JP2017156166A - Insulation oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method - Google Patents

Insulation oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method Download PDF

Info

Publication number
JP2017156166A
JP2017156166A JP2016038148A JP2016038148A JP2017156166A JP 2017156166 A JP2017156166 A JP 2017156166A JP 2016038148 A JP2016038148 A JP 2016038148A JP 2016038148 A JP2016038148 A JP 2016038148A JP 2017156166 A JP2017156166 A JP 2017156166A
Authority
JP
Japan
Prior art keywords
amount
insulating oil
polychlorinated biphenyl
measuring
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016038148A
Other languages
Japanese (ja)
Other versions
JP6698377B2 (en
Inventor
安基 伊達
Yasuki Date
安基 伊達
大村 直也
Naoya Omura
直也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2016038148A priority Critical patent/JP6698377B2/en
Publication of JP2017156166A publication Critical patent/JP2017156166A/en
Application granted granted Critical
Publication of JP6698377B2 publication Critical patent/JP6698377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an insulation oil amount measuring method capable of simply measuring the insulation oil amount containing polychlorinated biphenyl adhering to a wide range.SOLUTION: An insulation oil amount measuring method of measuring the insulation oil amount containing polychlorinated biphenyl includes: an irradiation process of irradiating a measurement region with an ultraviolet ray; an image processing process of image-processing the fluorescence generated from the insulation oil due to the irradiation to acquire a fluorescence image; and a calculation process of calculating the insulation oil amount on the basis of the fluorescence intensity of the fluorescence image. In the irradiation process, preferably, light of a wavelength higher than 300 nm in the ultraviolet ray is blocked using a first optical filter.SELECTED DRAWING: None

Description

本発明は、絶縁油量測定方法、ポリ塩化ビフェニル量測定方法、及びポリ塩化ビフェニル無害化判定方法に関する。   The present invention relates to an insulating oil amount measuring method, a polychlorinated biphenyl amount measuring method, and a polychlorinated biphenyl detoxifying determination method.

化学物質による環境汚染問題は、健康問題や社会生活に大きな不安を与えると共に産業活動等にも影響を与えるため、早急に解決すべき重大な課題である。特に、人体や環境への有害性が確認されたポリ塩化ビフェニル類(PCBs、以下、単に「PCB」とも称することがある)は、過去、コンデンサやトランスの絶縁油、熱媒体、機械油等に多用されるなど地球規模で環境汚染が拡大しており、難分解性であることからその残留性や生物濃縮が問題となっている。   The problem of environmental pollution caused by chemical substances is a serious problem that should be solved as soon as possible because it causes great concerns about health problems and social life, and also affects industrial activities. In particular, polychlorinated biphenyls (PCBs, hereinafter sometimes referred to simply as “PCB”) that have been confirmed to be harmful to the human body and the environment have been used in the past as insulating oil, heat medium, machine oil, etc. for capacitors and transformers. Environmental pollution is expanding on a global scale, such as being frequently used, and its persistence and bioconcentration are problematic because it is difficult to decompose.

PCBについては、1974年に「化学物質の審査及び製造に関する法律」により製造、輸入、及び新たな使用について原則的に禁止措置が取られ、更に、2001年に「ポリ塩化ビフェニル廃棄物の適正な処理の推進に関する特別措置法(PCB特措法)」が施行され、2016年までに全てのPCB廃棄物の適性処理が法的に義務づけられた。これにより、PCB廃棄物の処理過程におけるモニタリングや、処理後のPCB量の測定が重要な課題となっている。   Regarding PCBs, in 1974, the “Law on the Examination and Production of Chemical Substances” was prohibited in principle for production, import, and new use. In 2001, “Appropriate disposal of polychlorinated biphenyl waste” The Special Measures Law on the Promotion of Disposal (PCB Special Measures Law) was enforced, and by 2016, all PCB wastes were legally mandated. Accordingly, monitoring in the process of processing PCB waste and measurement of the amount of PCB after processing are important issues.

従来のPCB量の測定としては、例えば、公定法として、高分解能ガスクロマトグラフィー/マススペクトロメトリー(HRGC/HRMS)や、ガスクロマトグラフィー/電子捕獲型検出器(GC−ECD)が用いられてきた。しかしながら、これらの方法は、設備投資や分析消耗品等にコストが嵩み、また、煩雑なクリーンアップ操作や分析者の技術習熟等の必要性から、データ取得や解析に多大な時間を要する等の問題があり、分析業務が特定の分析機関に限定される等、大量の試料を処理する方法としては限界があった。
また、PCBを扱う施設において、床や壁等の広範囲に付着したPCBを含む絶縁油量を簡便に測定したいという要望がある。
As a conventional measurement of PCB amount, for example, high resolution gas chromatography / mass spectrometry (HRGC / HRMS) and gas chromatography / electron capture detector (GC-ECD) have been used as official methods. . However, these methods are costly for capital investment, analysis consumables, etc., and require a lot of time for data acquisition and analysis due to the need for complicated clean-up operations and analysts' technical skill. Therefore, there is a limit as a method for processing a large amount of samples, such as analysis work being limited to a specific analysis organization.
Further, there is a demand for easily measuring the amount of insulating oil including PCB attached to a wide area such as a floor or a wall in a facility handling PCBs.

ここで、金属表面に塗布された油の塗油量を測定する塗油分布状態の測定方法が提案されている(例えば、特許文献1参照)。
しかし、前記塗油分布状態の測定方法では、狭い範囲に付着した油しか測定することができず、広範囲に付着した油の量を測定することができないという問題がある。
Here, a method for measuring an oil distribution state in which the amount of oil applied to a metal surface is measured has been proposed (see, for example, Patent Document 1).
However, the method for measuring the oil distribution state has a problem that only the oil adhered to a narrow range can be measured, and the amount of oil adhered to a wide range cannot be measured.

そのため、広範囲に付着したポリ塩化ビフェニルを含む絶縁油量を簡便に測定することができる絶縁油量測定方法が望まれている。   Therefore, a method for measuring the amount of insulating oil that can easily measure the amount of insulating oil containing polychlorinated biphenyl adhering to a wide area is desired.

特開平7−260687号公報JP-A-7-260687

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、広範囲に付着したポリ塩化ビフェニルを含む絶縁油量を簡便に測定することができる絶縁油量測定方法、ポリ塩化ビフェニル量測定方法、及びポリ塩化ビフェニル無害化判定方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides an insulating oil amount measuring method, a polychlorinated biphenyl amount measuring method, and a polychlorinated biphenyl detoxification determining method capable of easily measuring the amount of insulating oil containing polychlorinated biphenyl adhered over a wide range. For the purpose.

前記課題を解決するための手段としては、以下のとおりである。即ち、本発明の絶縁油量測定方法は、ポリ塩化ビフェニルを含む絶縁油量を測定する方法であって、測定領域に対して、紫外線を照射する照射工程と、前記照射により前記絶縁油から生じる蛍光を画像処理し、蛍光画像を得る画像処理工程と、前記蛍光画像の蛍光強度に基づいて前記絶縁油量を算出する算出工程と、を含む。   Means for solving the above-described problems are as follows. That is, the method for measuring the amount of insulating oil according to the present invention is a method for measuring the amount of insulating oil containing polychlorinated biphenyl, which is generated from the insulating oil by the irradiation step of irradiating the measurement region with ultraviolet rays and the irradiation. An image processing step of performing image processing of fluorescence to obtain a fluorescence image, and a calculation step of calculating the amount of the insulating oil based on the fluorescence intensity of the fluorescence image.

本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、広範囲に付着したポリ塩化ビフェニルを含む絶縁油量を簡便に測定することができる絶縁油量測定方法、ポリ塩化ビフェニル量測定方法、及びポリ塩化ビフェニル無害化判定方法を提供することができる。   According to the present invention, the conventional problems can be solved, the object can be achieved, and the amount of insulating oil containing polychlorinated biphenyl adhering to a wide range can be measured easily. A method for measuring the amount of biphenyl chloride and a method for determining detoxification of polychlorinated biphenyl can be provided.

図1は、本発明の絶縁油量測定方法に用いられる測定装置の一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of a measuring apparatus used in the method for measuring the amount of insulating oil according to the present invention. 図2は、実施例1において得られた蛍光画像である。FIG. 2 is a fluorescence image obtained in Example 1. 図3は、図2の蛍光画像を2値化処理した画像である。FIG. 3 is an image obtained by binarizing the fluorescence image of FIG. 図4は、蛍光強度と付着絶縁油量との関係を表すグラフである。FIG. 4 is a graph showing the relationship between the fluorescence intensity and the amount of attached insulating oil.

(絶縁油量測定方法)
本発明の絶縁油量測定方法は、ポリ塩化ビフェニルを含む絶縁油量を測定する方法であって、測定領域に対して、紫外線を照射する照射工程と、前記照射により前記絶縁油から生じる蛍光を画像処理し、蛍光画像を得る画像処理工程と、前記蛍光画像の蛍光強度に基づいて前記絶縁油量を算出する算出工程と、を含み、更に必要に応じてその他の工程を含む。
(Insulation oil measurement method)
The method for measuring the amount of insulating oil according to the present invention is a method for measuring the amount of insulating oil containing polychlorinated biphenyl, wherein the measurement region is irradiated with ultraviolet rays, and the fluorescence generated from the insulating oil by the irradiation is measured. An image processing step of performing image processing to obtain a fluorescence image, and a calculation step of calculating the amount of the insulating oil based on the fluorescence intensity of the fluorescence image, and further including other steps as necessary.

前記絶縁油量測定方法は、広範囲を照射することにより、施設の床等の広範囲に付着した絶縁油の付着量を簡便に測定することができる。   The insulating oil amount measuring method can easily measure the amount of insulating oil adhering to a wide area such as a facility floor by irradiating a wide area.

<照射工程>
前記照射工程は、絶縁油が付着している測定領域に対して、紫外線を照射する工程であり、更に必要に応じてその他の処理を含む。
前記照射工程において、第1の光学フィルターを用いて、前記紫外線における波長300nmを超える光を遮断することが好ましい。
<Irradiation process>
The irradiation step is a step of irradiating the measurement region to which the insulating oil is adhered with ultraviolet rays, and further includes other processing as necessary.
In the irradiation step, it is preferable to block light having a wavelength exceeding 300 nm in the ultraviolet ray by using the first optical filter.

<<絶縁油>>
前記絶縁油は、ポリ塩化ビフェニルを含んでいれば特に制限はなく、目的に応じて適宜選択することができる。
前記絶縁油としては、例えば、JIS C2320−1999(電気絶縁油)に規定された絶縁油Aの1種(鉱油)2号などが挙げられる。
<< Insulating oil >>
The insulating oil is not particularly limited as long as it contains polychlorinated biphenyl, and can be appropriately selected depending on the purpose.
Examples of the insulating oil include 1 type (mineral oil) No. 2 of insulating oil A defined in JIS C2320-1999 (electrical insulating oil).

<<測定領域>>
前記測定領域は、絶縁油が付着していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、変圧器等の重電機器;前記重電機器に付着したPCBを無害化するための施設における、床、壁、天井、タンク内壁などが挙げられる。これらの中でも、床、壁、天井が好ましい。
前記測定領域の範囲としては、特に制限はなく、目的に応じて適宜選択することができるが、500cm以上2,000cm以下が好ましい。
<< Measurement area >>
The measurement area is not particularly limited as long as the insulating oil adheres, and can be appropriately selected according to the purpose. For example, heavy electrical equipment such as a transformer; PCB that adheres to the heavy electrical equipment is rendered harmless. Floors, walls, ceilings, tank walls, etc. Among these, a floor, a wall, and a ceiling are preferable.
The range of the measurement region is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 cm 2 or more 2,000 cm 2 or less.

前記重電機器としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、小型変圧器、中型変圧器、大型変圧器、超大型変圧器、封じ切り機器(大型ブッシング、OFケーブル)などが挙げられる。これらの中でも、大型変圧器、超大型変圧器が好ましい。
前記小型変圧器とは、銘板重量が1.0t未満のものを意味する。
前記中型変圧器とは、銘板重量が1.0t以上10.0t未満のものを意味する。
前記大型変圧器とは、銘板重量が10.0t以上200t未満のものを意味する。
前記超大型変圧器とは、銘板重量が200t以上のものを意味する。
The heavy electrical equipment is not particularly limited and can be appropriately selected according to the purpose. Cable). Among these, a large transformer and a super large transformer are preferable.
The small transformer means that the nameplate weight is less than 1.0 t.
The medium-sized transformer means that the nameplate weight is 1.0 t or more and less than 10.0 t.
The large transformer means one having a nameplate weight of 10.0 t or more and less than 200 t.
The ultra-large transformer means that the nameplate weight is 200 t or more.

<<紫外線>>
前記紫外線は、10nm以上400nm以下の波長を有する。
前記紫外線の光源としては、例えば、低圧水銀ランプ、低圧高出力ランプ、中圧水銀ランプ、無電極水銀ランプ等の水銀ランプ;キセノンフラッシュランプ;エキシマランプ;紫外線発光ダイオード(紫外線LED)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水銀ランプ、紫外線LEDが好ましく、低圧水銀ランプがより好ましい。
<< UV UV >>
The ultraviolet ray has a wavelength of 10 nm to 400 nm.
Examples of the ultraviolet light source include mercury lamps such as low-pressure mercury lamps, low-pressure high-power lamps, medium-pressure mercury lamps, and electrodeless mercury lamps; xenon flash lamps; excimer lamps; ultraviolet light-emitting diodes (ultraviolet LEDs). . These may be used individually by 1 type and may use 2 or more types together. Among these, a mercury lamp and an ultraviolet LED are preferable, and a low-pressure mercury lamp is more preferable.

前記絶縁油の励起波長としては、絶縁油を励起することができれば特に制限はなく、目的に応じて適宜選択することができ、例えば、鉱油を主な成分とする絶縁油である場合、300nm以下が好ましく、150nm以上270nm以下がより好ましく、220nm以上260nm以下が特に好ましい。   The excitation wavelength of the insulating oil is not particularly limited as long as the insulating oil can be excited, and can be appropriately selected according to the purpose. For example, in the case of an insulating oil mainly composed of mineral oil, 300 nm or less. Is more preferable, 150 nm or more and 270 nm or less is more preferable, and 220 nm or more and 260 nm or less is particularly preferable.

<<第1の光学フィルター>>
前記第1の光学フィルターは、特定の光を遮断することができるフィルターである。
前記第1の光学フィルターとしては、検出感度を向上させる点から、絶縁油を励起するために用いられる励起光以外の光を遮断することが好ましい。
<< first optical filter >>
The first optical filter is a filter capable of blocking specific light.
The first optical filter preferably blocks light other than excitation light used to excite the insulating oil from the viewpoint of improving detection sensitivity.

前記第1の光学フィルターにおける遮断波長としては、300nm超が好ましく、270nm超がより好ましい。前記遮断波長が、300nm超であると、絶縁油の好適な励起波長以外の波長の光を遮断することができ、前記検出工程における絶縁油由来の蛍光の検出感度を向上できる。   The cutoff wavelength in the first optical filter is preferably more than 300 nm, and more preferably more than 270 nm. When the cutoff wavelength is more than 300 nm, light having a wavelength other than the suitable excitation wavelength of the insulating oil can be blocked, and the detection sensitivity of fluorescence derived from the insulating oil in the detection step can be improved.

前記第1の光学フィルターにおける遮断率としては、80%以上が好ましく、90%以上がより好ましい。前記遮断率が、80%以上であると、目的とする励起光以外の光を好適に遮断することができる。   The blocking rate in the first optical filter is preferably 80% or more, and more preferably 90% or more. When the blocking rate is 80% or more, light other than the target excitation light can be suitably blocked.

前記第1の光学フィルターとしては、市販品を用いることができ、前記市販品としては、例えば、商品名:MZ0254 M.C.254(朝日分光株式会社製、遮断率:90%以上、遮断波長:200nm以上1,200nm以下(透過帯を除く)、透過中心波長:254nm±2nm)などが挙げられる。   As the first optical filter, a commercially available product can be used, and examples of the commercially available product include trade name: MZ0254 M.I. C. 254 (manufactured by Asahi Spectroscopic Co., Ltd., blocking rate: 90% or more, blocking wavelength: 200 nm to 1,200 nm (excluding transmission band), transmission center wavelength: 254 nm ± 2 nm), and the like.

<画像処理工程>
前記画像処理工程は、前記照射により前記絶縁油から生じる蛍光を画像処理し、蛍光画像を得る工程であり、更に必要に応じてその他の処理を含む。
前記画像処理工程としては、前記照射により絶縁油から生じる蛍光を検出する検出処理を含む。
前記検出処理としては、第2の光学フィルターを用いて、絶縁油由来の蛍光以外の蛍光を遮断して前記絶縁油由来の蛍光を検出することが好ましい。
<Image processing process>
The image processing step is a step of performing image processing of fluorescence generated from the insulating oil by the irradiation to obtain a fluorescent image, and further includes other processing as necessary.
The image processing step includes a detection process for detecting fluorescence generated from the insulating oil by the irradiation.
As the detection process, it is preferable to detect fluorescence derived from the insulating oil by blocking fluorescence other than the fluorescence derived from the insulating oil using a second optical filter.

<<検出>>
前記検出は、前記照射工程において紫外線を照射された絶縁油が励起され励起状態になり、前記励起状態から基底状態に戻る際に発せられる蛍光を測定する。
<< Detection >>
In the detection, the insulating oil irradiated with ultraviolet rays in the irradiation step is excited to enter an excited state, and the fluorescence emitted when returning from the excited state to the ground state is measured.

前記蛍光を検出する装置としては、蛍光を検出できれば特に制限はなく、目的に応じて適宜選択することができ、例えば、コンプレメンタリーメタルオキサイドセミコンダクター(CMOS)、チャージカップルドデバイス(CCD)などが挙げられる。これらの中でも、CMOSが好ましい。
前記CMOSとしては、市販品を用いることができ、前記市販品としては、装置名:920t(株式会社ロジクール製)などが挙げられる。
The apparatus for detecting fluorescence is not particularly limited as long as fluorescence can be detected, and can be appropriately selected according to the purpose. Examples thereof include complementary metal oxide semiconductor (CMOS) and charge coupled device (CCD). It is done. Among these, CMOS is preferable.
A commercially available product can be used as the CMOS, and examples of the commercially available product include device name: 920t (manufactured by Logitech Co., Ltd.).

<<<第2の光学フィルター>>>
前記第2の光学フィルターは、特定の蛍光を遮断することができるフィルターである。
前記第2の光学フィルターとしては、検出感度を向上させる点から、絶縁油に由来する蛍光以外の光を遮断することが好ましい。
<<< Second optical filter >>>
The second optical filter is a filter that can block specific fluorescence.
The second optical filter preferably blocks light other than fluorescence derived from insulating oil from the viewpoint of improving detection sensitivity.

前記第2の光学フィルターにおける遮断波長としては、絶縁油由来の蛍光を遮断しないことが好ましく、鉱油を主成分とする絶縁油由来の蛍光(例えば、波長400nm以上450nm以下)を検出する場合は、500nm超が好ましく、450nm超がより好ましい。前記遮断波長が、500nm超であると、測定領域がPCBを無害化するための施設等の床などである場合、前記床にはエポキシ樹脂を含む材料等が多く用いられているため、前記エポキシ樹脂を含む材料に由来する蛍光を遮断することができ、前記絶縁油に由来する蛍光を高感度にて検出することができる。   As the cutoff wavelength in the second optical filter, it is preferable not to block fluorescence derived from insulating oil, and when detecting fluorescence derived from insulating oil mainly composed of mineral oil (for example, wavelength 400 nm or more and 450 nm or less), More than 500 nm is preferable, and more than 450 nm is more preferable. When the cut-off wavelength is greater than 500 nm, when the measurement region is a floor of a facility or the like for detoxifying PCB, a material containing an epoxy resin is often used for the floor. Fluorescence derived from a resin-containing material can be blocked, and fluorescence derived from the insulating oil can be detected with high sensitivity.

前記第2の光学フィルターにおける遮断率としては、90%以上が好ましく、95%以上が好ましい。前記遮断率が、90%以上であると、目的とする蛍光波長以外の波長を好適に遮断することができる。   The blocking rate in the second optical filter is preferably 90% or more, and more preferably 95% or more. When the blocking rate is 90% or more, wavelengths other than the target fluorescence wavelength can be blocked appropriately.

前記第2の光学フィルターとしては、市販品を用いることができ、前記市販品としては、例えば、商品名:TS OD2 ショートパスフィルター 450NM(遮断率:90%、遮断波長:450nm)、商品名:TS OD2 ショートパスフィルター 500NM(遮断率:90%、遮断波長:500nm)(以上、エドモンド・オプティクス・ジャパン株式会社製)などが挙げられる。   As the second optical filter, a commercially available product can be used. Examples of the commercially available product include trade name: TS OD2 short pass filter 450 NM (blocking rate: 90%, cutoff wavelength: 450 nm), trade name: TS OD2 short pass filter 500 NM (blocking rate: 90%, blocking wavelength: 500 nm) (above, manufactured by Edmund Optics Japan Ltd.).

前記画像処理としては、例えば、画像処理ソフトウェア、画像処理ライブラリなどを用いることができる。
前記画像処理ソフトウェアとしては、例えば、ImageJ(NIH社製)などが挙げられる。
前記画像処理ライブラリとしては、例えば、OpenCVなどが挙げられる。
As the image processing, for example, image processing software, an image processing library, or the like can be used.
Examples of the image processing software include ImageJ (manufactured by NIH).
Examples of the image processing library include OpenCV.

<算出工程>
前記算出工程は、前記蛍光画像の蛍光強度から絶縁油量を算出する工程であり、更に必要に応じてその他の処理を含む。
<Calculation process>
The calculation step is a step of calculating the amount of insulating oil from the fluorescence intensity of the fluorescent image, and further includes other processing as necessary.

前記算出工程としては、予め求めた蛍光強度と絶縁油量との検量線を用いて、得られた蛍光強度に基づいて前記絶縁油量を測定することが好ましい。   As the calculation step, it is preferable to measure the insulating oil amount based on the obtained fluorescence intensity using a calibration curve between the fluorescence intensity and the insulating oil amount obtained in advance.

前記検量線は、下記のようにして作成することができる。
前記照射工程、前記画像処理工程、及び前記算出工程により、測定領域における絶縁油由来の蛍光の蛍光強度を測定する。次に、有機溶媒を含む脱脂綿により、前記測定領域に付着した絶縁油を拭取り、高分解能ガスクロマトグラフィー/マススペクトロメトリー(HRGC/HRMS)、ガスクロマトグラフィー/電子捕獲型検出器(GC/ECD)などを用いて、前記PCBを含む絶縁油量を測定する。前記蛍光強度の測定、及び絶縁油量の測定を数点において行うことにより得られた蛍光強度と絶縁油量とを用いて検量線を作成することができる。
前記ガスクロマトグラフィー/電子捕獲型検出器(GC/ECD)としては、例えば、装置名:7890A GC system(アジレント・テクノロジー株式会社製)などが挙げられる。
The calibration curve can be created as follows.
The fluorescence intensity of the fluorescence derived from the insulating oil in the measurement region is measured by the irradiation step, the image processing step, and the calculation step. Next, the insulating oil adhering to the measurement area is wiped off with absorbent cotton containing an organic solvent, and high resolution gas chromatography / mass spectrometry (HRGC / HRMS), gas chromatography / electron capture detector (GC / ECD). ) Or the like is used to measure the amount of insulating oil containing PCB. A calibration curve can be created using the fluorescence intensity and the amount of insulating oil obtained by measuring the fluorescence intensity and the amount of insulating oil at several points.
Examples of the gas chromatography / electron capture detector (GC / ECD) include a device name: 7890A GC system (manufactured by Agilent Technologies).

また、前記画像処理工程において得られた蛍光画像を、画像処理ソフトウェアを用いて2値化処理することにより、前記測定領域における絶縁油の付着を明確にすることができ、例えば、拭取り洗浄後に、絶縁油が拭取られず、まだらに付着しているか否かを確認することができる。
前記2値化としては、例えば、グローバル閾値法、ローカル閾値法などが挙げられる。
前記蛍光画像としては、例えば、動画、静止画などが挙げられる。
前記2値化処理においては、例えば、ImgaeJ等の画像処理ソフトウェア、OpenCV等の画像処理ライブラリなどを用いることができる。
Further, by binarizing the fluorescent image obtained in the image processing step using image processing software, it is possible to clarify the adhesion of insulating oil in the measurement region, for example, after wiping and cleaning It can be confirmed whether the insulating oil is not wiped off and is adhered to the mottle.
Examples of the binarization include a global threshold method and a local threshold method.
Examples of the fluorescent image include moving images and still images.
In the binarization processing, for example, image processing software such as ImgaeJ, an image processing library such as OpenCV, or the like can be used.

<その他の工程>
前記その他の工程としては、例えば、絶縁油量を測定した測定領域から、未だ測定していない測定領域に移動する移動工程などが挙げられる。
前記移動工程としては、測定領域上を移動できれば特に制限はなく、目的に応じて適宜選択することができる。前記移動工程を含むことにより、広範囲に及び絶縁油の付着量を測定することができる。
<Other processes>
As said other process, the movement process etc. which move to the measurement area | region which has not yet measured from the measurement area | region which measured the amount of insulation oil, etc. are mentioned, for example.
The moving step is not particularly limited as long as it can move on the measurement region, and can be appropriately selected according to the purpose. By including the moving step, it is possible to measure the adhesion amount of insulating oil over a wide range.

図1は、本発明の絶縁油量測定方法に用いられる測定装置の一例を示す概略説明図である。図1に示すように、PCBを含む絶縁油付着測定領域10に低水銀灯等の光源1から紫外線6を照射する。このとき、第1の光学フィルター2を用いて光源1から照射される紫外線のうち、特定の波長の光を遮断することが好ましい。照射された前記紫外線6により励起された絶縁油付着測定領域10から発せられる蛍光7を蛍光検出器3により検出する。このとき、第2の光学フィルター4を用いて絶縁油付着測定領域10から発せられる特定の蛍光以外の波長の光を遮断することが好ましい。その後、検出された蛍光を画像化して蛍光画像を得て、前記蛍光画像の蛍光強度に基づいて前記絶縁油量を算出することができる。   FIG. 1 is a schematic explanatory view showing an example of a measuring apparatus used in the method for measuring the amount of insulating oil according to the present invention. As shown in FIG. 1, the insulating oil adhesion measurement area 10 including PCB is irradiated with ultraviolet rays 6 from a light source 1 such as a low mercury lamp. At this time, it is preferable to block light of a specific wavelength out of ultraviolet rays irradiated from the light source 1 using the first optical filter 2. The fluorescence detector 3 detects the fluorescence 7 emitted from the insulating oil adhesion measurement region 10 excited by the irradiated ultraviolet rays 6. At this time, it is preferable to block light having a wavelength other than the specific fluorescence emitted from the insulating oil adhesion measurement region 10 using the second optical filter 4. Thereafter, the detected fluorescence is imaged to obtain a fluorescence image, and the insulating oil amount can be calculated based on the fluorescence intensity of the fluorescence image.

(ポリ塩化ビフェニル量測定方法)
本発明のポリ塩化ビフェニル量測定方法は、本発明の絶縁油量測定方法において得られた前記絶縁油量から前記絶縁油に含まれるポリ塩化ビフェニル量を測定するポリ塩化ビフェニル量測定方法であって、下記式(1)により前記ポリ塩化ビフェニル量を算出する工程を含み、更に必要に応じてその他の工程を含む。
ポリ塩化ビフェニル量(μg/100cm)=絶縁油量(mg/cm)×絶縁油に含まれるポリ塩化ビフェニル濃度(mg/kg)÷10 ・・・ 式(1)
なお、前記ポリ塩化ビフェニル量は、下記式(1’)を用いても算出することができる。
ポリ塩化ビフェニル量(ng/cm)=絶縁油量(mg/cm)×絶縁油に含まれるポリ塩化ビフェニル濃度(mg/kg) ・・・ 式(1’)
(Polychlorinated biphenyl content measurement method)
The polychlorinated biphenyl amount measuring method of the present invention is a polychlorinated biphenyl amount measuring method for measuring the amount of polychlorinated biphenyl contained in the insulating oil from the insulating oil amount obtained in the insulating oil amount measuring method of the present invention. And a step of calculating the polychlorinated biphenyl amount by the following formula (1), and further including other steps as necessary.
Polychlorinated biphenyl amount (μg / 100 cm 2 ) = insulating oil amount (mg / cm 2 ) × polychlorinated biphenyl concentration (mg / kg) contained in insulating oil ÷ 10 Formula (1)
The amount of polychlorinated biphenyl can also be calculated using the following formula (1 ′).
Polychlorinated biphenyl amount (ng / cm 2 ) = insulating oil amount (mg / cm 2 ) × polychlorinated biphenyl concentration contained in insulating oil (mg / kg) Formula (1 ′)

前記式(1)中の前記絶縁油に含まれるポリ塩化ビフェニル濃度としては、PCBを扱う施設において取り扱う絶縁油によって異なり一義的に規定できないが、既知の一定濃度である場合が多い。このような場合は、前記式(1)中の前記絶縁油に含まれるポリ塩化ビフェニル濃度は、既知PCB濃度を用いることができる。また、絶縁油に含まれるポリ塩化ビフェニル濃度が未知である場合は、PCB測定機器を用いて測定される前記絶縁油に含まれるPCB濃度を使用することができる。
前記PCB測定機器としては、特に制限はなく、目的に応じて適宜公定法を選択することができ、例えば、高分解能ガスクロマトグラフィー/マススペクトロメトリー(HRGC/HRMS)、ガスクロマトグラフィー/電子捕獲型検出器(GC−ECD)などが挙げられる。これらの中でも、ガスクロマトグラフィー/電子捕獲型検出器(GC−ECD)が好ましい。
The polychlorinated biphenyl concentration contained in the insulating oil in the formula (1) differs depending on the insulating oil handled in the facility handling the PCB and cannot be uniquely defined, but is often a known constant concentration. In such a case, a known PCB concentration can be used as the polychlorinated biphenyl concentration contained in the insulating oil in the formula (1). In addition, when the polychlorinated biphenyl concentration contained in the insulating oil is unknown, the PCB concentration contained in the insulating oil measured using a PCB measuring device can be used.
The PCB measuring instrument is not particularly limited, and an official method can be appropriately selected according to the purpose. For example, high resolution gas chromatography / mass spectrometry (HRGC / HRMS), gas chromatography / electron capture type Examples include a detector (GC-ECD). Among these, a gas chromatography / electron capture detector (GC-ECD) is preferable.

また、PCBを扱う施設において取り扱う絶縁油に含まれるPCB濃度は、取り扱うPCB濃度の最大濃度が予め規定されている。そのため、前記施設においては、前記最大濃度を超えるPCB量を含む絶縁油は存在しない。本発明のポリ塩化ビフェニル量測定方法の適用場所を前記施設とする場合、施設毎、施設内の区画毎において、取り扱うPCB濃度の最大濃度は予め規定されているため、推定される最大濃度(推定最大濃度)を用いて、前記式(1)によりポリ塩化ビフェニル量を算出することにより、推定最大PCB量を求めることができる。
また、前記PCBを扱う施設において取り扱う絶縁油に含まれるPCB濃度の最大濃度は、50mg/kg以下であることが多いことから、前記推定最大濃度としては、50mg/kg以下が好ましい。
In addition, the maximum PCB concentration to be handled is defined in advance as the PCB concentration contained in the insulating oil handled in the facility handling the PCB. Therefore, in the facility, there is no insulating oil containing PCB amount exceeding the maximum concentration. When the place of application of the polychlorinated biphenyl amount measuring method of the present invention is the facility, the maximum concentration of PCB to be handled is preliminarily defined for each facility and for each section in the facility. By using the maximum concentration), the estimated maximum PCB amount can be obtained by calculating the polychlorinated biphenyl amount according to the formula (1).
Further, since the maximum concentration of PCB contained in insulating oil handled in the facility handling PCB is often 50 mg / kg or less, the estimated maximum concentration is preferably 50 mg / kg or less.

(ポリ塩化ビフェニル無害化判定方法)
本発明のポリ塩化ビフェニル無害化判定方法は、本発明のポリ塩化ビフェニル量測定方法によりポリ塩化ビフェニル量を測定する工程と、前記ポリ塩化ビフェニルが、0.1μg/100cm以下である場合に、前記測定領域においてポリ塩化ビフェニルを無害化できていると判定する工程と、を含み、更に必要に応じてその他の工程を含む。
(Polychlorinated biphenyl detoxification method)
The polychlorinated biphenyl detoxification determination method of the present invention includes a step of measuring the polychlorinated biphenyl amount by the polychlorinated biphenyl content measuring method of the present invention, and when the polychlorinated biphenyl is 0.1 μg / 100 cm 2 or less, Determining that polychlorinated biphenyl can be rendered harmless in the measurement region, and further including other steps as necessary.

<ポリ塩化ビフェニル量を測定する工程>
前記ポリ塩化ビフェニル量を測定する工程としては、本発明のポリ塩化ビフェニル量測定方法を用いることができる。
<Step of measuring the amount of polychlorinated biphenyl>
As the step of measuring the amount of polychlorinated biphenyl, the method for measuring the amount of polychlorinated biphenyl of the present invention can be used.

<判定する工程>
前記判定する工程は、PCB量が、0.1μg/100cm以下である場合に、前記測定領域においてポリ塩化ビフェニルを無害化できていると判定する工程である。
なお、0.1μg/100cm以下のPCB量の基準は、特別管理産業廃棄物(廃棄物の処理及び清掃に関する法律施行令第2条の4第1項第5号ハに規定するPCB処理物)の規定に基づくものである。
<Determining process>
The step of determining is a step of determining that polychlorinated biphenyl can be rendered harmless in the measurement region when the amount of PCB is 0.1 μg / 100 cm 2 or less.
The reference of 0.1 [mu] g / 100 cm 2 or less of the PCB amount specially controlled industrial wastes (Public Cleansing Law Enforcement Order PCB treated as prescribed in 4 Paragraph 1 No. 5 c Article 2 ).

本発明のポリ塩化ビフェニル無害化判定方法において、本発明のポリ塩化ビフェニル量測定方法での前記式(1)中の前記絶縁油に含まれる前記PCB濃度の推定最大濃度を用いて推定される最大PCB量(推定最大PCB量)を測定し、次に、PCBを無害化できていると判定する工程に供することができる。この場合、PCBを扱う施設において取り扱う絶縁油に含まれるPCB濃度は、取り扱うPCB濃度の最大濃度が予め規定されていることが多いことから、推定最大PCB量における洗浄除去後の前記PCB量が、0.1μg/100cm以下と測定されると、洗浄除去後の実際のPCB量も0.1μg/100cm以下と測定されると推測されることになる。前記推定PCB量を用いることは、絶縁油に含まれるPCB濃度を測定する工程を省略することができ、より簡便かつ効率的にPCBの無害化判定をすることができる点から好ましい。 In the polychlorinated biphenyl detoxification determination method of the present invention, the maximum estimated using the estimated maximum concentration of the PCB concentration contained in the insulating oil in the formula (1) in the polychlorinated biphenyl amount measuring method of the present invention The amount of PCB (estimated maximum PCB amount) can be measured and then subjected to a step of determining that the PCB has been rendered harmless. In this case, since the PCB concentration contained in the insulating oil handled in the facility handling the PCB is often specified in advance as the maximum concentration of the PCB concentration to be handled, the PCB amount after cleaning removal in the estimated maximum PCB amount is If it is measured to be 0.1 μg / 100 cm 2 or less, it is assumed that the actual PCB amount after washing and removal is also measured to be 0.1 μg / 100 cm 2 or less. It is preferable to use the estimated amount of PCB because the step of measuring the PCB concentration contained in the insulating oil can be omitted, and the PCB detoxification can be determined more easily and efficiently.

<その他の工程>
前記その他の工程としては、PCBを含む絶縁油を洗浄除去する洗浄工程などが挙げられる。
前記洗浄方法としては、例えば、PCBを含む絶縁油を、有機溶媒を含む脱脂綿により拭取ることなどが挙げられる。
前記有機溶媒としては、例えば、ノルマルヘキサンなどが挙げられる。
<Other processes>
Examples of the other processes include a cleaning process for cleaning and removing insulating oil containing PCB.
Examples of the cleaning method include wiping the insulating oil containing PCB with absorbent cotton containing an organic solvent.
Examples of the organic solvent include normal hexane.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(絶縁油量の測定)
−蛍光強度と絶縁油量との検量線の作成−
図1の装置を用いて、光源(商品名:SUV−16、アズワン株式会社製)から、PCBを含む絶縁油(鉱油)が付着したエポキシ樹脂系床(材質:ケミクリートE、波長450nm以上550nm以下に自家蛍光を有する)に紫外線を照射した。このとき、第1の光学フィルター(商品名:MZ0254 M.C.254、朝日分光株式会社製、遮断率:90%以上、遮断波長:200nm以上1,200nm以下(透過帯を除く)、透過中心波長:254nm±2nm)を使用して波長300nm超の光を遮断した。次に、前記エポキシ樹脂系床から発せられる蛍光を、CMOS(装置名:920t、株式会社ロジクール製)を用いて検出した。このとき、前記検出には第2の光学フィルター(商品名:TS OD2 ショートパスフィルター 450NM、エドモンド・オプティクス・ジャパン株式会社製、遮断率:90%以上)を用いて波長450nm超の光を遮断した。得られた蛍光を画像化し、蛍光画像を得て、前記蛍光画像の蛍光強度を求めた。次に、有機溶媒を含む脱脂綿により、前記エポキシ樹脂系床に付着した絶縁油を拭取り、ガスクロマトグラフィー/電子捕獲型検出器(GC/ECD、装置名:7890A GC system、アジレント・テクノロジー株式会社製)を用いて、前記蛍光強度を測定した測定領域のPCBを含む絶縁油量を測定した。前記蛍光強度の測定、及び絶縁油量の測定を9点において行い、得られた蛍光強度と絶縁油量とを用いて検量線を作成した。結果を図4に示す。
(Measurement of insulation oil amount)
-Creation of calibration curve between fluorescence intensity and insulating oil amount-
Using the apparatus of FIG. 1, an epoxy resin floor (material: Chemi-Crete E, wavelength 450 nm or more and 550 nm or less) to which an insulating oil (mineral oil) containing PCB is attached from a light source (trade name: SUV-16, manufactured by As One Co., Ltd.) (Having autofluorescence) was irradiated with ultraviolet rays. At this time, the first optical filter (trade name: MZ0254 MC254, manufactured by Asahi Spectroscopic Co., Ltd., cutoff rate: 90% or more, cutoff wavelength: 200 nm to 1,200 nm (excluding the transmission band), transmission center (Wavelength: 254 nm ± 2 nm) was used to block light with a wavelength exceeding 300 nm. Next, fluorescence emitted from the epoxy resin floor was detected using CMOS (device name: 920t, manufactured by Logitech Co., Ltd.). At this time, the second optical filter (trade name: TS OD2 short pass filter 450NM, manufactured by Edmund Optics Japan, Inc., blocking rate: 90% or more) was used for the detection to block light with a wavelength of more than 450 nm. . The obtained fluorescence was imaged to obtain a fluorescence image, and the fluorescence intensity of the fluorescence image was obtained. Next, the insulating oil adhering to the epoxy resin floor is wiped off with absorbent cotton containing an organic solvent, and a gas chromatography / electron capture detector (GC / ECD, apparatus name: 7890A GC system, Agilent Technologies Inc.) The amount of insulating oil containing PCB in the measurement region where the fluorescence intensity was measured was measured. The measurement of the fluorescence intensity and the measurement of the amount of insulating oil were performed at 9 points, and a calibration curve was created using the obtained fluorescence intensity and the amount of insulating oil. The results are shown in FIG.

<実施例1>
図1の装置を用いて、紫外線光源から、任意のPCBを含む絶縁油(鉱油)が付着したエポキシ樹脂系床1(25cm×60cm(1,500cm))に紫外線を照射した。このとき、第1の光学フィルター(商品名:MZ0254 M.C.254、朝日分光株式会社製、遮断率:90%以上、遮断波長:200nm以上1,200nm以下(透過帯を除く)、透過中心波長:254nm±2nm)を使用して波長300nm超の光を遮断した。次に、前記エポキシ樹脂系床1から発せられる蛍光を、CMOS(装置名:920t、株式会社ロジクール製)を用いて検出した。このとき、前記検出には第2の光学フィルター(商品名:TS OD2 ショートパスフィルター 450NM、エドモンド・オプティクス・ジャパン株式会社製、遮断率:90%以上)を用いて波長450nm超の光を遮断した。得られた蛍光から、蛍光画像を得た。前記蛍光画像を図2に示す。リアルタイムに取得した前記蛍光画像を画像処理ソフトウェア(ソフトウェア名:ImageJ、NIH社製)を用いて2値化処理した。前記2値化処理した画像を図3に示す。図3中の黒色部分が絶縁油を表す。次に、図4に示す検量線に基づいて、前記蛍光画像の蛍光強度39,822(−/cm)から絶縁油の付着量を算出した。その結果、絶縁油の付着量は、0.020mg/cmであった(表1中、「蛍光分析」と表記)。なお、有機溶媒を含む脱脂綿により、前記エポキシ樹脂系床に付着した絶縁油を拭取り、機器分析として、ガスクロマトグラフィー/電子捕獲型検出器(GC/ECD、装置名:7890A GC system、アジレント・テクノロジー株式会社製)を用いて、前記エポキシ樹脂系床に塗布したPCBを含む絶縁油の付着量を測定した。その結果、0.025mg/cmであった。
<Example 1>
Using the apparatus of FIG. 1, an ultraviolet light source was used to irradiate the epoxy resin floor 1 (25 cm × 60 cm (1,500 cm 2 )) to which an insulating oil (mineral oil) containing arbitrary PCB was adhered. At this time, the first optical filter (trade name: MZ0254 MC254, manufactured by Asahi Spectroscopic Co., Ltd., cutoff rate: 90% or more, cutoff wavelength: 200 nm to 1,200 nm (excluding the transmission band), transmission center (Wavelength: 254 nm ± 2 nm) was used to block light with a wavelength exceeding 300 nm. Next, fluorescence emitted from the epoxy resin floor 1 was detected using a CMOS (device name: 920t, manufactured by Logitech Co., Ltd.). At this time, the second optical filter (trade name: TS OD2 short pass filter 450NM, manufactured by Edmund Optics Japan, Inc., blocking rate: 90% or more) was used for the detection to block light with a wavelength of more than 450 nm. . A fluorescence image was obtained from the obtained fluorescence. The fluorescence image is shown in FIG. The fluorescence image acquired in real time was binarized using image processing software (software name: ImageJ, manufactured by NIH). The binarized image is shown in FIG. The black part in FIG. 3 represents insulating oil. Next, based on the calibration curve shown in FIG. 4, the adhesion amount of the insulating oil was calculated from the fluorescence intensity 39,822 (− / cm 2 ) of the fluorescence image. As a result, the adhesion amount of insulating oil was 0.020 mg / cm 2 (in Table 1, “fluorescence analysis”). Insulating oil adhering to the epoxy resin floor was wiped off with absorbent cotton containing an organic solvent, and gas chromatography / electron capture detector (GC / ECD, apparatus name: 7890A GC system, Agilent Technology Co., Ltd.) was used to measure the amount of insulating oil containing PCB applied to the epoxy resin floor. As a result, it was 0.025 mg / cm 2 .

<実施例2〜4>
実施例1において、エポキシ樹脂系床1を、PCBを含む絶縁油が付着したエポキシ樹脂系床2〜4に変更した以外は、実施例1と同様にして、絶縁油の付着量を算出した。また、実施例1と同様にして、機器分析を行い、絶縁油の付着量を測定した。結果を下記表1に示す。
<Examples 2 to 4>
In Example 1, the adhesion amount of the insulating oil was calculated in the same manner as in Example 1 except that the epoxy resin floor 1 was changed to the epoxy resin floors 2 to 4 to which the insulating oil containing PCB adhered. Further, in the same manner as in Example 1, instrument analysis was performed to measure the amount of insulating oil deposited. The results are shown in Table 1 below.

前記表1の結果から、本発明の絶縁油量測定方法により求めた絶縁油の付着量と、機器分析により求めた絶縁油の付着量とは、増減傾向が同じであり、本発明の絶縁油量測定方法は、簡易に絶縁油の付着量を測定することができることが分かった。   From the results shown in Table 1, the amount of insulating oil obtained by the method for measuring the amount of insulating oil according to the present invention and the amount of insulating oil obtained by instrumental analysis have the same increasing / decreasing tendency. It was found that the amount measurement method can easily measure the adhesion amount of insulating oil.

(PCB量の測定)
<実施例5>
実施例1において、任意のPCBを含む絶縁油(鉱油)が付着したエポキシ樹脂系床1を10mg/kgのPCBを含む絶縁油(鉱油)が付着したエポキシ樹脂系床5に変更した以外は、実施例1と同様にして、蛍光強度を測定した。次に、図4に示す検量線に基づいて、得られた蛍光強度48,607(−/cm)から、絶縁油(鉱油)量を算出した。算出した絶縁油(鉱油)量(0.026mg/cm)と、前記既知PCB濃度(10mg/kg)とを用いて、下記式(1)によりPCB量を算出した。その結果、PCB量は、0.026μg/100cmであった。また、実施例1と同様にして、機器分析を行い、PCBの付着量を測定した。結果を下記表2に示す。
ポリ塩化ビフェニル量(μg/100cm)=絶縁油量(mg/cm)×絶縁油に含まれるポリ塩化ビフェニル濃度(mg/kg)÷10 ・・・ 式(1)
(Measurement of PCB amount)
<Example 5>
In Example 1, except that the epoxy resin floor 1 to which the insulating oil (mineral oil) containing arbitrary PCB was attached was changed to the epoxy resin floor 5 to which the insulating oil (mineral oil) containing 10 mg / kg PCB was attached, The fluorescence intensity was measured in the same manner as in Example 1. Next, based on the calibration curve shown in FIG. 4, the amount of insulating oil (mineral oil) was calculated from the obtained fluorescence intensity 48,607 (− / cm 2 ). Using the calculated insulating oil (mineral oil) amount (0.026 mg / cm 2 ) and the known PCB concentration (10 mg / kg), the PCB amount was calculated by the following formula (1). As a result, the amount of PCB was 0.026 μg / 100 cm 2 . Further, in the same manner as in Example 1, instrument analysis was performed to measure the amount of PCB attached. The results are shown in Table 2 below.
Polychlorinated biphenyl amount (μg / 100 cm 2 ) = insulating oil amount (mg / cm 2 ) × polychlorinated biphenyl concentration (mg / kg) contained in insulating oil ÷ 10 Formula (1)

<実施例6〜8>
実施例5において、エポキシ樹脂系床5を、10mg/kgのPCBを含む絶縁油が付着したエポキシ樹脂系床6〜8に変更した以外は、実施例5と同様にして、PCBの付着量を算出した。また、実施例1と同様にして、機器分析を行い、PCBの付着量を測定した。結果を表2に示す。
<Examples 6 to 8>
In Example 5, the amount of PCB deposited was changed in the same manner as in Example 5 except that the epoxy resin floor 5 was changed to the epoxy resin floors 6 to 8 to which insulating oil containing 10 mg / kg PCB was adhered. Calculated. Further, in the same manner as in Example 1, instrument analysis was performed to measure the amount of PCB attached. The results are shown in Table 2.

前記表2の結果から、絶縁油(鉱油)に含まれるPCB量が既知である場合は、前記絶縁油の蛍光強度を測定し、予め作成した蛍光強度と絶縁油量との検量線に基づいて、絶縁油量を算出して、さらに、前記式(1)を用いることにより、絶縁油に含まれるPCB量を簡便に算出することができることが分かった。
また、本発明のポリ塩化ビフェニル量測定方法により求めたPCB量と、機器分析により求めたPCB量とは、増減傾向が同じであり、本発明のポリ塩化ビフェニル量測定方法は、簡易にPCB量を測定することができることが分かった。
From the result of Table 2, when the amount of PCB contained in the insulating oil (mineral oil) is known, the fluorescence intensity of the insulating oil is measured, and based on a calibration curve between the fluorescence intensity and the insulating oil amount prepared in advance. It was found that the amount of PCB contained in the insulating oil can be easily calculated by calculating the amount of insulating oil and further using the equation (1).
Further, the PCB amount determined by the polychlorinated biphenyl amount measuring method of the present invention and the PCB amount determined by instrumental analysis have the same increase / decrease tendency, and the polychlorinated biphenyl amount measuring method of the present invention is simply a PCB amount. It was found that can be measured.

(PCBの無害化判定)
<実施例9>
実施例5と同様にして、PCB量を測定した。次に、有機溶媒を含む脱脂綿により測定領域のエポキシ樹脂系床に付着した絶縁油を拭取り洗浄を行った。その後、拭取り洗浄前と同様にして、同一測定領域を測定してPCB量を測定した。その結果、拭取り洗浄後のPCB量は、0.030μg/100cmであり、下記判定基準に基づいて、前記測定領域は、無害化できていることが分かった。また、実施例1と同様にして、機器分析を行い、絶縁油の付着量を測定した。
[判定基準]
○(無害化できている):0.1μg/100cm以下
×(無害化できていない):0.1μg/100cm
(PCB detoxification determination)
<Example 9>
In the same manner as in Example 5, the amount of PCB was measured. Next, the insulating oil adhering to the epoxy resin floor in the measurement area was wiped and washed with absorbent cotton containing an organic solvent. Thereafter, in the same manner as before wiping and cleaning, the same measurement region was measured to measure the amount of PCB. As a result, the amount of PCB after wiping and cleaning was 0.030 μg / 100 cm 2 , and it was found that the measurement region could be rendered harmless based on the following criteria. Further, in the same manner as in Example 1, instrument analysis was performed to measure the amount of insulating oil deposited.
[Criteria]
○ (Detoxified): 0.1 μg / 100 cm 2 or less × (Not detoxified): Over 0.1 μg / 100 cm 2

<実施例10〜12>
実施例6〜8と同様にして、PCB量を測定した。次に、実施例9と同様にして、拭取り洗浄を行った。その後、拭取り洗浄前と同様にして、同一測定領域を測定してPCB量を測定し、実施例9と同様にして、無害化判定を行った。また、実施例1と同様にして、機器分析を行い、PCB量の付着量を測定した。その結果を表3に示す。
<Examples 10 to 12>
The amount of PCB was measured in the same manner as in Examples 6-8. Next, wiping and cleaning were performed in the same manner as in Example 9. Thereafter, in the same manner as before wiping and cleaning, the same measurement region was measured to measure the amount of PCB, and the detoxification determination was performed in the same manner as in Example 9. Further, in the same manner as in Example 1, instrument analysis was performed to measure the amount of PCB attached. The results are shown in Table 3.

前記表3に示すように、本発明のポリ塩化ビフェニル無害化判定方法と、公定法の機器分析による無害化判定とは、同様の結果が得られた。よって、本発明のポリ塩化ビフェニル無害化判定方法は、PCBの無害化判定に好適に用いることができることが分かった。   As shown in Table 3, the same results were obtained for the polychlorinated biphenyl detoxification determination method of the present invention and the detoxification determination by instrument analysis of the official method. Therefore, it was found that the polychlorinated biphenyl detoxification determination method of the present invention can be suitably used for PCB detoxification determination.

本発明の態様としては、例えば、以下の通りである。
<1> ポリ塩化ビフェニルを含む絶縁油量を測定する方法であって、
測定領域に対して、紫外線を照射する照射工程と、
前記照射により前記絶縁油から生じる蛍光を画像処理し、蛍光画像を得る画像処理工程と、
前記蛍光画像の蛍光強度に基づいて前記絶縁油量を算出する算出工程と、を含むことを特徴とする絶縁油量測定方法である。
<2> 前記照射工程において、第1の光学フィルターを用いて、前記紫外線における波長300nmを超える光を遮断する前記<1>に記載の絶縁油量測定方法である。
<3> 前記画像処理工程において、第2の光学フィルターを用いて、絶縁油由来の蛍光以外の蛍光を遮断する前記<1>から<2>のいずれかに記載の絶縁油量測定方法である。
<4> 前記算出工程が、予め求めた蛍光強度と絶縁油量との検量線を用いて、前記蛍光強度に基づいて前記絶縁油量を測定する工程である前記<1>から<3>のいずれかに記載の絶縁油量測定方法である。
<5> 前記<1>から<4>のいずれかに記載の絶縁油量測定方法において得られた前記絶縁油量から前記絶縁油に含まれるポリ塩化ビフェニル量を測定するポリ塩化ビフェニル量測定方法であって、
下記式(1)により前記ポリ塩化ビフェニル量を算出する工程を含むことを特徴とするポリ塩化ビフェニル量測定方法である。
ポリ塩化ビフェニル量(μg/100cm)=絶縁油量(mg/cm)×絶縁油に含まれるポリ塩化ビフェニル濃度(mg/kg)÷10 ・・・ 式(1)
<6> 前記式(1)中の前記絶縁油に含まれる前記ポリ塩化ビフェニル濃度の推定最大濃度を用いてポリ塩化ビフェニル量を算出する前記<5>に記載のポリ塩化ビフェニル量測定方法である。
<7> 前記式(1)中の前記絶縁油に含まれるポリ塩化ビフェニル濃度が、ポリ塩化ビフェニル測定機器を用いて測定される前記<5>に記載のポリ塩化ビフェニル量測定方法である。
<8> 前記<5>から<8>のいずれかに記載のポリ塩化ビフェニル量測定方法によりポリ塩化ビフェニルを測定する工程と、
前記ポリ塩化ビフェニルが、0.1μg/100cm以下である場合に、前記測定領域においてポリ塩化ビフェニルを無害化できていると判定する工程と、を含むことを特徴とするポリ塩化ビフェニル無害化判定方法である。
As an aspect of this invention, it is as follows, for example.
<1> A method for measuring the amount of insulating oil containing polychlorinated biphenyl,
An irradiation process for irradiating the measurement region with ultraviolet rays,
Image processing to image fluorescence generated from the insulating oil by the irradiation and obtain a fluorescence image; and
And a calculation step of calculating the amount of insulating oil based on the fluorescence intensity of the fluorescent image.
<2> The method for measuring an insulating oil amount according to <1>, wherein, in the irradiation step, the first optical filter is used to block light having a wavelength exceeding 300 nm in the ultraviolet rays.
<3> The insulating oil amount measuring method according to any one of <1> to <2>, wherein in the image processing step, fluorescence other than the fluorescence derived from the insulating oil is blocked using a second optical filter. .
<4> The calculation steps of <1> to <3>, wherein the calculation step is a step of measuring the insulating oil amount based on the fluorescence intensity using a calibration curve between the fluorescence intensity and the insulating oil amount obtained in advance. An insulating oil amount measuring method according to any one of the above.
<5> A polychlorinated biphenyl amount measuring method for measuring the polychlorinated biphenyl amount contained in the insulating oil from the insulating oil amount obtained in the insulating oil amount measuring method according to any one of <1> to <4> Because
A polychlorinated biphenyl content measuring method comprising the step of calculating the polychlorinated biphenyl content according to the following formula (1).
Polychlorinated biphenyl amount (μg / 100 cm 2 ) = insulating oil amount (mg / cm 2 ) × polychlorinated biphenyl concentration (mg / kg) contained in insulating oil ÷ 10 Formula (1)
<6> The polychlorinated biphenyl amount measuring method according to <5>, wherein the polychlorinated biphenyl amount is calculated using the estimated maximum concentration of the polychlorinated biphenyl concentration contained in the insulating oil in the formula (1). .
<7> The polychlorinated biphenyl content measurement method according to <5>, wherein the polychlorinated biphenyl concentration contained in the insulating oil in the formula (1) is measured using a polychlorinated biphenyl measuring instrument.
<8> a step of measuring polychlorinated biphenyl by the method for measuring the amount of polychlorinated biphenyl according to any one of <5> to <8>;
A polychlorinated biphenyl detoxification determination, comprising the step of determining that the polychlorinated biphenyl has been detoxified in the measurement region when the polychlorinated biphenyl is 0.1 μg / 100 cm 2 or less. Is the method.

1 光源
2 第1の光学フィルター
3 蛍光検出器
4 第2の光学フィルター
5 画像処理装置
6 紫外線
7 蛍光
10 絶縁油付着測定領域
DESCRIPTION OF SYMBOLS 1 Light source 2 1st optical filter 3 Fluorescence detector 4 2nd optical filter 5 Image processing device 6 Ultraviolet light 7 Fluorescence 10 Insulating oil adhesion measurement area

Claims (8)

ポリ塩化ビフェニルを含む絶縁油量を測定する方法であって、
測定領域に対して、紫外線を照射する照射工程と、
前記照射により前記絶縁油から生じる蛍光を画像処理し、蛍光画像を得る画像処理工程と、
前記蛍光画像の蛍光強度に基づいて前記絶縁油量を算出する算出工程と、を含むことを特徴とする絶縁油量測定方法。
A method for measuring the amount of insulating oil containing polychlorinated biphenyl,
An irradiation process for irradiating the measurement region with ultraviolet rays,
Image processing to image fluorescence generated from the insulating oil by the irradiation and obtain a fluorescence image; and
A calculation step of calculating the amount of insulating oil based on the fluorescence intensity of the fluorescent image.
前記照射工程において、第1の光学フィルターを用いて、前記紫外線における波長300nmを超える光を遮断する請求項1に記載の絶縁油量測定方法。   The method for measuring the amount of insulating oil according to claim 1, wherein in the irradiation step, the first optical filter is used to block light having a wavelength exceeding 300 nm in the ultraviolet rays. 前記画像処理において、第2の光学フィルターを用いて、前記絶縁油由来の蛍光以外の蛍光を遮断する請求項1から2のいずれかに記載の絶縁油量測定方法。   The method for measuring the amount of insulating oil according to claim 1, wherein in the image processing, fluorescence other than the fluorescence derived from the insulating oil is blocked using a second optical filter. 前記算出工程が、予め求めた蛍光強度と絶縁油量との検量線を用いて、前記蛍光強度に基づいて前記絶縁油量を測定する工程である請求項1から3のいずれかに記載の絶縁油量測定方法。   The insulation according to any one of claims 1 to 3, wherein the calculating step is a step of measuring the insulating oil amount based on the fluorescence intensity using a calibration curve between the fluorescence intensity and the insulating oil amount obtained in advance. Oil quantity measurement method. 請求項1から4のいずれかに記載の絶縁油量測定方法において得られた前記絶縁油量に基づいて前記絶縁油に含まれるポリ塩化ビフェニル量を測定するポリ塩化ビフェニル量測定方法であって、
下記式(1)により前記ポリ塩化ビフェニル量を算出する工程を含むことを特徴とするポリ塩化ビフェニル量測定方法。
ポリ塩化ビフェニル量(μg/100cm)=絶縁油量(mg/cm)×絶縁油に含まれるポリ塩化ビフェニル濃度(mg/kg)÷10 ・・・ 式(1)
A polychlorinated biphenyl amount measuring method for measuring a polychlorinated biphenyl amount contained in the insulating oil based on the insulating oil amount obtained in the insulating oil amount measuring method according to any one of claims 1 to 4,
A method for measuring the amount of polychlorinated biphenyl, comprising the step of calculating the amount of polychlorinated biphenyl according to the following formula (1).
Polychlorinated biphenyl amount (μg / 100 cm 2 ) = insulating oil amount (mg / cm 2 ) × polychlorinated biphenyl concentration (mg / kg) contained in insulating oil ÷ 10 Formula (1)
前記式(1)中の前記絶縁油に含まれる前記ポリ塩化ビフェニル濃度の推定最大濃度を用いてポリ塩化ビフェニル量を算出する請求項5に記載のポリ塩化ビフェニル量測定方法。   The polychlorinated biphenyl amount measuring method according to claim 5, wherein the polychlorinated biphenyl amount is calculated using the estimated maximum concentration of the polychlorinated biphenyl concentration contained in the insulating oil in the formula (1). 前記式(1)中の前記絶縁油に含まれるポリ塩化ビフェニル濃度が、ポリ塩化ビフェニル測定機器を用いて測定される請求項5に記載のポリ塩化ビフェニル量測定方法。   The polychlorinated biphenyl concentration measuring method according to claim 5, wherein the polychlorinated biphenyl concentration contained in the insulating oil in the formula (1) is measured using a polychlorinated biphenyl measuring instrument. 請求項5から7のいずれかに記載のポリ塩化ビフェニル量測定方法によりポリ塩化ビフェニル量を測定する工程と、
前記ポリ塩化ビフェニル量が、0.1μg/100cm以下である場合に、前記測定領域においてポリ塩化ビフェニルを無害化できていると判定する工程と、を含むことを特徴とするポリ塩化ビフェニル無害化判定方法。
A step of measuring the amount of polychlorinated biphenyl by the method for measuring the amount of polychlorinated biphenyl according to any one of claims 5 to 7,
Detoxifying the polychlorinated biphenyl, wherein the polychlorinated biphenyl is detoxified in the measurement region when the amount of the polychlorinated biphenyl is 0.1 μg / 100 cm 2 or less. Judgment method.
JP2016038148A 2016-02-29 2016-02-29 Insulating oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method Active JP6698377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038148A JP6698377B2 (en) 2016-02-29 2016-02-29 Insulating oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038148A JP6698377B2 (en) 2016-02-29 2016-02-29 Insulating oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method

Publications (2)

Publication Number Publication Date
JP2017156166A true JP2017156166A (en) 2017-09-07
JP6698377B2 JP6698377B2 (en) 2020-05-27

Family

ID=59808643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038148A Active JP6698377B2 (en) 2016-02-29 2016-02-29 Insulating oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method

Country Status (1)

Country Link
JP (1) JP6698377B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085615A (en) * 2018-11-22 2020-06-04 ウシオ電機株式会社 Optical measurement device
JP2020165777A (en) * 2019-03-29 2020-10-08 一般財団法人電力中央研究所 Method for detecting adhesive oil and method for removing adhesive oil
CN113985218A (en) * 2021-09-20 2022-01-28 重庆大学 Oil paper insulation aging diagnosis method based on fluorescent color

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118989A (en) * 1991-10-25 1993-05-14 Nec Corp Degrease evaluating method and evaluating device
US5272089A (en) * 1992-09-01 1993-12-21 Martin Marietta Energy Systems, Inc. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds
JPH06262171A (en) * 1993-03-10 1994-09-20 Toshiba Corp Device for decomposing halogen organic compound
JPH1019781A (en) * 1996-07-02 1998-01-23 Toshiba Corp Measuring method for degree of progress of decomposing reaction of polychlorobiphenyl and polychlorobiphenyl decomposing device
JP2003121429A (en) * 2001-10-19 2003-04-23 Mitsubishi Heavy Ind Ltd Cleaning determination method of hazardous material- polluted vessel
JP2003279542A (en) * 2002-03-22 2003-10-02 Mitsubishi Heavy Ind Ltd Judgment system for treatment end of contaminant of toxic substance
US20040011965A1 (en) * 2000-08-18 2004-01-22 Hodgkinson Elizabeth Jane Method and apparatus for detecting chemical contamination
JP2006242595A (en) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd Organic halogen compound detection device in oil
JP2012145390A (en) * 2011-01-11 2012-08-02 National Maritime Research Institute Multiwavelength fluorescence measuring device and object identification method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118989A (en) * 1991-10-25 1993-05-14 Nec Corp Degrease evaluating method and evaluating device
US5272089A (en) * 1992-09-01 1993-12-21 Martin Marietta Energy Systems, Inc. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds
JPH06262171A (en) * 1993-03-10 1994-09-20 Toshiba Corp Device for decomposing halogen organic compound
JPH1019781A (en) * 1996-07-02 1998-01-23 Toshiba Corp Measuring method for degree of progress of decomposing reaction of polychlorobiphenyl and polychlorobiphenyl decomposing device
US20040011965A1 (en) * 2000-08-18 2004-01-22 Hodgkinson Elizabeth Jane Method and apparatus for detecting chemical contamination
JP2003121429A (en) * 2001-10-19 2003-04-23 Mitsubishi Heavy Ind Ltd Cleaning determination method of hazardous material- polluted vessel
JP2003279542A (en) * 2002-03-22 2003-10-02 Mitsubishi Heavy Ind Ltd Judgment system for treatment end of contaminant of toxic substance
JP2006242595A (en) * 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd Organic halogen compound detection device in oil
JP2012145390A (en) * 2011-01-11 2012-08-02 National Maritime Research Institute Multiwavelength fluorescence measuring device and object identification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085615A (en) * 2018-11-22 2020-06-04 ウシオ電機株式会社 Optical measurement device
JP7205190B2 (en) 2018-11-22 2023-01-17 ウシオ電機株式会社 Optical measuring instrument
JP2020165777A (en) * 2019-03-29 2020-10-08 一般財団法人電力中央研究所 Method for detecting adhesive oil and method for removing adhesive oil
JP7245703B2 (en) 2019-03-29 2023-03-24 一般財団法人電力中央研究所 Method for detecting oil containing PCB and method for removing oil containing PCB
CN113985218A (en) * 2021-09-20 2022-01-28 重庆大学 Oil paper insulation aging diagnosis method based on fluorescent color
CN113985218B (en) * 2021-09-20 2024-04-12 重庆大学 Fluorescent color-based oiled paper insulation aging diagnosis method

Also Published As

Publication number Publication date
JP6698377B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
Doong et al. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan
Rovira et al. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood
Wang et al. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility
Luo et al. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste
Kim et al. Survey on organochlorine pesticides, PCDD/Fs, dioxin-like PCBs and HCB in sediments from the Han river, Korea
Duong et al. Occurrence of perfluoroalkyl acids in environmental waters in Vietnam
JP6698377B2 (en) Insulating oil amount measuring method, polychlorinated biphenyl amount measuring method, and polychlorinated biphenyl detoxification determination method
Alder et al. Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge
WO2006010151A3 (en) Apparatus and method for detecting human fecal contamination on hands or other objects using an illumination imaging device
Tran et al. Occurrence of organochlorine pesticides and polychlorinated biphenyls in sediment and fish in Cau Hai lagoon of Central Vietnam: Human health risk assessment
Pozo et al. Levels of persistent organic pollutants (POPs) in sediments from Lenga estuary, central Chile
Hu et al. Spatial distribution of polychlorinated dibenzo-p-dioxins and dibenzo-furans (PCDDs/Fs) in dust, soil, sediment and health risk assessment from an intensive electronic waste recycling site in Southern China
CN109313143B (en) Inspection apparatus and production management method
Wang et al. Spatial distribution and sources of polychlorinated biphenyls in surface sediments from the Zhoushan Archipelago and Xiangshan Harbor, East China Sea
Zweigle et al. PhotoTOP: PFAS precursor characterization by UV/TiO2 photocatalysis
Adewuyi et al. Evaluation of polybrominated diphenyl ethers in sediment of Lagos Lagoon, Nigeria
ATE303586T1 (en) METHOD AND DEVICE FOR DYNAMIC LIGHT SCATTERING
DE50305431D1 (en) IMAGING METHOD AND DEVICE FOR THEIR IMPLEMENTATION
Kidd et al. Current and future federal and state sampling guidance for per-and polyfluoroalkyl substances in environmental matrices
JP2002168789A (en) Detection method and device of polycyclic aromatic hydrocarbons
JP2848086B2 (en) Flux residue measurement method on luminescent printed circuit board
JP3392642B2 (en) Detoxification system of polychlorinated biphenyl and device for determining the amount of polychlorinated biphenyl
Dahlgren et al. Residential and biological exposure assessment of chemicals from a wood treatment plant
JP7245703B2 (en) Method for detecting oil containing PCB and method for removing oil containing PCB
JP7277086B2 (en) How to visualize the extent of decontamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250