JP2017160073A - Method for producing CdSe colloidal particles - Google Patents

Method for producing CdSe colloidal particles Download PDF

Info

Publication number
JP2017160073A
JP2017160073A JP2016045061A JP2016045061A JP2017160073A JP 2017160073 A JP2017160073 A JP 2017160073A JP 2016045061 A JP2016045061 A JP 2016045061A JP 2016045061 A JP2016045061 A JP 2016045061A JP 2017160073 A JP2017160073 A JP 2017160073A
Authority
JP
Japan
Prior art keywords
liquid
cdse
raw material
particles
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016045061A
Other languages
Japanese (ja)
Other versions
JP6531681B2 (en
Inventor
宇野 貴博
Takahiro Uno
貴博 宇野
岡田 智
Satoshi Okada
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016045061A priority Critical patent/JP6531681B2/en
Publication of JP2017160073A publication Critical patent/JP2017160073A/en
Application granted granted Critical
Publication of JP6531681B2 publication Critical patent/JP6531681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce CdSe colloidal particles which have a particle diameter in a range of 2 to 5 nm, a half-width of 30 nm or less at a peak in a PL spectrum, high quantum efficiency, and high quality, at high yield.SOLUTION: A Se raw material liquid is prepared by mixing a Se source, a compound having a functional group of -COOH or -P=O, and a non-coordinating solvent, then maintaining the mixture at a temperature of 200 to 260°C for at least 3 hours, and subsequently decreasing the temperature of the mixture to 90 to 110°C. The above-described Se raw material liquid is poured into a Cd raw material liquid of 270 to 290°C, and the liquids are mixed and then maintained for 10 minutes to 2 hours to prepare a synthetic liquid. A polar solvent is added to the resultant liquid, and the polar solvent and the resultant liquid are mixed with each other to generate colloid aggregated particles, a nonpolar solvent is added to CdSe colloid aggregated particles obtained by subjecting the resultant liquid to solid-liquid separation, and the nonpolar solvent and the CdSe colloid aggregated particles are mixed with each other to make a liquid in which CdSe colloidal particles are dispersed. A polar solvent is added to the resultant liquid, the polar solvent and the resultant liquid are mixed with each other to make aggregated particles, a nonpolar solvent is then added to the aggregated particles, and the nonpolar solvent and the aggregated particles are mixed with each other to obtain CdSe colloidal particles.SELECTED DRAWING: Figure 1

Description

本発明は、光ルミネセンス材料の一種の可視発光コロイド粒子であるCdSeコロイド粒子を製造する方法に関する。   The present invention relates to a method for producing CdSe colloidal particles, which are a kind of visible light emitting colloidal particles of a photoluminescent material.

1980年代初期に量子サイズ効果の概念が導入されて以来、CdSe(セレン化カドミウム)コロイド粒子は無機半導体ナノ粒子の中で最も研究されてきたナノ結晶である。高品質のCdSeコロイド粒子を作るために、非常に成功した製造方法が確立している(例えば、非特許文献1参照。)。非特許文献1に示される方法は、Se(セレン)とアルキルホスフィンとの間で前駆体を作るために、アルキルホスフィンとして、トリオクチルホスフィン(TOP)又はトリブチルホスフィン(TBP)を用いている。   Since the concept of quantum size effect was introduced in the early 1980s, CdSe (cadmium selenide) colloidal particles are the most studied nanocrystals among inorganic semiconductor nanoparticles. In order to produce high-quality CdSe colloidal particles, a very successful production method has been established (for example, see Non-Patent Document 1). The method shown in Non-Patent Document 1 uses trioctylphosphine (TOP) or tributylphosphine (TBP) as the alkylphosphine in order to make a precursor between Se (selenium) and alkylphosphine.

しかしながら、TOPとTBPは有害で化学的に不安定な物質であり、しかも高価な材料であるため、商業化の大きな負荷となっていた。この点を改良するために、非特許文献1に示されたコロイドの品質を維持しつつ、環境負荷が低くかつ高価でない溶媒であるオクタデシルアミン(ODA)とオクタデセン(ODE)を用いたCdSeコロイド粒子の製造方法が開示されている(例えば、非特許文献2参照。)。   However, TOP and TBP are harmful and chemically unstable substances, and are expensive materials, which have been a heavy burden for commercialization. In order to improve this point, CdSe colloidal particles using octadecylamine (ODA) and octadecene (ODE), which are low environmental impact and inexpensive solvents, while maintaining the quality of the colloid shown in Non-Patent Document 1. Is disclosed (for example, see Non-Patent Document 2).

C. B. Murray et al. J. Am. Chem. Soc. 1993, 115, 8706-8715C. B. Murray et al. J. Am. Chem. Soc. 1993, 115, 8706-8715 H. Shen et al. CrystEngComm, 2009, 11, 1733-1738H. Shen et al. CrystEngComm, 2009, 11, 1733-1738

一般的に、可視発光コロイド粒子であるコロイド蛍光体では、発光波長を精密に制御することが重要であって、量子サイズ効果の原理に従うと、それはCdSeコロイド粒子の粒径を精密に制御することにある。非特許文献2の方法では、所定のSe−ODA錯体を形成したSe原料液を利用して、反応時間を変えることにより、CdSeコロイド粒子の粒径を制御していた。しかしながら、この方法では、粒径制御の因子が反応時間に限られるため、2nm未満の微小な粒径のCdSeコロイド粒子を得るには反応時間を1分未満の短時間にする必要があり、操作が極めて困難であった。また8nmを超える粒径のCdSeコロイド粒子を得るには反応時間が2時間を超える長時間を要し、製造効率が低下する問題があった。また、Seとアミノ基(−NH)の結合親和性は、その他の官能基(−COOH、−P=O)と比較して弱いので、Cd−Seモノマーが熱解離し易く、核生成と成長の分離が比較的難しく、粒度分布が広くなる、という問題があった。一方、上記方法では、大量に窒素を含んだ廃液が排出される。海洋環境保全に関する法規制にて、海に排出出来る廃液中の窒素濃度の規制が厳しく定められており、廃液中に大量に窒素を含むことが予想されるため、量産した場合には大きな障害となる。 In general, in the colloidal phosphor that is a visible light-emitting colloidal particle, it is important to precisely control the emission wavelength, and according to the principle of the quantum size effect, it can precisely control the particle size of the CdSe colloidal particle. It is in. In the method of Non-Patent Document 2, the particle size of CdSe colloidal particles is controlled by changing the reaction time using a Se raw material liquid in which a predetermined Se-ODA complex is formed. However, in this method, since the factor for controlling the particle size is limited to the reaction time, in order to obtain a CdSe colloidal particle having a minute particle size of less than 2 nm, it is necessary to shorten the reaction time to less than 1 minute. Was extremely difficult. In addition, in order to obtain CdSe colloidal particles having a particle diameter exceeding 8 nm, the reaction time required a long time exceeding 2 hours, and there was a problem that the production efficiency was lowered. In addition, since the binding affinity between Se and an amino group (—NH 2 ) is weak compared to other functional groups (—COOH, —P═O), the Cd—Se monomer is easily thermally dissociated, and nucleation and There was a problem that the separation of growth was relatively difficult and the particle size distribution was wide. On the other hand, in the above method, a waste liquid containing a large amount of nitrogen is discharged. Regulations on the concentration of nitrogen in the waste liquid that can be discharged into the sea are strictly stipulated by laws and regulations related to marine environmental conservation, and it is expected that the waste liquid will contain a large amount of nitrogen, so this is a major obstacle in mass production. Become.

本発明の目的は、粒径が2〜5nmの範囲にあってフォトルミネッセンス・スペクトル(以下、「PLスペクトル」という。)のピークにおける半値幅が30nm以下である、量子効率が高い高品質のCdSeコロイド粒子を高い収量で製造する方法を提供することにある。   An object of the present invention is to provide high-quality CdSe with high quantum efficiency, in which the particle size is in the range of 2 to 5 nm and the half width at the peak of the photoluminescence spectrum (hereinafter referred to as “PL spectrum”) is 30 nm or less. It is to provide a method for producing colloidal particles with high yield.

本発明者らは、Se原料液中で形成されるSe−X錯体の有機配位子Xに着目し、リン(P)基以外の官能基を持つ有機配位子は、反応中にキャッピング剤としても働くことを知見した。このキャッピング剤としての有機配位子Xの官能基とCd−Seとの結合親和力を調整することで、CdSeコロイド粒子への有機配位子Xの吸脱着速度を調整するとともに、有機配位子Xの構造上の嵩高さを選択することで、CdSeモノマーの成長の難易度を調整できることに着目し、本発明に到達した。   The present inventors paid attention to the organic ligand X of the Se-X complex formed in the Se raw material liquid, and the organic ligand having a functional group other than the phosphorus (P) group is a capping agent during the reaction. I found out that it works as well. By adjusting the binding affinity between the functional group of the organic ligand X as the capping agent and Cd-Se, the adsorption / desorption rate of the organic ligand X to the CdSe colloidal particles is adjusted, and the organic ligand Focusing on the fact that the difficulty of growth of CdSe monomer can be adjusted by selecting the bulkiness of the structure of X, the present invention has been achieved.

本発明の第1の観点は、Cd原料液にSe原料液を注入して混合することによりCdSeコロイド粒子を製造する方法において、(a) 前記Se原料液を、Se源と−COOH又は−P=Oの官能基を有する化合物と非配位性溶媒とを混合した後、200〜260℃の温度に加熱して少なくとも3時間保持し、続いて90〜110℃の温度に降温することにより調製する工程と、(b) 270〜290℃の温度に保持された前記Cd原料液に90〜110℃の温度に保持された前記Se原料液を注入して混合した後、注入開始時刻から10分〜2時間保持することにより、合成液を調製し、前記合成液中で生成したCdSeコロイド核を粒成長させる工程と、(c) 前記CdSeコロイド核が粒成長した液に極性溶媒を添加混合して前記液中で分散しているCdSeコロイド粒子をCdSeコロイド凝集粒子にする工程と、(d) 前記液を固液分離して前記CdSeコロイド凝集粒子を回収する工程と、(e) 前記回収したCdSeコロイド凝集粒子に非極性溶媒を添加混合してCdSeコロイド粒子が分散した液にする工程と、(f) 前記液に極性溶媒を添加混合して前記液中で分散しているCdSeコロイド粒子をCdSeコロイド凝集粒子にする工程と、(g) 前記液を固液分離して前記CdSeコロイド凝集粒子を回収する工程と、(h) 前記回収したCdSeコロイド凝集粒子に非極性溶媒を添加混合してCdSeコロイド粒子が分散した液にする工程とを上記(a)〜(h)の工程順に含むことを特徴とするCdSeコロイド粒子の製造方法である。   According to a first aspect of the present invention, in a method for producing CdSe colloidal particles by injecting and mixing an Se raw material liquid into a Cd raw material liquid, (a) the Se raw material liquid is mixed with an Se source and —COOH or —P Prepared by mixing a compound having a functional group of ═O and a non-coordinating solvent, heating to a temperature of 200 to 260 ° C., holding for at least 3 hours, and subsequently lowering to a temperature of 90 to 110 ° C. And (b) injecting and mixing the Se raw material liquid maintained at a temperature of 90 to 110 ° C. into the Cd raw material liquid maintained at a temperature of 270 to 290 ° C., and then 10 minutes from the injection start time. Hold for ~ 2 hours to prepare a synthesis solution and grow CdSe colloid nuclei generated in the synthesis solution; and (c) add a polar solvent to the solution in which the CdSe colloid nuclei have grown and mix. Dispersed in the liquid CdSe colloidal particles to be CdSe colloidal agglomerated particles, (d) a step of solid-liquid separation of the liquid to recover the CdSe colloidal agglomerated particles, and (e) a nonpolar solvent for the recovered CdSe colloidal agglomerated particles. And (c) adding a polar solvent to the liquid and mixing the CdSe colloidal particles dispersed in the liquid into CdSe colloidal agglomerated particles. (G) recovering the CdSe colloidal aggregated particles by solid-liquid separation of the liquid; and (h) adding a nonpolar solvent to the recovered CdSe colloidal aggregated particles to mix and disperse the CdSe colloidal particles. A method for producing CdSe colloidal particles, comprising the steps of (a) to (h) in the order of steps.

本発明の第2の観点は、第1の観点の発明に基づく発明であって、前記(h)工程の後で、前記(f)工程から前記(h)工程まで1回又は2回以上繰り返すCdSeコロイド粒子の製造方法である。   The second aspect of the present invention is the invention based on the invention of the first aspect, and is repeated once or twice or more after the step (h) from the step (f) to the step (h). This is a method for producing CdSe colloidal particles.

本発明の第1の観点のCdSeコロイド粒子の製造方法では、Se源と電子供与性のある有機配位子である−COOH又は−P=Oの官能基を有する化合物と非配位性溶媒とを混合した後、前記Se源と前記電子供与性のある有機配位子を有する化合物とによる錯形態が平衡状態に達したエネルギー的に安定な段階で、Se原料液をCd原料液と混合すると、有機配位子がキャッピング剤として機能して、この有機配位子がCdSeコロイド表面上で、吸脱着を繰り返し、CdSe核の成長を制御する。上記官能基が好適にキャッピング剤として機能し、窒素を含んだ有機溶媒を使用せずに、粒子への成長過程で、微小粒径が維持されて、粒径が2〜5nmであってPLスペクトルのピークにおける半値幅が30nm以下である、量子効率が高い高品質のCdSeコロイド粒子が得られる。このCdSe核の成長過程で原料液中のCdとSeが消費され、収量を高くすることができる。   In the method for producing CdSe colloidal particles according to the first aspect of the present invention, a Se source, a compound having a functional group of —COOH or —P═O which is an organic ligand having an electron donating property, a non-coordinating solvent, After mixing, the Se raw material liquid is mixed with the Cd raw material liquid at an energetically stable stage where the complex form of the Se source and the compound having an electron-donating organic ligand has reached an equilibrium state. The organic ligand functions as a capping agent, and this organic ligand repeatedly adsorbs and desorbs on the surface of the CdSe colloid to control the growth of CdSe nuclei. The above functional group preferably functions as a capping agent, and without using an organic solvent containing nitrogen, a fine particle size is maintained during the growth process to particles, and the particle size is 2 to 5 nm. A high-quality CdSe colloidal particle having a high quantum efficiency and having a half-width of 30 nm or less at the peak is obtained. In this CdSe nucleus growth process, Cd and Se in the raw material liquid are consumed, and the yield can be increased.

本発明の第2の観点のCdSeコロイド粒子の製造方法では、極性溶媒の添加によりCdSeコロイド粒子をCdSeコロイド凝集粒子にする工程と、非極性溶媒の添加によりCdSeコロイド凝集粒子をCdSeコロイド粒子に再分散させる工程を繰り返すことにより、CdSeコロイド粒子が洗浄され、より一層上記半値幅が狭まる。   In the method for producing CdSe colloidal particles according to the second aspect of the present invention, the step of converting the CdSe colloidal particles into CdSe colloidal agglomerated particles by adding a polar solvent and the addition of the nonpolar solvent to reconstitute the CdSe colloidal agglomerated particles into CdSe colloidal particles. By repeating the dispersing step, the CdSe colloidal particles are washed, and the half width is further narrowed.

本発明の実施形態のCdSeコロイド粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the CdSe colloidal particle of embodiment of this invention.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本実施形態のCdSeコロイド粒子は、図1に示す工程を経て作られる。図1に示す温度は本発明の実施例の温度である。各原料の秤量は各原料の雰囲気ガスとの反応を回避するため、窒素ガス等の不活性ガス雰囲気下で行われる。   The CdSe colloidal particles of this embodiment are made through the steps shown in FIG. The temperature shown in FIG. 1 is the temperature of the embodiment of the present invention. Each raw material is weighed under an inert gas atmosphere such as nitrogen gas in order to avoid reaction with the atmospheric gas of each raw material.

〔Cd原料液の調製〕
第1の実施形態のCd原料液は、不活性ガスで置換した容器内にCd源としての粉末状の金属カドミウム(Cd)又は粉末状の酸化カドミウム(CdO)等のカドミウムの酸化物を入れ、これにカルボン酸と非配位性溶媒を加えて混合した後、加熱することにより調製される。カルボン酸としては、ギ酸、酢酸、プロピオン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸が挙げられる。非配位性溶媒としては、オクタデセン(ODE:C1836)、トリオクチルホスフィン(TOP:C2451P)、トリオクチルホスフィンオキシド(TOPO:C2451OP)、オレイルアミン(OLA:C1837N)、ヘキサデシルアミン(HDA:C1635N)等が挙げられる。Cd源1molに対して、カルボン酸を2〜6mol、非配位性溶媒を50〜300mol加える。各原料の混合液が入った容器に不活性ガスを通気しながら この容器をオイルバスなどで加熱する。このオイルバスで各原料の混合液を加熱して到達する温度は270〜290℃である。この温度で混合液が透明になり、270〜290℃のCd原料液が調製される。Cd原料液の温度が下限値未満では、後述するSe原料液との反応が進みにくく、上限値を超えるとCd原料液が蒸発し易くなる。
[Preparation of Cd raw material solution]
In the Cd raw material liquid of the first embodiment, a cadmium oxide such as powdered metal cadmium (Cd) or powdered cadmium oxide (CdO) as a Cd source is placed in a container substituted with an inert gas, This is prepared by adding a carboxylic acid and a non-coordinating solvent and mixing them, followed by heating. Examples of the carboxylic acid include saturated fatty acids such as formic acid, acetic acid, and propionic acid, and unsaturated fatty acids such as oleic acid, linoleic acid, and linolenic acid. Non-coordinating solvents include octadecene (ODE: C 18 H 36 ), trioctyl phosphine (TOP: C 24 H 51 P), trioctyl phosphine oxide (TOPO: C 24 H 51 OP), oleylamine (OLA: C 18 H 37 N), hexadecylamine (HDA: C 16 H 35 N), and the like. 2-6 mol of carboxylic acid and 50-300 mol of non-coordinating solvent are added to 1 mol of Cd source. This container is heated with an oil bath or the like while passing an inert gas through the container containing the mixture of raw materials. The temperature reached by heating the mixture of each raw material in this oil bath is 270 to 290 ° C. At this temperature, the liquid mixture becomes transparent, and a 270 to 290 ° C. Cd raw material liquid is prepared. When the temperature of the Cd raw material liquid is less than the lower limit value, the reaction with the Se raw material liquid described later hardly proceeds, and when the temperature exceeds the upper limit value, the Cd raw material liquid easily evaporates.

〔Se原料液の調製〕
本実施形態のSe原料液は、不活性ガスで置換した容器内にSe源としての粉末状の金属セレン(Se)又は粉末状の酸化セレン等のセレンの酸化物を入れ、これに電子供与性のある有機配位子を有する化合物と非配位性溶媒を混合して加熱することにより調製される。電子供与性のある有機配位子を有する化合物の選定に当たっては、キャッピング剤の官能基の被覆速度とその粗密さが粒径制御の重大な因子となることを考慮する。具体的には、キャッピング剤の被覆速度が小さいとCdSeコロイド粒子の成長が速く、上記被覆速度が大きいとCdSeコロイド粒子の成長が遅くなる。またキャッピング剤の嵩高さが小さいとCdSeコロイド粒子の成長が遅く、上記嵩高さが大きいとCdSeコロイド粒子の成長が速くなる。上記の観点から、本実施形態の電子供与性のある有機配位子を有する化合物としては、−COOH又は−P=Oの官能基を有し、窒素を含む官能基を有しない、化合物が挙げられる。−COOHの官能基を有する化合物としては、嵩高さが小さいオレイン酸、リノール酸又はアラキド酸;嵩高さが大きいフタル酸、イソフタル酸又はテレフタル酸等が挙げられる。また−P=Oの官能基を有する化合物としては、嵩高さが大きいジオクチルホスフィンオキシド又はトリ−n−オクチルホスフィンオキシド等が挙げられる。
[Preparation of Se raw material liquid]
In the Se raw material liquid of the present embodiment, selenium oxide such as powdered metal selenium (Se) or powdered selenium oxide as a Se source is placed in a container substituted with an inert gas, and electron donating property is added thereto. A compound having an organic ligand and a non-coordinating solvent are mixed and heated. In selecting a compound having an organic ligand having an electron donating property, it is considered that the coating rate of the functional group of the capping agent and its density are important factors in controlling the particle size. Specifically, when the coating speed of the capping agent is small, the growth of CdSe colloidal particles is fast, and when the coating speed is high, the growth of CdSe colloidal particles is slow. Further, when the bulk of the capping agent is small, the growth of CdSe colloidal particles is slow, and when the bulk is large, the growth of CdSe colloidal particles is fast. From the above viewpoint, the compound having an electron-donating organic ligand of the present embodiment includes a compound having a functional group of —COOH or —P═O and having no functional group containing nitrogen. It is done. Examples of the compound having a functional group of —COOH include oleic acid, linoleic acid, or arachidic acid having a small bulkiness; phthalic acid, isophthalic acid, terephthalic acid having a large bulkiness, and the like. Moreover, as a compound which has a functional group of -P = O, a bulky dioctyl phosphine oxide or a tri-n-octyl phosphine oxide is mentioned.

本実施形態の特徴ある第1の点は、Se源と電子供与性のある有機配位子を有する化合物とが錯形態を変化させながら所定の平衡状態の錯形態に到達した後のエネルギー的に安定なSe原料液を調製することにある。非配位性溶媒としては、オクタデセン(ODE:C1836)、トリオクチルホスフィンオキシド(TOPO:C2451OP)、オレイルアミン(OLA:C1837N)、ヘキサデシルアミン(HDA:C1635N)等が挙げられる。Se源1molに対して、電子供与性のある有機配位子を有する化合物を1〜10mol及び非配位性溶媒を2〜100mol加える。Cd原料液の調製と同様に、各原料の混合液が入った容器に不活性ガスを通気しながら この容器をオイルバスなどで加熱する。このオイルバスで各原料の混合液を加熱する温度は200〜260℃であり、加熱した温度での保持時間は少なくとも3時間である。加熱温度が200℃未満では、Se源の有機溶媒への溶解が十分でなく、Se源の未溶解分が発生し易い。また加熱温度が260℃を超えると、有機物の揮発が優勢となり、Se有機錯体の形成に悪影響を与えるという不具合がある。また保持時間が3時間未満であると、Se有機錯体が平衡状態の錯形態にならない。加熱した後、容器をオイルバスから取り出して空冷することにより降温して、最終のSe原料液の温度を90〜110℃の温度にする。Se原料液の温度が下限値未満にまで降温すると、Seの有機塩が生成する等の不具合を生じる。Se源としては、金属セレンが溶解し易いことから好ましい。 The first characteristic point of the present embodiment is that, after the Se source and the compound having an electron-donating organic ligand reach the complex form in a predetermined equilibrium state while changing the complex form, It is to prepare a stable Se raw material liquid. Non-coordinating solvents include octadecene (ODE: C 18 H 36 ), trioctyl phosphine oxide (TOPO: C 24 H 51 OP), oleylamine (OLA: C 18 H 37 N), hexadecylamine (HDA: C 16 H 35 N) and the like. 1 to 10 mol of a compound having an electron-donating organic ligand and 2 to 100 mol of a non-coordinating solvent are added to 1 mol of Se source. Similar to the preparation of the Cd raw material liquid, the container is heated with an oil bath or the like while passing an inert gas through the container containing the mixed liquid of the respective raw materials. The temperature at which each liquid mixture of raw materials is heated in this oil bath is 200 to 260 ° C., and the holding time at the heated temperature is at least 3 hours. When the heating temperature is less than 200 ° C., the Se source is not sufficiently dissolved in the organic solvent, and an undissolved portion of the Se source is easily generated. Moreover, when heating temperature exceeds 260 degreeC, there exists a malfunction that volatilization of organic substance becomes dominant and it has a bad influence on formation of Se organic complex. If the retention time is less than 3 hours, the Se organic complex will not be in a complex form in an equilibrium state. After heating, the container is taken out from the oil bath and cooled by air cooling to bring the final Se raw material liquid to a temperature of 90 to 110 ° C. When the temperature of the Se raw material liquid falls below the lower limit, problems such as the generation of an organic salt of Se occur. The Se source is preferable because metal selenium is easily dissolved.

〔Cd原料液とSe原料液の合成〕
Cd原料液とSe原料液の合成は、ホットソープ法で行われる。即ち、Cd原料液が入った容器に不活性ガスを通気しながら この容器をオイルバスで加熱した状態で、270〜290℃のCd原料液中に90〜110℃のSe原料液をシリンジを用いて一気に注入してCd原料液とSe原料液の合成を行う。具体的には内径10mmのシリンジに対して1〜10mL/秒の押し込み速度で注入する。下限値未満の速度でゆっくり注入すると、液中で形成した核の表面にまた核が形成され、核が微小になりにくく、PLスペクトルのピークにおける半値幅も広がる。上限値を超えた高速度では注入操作がやりにくい。これにより、Cd原料液にSe原料液を混合した合成液が調製される。Cd原料液にSe原料液を混合する方法として、混合の規模によっては、不活性圧縮ガスを利用して、ノズル混合、エジェクター混合等の混合方法を採用してもよい。調製された合成液を245〜255℃の温度で保持し、CdSeコロイド核を粒成長させる。電子供与性のある有機配位子を有する化合物を含んだ、所定の平衡状態の錯形態に到達した後のエネルギー的に安定なSe原料液を注入すると、上記化合物の有機配位子がキャッピング剤として機能して、この有機配位子がCdSeコロイド表面上で、吸脱着を繰り返し、CdSe核の成長を制御する。具体的には、CdSeコロイド表面上で上記化合物の有機配位子(キャッピング剤)が脱離した隙間をCdSeモノマーが成長する。この成長が進行すると、コロイド粒子表面のキャッピング剤の被覆率が向上し、この成長が進行しにくくなり、結果としてCdSe核の成長を制御する。
[Synthesis of Cd raw material liquid and Se raw material liquid]
The synthesis of the Cd raw material liquid and the Se raw material liquid is performed by a hot soap method. That is, in a state where an inert gas is passed through a container containing Cd raw material liquid and this container is heated in an oil bath, Se raw material liquid at 90 to 110 ° C. is used in a Cd raw material liquid at 270 to 290 ° C. using a syringe. Then, the Cd raw material liquid and the Se raw material liquid are synthesized. Specifically, it is injected at a pushing speed of 1 to 10 mL / second into a syringe having an inner diameter of 10 mm. When it is slowly injected at a rate lower than the lower limit, nuclei are formed again on the surface of the nuclei formed in the liquid, the nuclei are less likely to be minute, and the half-value width at the peak of the PL spectrum is widened. The injection operation is difficult at high speeds exceeding the upper limit. Thereby, a synthetic liquid is prepared by mixing the Se raw material liquid with the Cd raw material liquid. As a method of mixing the Se raw material liquid with the Cd raw material liquid, a mixing method such as nozzle mixing or ejector mixing may be employed using an inert compressed gas depending on the scale of mixing. The prepared synthesis solution is held at a temperature of 245 to 255 ° C. to grow CdSe colloid nuclei. When an energetically stable Se raw material solution containing a compound having an electron-donating organic ligand and reaching a complex state in a predetermined equilibrium state is injected, the organic ligand of the above compound becomes a capping agent. This organic ligand repeatedly adsorbs and desorbs on the surface of the CdSe colloid to control the growth of CdSe nuclei. Specifically, the CdSe monomer grows in the gap where the organic ligand (capping agent) of the above compound is eliminated on the surface of the CdSe colloid. As this growth proceeds, the coverage of the capping agent on the surface of the colloidal particles is improved and this growth becomes difficult to proceed, and as a result, the growth of CdSe nuclei is controlled.

本実施形態の特徴ある第2の点は、注入開始時刻から起算される合成時間を10分〜2時間の範囲にすることにある。好ましくは、合成時間を15分〜1時間の範囲にする。下限値の10分未満では、Cd原料液とSe原料液の合成が不十分で収量を高くすることができない。また上限値の2時間を超えると、製造効率が悪化し易い。   The characteristic second point of the present embodiment is that the synthesis time calculated from the injection start time is in the range of 10 minutes to 2 hours. Preferably, the synthesis time is in the range of 15 minutes to 1 hour. If the lower limit is less than 10 minutes, the synthesis of the Cd raw material liquid and the Se raw material liquid is insufficient and the yield cannot be increased. If the upper limit of 2 hours is exceeded, the production efficiency tends to deteriorate.

〔CdSeコロイド粒子の分散液の作製〕
上記合成時間が経過した後、オイルバスから容器を取り出し、そこに極性溶媒を加えて合成液の温度を下げ、粒成長したCdSeコロイドの凝集粒子を得る。極性溶媒としては、ブタノール(C10O)、メタノール(CHO)、エタノール(CO)、1(又は2)−プロパノール(CO)等が挙げられる。CdSeコロイド凝集粒子が液をミキサー等で十分に撹拌した後、遠心分離等により固液分離して、固形分であるCdSeコロイド凝集粒子を回収する。回収したCdSeコロイド凝集粒子に非極性溶媒を加えて、ミキサー等で十分に撹拌して、コロイド凝集粒子を分散させてコロイド粒子の分散液を得る。非極性溶媒としては、ヘキサン(C14)、トルエン(C)、ジエチルエーテル(C10O)、クロロホルム(CHCl)等が挙げられる。
[Preparation of CdSe colloidal particle dispersion]
After the synthesis time has elapsed, the container is taken out from the oil bath, and a polar solvent is added thereto to lower the temperature of the synthesis solution to obtain aggregated particles of CdSe colloids that have grown. Examples of the polar solvent include butanol (C 4 H 10 O), methanol (CH 4 O), ethanol (C 2 H 6 O), 1 (or 2) -propanol (C 3 H 8 O), and the like. After the CdSe colloid aggregated particles are sufficiently agitated with a mixer or the like, the liquid is separated into solid and liquid by centrifugation or the like, and the CdSe colloid aggregated particles as a solid content are recovered. A nonpolar solvent is added to the collected CdSe colloidal aggregated particles, and the mixture is sufficiently stirred with a mixer or the like to disperse the colloidal aggregated particles to obtain a dispersion of colloidal particles. Examples of the nonpolar solvent include hexane (C 6 H 14 ), toluene (C 7 H 8 ), diethyl ether (C 4 H 10 O), chloroform (CHCl 3 ), and the like.

次いで、コロイド粒子の分散液に極性溶媒を加え、ミキサー等で十分に撹拌することにより、コロイド粒子を凝集粒子にする。この液に対して、例えば6000rpmで5分間の遠心分離を行うことにより、CdSeコロイド凝集粒子を回収する。回収したCdSeコロイド凝集粒子に非極性溶媒を所定量添加し、ミキサーで十分に撹拌しコロイド凝集粒子をほぐしてコロイド粒子の分散液にする。これにより、粒径が2〜5nmの範囲内にあり、PLスペクトルのピークにおける半値幅が30nm以下であり、量子効率が55%以上であり、収量が0.20以上である高品質のCdSeコロイド粒子を得ることができる。極性溶媒によりコロイド粒子を凝集させ、コロイド凝集粒子を遠心分離により回収し、非極性溶媒によりコロイド粒子を分散させる操作は、更に1回又は2回以上行うことが望ましい。   Next, a polar solvent is added to the dispersion liquid of the colloid particles, and the colloid particles are agglomerated by sufficiently stirring with a mixer or the like. For example, CdSe colloid aggregated particles are collected by centrifuging the liquid at 6000 rpm for 5 minutes. A predetermined amount of a nonpolar solvent is added to the recovered CdSe colloidal aggregated particles, and the mixture is sufficiently stirred to loosen the colloidal aggregated particles to form a dispersion of colloidal particles. As a result, a high-quality CdSe colloid having a particle size in the range of 2 to 5 nm, a half width at the PL spectrum peak of 30 nm or less, a quantum efficiency of 55% or more, and a yield of 0.20 or more. Particles can be obtained. The operations of aggregating colloidal particles with a polar solvent, collecting the colloidal agglomerated particles by centrifugation, and dispersing the colloidal particles with a nonpolar solvent are preferably performed once or twice or more.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
図1に示す工程順に以下の方法により、II−VI半導体であるCdSeコロイドをホットソープ法で作製した。
<Example 1>
A CdSe colloid, which is an II-VI semiconductor, was prepared by a hot soap method in the order of steps shown in FIG.

秤量作業は全てグローブボックス内(Nガス雰囲気)で実施した。50mLフラスコ内に酸化カドミウム(CdO)0.0154g(0.12mmol)を入れ、これにオレイン酸(OA:C1834)0.1167mL(0.36mmol)とオクタデセン(ODE:C1836)4.91mL(13.83mmol)を加えて混合した後、このフラスコをグローブボックス内から取り出した。このフラスコを240℃のシリコーンオイルに浸し、フラスコ内の混合液を撹拌しながら昇温した。混合液の温度が240℃に達した後、この温度で10分間保持し、その後280℃まで昇温した。280℃に達した後、フラスコ内の液は完全な透明液となった。これをCd原料液とした。図1では「Cd−OA溶液」として示している。 All weighing operations were performed in a glove box (N 2 gas atmosphere). Into a 50 mL flask was placed 0.0154 g (0.12 mmol) of cadmium oxide (CdO), 0.1167 mL (0.36 mmol) of oleic acid (OA: C 18 H 34 O 2 ) and octadecene (ODE: C 18 H). 36 ) After adding and mixing 4.91 mL (13.83 mmol), the flask was removed from the glove box. The flask was immersed in 240 ° C. silicone oil, and the temperature of the mixture was increased while stirring. After the temperature of the mixed solution reached 240 ° C., the temperature was maintained at this temperature for 10 minutes, and then the temperature was raised to 280 ° C. After reaching 280 ° C., the liquid in the flask became a completely transparent liquid. This was used as a Cd raw material liquid. In FIG. 1, it is shown as “Cd-OA solution”.

50mLフラスコ内に金属セレン(Se)0.188g(2.38mmol)を入れ、これに電子供与性のある有機配位子を有する化合物X(6.98mmol)とオクタデセン(ODE:C1836)18.00mL(50.62mmol)を加えて混合した後、このフラスコをグローブボックス内から取り出した。このフラスコを100℃のシリコ−ンオイルに浸し,フラスコ内の混合液を撹拌しながら昇温した。この例では、Xはトリオクチルホスフィンオキシド(TOPO:C2451OP)2.67g(6.98mmol)であった。この混合液の温度が100℃に達した後、この温度で20分間保持し,その後220℃まで昇温した。220℃に達した状態でセレンがTOPOに溶解した液を5時間保持した後,シリコーンオイルからフラスコを取り出し,空冷を開始した。100℃まで降温した最終液をSe原料液とした。図1では「Se−X溶液」として示している。 Into a 50 mL flask was placed 0.188 g (2.38 mmol) of metal selenium (Se), and compound X (6.98 mmol) having an electron-donating organic ligand and octadecene (ODE: C 18 H 36 ). After adding 18.00 mL (50.62 mmol) and mixing, the flask was taken out of the glove box. The flask was immersed in 100 ° C. silicone oil, and the temperature of the mixture was increased while stirring. In this example, X was 2.67 g (6.98 mmol) of trioctylphosphine oxide (TOPO: C 24 H 51 OP). After the temperature of the mixed solution reached 100 ° C., the mixture was held at this temperature for 20 minutes, and then heated to 220 ° C. The liquid in which selenium was dissolved in TOPO was held for 5 hours in a state where the temperature reached 220 ° C., and then the flask was taken out from the silicone oil and air cooling was started. The final liquid cooled to 100 ° C. was used as the Se raw material liquid. In FIG. 1, it is shown as “Se-X solution”.

100℃まで空冷したSe原料液(Se−X溶液)を内径10mmのシリンジで2mL採取し、これを一気に2mL/秒の押し込み速度でCd原料液へ注入して混合することにより、Cd原料液にSe原料液を混合した合成液を調製した。この注入タイミングを注入開始時刻とした。注入直後に液温低下が始まり、CdSeコロイド核が生成し始めた。250℃に達した後、その250℃で保持し、CdSeコロイド核を粒成長させた。注入開始時刻から10分間保持してCd原料液にSe原料液を合成させた後にシリコ−ンオイルからフラスコを取り出し、そこにブタノール(C10O)14.0mLとメタノール(CHO)14.0mLを加え冷却することにより、粒成長したCdSeコロイド粒子が凝集した反応液を調製した。冷却した反応液をミキサーで十分に撹拌した後、この液に対して6000rpmで5分間の遠心分離を行い、CdSeコロイド凝集粒子を回収した。 2 mL of Se raw material liquid (Se-X solution) air-cooled to 100 ° C. is collected with a syringe having an inner diameter of 10 mm, and this is poured into the Cd raw material liquid at a pushing speed of 2 mL / second at a stroke to be mixed. A synthesis solution was prepared by mixing the Se raw material solution. This injection timing was set as the injection start time. Immediately after injection, the liquid temperature began to drop, and CdSe colloid nuclei began to form. After reaching 250 ° C., the temperature was maintained at 250 ° C. to grow CdSe colloidal nuclei. The mixture was held for 10 minutes from the injection start time to synthesize the Se raw material liquid into the Cd raw material liquid, and then the flask was taken out from the silicone oil, where 14.0 mL butanol (C 4 H 10 O) and methanol (CH 4 O) 14 By adding 0.0 mL and cooling, a reaction solution in which the CdSe colloidal particles grown were aggregated was prepared. After the cooled reaction liquid was sufficiently stirred with a mixer, the liquid was centrifuged at 6000 rpm for 5 minutes to collect CdSe colloidal aggregated particles.

回収したCdSeコロイド凝集粒子にヘキサン(C14)2.0mLを加え、ミキサーで十分に撹拌しコロイド凝集粒子をほぐしてコロイド粒子の分散液を得た。そこにブタノール(C10O)4.0mLとメタノール(CHO)4.0mLを加え、ミキサーで十分に撹拌してコロイド粒子を再び凝集粒子にした後、この液に対して6000rpmで5分間の遠心分離を行い、CdSeコロイド凝集粒子を回収した。回収したCdSeコロイド凝集粒子にヘキサン(C14)2.0mLを加え、ミキサーで十分に撹拌しコロイド凝集粒子をほぐしてコロイド粒子の分散液を得た。その後、上記の凝集、回収、及び分散の操作をもう1回繰り返した。 To the collected CdSe colloid aggregated particles, 2.0 mL of hexane (C 6 H 14 ) was added, and the mixture was sufficiently stirred to loosen the colloid aggregated particles to obtain a dispersion of colloidal particles. Thereto was added 4.0 mL of butanol (C 4 H 10 O) and 4.0 mL of methanol (CH 4 O), and the mixture was sufficiently stirred to make the colloidal particles agglomerated again. Centrifugation for 5 minutes was performed to collect CdSe colloid aggregated particles. To the collected CdSe colloid aggregated particles, 2.0 mL of hexane (C 6 H 14 ) was added, and the mixture was sufficiently stirred to loosen the colloid aggregated particles to obtain a dispersion of colloidal particles. Thereafter, the above aggregation, recovery and dispersion operations were repeated once more.

<実施例2〜6、比較例1〜12>
実施例2〜6及び比較例1〜12では、表1に示される電子供与性のある有機配位子を有する化合物Xにセレンを溶解したSe原料液(Se−X溶液)を次のように調製した。即ち、調製後の保持温度を220℃に、また保持時間を5時間にそれぞれ設定して、その後実施例1と同様に空冷して一定の温度である100℃まで降温することにより、最終のSe原料液(Se−X溶液)を得た。これらのSe原料液を実施例1と同様に各別にCd原料液に注入して混合し、合成液を調製した。このとき注入開始時刻から起算される合成時間を表1に示すように、1分から2時間の間に設定した。以下、実施例1と同様の操作で、CdSeコロイド粒子の分散液を得た。
<Examples 2-6, Comparative Examples 1-12>
In Examples 2 to 6 and Comparative Examples 1 to 12, an Se raw material solution (Se-X solution) in which selenium was dissolved in Compound X having an electron-donating organic ligand shown in Table 1 was as follows. Prepared. That is, the holding temperature after preparation was set to 220 ° C. and the holding time was set to 5 hours, respectively, and then air-cooled in the same manner as in Example 1 to lower the temperature to 100 ° C., which is a constant temperature, to obtain the final Se. A raw material liquid (Se-X solution) was obtained. In the same manner as in Example 1, these Se raw material liquids were poured into Cd raw material liquids and mixed to prepare a synthetic liquid. At this time, as shown in Table 1, the synthesis time calculated from the injection start time was set between 1 minute and 2 hours. Thereafter, a CdSe colloidal particle dispersion was obtained in the same manner as in Example 1.

<比較評価>
実施例1〜6及び比較例1〜12で得られた分散液中のCdSeコロイド粒子について、次に述べる方法により、粒径、PLスペクトルのピークにおける半値幅、量子効率及び収量を調べた。これらの結果を製造条件とともに以下の表1に示す。
<Comparison evaluation>
For the CdSe colloidal particles in the dispersions obtained in Examples 1 to 6 and Comparative Examples 1 to 12, the particle diameter, the half width at the peak of the PL spectrum, the quantum efficiency, and the yield were examined by the methods described below. These results are shown in Table 1 below together with the production conditions.

(1) CdSeコロイド粒子の粒径
分散液中のCdSeコロイド粒子を極性溶媒を用いて凝集させ遠心分離にて回収したものをテトラクロロエチレン(CCl)1.5mLに再分散させ、紫外可視近赤外分光光度計(日立ハイテクサイエンス社製)にて吸光光度を測定した。ピーク波長よりコロイド粒子の粒径を算出した。
(1) Particle size of CdSe colloidal particles The CdSe colloidal particles in the dispersion were agglomerated using a polar solvent and collected by centrifugation, and then redispersed in 1.5 mL of tetrachloroethylene (C 2 Cl 4 ), and near ultraviolet and visible. Absorbance was measured with an infrared spectrophotometer (manufactured by Hitachi High-Tech Science). The particle size of the colloidal particles was calculated from the peak wavelength.

(2) CdSeコロイド粒子のPLスペクトルのピークにおける半値幅
粒径を算出したときの波長のピーク値で規格化された吸光光度ピークにおけるPLスペクトルのピークにおける半値幅をコロイド粒子の均一性の指標として求めた。この半値幅が小さければ、粒径が均一であることを示している。
(2) Half width at the peak of PL spectrum of CdSe colloidal particles The half width at the peak of PL spectrum at the spectrophotometric peak normalized by the peak value of wavelength when calculating the particle size is used as an index of colloidal particle uniformity. Asked. A small half width indicates that the particle size is uniform.

(3) CdSeコロイド粒子の量子効率
上記吸光光度測定に用いた分散液を利用して、量子効率測定システム(大塚電子社製)にて量子効率を測定した。この量子効率が高いほど、コロイド粒子の結晶の質が優れていることを示している。
(3) Quantum efficiency of CdSe colloidal particles Quantum efficiency was measured with a quantum efficiency measurement system (manufactured by Otsuka Electronics Co., Ltd.) using the dispersion liquid used for the above-mentioned absorption photometry. The higher the quantum efficiency, the better the crystal quality of the colloidal particles.

(4) CdSeコロイド粒子の収量
分散液中のCdSeコロイド粒子を極性溶媒を用いて凝集させ遠心分離にて回収したものを真空乾燥して得られた乾燥物の質量から消費されたカドミウム質量を算出し、仕込みカドミウム質量を1としたときの消費割合を収量と定義した。この収量が高いほど、Cd源が無駄なく消費されたことを示している。
(4) Yield of CdSe colloidal particles Calculate the mass of cadmium consumed from the mass of the dried product obtained by aggregating the CdSe colloidal particles in the dispersion using a polar solvent and collecting them by centrifugation. The consumption ratio when the charged cadmium mass was 1 was defined as the yield. A higher yield indicates that the Cd source was consumed without waste.

Figure 2017160073
Figure 2017160073

表1から明らかなように、比較例1〜3では、Cd原料液とSe原料液の合成時間が1分間で短く、これによりCd原料液とSe原料液の合成が不十分であり、得られたCdSeコロイド粒子は収量が0.08〜0.12と極めて低かった。   As is clear from Table 1, in Comparative Examples 1 to 3, the synthesis time of the Cd raw material liquid and the Se raw material liquid is short in one minute, and thus the synthesis of the Cd raw material liquid and the Se raw material liquid is insufficient and obtained. The CdSe colloidal particles had a very low yield of 0.08 to 0.12.

また比較例4〜9では、電子供与性のある有機配位子として、−NHの官能基を有するSe配位子種を選定し、Cd原料液とSe原料液の合成時間を8分〜2時間と十分に取ったので、量子効率は55〜58%と高くなったけれども、Seとアミノ基(−NH)の結合親和性は、その他の官能基(−COOH、−P=O)と比較して弱いため、Cd−Seモノマーが熱解離し易く、核生成と成長の分離が比較的難しく、粒度分布は31〜32nmと広かった。 In Comparative Examples 4 to 9, an Se ligand species having a functional group of —NH 2 is selected as the electron-donating organic ligand, and the synthesis time of the Cd raw material liquid and the Se raw material liquid is 8 minutes to Although the quantum efficiency was increased to 55-58% because it took enough for 2 hours, the binding affinity between Se and the amino group (—NH 2 ) was different from other functional groups (—COOH, —P═O). Therefore, the Cd-Se monomer is easily thermally dissociated, the separation of nucleation and growth is relatively difficult, and the particle size distribution is as wide as 31 to 32 nm.

更に比較例10〜12では、電子供与性のある有機配位子として、−COOH又は−P=Oの官能基を有するSe配位子種を選定したけれども、Cd原料液とSe原料液の合成時間が1分間で短く、これによりCd原料液とSe原料液の合成が不十分であり、得られたCdSeコロイド粒子は収量が0.07〜0.08と極めて低かった。またCd−Seモノマーがコロイド粒子表面に析出し、再配置を起こして、結晶の品質を向上させるだけの時間が確保できなかったため、量子効率が31〜33%に留まり、またPLスペクトルのピークにおける半値幅が34〜36nmと広かった。   Further, in Comparative Examples 10 to 12, although the Se ligand species having a functional group of —COOH or —P═O was selected as the electron-donating organic ligand, synthesis of the Cd raw material liquid and the Se raw material liquid was performed. The time was short in 1 minute, and thus the synthesis of the Cd raw material liquid and the Se raw material liquid was insufficient, and the yield of the obtained CdSe colloidal particles was as extremely low as 0.07 to 0.08. In addition, since the Cd-Se monomer was deposited on the surface of the colloidal particles, causing rearrangement and not enough time to improve the quality of the crystals, the quantum efficiency remained at 31 to 33%, and at the peak of the PL spectrum The full width at half maximum was 34 to 36 nm.

これに対して、実施例1〜6では、電子供与性のある有機配位子として、−COOH又は−P=Oの官能基を有するSe配位子種を選定した上で、Se−X液を調製した後の保持時間を5時間にし、Cd原料液とSe原料液の合成時間を10分から2時間の間にしたため、CdSeコロイド粒子は粒径が2.6〜4.4nmであり、PLスペクトルのピークにおける半値幅が30nm以下であり、量子効率が55%以上であり、収量が0.20〜0.25と高かった。   On the other hand, in Examples 1-6, after selecting the Se ligand type | mold which has a functional group of -COOH or -P = O as an organic ligand with an electron-donating property, Se-X liquid Since the holding time after preparing the CdSe liquid was set to 5 hours and the synthesis time of the Cd raw material liquid and the Se raw material liquid was 10 minutes to 2 hours, the CdSe colloidal particles had a particle size of 2.6 to 4.4 nm, and PL The half width at the peak of the spectrum was 30 nm or less, the quantum efficiency was 55% or more, and the yield was as high as 0.20 to 0.25.

本発明の方法で製造されたCdSeコロイド粒子は、ディスプレイ、照明、医療用画像、バイオセンサー、LED、レーザーの分野で利用することができる。   The CdSe colloidal particles produced by the method of the present invention can be used in the fields of displays, illumination, medical images, biosensors, LEDs, and lasers.

Claims (2)

Cd原料液にSe原料液を注入して混合することによりCdSeコロイド粒子を製造する方法において、
(a) 前記Se原料液を、Se源と−COOH又は−P=Oの官能基を有する化合物と非配位性溶媒とを混合した後、200〜260℃の温度に加熱して少なくとも3時間保持し、続いて90〜110℃の温度に降温することにより調製する工程と、
(b) 270〜290℃の温度に保持された前記Cd原料液に90〜110℃の温度に保持された前記Se原料液を注入して混合した後、注入開始時刻から10分〜2時間保持することにより、合成液を調製し、前記合成液中で生成したCdSeコロイド核を粒成長させる工程と、
(c) 前記CdSeコロイド核が粒成長した液に極性溶媒を添加混合して前記液中で分散しているCdSeコロイド粒子をCdSeコロイド凝集粒子にする工程と、
(d) 前記液を固液分離して前記CdSeコロイド凝集粒子を回収する工程と、
(e) 前記回収したCdSeコロイド凝集粒子に非極性溶媒を添加混合してCdSeコロイド粒子が分散した液にする工程と、
(f) 前記液に極性溶媒を添加混合して前記液中で分散しているCdSeコロイド粒子をCdSeコロイド凝集粒子にする工程と、
(g) 前記液を固液分離して前記CdSeコロイド凝集粒子を回収する工程と、
(h) 前記回収したCdSeコロイド凝集粒子に非極性溶媒を添加混合してCdSeコロイド粒子が分散した液にする工程と
を上記(a)〜(h)の工程順に含むことを特徴とするCdSeコロイド粒子の製造方法。
In the method of producing CdSe colloidal particles by injecting and mixing the Se raw material liquid into the Cd raw material liquid,
(a) The Se raw material liquid is mixed with a Se source, a compound having a functional group of —COOH or —P═O and a non-coordinating solvent, and then heated to a temperature of 200 to 260 ° C. for at least 3 hours. Holding and subsequently preparing by lowering the temperature to 90-110 ° C .;
(b) After injecting and mixing the Se raw material liquid maintained at a temperature of 90 to 110 ° C. to the Cd raw material liquid maintained at a temperature of 270 to 290 ° C., the mixture is maintained for 10 minutes to 2 hours from the injection start time. A step of preparing a synthesis solution and growing grains of CdSe colloid nuclei generated in the synthesis solution;
(c) adding a polar solvent to the liquid in which the CdSe colloid nuclei are grown and mixing the mixture to make CdSe colloidal particles dispersed in the liquid into CdSe colloidal aggregated particles;
(d) recovering the CdSe colloidal agglomerated particles by solid-liquid separation of the liquid;
(e) adding a non-polar solvent to the collected CdSe colloidal aggregated particles and mixing them to obtain a liquid in which CdSe colloidal particles are dispersed;
(f) adding a polar solvent to the liquid and mixing the CdSe colloidal particles dispersed in the liquid into CdSe colloidal agglomerated particles;
(g) recovering the CdSe colloidal agglomerated particles by solid-liquid separation of the liquid;
(h) including a step of adding a nonpolar solvent to the collected CdSe colloidal aggregated particles and mixing them to form a liquid in which the CdSe colloidal particles are dispersed, in the order of the steps (a) to (h) above. Particle production method.
前記(h)工程の後で、前記(f)工程から前記(h)工程まで1回又は2回以上繰り返す請求項1記載のCdSeコロイド粒子の製造方法。   The method for producing CdSe colloidal particles according to claim 1, wherein after the step (h), the steps are repeated once or twice or more from the step (f) to the step (h).
JP2016045061A 2016-03-09 2016-03-09 Method of producing CdSe colloidal particles Active JP6531681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045061A JP6531681B2 (en) 2016-03-09 2016-03-09 Method of producing CdSe colloidal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045061A JP6531681B2 (en) 2016-03-09 2016-03-09 Method of producing CdSe colloidal particles

Publications (2)

Publication Number Publication Date
JP2017160073A true JP2017160073A (en) 2017-09-14
JP6531681B2 JP6531681B2 (en) 2019-06-19

Family

ID=59853840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045061A Active JP6531681B2 (en) 2016-03-09 2016-03-09 Method of producing CdSe colloidal particles

Country Status (1)

Country Link
JP (1) JP6531681B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141033A (en) * 2008-12-10 2010-06-24 Sharp Corp Semiconductor light emitting device, and image display using the same
WO2012161065A1 (en) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 Fine fluorescent particles comprising quantum dots coated with thin silica glass film, and process for producing same
US8822955B2 (en) * 2011-03-21 2014-09-02 East China University Of Science And Technology Polymer-conjugated quantum dots and methods of making the same
JP2015505796A (en) * 2011-12-07 2015-02-26 イースト チャイナ ユニバーシティ オブ サイエンス アンド テクノロジー Method for producing cadmium selenide multi-legged nanocrystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141033A (en) * 2008-12-10 2010-06-24 Sharp Corp Semiconductor light emitting device, and image display using the same
US8822955B2 (en) * 2011-03-21 2014-09-02 East China University Of Science And Technology Polymer-conjugated quantum dots and methods of making the same
WO2012161065A1 (en) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 Fine fluorescent particles comprising quantum dots coated with thin silica glass film, and process for producing same
JP2015505796A (en) * 2011-12-07 2015-02-26 イースト チャイナ ユニバーシティ オブ サイエンス アンド テクノロジー Method for producing cadmium selenide multi-legged nanocrystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN, H. ET AL.: "High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-f", CRYSTENGCOMM, vol. 11, JPN6019014832, 2009, pages 1733 - 1738, ISSN: 0004023285 *

Also Published As

Publication number Publication date
JP6531681B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6114369B2 (en) Nanoparticles
US7208133B2 (en) Method for the preparation of IV-VI semiconductor nanoparticles
TWI661993B (en) Synthesis of metal oxide semiconductor nanoparticles from a molecular cluster compound
JP2001523758A (en) High Emission Color-Selected Materials
US10865109B2 (en) Method for preparation of magic-sized nano-crystalline substance
JP2002097100A (en) Method for producing high quality semiconductor nanocrystal doped with manganese
JP5698679B2 (en) Low temperature synthesis of colloidal nanocrystals
JP5019052B2 (en) CdSe quantum dot and method for producing the same
TW201831657A (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
Brichkin Synthesis and properties of colloidal indium phosphide quantum dots
CN110615462B (en) Method for green synthesis of oil-soluble zinc sulfide quantum dots based on liquid paraffin solvent system
WO2007099794A1 (en) Method and apparatus for manufacturing semiconductor nanoparticles
JP4714859B2 (en) Method for synthesizing copper sulfide nanoparticles
JP5212588B2 (en) Method for producing nanoparticles
Xing et al. Highly-fluorescent alloyed quantum dots of CdSe1− xTex synthesized in paraffin liquid: gradient structure and promising bio-application
CN110655923A (en) Green preparation method of cadmium selenide quantum dots with specific size
JP6569566B2 (en) Method for producing CdSe colloidal particles
JP5602808B2 (en) Preparation of nanoparticles with narrow emission spectrum
CN110078116B (en) Perovskite CsPbBr3Quantum dot and preparation method and application thereof
JP6531681B2 (en) Method of producing CdSe colloidal particles
CN115093442B (en) Perovskite nanocrystalline with high fluorescence quantum yield and preparation method thereof
JP6561879B2 (en) Method for producing InAs colloidal particles
CN112960687A (en) Preparation method of flaky cadmium sulfide-cuprous sulfide nano heterostructure material
KR100963538B1 (en) Process for preparing nano-sized cadmium and cadmium chalcogenide colloid in organic solvents
JP6947017B2 (en) Method for synthesizing InAs colloidal particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150