JP2017159032A - Bone density measurement device and method - Google Patents

Bone density measurement device and method Download PDF

Info

Publication number
JP2017159032A
JP2017159032A JP2017026832A JP2017026832A JP2017159032A JP 2017159032 A JP2017159032 A JP 2017159032A JP 2017026832 A JP2017026832 A JP 2017026832A JP 2017026832 A JP2017026832 A JP 2017026832A JP 2017159032 A JP2017159032 A JP 2017159032A
Authority
JP
Japan
Prior art keywords
light
bone density
unit
intensity
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017026832A
Other languages
Japanese (ja)
Other versions
JP6951730B2 (en
Inventor
田中 茂雄
Shigeo Tanaka
茂雄 田中
要 三浦
Kaname Miura
要 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Publication of JP2017159032A publication Critical patent/JP2017159032A/en
Application granted granted Critical
Publication of JP6951730B2 publication Critical patent/JP6951730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device of a bone density having higher measuring accuracy of the bone density of a bone under a skin, and possibly serving as a compact handy type one and to provide a measurement method of bone density using the same.SOLUTION: A measurement device of the bone density of a bone existing under a skin has a light irradiation part which irradiates a subject with light of a predetermined strength, filter means which removes scattered light reflected from a skin of the subject, light collection means of reflection light from which the scattered light is removed, and a light detection part which measures the strength of light collected by the light collection means.SELECTED DRAWING: Figure 1

Description

本発明は骨密度を計測する装置及びそれを用いた計測方法に関し、特に光を用いた光学式骨密度計測に係る。   The present invention relates to an apparatus for measuring bone density and a measurement method using the same, and more particularly to optical bone density measurement using light.

現在、骨粗鬆症診断にはX線を用いた装置が使用されているが、このような装置は大型であり、骨密度低下の早期発見等の簡易測定としては運用に難がある。
これに対して、近赤外光は生体内の情報を被破壊的に得る手段として、様々な医療分野で検討されている。
本発明者は、これまでに光学式の骨密度計測置として特許文献1,2を提案している。
本発明はさらに計測精度を向上させたものであり、特に骨の外側に存在する皮膚層の厚みや色等の生体組織の影響を抑えたものである。
Currently, an apparatus using X-rays is used for osteoporosis diagnosis. However, such an apparatus is large and difficult to operate as a simple measurement such as early detection of a decrease in bone density.
On the other hand, near-infrared light has been studied in various medical fields as a means for obtaining in vivo information in a destructive manner.
The present inventor has proposed Patent Documents 1 and 2 as optical bone density measuring devices.
The present invention further improves the measurement accuracy, and particularly suppresses the influence of living tissue such as the thickness and color of the skin layer existing outside the bone.

特開2007−007267号公報JP 2007-007267 A 特開2008−155011号公報JP 2008-155011 A

本発明は、皮膚の下にある骨の骨密度の計測精度が高く、コンパクトなハンディタイプにもなる骨密度の計測装置及びそれを用いた骨密度の計測方法の提供を目的とする。   An object of the present invention is to provide a bone density measuring device that has high accuracy in measuring bone density of bones under the skin and is also a compact handy type, and a bone density measuring method using the same.

本発明に係る骨密度計測装置は、皮膚の下側に存在する骨密度の計測装置であって、被検体に所定の強度の光を入射する光照射部と、前記被検体の皮膚から反射された散乱光を除去するフィルター手段と、前記散乱光が除去された反射光の集光手段と、当該集光手段にて集光された光の強度を計測する光検出部とを有することを特徴とする。   A bone density measuring apparatus according to the present invention is a bone density measuring apparatus that exists below the skin, and is reflected from the skin of the subject, a light irradiating unit that injects light of a predetermined intensity onto the subject. A filter unit that removes scattered light, a condensing unit for reflected light from which the scattered light has been removed, and a light detection unit that measures the intensity of the light collected by the condensing unit. And

本発明は、光照射部から被検体に向けて光を照射すると、骨部にまで深く透過した光がはね返ってくる準直進光と、皮膚層にてはね返ってくる散乱光が存在することに着目し、この散乱光をフィルター手段にて除去した点に特徴がある。
またの準直進光は骨内にて減衰してはね返ってくるが、その強度分布は光の入射位置から半径方向に向かって減衰する。
この半径方向の減衰は骨密度が高い程、急激に減少することに着目したものである。
The present invention focuses on the existence of quasi-straight light in which light that has penetrated deeply into the bone part rebounds and scattered light that repels in the skin layer when light is irradiated from the light irradiation part toward the subject. However, the scattered light is removed by a filter means.
The quasi-straight light attenuates and rebounds in the bone, but its intensity distribution attenuates in the radial direction from the incident position of the light.
It is noted that this radial attenuation decreases rapidly as the bone density increases.

本発明において、前記光照射部、光検出部、フィルター手段及び集光手段を組み込んだ光学ユニットを有し、前記被検体から前記光学ユニットの距離を移動制御出来る移動制御手段と、前記光照射部と光検出部とから吸光度を演算する吸光度演算手段とを有するようにすることもできる。
このようにすると、コンパクトな構造になり、ハンディタイプの計測装置となる。
In the present invention, a movement control unit having an optical unit incorporating the light irradiation unit, the light detection unit, a filter unit, and a light collecting unit, and capable of moving and controlling the distance of the optical unit from the subject, and the light irradiation unit And an absorbance calculation means for calculating the absorbance from the light detection unit.
If it does in this way, it will become a compact structure and will become a handy type measuring device.

本発明において、前記集光手段は一対のレンズであり、前記フィルター手段はスリット板であってもよい。
このようにするとスリット板のスリット部からはね返ってくる準直線光を通過させつつ、スリット部以外の部分で皮膚層からはね返ってくる散乱光を除去することができる。
また、レンズは光検出部に向けて集光させるものであれば、各種レンズの組み合せが可能である。
In the present invention, the light condensing means may be a pair of lenses, and the filter means may be a slit plate.
In this way, it is possible to remove scattered light rebounding from the skin layer at a portion other than the slit portion while allowing quasi-linear light rebounding from the slit portion of the slit plate to pass.
Further, various lenses can be combined as long as the lens collects light toward the light detection unit.

本発明において皮膚から反射された散乱光を除去できるが、さらに皮膚の厚み情報を得るには、前記光照射部は波長の異なる複数の照射源を有し、前記光検出部は前記複数の照射源間での前記光の強度差の検出手段を有しているのが好ましい。   In the present invention, scattered light reflected from the skin can be removed, but in order to obtain skin thickness information, the light irradiation unit has a plurality of irradiation sources having different wavelengths, and the light detection unit has the plurality of irradiations. It is preferable to have means for detecting the difference in intensity of the light between the sources.

本発明に係る骨密度計測方法は、請求項1〜3のいずれかの骨密度計測装置を用いた骨密度計測方法であって、前記光照射部と被検体からの距離を変化させ、前記光照射部から照射された入射光の入射強度に対する前記光検出部にて検出された検出強度の変化に基づいて骨密度を計測することを特徴とする。
これにて得られる光検出部にて検出された検出強度の変化は、例えば光が照射された位置から半径方向の減衰の傾きが骨密度の高低により変化するので、予め骨密度が分かっている各種サンプルの計測値の検量線を用いて被検体の骨密度を求めることができる。
A bone density measuring method according to the present invention is a bone density measuring method using the bone density measuring device according to any one of claims 1 to 3, wherein the light irradiation unit and a subject are changed in distance, and the light The bone density is measured based on a change in the detected intensity detected by the light detecting unit with respect to the incident intensity of the incident light irradiated from the irradiating unit.
The change in detection intensity detected by the light detection unit obtained in this way is known in advance because, for example, the slope of attenuation in the radial direction from the position irradiated with light changes depending on the level of bone density. The bone density of the subject can be obtained using calibration curves of measured values of various samples.

また、請求項4に記載の骨密度計測装置を用いた骨密度計測方法であって、前記光照射部と被検体からの距離を変化させ、前記光照射部から照射された入射光の入射強度に対する前記光検出部にて検出された検出強度から求められた光強度分布と前記光の強度差の検出手段にて求められた皮膚厚情報とに基づいて骨密度を計測することができる。   The bone density measuring method using the bone density measuring device according to claim 4, wherein the incident intensity of the incident light irradiated from the light irradiation unit is changed by changing a distance between the light irradiation unit and the subject. The bone density can be measured based on the light intensity distribution obtained from the detected intensity detected by the light detecting unit and the skin thickness information obtained by the light intensity difference detecting means.

本発明は、皮膚組織層による影響をスリット板で除去しつつ、スリット板及びレンズを被検体に向けて移動させつつ、吸光度の強度分布を計測できるようにできたので、ハンディタイプのコンパクトな計測装置となる。
また、例えば近赤外光と可視光等、波長の異なる複数の照射源を用いて、その光強度差から皮膚の厚み情報を検出することで、さらに骨密度の計測精度が向上する。
The present invention can measure the intensity distribution of the absorbance while moving the slit plate and the lens toward the subject while removing the influence of the skin tissue layer with the slit plate, so that the handy type compact measurement is possible. It becomes a device.
Further, by using a plurality of irradiation sources having different wavelengths, such as near infrared light and visible light, and detecting skin thickness information from the difference in light intensity, the bone density measurement accuracy is further improved.

本発明に係る光学ユニットの構成例を示す。The structural example of the optical unit which concerns on this invention is shown. 骨密度の計測原理の説明図を示す。(a)〜(c)は皮膚層からの散乱光の除去を模式的に示し、(d)は吸光度分布の説明図を示し、(e)は骨密度と減衰分布の傾きの関係を示す。The explanatory view of the measurement principle of bone density is shown. (A)-(c) shows typically removal of the scattered light from a skin layer, (d) shows explanatory drawing of an absorbance distribution, (e) shows the relationship between a bone density and the inclination of attenuation distribution. 本発明に係る計測装置の構造例を示し、(a)は構成図、(b)は外観図、(c)は計測状態を示す。The structural example of the measuring device which concerns on this invention is shown, (a) is a block diagram, (b) is an external view, (c) shows a measurement state. 照射波長650nmのレーザー光を用いた計測値を示し、(a)は密度258mg/cmのファントムを用いて9点測定の強度分布をグラフに示し、(b)は密度253mg/cm、175mg/cm、115mg/cmの9点測定の平均値カーブのグラフを示す。It shows the measured values using the laser beam irradiation wavelength 650 nm, (a) shows the intensity distribution of the 9-point measurement using a phantom density 258 mg / cm 3 in the graph, (b) the density of 253mg / cm 3, 175mg / cm 3, shows a graph of the mean value curves of the 9-point measurement of 115 mg / cm 3. (a)はZ=10〜17mmの範囲の傾斜グラフを示し、(b)は密度の変化に対する傾きの関係をプロットしたグラフを示す。(A) shows the inclination graph of the range of Z = 10-17 mm, (b) shows the graph which plotted the relationship of the inclination with respect to the change of a density. 照射波長850nmを用いて吸光度分布を計測したグラフを示し、骨密度が(a)は258mg/cm、(b)は178mg/cm、(c)は151mg/cmであって、皮膚の厚みを0,0.2,0.5,1.0,2.0mmを想定した吸光度の強度分布を示す。It shows a graph obtained by measuring the absorbance distribution using the irradiation wavelength 850 nm, bone density (a) is 258mg / cm 3, (b) is 178mg / cm 3, (c) is a 151 mg / cm 3, the skin The intensity distribution of absorbance assuming thicknesses of 0, 0.2, 0.5, 1.0, and 2.0 mm is shown. 計測範囲をZ=18〜25mm範囲の吸光度の傾きと、骨密度(mg/cm)の関係を示す。The relationship between the inclination of the absorbance in the measurement range Z = 18 to 25 mm and the bone density (mg / cm 3 ) is shown. 照射源を複数備えた例を示す。An example in which a plurality of irradiation sources are provided is shown. 照射波長と皮膚への浸入深度の関係を模式的に示す。The relationship between an irradiation wavelength and the penetration depth to skin is shown typically. (a)は光が生体より受ける影響を示す。(b)は皮膚での光の到達深さを示す。(c)は波長による光強度変化を示す。(A) shows the influence which light receives from a biological body. (B) shows the reach | attainment depth of the light in skin. (C) shows the change in light intensity depending on the wavelength. 各波長における皮膚厚みとその光強度変化のグラフを示す。The graph of the skin thickness in each wavelength and its light intensity change is shown. (a)は波長515nm,850nmにおける光強度分布のピークの位置をZで表現した。(b)は2つの照射源のピーク光強度間と皮膚厚差の関係を示す。(A) represents the position of the peak of the light intensity distribution at wavelengths 515 nm and 850 nm as Z. (B) shows the relationship between the peak light intensity of two irradiation sources and the skin thickness difference. 式(3)にて算出した予測骨密度とμCTによる計測密度の相関を示す。The correlation of the prediction bone density computed by Formula (3) and the measurement density by μCT is shown.

本発明に係る骨密度の計測装置の構成例及び計測方法例を以下説明するが、本発明はこれに限定されない。   A configuration example and a measurement method example of a bone density measuring apparatus according to the present invention will be described below, but the present invention is not limited to this.

図1に光学ユニットの構成例を示し、図2に計測原理の説明図を示す。
被検体1に向けて光を照射する光照射部13と、被検体から返ってくる光から散乱光によるノイズを除去するためのフィルター手段として第1スリット板11aと第2スリット板11bとを有し、第1スリット板11aのスリットを通過した光は平凸レンズからなる第1レンズ12aにて進路を略平行光に屈折させ、第2スリット板11bのスリットを通過した光を凸レンズからなる第2レンズにて光検出部に向けて集光させ、この光検出部で光の強度を検出する。
ここで、光照射部から入射させる光の強度を入射光強度I、光検出部にて検出された光の強度を検出光強度Iとすると、吸光度Aは下記式(1)にて求められる。
FIG. 1 shows a configuration example of the optical unit, and FIG. 2 shows an explanatory diagram of the measurement principle.
A light irradiation unit 13 that irradiates light toward the subject 1, and a first slit plate 11a and a second slit plate 11b as filter means for removing noise caused by scattered light from the light returned from the subject. The light passing through the slit of the first slit plate 11a is refracted into substantially parallel light by the first lens 12a made of a plano-convex lens, and the light passed through the slit of the second slit plate 11b is made a second made of a convex lens. The light is condensed toward the light detection unit by the lens, and the light intensity is detected by the light detection unit.
Here, assuming that the intensity of light incident from the light irradiating unit is incident light intensity I 0 and the intensity of light detected by the light detecting unit is detected light intensity I, the absorbance A is obtained by the following equation (1). .

骨密度の計測原理を図2に基づいて説明する。
被検体に入射された光は、Skin(皮膚組織)を透過してBone(骨)内まで通過し、返ってくる準直進光と皮膚組織層にて返ってくる散乱光を有する。
スリット板を設けることで図2(a)〜(c)に示すようにスリット板のスリットから準直進光を通過させ、スリット板のスリット以外の部分にて皮膚組織層からの散乱光を除去することができる。
そこで、図2(d)に示すようにスリット及びレンズの被検体からの距離Zを移動させると、光の入射位置から半径方向に減衰しながら返ってくる準直進光の強度分布を検出することができる。
ここで半径方向の減衰は骨密度が高い程、その傾きが大きいことから、その傾きの大きさを指標にして骨密度を計測することができる。
The measurement principle of bone density will be described with reference to FIG.
The light incident on the subject passes through Skin (skin tissue), passes through the bone (bone), and returns to the quasi-straight-forward light and scattered light returning from the skin tissue layer.
By providing the slit plate, as shown in FIGS. 2A to 2C, the quasi-straight light is allowed to pass through the slit of the slit plate, and the scattered light from the skin tissue layer is removed at a portion other than the slit of the slit plate. be able to.
Therefore, as shown in FIG. 2D, when the distance Z from the subject of the slit and the lens is moved, the intensity distribution of the quasi-straight-ahead light that returns while being attenuated in the radial direction from the incident position of the light is detected. Can do.
Here, since the attenuation in the radial direction increases as the bone density increases, the bone density can be measured using the magnitude of the inclination as an index.

具体的に骨密度の計測に用いた骨密度計測装置20の構成例を図3に示す。
ガンタイプとしたハンディ型の筐体に光学ユニット10を組み込んだ計測装置20となっている。
光学ユニット10は光照射部13にレーザーダイオードを配置し、その先端側に第1レンズ12a及び第1スリット板11aを設け、このレーザーダイオードの後方に第2スリット板11bと第2レンズ12bを設け、集光された光がフォトダイオードからなる光検出部14にて強度計測される。
光学ユニット10は、アクチュエーター21に取り付けられ、ステップモーター22にて前進及び後退制御されている。
光検出部にて検出された信号の検出信号増幅器23とステップモーターの制御部24及びマイクロコンピューター25等が組み込まれている。
ハンディタイプのグリップ部下側には、バッテリー26が内蔵されている。
光学ユニットの移動距離データ、検出光強度データ等がパソコン27にシリアル通信により取り込まれる。
A configuration example of the bone density measuring device 20 used specifically for measuring the bone density is shown in FIG.
This is a measuring device 20 in which the optical unit 10 is incorporated in a handy-type housing that is a gun type.
In the optical unit 10, a laser diode is arranged in the light irradiation unit 13, a first lens 12a and a first slit plate 11a are provided on the tip side, and a second slit plate 11b and a second lens 12b are provided behind the laser diode. The intensity of the collected light is measured by the light detection unit 14 made of a photodiode.
The optical unit 10 is attached to an actuator 21 and is controlled to move forward and backward by a step motor 22.
A detection signal amplifier 23 for a signal detected by the light detection unit, a step motor control unit 24, a microcomputer 25, and the like are incorporated.
A battery 26 is built under the handy grip.
Optical unit movement distance data, detected light intensity data, and the like are taken into the personal computer 27 by serial communication.

灰化ウシ海綿骨をファントムとして用いた検証実験について以下説明する。
灰化ウシ海綿骨はウシ大腿骨から海綿骨を1辺、約4cmのブロック状に切り出し、骨髄を煮沸除去し、600℃で24時間灰化処理したものを用いた。
試験体としては、灰化ウシ海綿骨を塩酸で溶解し、密度253mg/cm、178mg/cm、151mg/cmのものを用いた。
光照射部の光源としてEdmond Optics社製のレーザーダイオード(#57−101)を用いた。
これは出力波長655nm、最大出力3mWである。
吸光度Aの測定として、レンズの集点距離となる被検体からの位置をZ=0として被検体の深部方向を正方向として計測した。
図4(a)は密度258mg/cmファントムを用いて異なる位置9点の移動量Zと吸光度Aの計測グラフを示す。
各位置の吸光度分布は同様の変化を示した。
図4(b)は密度258mg/cm、178mg/cm、151mg/cmそれぞれの9点測定平均値の推移グラフを示す。
このうちZ=10mm以上の傾きに着目し、移動量Z=11〜18mnの吸光度の減衰直線を図5(a)に示す。
ファントムの密度と図5(a)に示した減衰直線の傾きの関係を図5(b)に示す。
これにより、吸光度の減衰の傾きを指標にして骨密度の計測が可能であることが分かる。
A verification experiment using ashed bovine cancellous bone as a phantom will be described below.
As the incinerated bovine cancellous bone, a cancellous bone was cut from a bovine femur into a block shape of about 4 cm on one side, the bone marrow was boiled and removed, and an ashing treatment was performed at 600 ° C. for 24 hours.
The specimen, the ashing bovine cancellous bone was dissolved in hydrochloric acid, was used for density 253mg / cm 3, 178mg / cm 3, 151mg / cm 3.
A laser diode (# 57-101) manufactured by Edmond Optics was used as the light source of the light irradiation section.
This has an output wavelength of 655 nm and a maximum output of 3 mW.
As the measurement of the absorbance A, the position from the subject, which is the focal point distance of the lens, was set as Z = 0, and the depth direction of the subject was measured as the positive direction.
FIG. 4A shows a measurement graph of the movement amount Z and the absorbance A at nine different positions using a density of 258 mg / cm 3 phantom.
The absorbance distribution at each position showed similar changes.
FIG 4 (b) shows the trend graph of the density of 258mg / cm 3, 178mg / cm 3, 151mg / cm 3 each 9-point measurement average value.
Focusing on the slope of Z = 10 mm or more among them, the absorbance attenuation straight line with the movement amount Z = 11 to 18 mn is shown in FIG.
FIG. 5B shows the relationship between the density of the phantom and the slope of the attenuation line shown in FIG.
As a result, it can be seen that the bone density can be measured using the slope of attenuation of absorbance as an index.

次に光照射部の光源にImatronic社製のレーザーダイオード(LDM115G/850/1)を用いた。
これは波長850nm、最大出力1mWである。
実施例1と同様に計測した移動量Zと吸光度の計測グラフを図6に示す。
実施例2では皮膚層の厚みの影響を調査すべく、その厚み0,0.2,0.5,1.0,2.0mmの被検体を用いた。
皮膚層としては、2%イントラリピッド液を2枚のカバーガラスの間に封入し、その厚みを調整した模擬皮膚を用いた。
なお、2%イントラリピッドは、ヒトの皮膚と光学特性が等しいと報告されている(Troy,S.,et al.,Journal of biomedical optics,vol.6,pp.167-176,2001)。
Z=18〜25mmの間の傾きを直線近似した傾きと骨密度の関係を図7に示す。
このグラフから皮膚組織が存在する場合に、その影響があることが推測された。
Next, a laser diode (LDM115G / 850/1) manufactured by Imatronic was used as the light source of the light irradiation unit.
This has a wavelength of 850 nm and a maximum output of 1 mW.
FIG. 6 shows a measurement graph of the amount of movement Z and the absorbance measured in the same manner as in Example 1.
In Example 2, in order to investigate the influence of the thickness of the skin layer, specimens having thicknesses of 0, 0.2, 0.5, 1.0, and 2.0 mm were used.
As the skin layer, simulated skin in which 2% intralipid solution was sealed between two cover glasses and the thickness thereof was adjusted was used.
Note that 2% intralipid has been reported to have the same optical properties as human skin (Troy, S., et al., Journal of biomedical optics, vol. 6, pp. 167-176, 2001).
FIG. 7 shows the relationship between the inclination obtained by linearly approximating the inclination between Z = 18 and 25 mm and the bone density.
From this graph, it was inferred that there was an effect when skin tissue was present.

次に図8に構造を模式的に示すように、骨密度計測用の照射源(光照射部)13の他に皮膚の厚み情報を得るために、波長の異なる2つの照射源13a,13bを取り付け評価した。
具体的には、二つの円形スリット(スリット径:10mm,スリット幅:2mm,厚さ5mm),二つの片凸レンズ(Edmund Optics, 48795, 及び48797),三つのレーザーダイオード[密度計測用(中央):Egismos, H838501D(850nm,1mW), 皮膚厚計測用:S638501D(850nm,1mW),H635151R(515nm,1mW)]、およびPD(Hamamatsu, C12703-01)を1つの光学ユニットとしてまとめ、それをステッピングモーター(Orientalmoter, PKP225)により駆動されるアクチュエーター(Misumi, LX2005P-MX-B1-T2028-150)でZ方向に移動できるようにした。
PDより得られた検出信号は2次のアンチエイリアジング・フィルター回路を介してADC素子(Microchip,MCP3208,12bit)によりADC変換した。
モータやレーザー等の制御は、シングルボードコンピューター(Raspberry Pi,RS Components,Raspberry Pi 2 Model B)で行い、検出結果はCSVテキストファイルで保存され、このデータに基づいて移動距離と吸光度の関係のグラフ、すなわち光強度分布がディスプレイ上に表示される。
また、実験に灰化ウシ海綿骨および灰化ウシ緻密骨、シリコーン(セメダイン株,シリコーンシーラント)を模擬皮膚として用いて実験を行った。
灰化ウシ海綿骨は、ウシ大腿骨から海綿骨を一辺4cmほどのブロック状に切り出し、それを煮沸することで骨髄を除去、その後、電気炉内において600℃で24時間灰化処理することで9つのサンプルを作製した。
灰化ウシ海綿骨は場所により生体特有の密度のばらつきが存在する。
そのため、μCT(Shimadzu,inspeXio SMX-90CT Plus)でスキャンし、各サンプルに対して異なる3つの位置で一辺1cmの立方体範囲を選択し、骨形態計測用ソフト(ラトックシステムエンジニアリング株,TRI/3D-BON-FCS64)を用いて同範囲の骨密度を算出した。
緻密骨部は、ウシ大腿骨の骨梁部分より軸方向と平行に厚さ0.3mmでスライスしたものを海綿骨と同様の方法で灰化処理を行ったものを用いた。
緻密骨厚さは、アメリカ国立医学図書館のデータベースであるVisible Human FTP Resourceの切片画像から橈骨遠位端の皮質骨厚さを読み取り、この値を参考に決定した。
また、皮膚の光学特性を模擬するために2%イントラリピッドの液体試料がよく用いられるが、本実験ではより扱い易い固体試料をシリコーンにより作製した。
なお、ホワイトとクリアを1:6で混ぜ合わせたシリコーンは2%イントラリピッドと同様の吸光度特性となることが確認されたことから、これを用い厚さ1〜2mmの異なる厚さを持つ模擬皮膚を作製した。
これらの模擬皮膚,緻密骨,海綿骨を順に並べ、実験試料とした。
850nmと515nmの二波長を図8のように配置し、前述の模擬試料を用いて実験を行った。
図12(a)は、850nmならびに515nmレーザーから得られる光強度分布のピークの位置を、Zを用いて表している。
なお、各プロットの値は15回の計測の平均を示している。
同図の値において、850nmから515nmの値を引いたもの、すなわちピーク間距離をδとし、それと皮膚厚との関係を示したものが図12(b)である。
δは皮膚厚に対し負の相関を示し、この関係は、各波長の皮膚層での到達深度と光散乱特性の違いから生じたものだと考えられる。
一般的に、850nmの光は515nmのものに比べ皮膚内の奥深くまで侵入するため、皮膚厚に対してピークのシフトが大きく、逆に515nmの光では、皮膚厚に対してあまり影響を受けない。
波長による皮膚厚の影響を図10,図11に示した。
そのため、各波長によるピークの差であるδが皮膚厚に対して変化したと考えられる。
δ,slope,およびBMDの関係を示す近似平面を求めると次式のようになる。
なお、近似平面は、Python(Python 3.5)のPyStanモジュールを用いてモンテカルロ法により求めた.
この近似式を使い、計測されるSlopeとδからBMDを予測する式を導くと次のようになる.
ここで、sdpBMD(slope and delta predicted bone mineral density)は、Slopeとδから予測されるBMDである。
図13は、式(3)より算出された予測骨密度とμCTによる計測骨密度の関係を示している。
Slopeとδより予測された骨密度は、μCTで得られる骨密度とほぼ同様の値をとり、良好な正の相関(r=0.72581)を示した。
このことから、異なる波長を用いてZ方向に移動させたその強度差から皮膚層の厚み情報を得ることで、さらに精度の高い骨密度を計測することができる。
Next, as schematically shown in FIG. 8, in order to obtain skin thickness information in addition to the irradiation source (light irradiation unit) 13 for measuring bone density, two irradiation sources 13a and 13b having different wavelengths are provided. The mounting was evaluated.
Specifically, two circular slits (slit diameter: 10 mm, slit width: 2 mm, thickness 5 mm), two single convex lenses (Edmund Optics, 48795, and 48797), three laser diodes [for density measurement (center) : Egismos, H838501D (850nm, 1mW), For skin thickness measurement: S638501D (850nm, 1mW), H635151R (515nm, 1mW)], and PD (Hamamatsu, C12703-01) are combined into one optical unit and stepped The actuator (Misumi, LX2005P-MX-B1-T2028-150) driven by a motor (Orientalmoter, PKP225) can be moved in the Z direction.
The detection signal obtained from the PD was subjected to ADC conversion by an ADC element (Microchip, MCP3208, 12 bits) through a secondary anti-aliasing filter circuit.
Motors and lasers are controlled by a single board computer (Raspberry Pi, RS Components, Raspberry Pi 2 Model B), and the detection results are saved in a CSV text file. Based on this data, a graph of the relationship between travel distance and absorbance That is, the light intensity distribution is displayed on the display.
In addition, experiments were performed using ashed bovine cancellous bone, ashed bovine dense bone, and silicone (cemedine strain, silicone sealant) as simulated skin.
Ashed bovine cancellous bone is cut from canine femur into blocks of 4cm on a side, boiled to remove bone marrow, and then ashed at 600 ° C for 24 hours in an electric furnace. Nine samples were made.
The ashed bovine cancellous bone has a variation in density peculiar to living bodies depending on the location.
Therefore, scan with μCT (Shimadzu, inspeXio SMX-90CT Plus), select a cubic range of 1 cm on each side at three different positions for each sample, and bone morphology measurement software (Ratok System Engineering Co., Ltd., TRI / 3D-) BON-FCS64) was used to calculate the bone density in the same range.
The dense bone portion was obtained by ashing a slice of 0.3 mm thick parallel to the axial direction from the trabecular portion of the bovine femur.
The fine bone thickness was determined by reading the cortical bone thickness at the distal end of the radius from the section image of Visible Human FTP Resource, which is a database of the National Library of Medicine, and referring to this value.
In order to simulate the optical characteristics of the skin, a liquid sample of 2% intralipid is often used. In this experiment, a solid sample that is easier to handle was made of silicone.
Since it was confirmed that silicone mixed with white and clear at 1: 6 has the same absorbance characteristics as 2% Intralipid, simulated skin having different thicknesses of 1-2 mm using this is used. Was made.
These simulated skin, dense bone, and cancellous bone were arranged in order and used as an experimental sample.
Two wavelengths of 850 nm and 515 nm were arranged as shown in FIG. 8, and an experiment was conducted using the above-described simulated sample.
FIG. 12A shows the position of the peak of the light intensity distribution obtained from the 850 nm and 515 nm lasers using Z.
In addition, the value of each plot has shown the average of 15 measurements.
FIG. 12B shows a value obtained by subtracting a value from 850 nm to 515 nm, that is, a relation between the peak distance and δ, and a relationship between the value and the skin thickness.
δ shows a negative correlation with the skin thickness, and this relationship is considered to arise from the difference in the depth of arrival at the skin layer of each wavelength and the light scattering characteristics.
Generally, 850 nm light penetrates deeper into the skin than 515 nm light, so the peak shift is large with respect to skin thickness. Conversely, 515 nm light is not significantly affected by skin thickness. .
The influence of the skin thickness due to the wavelength is shown in FIGS.
For this reason, it is considered that δ, which is the difference in peak due to each wavelength, changed with respect to the skin thickness.
When an approximate plane indicating the relationship between δ, slope, and BMD is obtained, the following equation is obtained.
The approximate plane was determined by the Monte Carlo method using the PyStan module of Python (Python 3.5).
Using this approximate expression, the formula for predicting BMD from the measured Slope and δ is as follows.
Here, sdpBMD (slope and delta predicted bone mineral density) is a BMD predicted from Slope and δ.
FIG. 13 shows the relationship between the predicted bone density calculated from Equation (3) and the bone density measured by μCT.
The bone density predicted from Slope and δ was almost the same value as the bone density obtained by μCT and showed a good positive correlation (r 2 = 0.72581).
From this, it is possible to measure the bone density with higher accuracy by obtaining the thickness information of the skin layer from the intensity difference moved in the Z direction using different wavelengths.

1 被検体
10 光学ユニット
11a 第1スリット板
11b 第2スリット板
12a 第1レンズ
12b 第2レンズ
13 光照射部
14 光検出部
20 装置
21 アクチュエーター
DESCRIPTION OF SYMBOLS 1 Subject 10 Optical unit 11a 1st slit board 11b 2nd slit board 12a 1st lens 12b 2nd lens 13 Light irradiation part 14 Light detection part 20 Apparatus 21 Actuator

Claims (6)

皮膚の下側に存在する骨密度の計測装置であって、
被検体に所定の強度の光を入射する光照射部と、
前記被検体の皮膚から反射された散乱光を除去するフィルター手段と、前記散乱光が除去された反射光の集光手段と、当該集光手段にて集光された光の強度を計測する光検出部とを有することを特徴とする骨密度計測装置。
A device for measuring bone density under the skin,
A light irradiating unit for injecting light of a predetermined intensity to the subject;
Filter means for removing scattered light reflected from the skin of the subject, light collecting means for reflected light from which the scattered light has been removed, and light for measuring the intensity of the light collected by the light collecting means A bone density measuring apparatus comprising: a detection unit.
前記光照射部、光検出部、フィルター手段及び集光手段を組み込んだ光学ユニットを有し、前記被検体から前記光学ユニットの距離を移動制御出来る移動制御手段と、前記光照射部と光検出部とから吸光度を演算する吸光度演算手段とを有することを特徴とする請求項1記載の骨密度計測装置。   A movement control unit having an optical unit incorporating the light irradiation unit, a light detection unit, a filter unit, and a light collecting unit, and capable of moving and controlling the distance of the optical unit from the subject; and the light irradiation unit and the light detection unit The bone density measuring device according to claim 1, further comprising: an absorbance calculation unit that calculates absorbance from 前記集光手段は一対のレンズであり、前記フィルター手段はスリット板であることを特徴とする請求項1又は2記載の骨密度計測装置。   3. The bone density measuring apparatus according to claim 1, wherein the light collecting means is a pair of lenses, and the filter means is a slit plate. 前記光照射部は波長の異なる複数の照射源を有し、
前記光検出部は前記複数の照射源間での前記光の強度差の検出手段を有していることを特徴とする請求項1〜3のいずれかに記載の骨密度計測装置。
The light irradiation unit has a plurality of irradiation sources having different wavelengths,
The bone density measuring apparatus according to any one of claims 1 to 3, wherein the light detection unit includes a means for detecting a difference in intensity of the light among the plurality of irradiation sources.
請求項1〜3のいずれかに記載の骨密度計測装置を用いた骨密度計測方法であって、
前記光照射部と被検体からの距離を変化させ、前記光照射部から照射された入射光の入射強度に対する前記光検出部にて検出された検出強度から求められた光強度分布に基づいて骨密度を計測することを特徴とする骨密度計測方法。
A bone density measuring method using the bone density measuring device according to any one of claims 1 to 3,
Based on the light intensity distribution obtained from the detection intensity detected by the light detection unit with respect to the incident intensity of the incident light irradiated from the light irradiation unit by changing the distance between the light irradiation unit and the subject. A bone density measuring method characterized by measuring density.
請求項4に記載の骨密度計測装置を用いた骨密度計測方法であって、
前記光照射部と被検体からの距離を変化させ、前記光照射部から照射された入射光の入射強度に対する前記光検出部にて検出された検出強度から求められた光強度分布と前記光の強度差の検出手段にて求められた皮膚厚情報とに基づいて骨密度を計測することを特徴とする骨密度計測方法。
A bone density measuring method using the bone density measuring device according to claim 4,
The distance between the light irradiation unit and the subject is changed, and the light intensity distribution obtained from the detection intensity detected by the light detection unit with respect to the incident intensity of the incident light irradiated from the light irradiation unit and the light A bone density measuring method, wherein bone density is measured based on skin thickness information obtained by a strength difference detecting means.
JP2017026832A 2016-03-02 2017-02-16 Bone density measuring device and method Active JP6951730B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016039691 2016-03-02
JP2016039691 2016-03-02

Publications (2)

Publication Number Publication Date
JP2017159032A true JP2017159032A (en) 2017-09-14
JP6951730B2 JP6951730B2 (en) 2021-10-20

Family

ID=59854498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026832A Active JP6951730B2 (en) 2016-03-02 2017-02-16 Bone density measuring device and method

Country Status (1)

Country Link
JP (1) JP6951730B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043163A (en) * 1996-03-26 1998-02-17 Hologic Inc Bone characteristic evaluation system
US20060192965A1 (en) * 2005-01-21 2006-08-31 Tromberg Bruce J Method for assessing the condition of bone in-vivo
WO2006115207A1 (en) * 2005-04-22 2006-11-02 Kanazawa University Bone density measuring device
JP2007007267A (en) * 2005-07-01 2007-01-18 Kanazawa Univ Bone density measuring equipment
JP2008155011A (en) * 2006-11-27 2008-07-10 Kanazawa Univ Density measuring apparatus and its method
JP2010099414A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Bone density measuring apparatus
JP2010175448A (en) * 2009-01-30 2010-08-12 Kowa Co Optical imaging device
JP2013527469A (en) * 2010-06-03 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for measuring a tissue sample such as bilirubin using Brewster's angle
JP2015188590A (en) * 2014-03-28 2015-11-02 カシオ計算機株式会社 Dermoscope and lens unit for dermoscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043163A (en) * 1996-03-26 1998-02-17 Hologic Inc Bone characteristic evaluation system
US20060192965A1 (en) * 2005-01-21 2006-08-31 Tromberg Bruce J Method for assessing the condition of bone in-vivo
WO2006115207A1 (en) * 2005-04-22 2006-11-02 Kanazawa University Bone density measuring device
JP2007007267A (en) * 2005-07-01 2007-01-18 Kanazawa Univ Bone density measuring equipment
JP2008155011A (en) * 2006-11-27 2008-07-10 Kanazawa Univ Density measuring apparatus and its method
JP2010099414A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Bone density measuring apparatus
JP2010175448A (en) * 2009-01-30 2010-08-12 Kowa Co Optical imaging device
JP2013527469A (en) * 2010-06-03 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for measuring a tissue sample such as bilirubin using Brewster's angle
JP2015188590A (en) * 2014-03-28 2015-11-02 カシオ計算機株式会社 Dermoscope and lens unit for dermoscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三浦要ほか: "光を用いた骨密度計測装置の開発とモンテカルロ法による検証", 日本機械学会 北陸信越支部 第53期総会・講演会 講演論文集, vol. 904, JPN6020041403, 1 March 2016 (2016-03-01), ISSN: 0004504814 *

Also Published As

Publication number Publication date
JP6951730B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
KR102531819B1 (en) Systems and methods for automated coronary plaque characterization and risk assessment using endovascular optical coherence tomography
Popescu et al. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
EP2077753B1 (en) Apparatus, probe and method for providing depth assessment in an anatomical structure
JP5201920B2 (en) measuring device
JP5684443B2 (en) Biological component measuring device
JP2011092780A (en) Biological information imaging apparatus, biological information analyzing method, and biological information imaging method
JPWO2007088709A1 (en) Photoacoustic tomography apparatus and photoacoustic tomography method
JP2010088873A (en) Biological information imaging apparatus
CA2895519C (en) Apparatus for in-vitro imaging and analysis of dental samples
JP2004515779A (en) Indirect imaging
RU2532296C2 (en) Vascular wall analysis device and method for analysing vascular wall
JP6000778B2 (en) SUBJECT INFORMATION ACQUISITION DEVICE AND METHOD FOR CONTROLLING SUBJECT INFORMATION ACQUISITION DEVICE
JP2007097654A (en) Blood information measuring device
JP6461288B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
EP3797687A1 (en) Blood vessel detection device and method therefor
EP3184032A1 (en) Photoacoustic apparatus, information acquiring apparatus, information acquiring method, and program
JP6486085B2 (en) Photoacoustic wave measuring device
JP6951730B2 (en) Bone density measuring device and method
JP2008155011A (en) Density measuring apparatus and its method
JP2010223770A (en) Scatterer inside observation device, and scatterer inside observation method
JP6431928B2 (en) Photoacoustic microscope and photoacoustic signal detection method
JP2007085775A (en) Sample analyzer
JP2010117306A (en) Device and method for measuring acoustooptical tomography
CN108968921A (en) The method of optical coherence imaging measurement bone sclerous tissues laser ablation denatured layer thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6951730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150