tube 5a.
Therefore, a value obtained by subtracting the temperature difference increase ΔTDf due to the current pipe fouling from the difference between the current temperature difference TDact and the planned temperature difference TDsp can be evaluated as a decrease in condensation performance due to non-condensable gas retention.
Therefore, when the difference between the current temperature difference TDact and the planned temperature difference TDsp is greater than a temperature difference increase ΔTDf due to the current pipe contamination, it is determined that the condensation performance is reduced due to non-condensable gas retention, and the extraction device 40 was activated. As a result, the bleeder 40 can be operated only when a predetermined amount or more of non-condensable gas stays in the condenser 5, thereby realizing a highly efficient turbo chiller 1 that can suppress wasteful energy consumption. it can.

冷却水用伝熱管5a内の管内汚れは、伝熱管内への付着物によるものであり、付着物が伝熱管内の流路を狭めることにより、冷却水用伝熱管5aの出入口間の差圧PDcは計画値よりも上昇する。そこで、差圧上昇ΔPDcに基づいて管内汚れ温度差ΔTDfを決定することとしたので、管内汚れを精度良く見積もることができる。   The dirt in the heat transfer pipe 5a for cooling water is due to the deposits in the heat transfer pipe, and the deposits narrow the flow path in the heat transfer pipe, whereby the differential pressure between the inlet and outlet of the heat transfer pipe 5a for cooling water. PDc rises above the planned value. Therefore, since the pipe dirt temperature difference ΔTDf is determined based on the differential pressure increase ΔPDc, the pipe dirt can be accurately estimated.

管内汚れによる温度差の上昇ΔTDfは計画の差圧から上昇ΔPDcに依存し、差圧PDcは冷却水流量GWCに依存するので、冷却水流量センサ22で得られた冷却水流量GWCに基づいて管内汚れによる温度差の上昇ΔTDfを決定することとした。これにより、管内汚れを精度良く見積もることができる。   The temperature difference increase ΔTDf due to dirt in the pipe depends on the increase ΔPDc from the planned differential pressure, and the differential pressure PDc depends on the cooling water flow rate GWC. Therefore, the temperature difference in the pipe is determined based on the cooling water flow rate GWC obtained by the cooling water flow rate sensor 22. The increase in temperature difference ΔTDf due to contamination was determined. Thereby, the dirt in the pipe can be accurately estimated.

なお、本実施形態は、以下のように変形することができる。
[変形例1]
本実施形態では、冷却水流量センサ22によって冷却水流量GWCを計測することとしたが、冷却水流量センサ22がない場合でも、以下のように冷却水流量GWCを見積もることができる。
The present embodiment can be modified as follows.
[Modification 1]
In the present embodiment, the cooling water flow rate GWC is measured by the cooling water flow rate sensor 22, but even when the cooling water flow rate sensor 22 is not provided, the cooling water flow rate GWC can be estimated as follows.

冷水流量センサ32を用いて、ターボ冷凍機1全体の熱バランスから冷却水流量GWCを下式から求める。
GWC=(W+Qact)/((TWCO−TWCI)×Cpcw×ρcw)・・・(3)
ここで、Wは、電力計13によって計測された電動機11の入力電力[kW]である。TWCOは冷却水出口温度センサ26で計測した冷却水出口温度、TWCIは冷却水入口温度センサ24で計測した冷却水入口温度である。Cpcwは冷却水の比熱[kWh/kg℃]であり、ρcwは冷却水の比重[kg/m]である。
式(3)のQactは、冷凍能力の実測値[kW]であり、下式で表される。
Qact=(TWEI−TWEO)×GWE×cpew×ρew ・・・(4)
ここで、TWEIは冷水入口温度センサ34で計測した冷水入口温度であり、TWEOは冷水出口温度センサ36で計測した冷水出口温度である。GWEは冷水流量センサ32で計測した冷水流量であり、Cpewは冷水の比熱[kWh/kg℃]であり、ρewは冷水の比重[kg/m]である。
Using the cold water flow rate sensor 32, the cooling water flow rate GWC is obtained from the following equation from the heat balance of the entire turbo refrigerator 1.
GWC = (W + Qact) / ((TWCO−TWCI) × Cpcw × ρcw) (3)
Here, W is the input power [kW] of the electric motor 11 measured by the wattmeter 13. TWCO is the cooling water outlet temperature measured by the cooling water outlet temperature sensor 26, and TWCI is the cooling water inlet temperature measured by the cooling water inlet temperature sensor 24. Cpcw is the specific heat of cooling water [kWh / kg ° C.], and ρcw is the specific gravity of cooling water [kg / m 3 ].
Qact in the formula (3) is an actual measurement value [kW] of the refrigerating capacity, and is expressed by the following formula.
Qact = (TWEI−TWEO) × GWE × cpew × ρew (4)
Here, TWEI is the cold water inlet temperature measured by the cold water inlet temperature sensor 34, and TWEO is the cold water outlet temperature measured by the cold water outlet temperature sensor 36. GWE is the cold water flow rate measured by the cold water flow rate sensor 32, Cpew is the specific heat [kWh / kg ° C.] of cold water, and ρew is the specific gravity [kg / m 3 ] of cold water.

冷却水流量GWCを計測する冷却水流量センサ22がない場合、冷水流量センサ32から得られた冷水流量GWEと、冷水出入口温度差(TWEI−TWEO)と、ターボ圧縮機3に入力される電力Wと、冷却水出入口温度差(TWCI−TWCO)とに基づいて、上式(3)によって熱バランスから冷却水流量GWCを演算することができる。これにより、冷却水流量センサ22を省略してコストを下げることができる。
なお、冷水流量センサ32もない場合には、冷水差圧センサ38によって計測した冷水の差圧ΔPDeと、冷水用伝熱管9aの損失係数ξeを用いることによって、下式(5)のように冷水流量GWEを演算することができる。
GWE=ξe×ΔPDe1/2 ・・・(5)
When there is no cooling water flow rate sensor 22 for measuring the cooling water flow rate GWC, the cold water flow rate GWE obtained from the cold water flow rate sensor 32, the cold water inlet / outlet temperature difference (TWEI-TWEO), and the electric power W input to the turbo compressor 3 Then, based on the cooling water inlet / outlet temperature difference (TWCI-TWCO), the cooling water flow rate GWC can be calculated from the heat balance by the above equation (3). Thereby, the cooling water flow sensor 22 can be omitted and the cost can be reduced.
If there is no chilled water flow sensor 32, the chilled water differential pressure ΔPDe measured by the chilled water differential pressure sensor 38 and the loss coefficient ξe of the chilled water heat transfer tube 9a are used to obtain the chilled water as shown in the following equation (5). The flow rate GWE can be calculated.
GWE = ξe × ΔPDe 1/2 (5)

なお、上述した実施形態では、ターボ冷凍機1を例に挙げて説明したが、本発明は蒸気圧縮式冷凍機であれば適用可能である。   In the above-described embodiment, the turbo refrigerator 1 has been described as an example, but the present invention can be applied to any vapor compression refrigerator.

1 ターボ冷凍機(蒸気圧縮式冷凍機)
3 ターボ圧縮機
3a 羽根車
3b 回転軸
5 凝縮器
7 膨張弁
9 蒸発器
11 電動機
13 電力計
20 冷却水ポンプ
22 冷却水流量センサ
24 冷却水入口温度センサ
26 冷却水出口温度センサ
28 冷却水差圧センサ
30 冷水ポンプ
32 冷水流量センサ
34 冷水入口温度センサ
36 冷水出口温度センサ
38 冷水差圧センサ
40 抽気装置
48 排気ポンプ(排出部)
1 Turbo refrigerator (vapor compression refrigerator)
3 Turbo compressor 3a Impeller 3b Rotating shaft 5 Condenser 7 Expansion valve 9 Evaporator 11 Electric motor 13 Power meter 20 Cooling water pump 22 Cooling water flow rate sensor 24 Cooling water inlet temperature sensor 26 Cooling water outlet temperature sensor 28 Cooling water differential pressure Sensor 30 Chilled water pump 32 Chilled water flow rate sensor 34 Chilled water inlet temperature sensor 36 Chilled water outlet temperature sensor 38 Chilled water differential pressure sensor 40 Bleed device 48 Exhaust pump (discharge unit)

Claims (5)

冷媒を圧縮する圧縮機と、
該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
該凝縮器内で冷媒と熱交換する冷却水を流通させる冷却水用伝熱管と、
前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
前記凝縮器からガスを抽気し、該ガスを冷却して凝縮ガスを凝縮させる冷却部および該冷却部によって凝縮されずに分離された不凝縮ガスを外部に排出する排出部を有する抽気装置と、
該抽気装置を制御する制御部と、
を備え、
前記制御部は、前記凝縮器における現在の飽和温度と前記冷却水用伝熱管の現在の出口温度との差分である現在温度差と計画値である計画温度差とを演算し、
前記冷却水用伝熱管の管内汚れを想定して予め決定された前記凝縮器における飽和温度と前記冷却水用伝熱管の出口温度との差分である管内汚れによる温度差上昇の情報を用いて現在管内汚れによる温度差上昇を演算し、
前記現在温度差の前記計画温度差からの上昇が前記現在管内汚れによる温度差上昇よりも所定値以上大きくなった場合に、前記抽気装置を動作させることを特徴とする蒸気圧縮式冷凍機。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
A cooling water heat transfer tube for circulating cooling water for heat exchange with the refrigerant in the condenser;
An expansion valve for expanding the liquid refrigerant introduced from the condenser;
An evaporator for evaporating the refrigerant expanded by the expansion valve;
A bleeder having a cooling unit for extracting gas from the condenser, cooling the gas and condensing the condensed gas, and a discharge unit for discharging the non-condensable gas separated without being condensed by the cooling unit;
A control unit for controlling the extraction device;
With
The control unit calculates a current temperature difference which is a difference between a current saturation temperature in the condenser and a current outlet temperature of the cooling water heat transfer tube and a planned temperature difference which is a planned value,
Using information on the temperature difference increase due to dirt in the pipe, which is the difference between the saturation temperature in the condenser and the outlet temperature of the cooling water heat transfer pipe, which is determined in advance assuming the dirt in the pipe of the cooling water heat transfer pipe Calculate the temperature difference rise due to dirt in the pipe,
A vapor compression refrigeration machine that operates the extraction device when an increase in the current temperature difference from the planned temperature difference is greater than a predetermined value more than a temperature difference increase due to contamination in the current pipe.
前記冷却水用伝熱管の前記凝縮器における出入口間の差圧を検出する差圧センサを備え、
前記管内汚れによる温度差上昇は、前記差圧センサにて得られた現在の差圧の計画値からの上昇分に基づいて決定されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。
A differential pressure sensor for detecting a differential pressure between the inlet and outlet in the condenser of the cooling water heat transfer tube;
2. The vapor compression type according to claim 1, wherein the temperature difference increase due to dirt in the pipe is determined based on an increase from a current differential pressure plan value obtained by the differential pressure sensor. refrigerator.
前記冷却水用伝熱管内を流れる冷却水の流量を計測する冷却水流量センサを備え、
前記管内汚れの温度差上昇は、前記冷却水流量センサにて得られた流量に基づいて決定されることを特徴とする請求項2に記載の蒸気圧縮式冷凍機。
A cooling water flow rate sensor for measuring the flow rate of cooling water flowing in the cooling water heat transfer tube;
The vapor compression refrigerator according to claim 2, wherein the temperature difference increase of the dirt in the pipe is determined based on a flow rate obtained by the cooling water flow sensor.
前記蒸発器内で冷媒と熱交換する冷水を流通させる冷水用伝熱管と、
該冷水用伝熱管内を流れる冷水の流量を計測する冷水流量センサを備え、
前記制御部は、前記冷水流量センサから得られた冷水流量と、前記蒸発器における前記冷水用伝熱管の冷水出入口温度差と、前記圧縮機に入力される動力と、前記凝縮器における前記冷却水用伝熱管の冷却水出入口温度差とに基づいて、熱バランスから前記冷却水用伝熱管内を流れる冷却水流量を演算し、
前記管内汚れによる温度差上昇は、前記冷却水流量に基づいて決定されることを特徴とする請求項2に記載の蒸気圧縮式冷凍機。
A cold water heat transfer tube for circulating cold water for heat exchange with the refrigerant in the evaporator;
A chilled water flow sensor for measuring the flow rate of chilled water flowing in the heat transfer pipe for chilled water,
The control unit includes: a cold water flow rate obtained from the cold water flow sensor; a cold water inlet / outlet temperature difference of the cold water heat transfer tube in the evaporator; a power input to the compressor; and the cooling water in the condenser. Based on the cooling water inlet / outlet temperature difference of the heat transfer tube, the flow rate of the cooling water flowing in the heat transfer tube for cooling water is calculated from the heat balance,
The vapor compression refrigerator according to claim 2, wherein an increase in temperature difference due to dirt in the pipe is determined based on the cooling water flow rate.
冷媒を圧縮する圧縮機と、
該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
該凝縮器内で冷媒と熱交換する冷却水を流通させる冷却水用伝熱管と、
前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
前記凝縮器からガスを抽気し、該ガスを冷却して凝縮ガスを凝縮させる冷却部および該冷却部によって凝縮されずに分離された不凝縮ガスを外部に排出する排出部を有する抽気装置と、
を備えた蒸気圧縮式冷凍機の制御方法であって、
前記凝縮器における現在の飽和温度と前記冷却水用伝熱管の現在の出口温度との差分である現在温度差と計画値である計画温度差とを演算し、
前記冷却水用伝熱管の管内汚れを想定して予め決定された前記凝縮器における飽和温度と前記冷却水用伝熱管の出口温度との差分である管内汚れ温度差上昇の情報を用いて現在管内汚れによる温度差上昇を演算し、
前記現在温度差の前記計画温度差からの上昇が前記現在管内汚れによる温度差上昇よりも所定値以上大きくなった場合に、前記抽気装置を動作させることを特徴とする蒸気圧縮式冷凍機の制御方法。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
A cooling water heat transfer tube for circulating cooling water for heat exchange with the refrigerant in the condenser;
An expansion valve for expanding the liquid refrigerant introduced from the condenser;
An evaporator for evaporating the refrigerant expanded by the expansion valve;
A bleeder having a cooling unit for extracting gas from the condenser, cooling the gas and condensing the condensed gas, and a discharge unit for discharging the non-condensable gas separated without being condensed by the cooling unit;
A method for controlling a vapor compression refrigerator comprising:
Calculating a current temperature difference that is a difference between a current saturation temperature in the condenser and a current outlet temperature of the cooling water heat transfer tube and a planned temperature difference that is a planned value;
Using the information on the increase in the contamination temperature in the pipe, which is the difference between the saturation temperature in the condenser and the outlet temperature of the cooling water heat transfer pipe, which is determined in advance assuming the contamination in the pipe of the cooling water heat transfer pipe, Calculate the temperature difference rise due to dirt,
Control of a vapor compression refrigeration machine, wherein the extraction device is operated when an increase in the current temperature difference from the planned temperature difference is greater than a predetermined value more than a temperature difference increase due to dirt in the current pipe Method.
JP2016044384A 2016-03-08 2016-03-08 Vapor compression refrigerator and control method thereof Active JP6682301B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016044384A JP6682301B2 (en) 2016-03-08 2016-03-08 Vapor compression refrigerator and control method thereof
CN201780006418.5A CN108474601B (en) 2016-03-08 2017-03-07 Vapor compression type refrigerator and control method thereof
PCT/JP2017/009100 WO2017154934A1 (en) 2016-03-08 2017-03-07 Vapor compression-type refrigerator and method for controlling same
US16/070,050 US20190024957A1 (en) 2016-03-08 2017-03-07 Vapor compression-type refrigerator and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044384A JP6682301B2 (en) 2016-03-08 2016-03-08 Vapor compression refrigerator and control method thereof

Publications (2)

Publication Number Publication Date
JP2017161127A true JP2017161127A (en) 2017-09-14
JP6682301B2 JP6682301B2 (en) 2020-04-15

Family

ID=59789473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044384A Active JP6682301B2 (en) 2016-03-08 2016-03-08 Vapor compression refrigerator and control method thereof

Country Status (4)

Country Link
US (1) US20190024957A1 (en)
JP (1) JP6682301B2 (en)
CN (1) CN108474601B (en)
WO (1) WO2017154934A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140962A1 (en) * 2018-01-16 2019-07-25 华为技术有限公司 Refrigeration system and control method and controller therefor
CN112747506A (en) * 2021-02-25 2021-05-04 苏州吉来冷冻空调设备配件有限公司 In-tube evaporative condenser
CN113932470A (en) * 2021-11-02 2022-01-14 四川大学 High-temperature heat pump circulating system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190203992A1 (en) * 2017-12-28 2019-07-04 Johnson Controls Technology Company Systems and methods for purging a chiller system
US11976860B2 (en) 2018-12-03 2024-05-07 Carrier Corporation Enhanced refrigeration purge system
US11913693B2 (en) 2018-12-03 2024-02-27 Carrier Corporation Enhanced refrigeration purge system
WO2020117580A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Membrane purge system
CN112334721A (en) 2018-12-03 2021-02-05 开利公司 Enhanced refrigeration purge system
DE202019103830U1 (en) * 2019-07-11 2019-11-13 Seifert Systems Ltd. Arrangement for operating several air-liquid heat exchanger units connected in parallel
BE1028834B1 (en) * 2020-11-26 2022-06-28 Atlas Copco Airpower Nv Compressor device and method for controlling such a compressor device
JPWO2022176969A1 (en) * 2021-02-19 2022-08-25
CN114992924A (en) * 2021-03-02 2022-09-02 广东美的暖通设备有限公司 Economizer opening temperature determination method and device and air conditioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122264A (en) * 1981-01-21 1982-07-30 Hitachi Ltd Extractor for non-condensed gas
JPS5940775U (en) * 1982-09-07 1984-03-15 株式会社日阪製作所 Device for removing non-condensable gas in heat pumps
JP2005233609A (en) * 2005-04-28 2005-09-02 Hitachi Ltd Anomaly diagnosing method and its device for absorption refrigerator
JP2012097923A (en) * 2010-10-29 2012-05-24 Mitsubishi Heavy Ind Ltd Heat source apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733942B2 (en) * 1987-11-26 1995-04-12 ダイキン工業株式会社 Airtightness test method for turbo refrigerator
JP2501656Y2 (en) * 1988-12-06 1996-06-19 石川島播磨重工業株式会社 Heat exchanger monitoring equipment
JP2008014598A (en) * 2006-07-07 2008-01-24 Ebara Corp Bleeder for compression type refrigerating machine
JP2014159923A (en) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2015014437A (en) * 2013-07-08 2015-01-22 東プレ株式会社 Adsorption type heat pump device and operating method of the same
CN204535216U (en) * 2015-01-28 2015-08-05 北京华晟环能科技有限公司 The removal device of on-condensible gas in organic working medium condenser
CN105928147B (en) * 2016-04-29 2019-08-30 广东美的制冷设备有限公司 Heating and air conditioner and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122264A (en) * 1981-01-21 1982-07-30 Hitachi Ltd Extractor for non-condensed gas
JPS5940775U (en) * 1982-09-07 1984-03-15 株式会社日阪製作所 Device for removing non-condensable gas in heat pumps
JP2005233609A (en) * 2005-04-28 2005-09-02 Hitachi Ltd Anomaly diagnosing method and its device for absorption refrigerator
JP2012097923A (en) * 2010-10-29 2012-05-24 Mitsubishi Heavy Ind Ltd Heat source apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140962A1 (en) * 2018-01-16 2019-07-25 华为技术有限公司 Refrigeration system and control method and controller therefor
CN112747506A (en) * 2021-02-25 2021-05-04 苏州吉来冷冻空调设备配件有限公司 In-tube evaporative condenser
CN113932470A (en) * 2021-11-02 2022-01-14 四川大学 High-temperature heat pump circulating system

Also Published As

Publication number Publication date
US20190024957A1 (en) 2019-01-24
CN108474601A (en) 2018-08-31
CN108474601B (en) 2020-08-14
JP6682301B2 (en) 2020-04-15
WO2017154934A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017154934A1 (en) Vapor compression-type refrigerator and method for controlling same
JP6324707B2 (en) Heat source machine and control method thereof
US6516622B1 (en) Method and apparatus for variable frequency controlled compressor and fan
CN108700355B (en) Air extraction device, refrigerator provided with same, and control method for air extraction device
US10955179B2 (en) Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
US10408518B2 (en) Refrigerating machine and control method therefor
JP5707621B2 (en) Constant temperature liquid circulation device and operation method thereof
US10775083B2 (en) Purging device, chiller equipped with same, and method for controlling purging device
JP5220045B2 (en) Cooling system
JP2014159923A (en) Turbo refrigerator
JP2022084918A (en) Activation and deactivation of purge unit of vapor compression system based at least in part on conditions within condenser of vapor compression system
JP5755013B2 (en) Cooling water flow rate control method for heat source system
JP2014163624A (en) Turbo refrigerator
JP2008175402A (en) Operating method of refrigerating cycle device
JP6630627B2 (en) Turbo refrigerator
JP2002022300A (en) Refrigeration apparatus
JP6643711B2 (en) Refrigeration cycle apparatus and cooling method
JP2011141046A (en) Heat pump device and heat pump water heater with the same
JP6341481B2 (en) Refrigeration system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150