JP2017155217A - Phosphor, light-emitting device and manufacturing method of phosphor - Google Patents
Phosphor, light-emitting device and manufacturing method of phosphor Download PDFInfo
- Publication number
- JP2017155217A JP2017155217A JP2017019626A JP2017019626A JP2017155217A JP 2017155217 A JP2017155217 A JP 2017155217A JP 2017019626 A JP2017019626 A JP 2017019626A JP 2017019626 A JP2017019626 A JP 2017019626A JP 2017155217 A JP2017155217 A JP 2017155217A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- phosphate
- phosphor particles
- light
- phosphoric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 304
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- -1 phosphate compound Chemical class 0.000 claims abstract description 130
- 239000002245 particle Substances 0.000 claims abstract description 126
- 239000007788 liquid Substances 0.000 claims abstract description 45
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 41
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 33
- 239000010452 phosphate Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 14
- 229910052788 barium Inorganic materials 0.000 claims abstract description 13
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 100
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 79
- 235000021317 phosphate Nutrition 0.000 claims description 38
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 31
- 239000000126 substance Substances 0.000 claims description 26
- 150000001768 cations Chemical class 0.000 claims description 22
- 239000011575 calcium Substances 0.000 claims description 21
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 11
- 239000011777 magnesium Substances 0.000 claims description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 8
- 238000000295 emission spectrum Methods 0.000 claims description 8
- 238000000695 excitation spectrum Methods 0.000 claims description 7
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 7
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 claims description 6
- 239000001506 calcium phosphate Substances 0.000 claims description 6
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 6
- 235000011010 calcium phosphates Nutrition 0.000 claims description 6
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 6
- 239000004137 magnesium phosphate Substances 0.000 claims description 6
- 229910000157 magnesium phosphate Inorganic materials 0.000 claims description 6
- 229960002261 magnesium phosphate Drugs 0.000 claims description 6
- 235000010994 magnesium phosphates Nutrition 0.000 claims description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 6
- JOPDZQBPOWAEHC-UHFFFAOYSA-H tristrontium;diphosphate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JOPDZQBPOWAEHC-UHFFFAOYSA-H 0.000 claims description 6
- 229910000164 yttrium(III) phosphate Inorganic materials 0.000 claims description 6
- UXBZSSBXGPYSIL-UHFFFAOYSA-K yttrium(iii) phosphate Chemical compound [Y+3].[O-]P([O-])([O-])=O UXBZSSBXGPYSIL-UHFFFAOYSA-K 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 3
- 229910001422 barium ion Inorganic materials 0.000 claims description 3
- 229910001424 calcium ion Inorganic materials 0.000 claims description 3
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 3
- 229910001427 strontium ion Inorganic materials 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 abstract description 7
- 229910052693 Europium Inorganic materials 0.000 abstract description 4
- 239000003513 alkali Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 31
- 229940085991 phosphate ion Drugs 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 16
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 241000251468 Actinopterygii Species 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229920000388 Polyphosphate Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- 235000011008 sodium phosphates Nutrition 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910000154 gallium phosphate Inorganic materials 0.000 description 3
- LWFNJDOYCSNXDO-UHFFFAOYSA-K gallium;phosphate Chemical compound [Ga+3].[O-]P([O-])([O-])=O LWFNJDOYCSNXDO-UHFFFAOYSA-K 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- DYRWWVFQQONJJK-UHFFFAOYSA-K scandium(3+);phosphate Chemical compound [Sc+3].[O-]P([O-])([O-])=O DYRWWVFQQONJJK-UHFFFAOYSA-K 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052795 boron group element Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229940005740 hexametaphosphate Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000010399 physical interaction Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- KIQKNTIOWITBBA-UHFFFAOYSA-K antimony(3+);phosphate Chemical compound [Sb+3].[O-]P([O-])([O-])=O KIQKNTIOWITBBA-UHFFFAOYSA-K 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SFOQXWSZZPWNCL-UHFFFAOYSA-K bismuth;phosphate Chemical compound [Bi+3].[O-]P([O-])([O-])=O SFOQXWSZZPWNCL-UHFFFAOYSA-K 0.000 description 1
- YZYDPPZYDIRSJT-UHFFFAOYSA-K boron phosphate Chemical compound [B+3].[O-]P([O-])([O-])=O YZYDPPZYDIRSJT-UHFFFAOYSA-K 0.000 description 1
- 229910000149 boron phosphate Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- GQZXNSPRSGFJLY-UHFFFAOYSA-N hydroxyphosphanone Chemical compound OP=O GQZXNSPRSGFJLY-UHFFFAOYSA-N 0.000 description 1
- 229940005631 hypophosphite ion Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910001476 lanthanide phosphate Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- LQFNMFDUAPEJRY-UHFFFAOYSA-K lanthanum(3+);phosphate Chemical compound [La+3].[O-]P([O-])([O-])=O LQFNMFDUAPEJRY-UHFFFAOYSA-K 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical compound [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010947 wet-dispersion method Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本開示は、蛍光体、発光装置及び蛍光体の製造方法に関する。 The present disclosure relates to a phosphor, a light emitting device, and a method for manufacturing the phosphor.
光源と、この光源からの光で励起されて、光源の色相とは異なる色相の光を放出可能な波長変換部材とを組み合わせることで、光の混色の原理により多様な色相の光を放出可能な発光装置が開発されている。特に、発光ダイオード(Light Emitting Diode:以下「LED」という。)と蛍光体とを組み合わせて形成した発光装置は、液晶表示装置のバックライト、照明装置等へと盛んに応用されている。 By combining a light source and a wavelength conversion member that can be excited by light from this light source and emit light of a hue different from the hue of the light source, light of various hues can be emitted according to the principle of light color mixing Light emitting devices have been developed. In particular, light emitting devices formed by combining light emitting diodes (hereinafter referred to as “LEDs”) and phosphors are actively applied to backlights, lighting devices, and the like of liquid crystal display devices.
このような蛍光体として、青緑色から緑色に発光するアルカリ土類金属アルミン酸塩蛍光体が知られ、それを用いた発光装置が提案されている(例えば、特許文献1参照)。 As such a phosphor, an alkaline earth metal aluminate phosphor that emits light from blue-green to green is known, and a light-emitting device using the same is proposed (for example, see Patent Document 1).
しかしながら、アルカリ土類金属アルミン酸塩蛍光体は、水分に晒されると加水分解して劣化するという課題がある。そこで、本開示に係る一実施形態は、耐湿性に優れるアルカリ土類金属アルミン酸塩蛍光体の製造方法を提供することを課題とする。 However, alkaline earth metal aluminate phosphors have the problem of being degraded by hydrolysis when exposed to moisture. Then, one embodiment concerning this indication makes it a subject to provide a manufacturing method of alkaline earth metal aluminate fluorescent substance excellent in moisture resistance.
前記課題を解決するための具体的手段は以下の通りであり、本発明は以下の態様を包含する。
本開示の第一態様は、下記式(1)で表される組成を有するアルカリ土類金属アルミン酸塩を含む蛍光体粒子を準備することと、準備した蛍光体粒子を、水を含む液媒体と接触させることと、接触させた液媒体の少なくとも一部を除去して精製された蛍光体粒子を得ることと、前記精製された蛍光体粒子の表面にリン酸化合物を付着させてリン酸化合物付着蛍光体粒子を得ることと、前記リン酸化合物付着蛍光体粒子を500℃以上700℃以下で熱処理することと、を含む蛍光体の製造方法である。
(Sr1−x,Eux)4Al14O25 (1)
式(1)中、xは、0.05≦x≦0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。
Specific means for solving the above problems are as follows, and the present invention includes the following aspects.
A first aspect of the present disclosure is to prepare phosphor particles containing an alkaline earth metal aluminate having a composition represented by the following formula (1), and to prepare the phosphor particles as a liquid medium containing water Contacting with the liquid, obtaining at least a part of the contacted liquid medium to obtain a purified phosphor particle, and attaching a phosphate compound to the surface of the purified phosphor particle to form a phosphate compound It is a method for producing a phosphor comprising obtaining attached phosphor particles and heat-treating the phosphoric acid compound-attached phosphor particles at 500 ° C. or more and 700 ° C. or less.
(Sr 1-x , Eu x ) 4 Al 14 O 25 (1)
In the formula (1), x satisfies 0.05 ≦ x ≦ 0.4, and a part of Sr is substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn. Also good.
本開示の第二態様は、アルカリ土類金属アルミン酸塩を含む蛍光体粒子と、蛍光体粒子の表面に配置されるリン酸化合物とを有し、示差走査熱量測定において、25℃から650℃における吸熱量が50J/g以下である蛍光体である。 A second aspect of the present disclosure includes phosphor particles containing an alkaline earth metal aluminate and a phosphoric acid compound disposed on the surface of the phosphor particles. In differential scanning calorimetry, 25 ° C. to 650 ° C. Is a phosphor having an endothermic amount of 50 J / g or less.
本開示の第三態様は、前記蛍光体と、380nm以上470nm以下の波長範囲に発光ピーク波長を有する発光素子と、を備え、発光スペクトルにおいて、前記蛍光体の発光ピーク波長における発光強度に対する、前記発光素子の発光ピーク波長における発光強度の比が、10以下である発光装置である。 A third aspect of the present disclosure includes the phosphor and a light emitting element having an emission peak wavelength in a wavelength range of 380 nm or more and 470 nm or less, and in an emission spectrum, the emission intensity at an emission peak wavelength of the phosphor The light-emitting device has a light emission intensity ratio at a light emission peak wavelength of the light-emitting element of 10 or less.
本開示に係る一実施形態によれば、耐湿性に優れるアルカリ土類金属アルミン酸塩蛍光体の製造方法を提供することができる。 According to one embodiment of the present disclosure, a method for producing an alkaline earth metal aluminate phosphor having excellent moisture resistance can be provided.
以下、本開示に係る蛍光体の製造方法、蛍光体及び発光装置を説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに限定するものではない。なお、本明細書において色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。蛍光体の平均粒径は、フィッシャー・サブ・シーブ・サイザーズ・ナンバー(Fisher Sub Sieve Sizer's No.)と呼ばれる数値であり、空気透過法を用いて測定される。また蛍光体の体積メジアン径(Dm)はコールター原理に基づく細孔電気抵抗法により測定される。具体的には粒度分布測定装置(例えば、ベックマン・コールター社製Multisizer)を用いて粒度分布を測定し、小径側からの体積累積50%に対応する粒径として体積メジアン径(Dm)が求められる。 Hereinafter, the phosphor manufacturing method, the phosphor, and the light emitting device according to the present disclosure will be described. However, the embodiment described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In this specification, the relationship between color names and chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like are in accordance with JIS Z8110. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The average particle diameter of the phosphor is a numerical value called “Fisher Sub Sieve Sizer's No.” and is measured using an air permeation method. The volume median diameter (Dm) of the phosphor is measured by a pore electrical resistance method based on the Coulter principle. Specifically, the particle size distribution is measured using a particle size distribution measuring apparatus (for example, Multisizer manufactured by Beckman Coulter, Inc.), and the volume median diameter (Dm) is obtained as the particle diameter corresponding to 50% of the cumulative volume from the small diameter side. .
[蛍光体の製造方法]
本実施形態に係る蛍光体の製造方法は、特定組成のアルカリ土類金属アルミン酸塩を含む蛍光体粒子を準備することと、準備した蛍光体粒子を精製処理して精製された蛍光体粒子を得ることと、前記精製された蛍光体粒子の表面にリン酸化合物を付着させてリン酸化合物付着蛍光体粒子を得ることと、前記リン酸化合物付着蛍光体粒子を500℃以上700℃以下の温度で熱処理することと、を含む。本実施形態の製造方法で得られる蛍光体は、アルカリ土類金属アルミン酸塩を含む蛍光体粒子の表面に特定の温度で熱処理されたリン酸化合物が配置されており、優れた耐湿性を有する。
[Phosphor production method]
The method for producing a phosphor according to the present embodiment includes preparing phosphor particles containing an alkaline earth metal aluminate having a specific composition, and purifying the prepared phosphor particles by purifying the prepared phosphor particles. Obtaining a phosphoric acid compound-attached phosphor particle by attaching a phosphoric acid compound to the surface of the purified phosphor particle; and heating the phosphoric acid compound-attached phosphor particle to a temperature of 500 ° C. to 700 ° C. Heat-treating with. The phosphor obtained by the manufacturing method of the present embodiment has a phosphoric acid compound that has been heat-treated at a specific temperature on the surface of phosphor particles containing alkaline earth metal aluminate, and has excellent moisture resistance. .
アルカリ土類金属アルミン酸塩
蛍光体粒子に含まれるアルカリ土類金属アルミン酸塩は、少なくとも220nm以上470nm以下の光で励起され、440nm以上530nm以下の範囲に発光ピーク波長を有する光を発する。アルカリ土類金属アルミン酸塩としては、例えば、下記式で表される組成を有する蛍光性化合物を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
(Sr1−x,Eux)4Al14O25 (1)
(式中、xは0.05≦x≦0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい)
(Sr1−x−y,Eux,Dyy)4Al14O25 (2)
(式中、x+yは0.05<x+y<0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい)
(Sr1−x,Eux)Al2O4 (3)
(式中、xは0.05<x<0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい)
(Sr1−x−y,Eux,Dyy)Al2O4 (4)
(式中、x+yは0.05<x+y<0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい)
Alkaline earth metal aluminate The alkaline earth metal aluminate contained in the phosphor particles is excited by light of at least 220 nm to 470 nm and emits light having an emission peak wavelength in the range of 440 nm to 530 nm. Examples of the alkaline earth metal aluminate include a fluorescent compound having a composition represented by the following formula, and at least one selected from the group consisting of these is preferable.
(Sr 1-x , Eu x ) 4 Al 14 O 25 (1)
(Wherein x satisfies 0.05 ≦ x ≦ 0.4, and part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn)
(Sr 1-xy , Eu x , Dy y ) 4 Al 14 O 25 (2)
(Wherein x + y satisfies 0.05 <x + y <0.4, and a part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn)
(Sr 1-x , Eu x ) Al 2 O 4 (3)
(Wherein x satisfies 0.05 <x <0.4, and a part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn)
(Sr 1-x-y, Eu x, Dy y) Al 2 O 4 (4)
(Wherein x + y satisfies 0.05 <x + y <0.4, and a part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn)
これらのうち、アルカリ土類金属アルミン酸塩は、発光特性の観点から、式(1)及び(3)からなる群から選択される少なくとも1種が好ましく、式(1)で表される組成を有することがより好ましい。 Among these, the alkaline earth metal aluminate is preferably at least one selected from the group consisting of formulas (1) and (3) from the viewpoint of light emission characteristics, and has a composition represented by formula (1). More preferably.
蛍光体粒子
蛍光体粒子に含まれるアルカリ土類金属アルミン酸塩の含有率は、例えば80質量%以上であり、90質量%以上が好ましく、実質的にアルカリ土類金属アルミン酸塩からなることがより好ましい。不純物相やアルカリ土類金属アルミン酸塩以外の結晶構造が少ないほど、蛍光体としての結晶性が高く、発光効率が向上する傾向がある。蛍光体粒子の空気透過法を用いて測定される平均粒子径は、例えば5μm以上であり、10μm以上が好ましく、また例えば30μm以下であり、25μm以下が好ましい。また細孔電気抵抗法を用いて測定される体積メジアン径は、例えば10μm以上であり、15μm以上が好ましく、また例えば35μm以下であり、30μm以下が好ましい。平均粒径および体積メジアン径が上記下限値以上であると、蛍光体粒子の発光効率が向上する傾向がある。また、平均粒径および体積メジアン径が上記上限値以下であると、蛍光体粒子を含む蛍光部材を製造する際の作業性がより向上する傾向がある。
Phosphor particles The content of the alkaline earth metal aluminate contained in the phosphor particles is, for example, 80% by mass or more, preferably 90% by mass or more, and is substantially composed of alkaline earth metal aluminate. More preferred. The smaller the crystal structure other than the impurity phase and alkaline earth metal aluminate, the higher the crystallinity as a phosphor and the higher the light emission efficiency. The average particle diameter measured using the air permeation method of the phosphor particles is, for example, 5 μm or more, preferably 10 μm or more, and for example, 30 μm or less, preferably 25 μm or less. The volume median diameter measured using the pore electrical resistance method is, for example, 10 μm or more, preferably 15 μm or more, and for example, 35 μm or less, preferably 30 μm or less. When the average particle diameter and the volume median diameter are not less than the above lower limit value, the luminous efficiency of the phosphor particles tends to be improved. Further, when the average particle diameter and the volume median diameter are not more than the above upper limit values, the workability when producing a fluorescent member containing phosphor particles tends to be further improved.
蛍光体粒子は、耐湿性の観点から、その構成成分の表面からの水に対する溶出が抑制されたものであることが好ましい。例えば、蛍光体粒子の25℃における純水に対する溶出量は、アルカリ土類金属の検出量として、例えば、300ppm以下であり、50ppm以下であることが好ましく、40ppm以下がより好ましい。 From the viewpoint of moisture resistance, the phosphor particles are preferably those in which elution of water from the surface of the constituent components is suppressed. For example, the elution amount of the phosphor particles with respect to pure water at 25 ° C. is, for example, 300 ppm or less, preferably 50 ppm or less, more preferably 40 ppm or less as the detected amount of alkaline earth metal.
溶出したアルカリ土類金属の検出量は、以下のようにして測定される。蛍光体粒子50gと純水100mlとをφ65mmのポリ容器(容量250ml)に入れて、ロールミキサーに載せ、25℃の環境下、85rpmで2時間、回転撹拌した後の上澄み液をサンプルとし、ICP−AES(高周波誘導結合プラズマ発光分光分析法)を用いて測定される。 The detected amount of the eluted alkaline earth metal is measured as follows. Put 50 g of phosphor particles and 100 ml of pure water in a 65 mm diameter plastic container (capacity: 250 ml), place on a roll mixer, and rotate and stir for 2 hours at 85 rpm in an environment of 25 ° C. -Measured using AES (High Frequency Inductively Coupled Plasma Atomic Emission Spectroscopy).
構成成分の溶出が抑制された蛍光体粒子は、例えば、蛍光体粒子を洗浄して精製することで調製することができる。具体的には、アルカリ土類金属アルミン酸塩を含む蛍光体粒子を準備することと、準備した蛍光体粒子を、水を含む液媒体と接触させることと、接触させた液媒体の少なくとも一部を除去して精製された蛍光体粒子を得ることと、を含む精製方法によって調製することができる。 The phosphor particles in which the elution of the constituent components is suppressed can be prepared, for example, by washing and purifying the phosphor particles. Specifically, preparing phosphor particles containing an alkaline earth metal aluminate, contacting the prepared phosphor particles with a liquid medium containing water, and at least a part of the contacted liquid medium To obtain a purified phosphor particle, and a purification method comprising:
アルカリ土類金属アルミン酸塩を含む蛍光体粒子は、例えば、「蛍光体ハンドブック」、蛍光体同学会編(オーム社)、227〜228頁等に記載の製造方法を参照して製造して準備することができる。また、市販されているものから、所望の特性を有する蛍光体を選択して準備してもよい。
準備した蛍光体粒子には、分散処理、篩処理、分級処理等を行ってもよい。
Phosphor particles containing alkaline earth metal aluminate are prepared by referring to the production method described in, for example, “Phosphor Handbook”, edited by Phosphors Association (Ohm), pages 227-228, etc. can do. Moreover, you may prepare by selecting the fluorescent substance which has a desired characteristic from what is marketed.
The prepared phosphor particles may be subjected to dispersion treatment, sieving treatment, classification treatment, and the like.
準備した蛍光体粒子を接触させる水を含む液媒体は、酸性化合物を含んでいてもよい。酸性化合物としては、例えば、塩酸、硝酸、硫酸、酢酸等を挙げることができる。酸性化合物を含む液媒体のpHは例えば1から5とすることができる。
蛍光体粒子と接触させる液媒体の量は、例えば蛍光体粒子に対して、質量基準で1から20倍であり、5から15倍が好ましい。
The liquid medium containing water with which the prepared phosphor particles are brought into contact may contain an acidic compound. Examples of acidic compounds include hydrochloric acid, nitric acid, sulfuric acid, acetic acid and the like. The pH of the liquid medium containing the acidic compound can be set to 1 to 5, for example.
The amount of the liquid medium brought into contact with the phosphor particles is, for example, 1 to 20 times on the mass basis, and preferably 5 to 15 times the phosphor particles.
蛍光体粒子と液媒体の接触は、例えば液媒体に蛍光体粒子を浸漬することで行うことができ、必要に応じて撹拌してもよい。接触時の温度は例えば15℃から40℃であり、接触時間は例えば1分から30分とすることができる。 The contact between the phosphor particles and the liquid medium can be performed, for example, by immersing the phosphor particles in the liquid medium, and may be agitated as necessary. The temperature at the time of contact is, for example, 15 ° C. to 40 ° C., and the contact time can be, for example, 1 minute to 30 minutes.
液媒体の除去は、例えば固液分離により行うことができ、必要に応じて乾燥処理を行ってもよい。
蛍光体粒子に対する液媒体の接触と除去は、1回のみでもよく、複数回行ってもよい。
The removal of the liquid medium can be performed, for example, by solid-liquid separation, and a drying process may be performed as necessary.
Contact and removal of the liquid medium with respect to the phosphor particles may be performed only once or a plurality of times.
リン酸化合物
蛍光体粒子の表面にはリン酸化合物を付着させる。リン酸化合物としては、リン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、リン酸バリウム等の第2族元素(アルカリ土類金属)リン酸塩;リン酸スカンジウム、リン酸イットリウム、ランタノイド(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,及びLu)のリン酸塩等の希土類リン酸塩;リン酸ホウ素、リン酸アルミニウム、リン酸ガリウム、リン酸インジウム等の第13族元素リン酸塩;リン酸亜鉛、リン酸アンチモン、リン酸ビスマス等が挙げられ、これらからなる群から選択される少なくとも1種が好ましい。より好ましくは、第2族元素リン酸塩、希土類リン酸塩及び第13族元素リン酸塩からなる群から選択される少なくとも1種である。更に好ましくは、リン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、リン酸バリウム、リン酸アルミニウム、リン酸ガリウム、リン酸スカンジウム、リン酸イットリウム及びリン酸ランタンを含むランタノイドリン酸塩からなる群から選択される少なくとも1種であり、特に好ましくは、リン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、リン酸バリウム、リン酸イットリウム及びリン酸ランタンを含むランタノイドリン酸塩からなる群から選択される少なくとも1種である。
Phosphoric acid compound A phosphoric acid compound is attached to the surface of the phosphor particles. Examples of phosphate compounds include Group 2 elements (alkaline earth metals) phosphates such as magnesium phosphate, calcium phosphate, strontium phosphate, and barium phosphate; scandium phosphate, yttrium phosphate, lanthanoids (La, Ce, Pr) , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) phosphates such as phosphates; boron phosphate, aluminum phosphate, gallium phosphate, phosphorus Group 13 element phosphates such as indium oxide; zinc phosphate, antimony phosphate, bismuth phosphate and the like can be mentioned, and at least one selected from the group consisting of these is preferable. More preferably, it is at least one selected from the group consisting of Group 2 element phosphates, rare earth phosphates and Group 13 element phosphates. More preferably, it is selected from the group consisting of magnesium phosphate, calcium phosphate, strontium phosphate, barium phosphate, aluminum phosphate, gallium phosphate, scandium phosphate, yttrium phosphate and lanthanide phosphate. It is at least one, and particularly preferably at least one selected from the group consisting of magnesium phosphate, calcium phosphate, strontium phosphate, barium phosphate, yttrium phosphate and lanthanum phosphate.
蛍光体粒子の表面にリン酸化合物を付着させる方法としては、乾式又は湿式の分散処理で所望のリン酸化合物を蛍光体表面に付着させる方法、液媒体中で所望のリン酸化合物を生成させて蛍光体表面に付着させる方法、乾式で蛍光体粒子にリン酸化合物を含むスラリーを噴霧する方法等を挙げることができる。これらのうち、耐湿性の観点から、液媒体中で所望のリン酸化合物を生成させて蛍光体表面に付着させる方法が好ましい。 As a method of attaching the phosphoric acid compound to the surface of the phosphor particles, a method of attaching a desired phosphoric acid compound to the surface of the phosphor by a dry or wet dispersion treatment, or generating a desired phosphoric acid compound in a liquid medium. Examples thereof include a method of adhering to the phosphor surface, a method of spraying a slurry containing a phosphoric acid compound on the phosphor particles by a dry method, and the like. Among these, from the viewpoint of moisture resistance, a method of generating a desired phosphoric acid compound in a liquid medium and attaching it to the phosphor surface is preferable.
液媒体中で所望のリン酸化合物を生成させて蛍光体表面に付着させる方法は、例えば蛍光体粒子を含む液媒体中で、リン酸化合物を形成する陽イオンとリン酸イオンとを接触させることを含む。リン酸化合物を形成する陽イオンとリン酸イオンとが接触することで所望のリン酸化合物が生成し、これが蛍光体表面に析出することで、リン酸化合物を蛍光体表面に付着させることができる。また、リン酸化合物を形成する陽イオンとリン酸イオンとを液媒体中で接触させて所望のリン酸化合物を生成させた後、蛍光体と接触させてもよい。 A method of generating a desired phosphate compound in a liquid medium and attaching it to the phosphor surface is, for example, contacting a cation forming a phosphate compound with a phosphate ion in a liquid medium containing phosphor particles. including. A desired phosphoric acid compound is produced by contacting the cation forming the phosphoric acid compound with the phosphoric acid ion, and the phosphoric acid compound can be adhered to the phosphor surface by being deposited on the phosphor surface. . Moreover, after making the cation and phosphate ion which form a phosphate compound contact in a liquid medium and producing | generating a desired phosphate compound, you may make it contact with fluorescent substance.
例えば、リン酸化合物がリン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、リン酸バリウム、リン酸アルミニウム、リン酸ガリウム、リン酸スカンジウム、リン酸イットリウム又はランタノイドリン酸塩を含む場合、カルシウムイオン、マグネシウムイオン、ストロンチウムイオン、バリウムイオン、アルミニウムイオン、ガリウムイオン、スカンジウムイオン、イットリウムイオン及びランタノイドイオンからなる群から選ばれる少なくとも1種の陽イオンと、リン酸イオンとを接触させて、前記蛍光体粒子の表面に前記リン酸化合物を付着させることができる。また例えば、リン酸化合物がリン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、リン酸バリウム、リン酸イットリウム又はランタノイドリン酸塩を含む場合、カルシウムイオン、マグネシウムイオン、ストロンチウムイオン、バリウムイオン、イットリウムイオン及びランタノイドイオンからなる群から選ばれる少なくとも1種の陽イオンと、リン酸イオンとを接触させて、前記蛍光体粒子の表面に前記リン酸化合物を付着させることができる。また、リン酸化合物を形成する陽イオンとリン酸イオンとを液媒体中で接触させて所望のリン酸化合物を生成させた後、蛍光体粒子と接触させてリン酸化合物を付着させてもよい。 For example, when the phosphate compound contains magnesium phosphate, calcium phosphate, strontium phosphate, barium phosphate, aluminum phosphate, gallium phosphate, scandium phosphate, yttrium phosphate or lanthanoid phosphate, calcium ion, magnesium ion, At least one cation selected from the group consisting of strontium ions, barium ions, aluminum ions, gallium ions, scandium ions, yttrium ions, and lanthanoid ions and phosphate ions are brought into contact with the surface of the phosphor particles. The phosphate compound can be attached. Also, for example, when the phosphate compound contains magnesium phosphate, calcium phosphate, strontium phosphate, barium phosphate, yttrium phosphate or lanthanoid phosphate, calcium ion, magnesium ion, strontium ion, barium ion, yttrium ion and lanthanoid ion The phosphoric acid compound can be attached to the surface of the phosphor particles by bringing a phosphate ion into contact with at least one cation selected from the group consisting of: In addition, a cation forming a phosphate compound and a phosphate ion may be brought into contact with each other in a liquid medium to form a desired phosphate compound, and then the phosphoric acid compound may be attached by being brought into contact with phosphor particles. .
リン酸化合物を形成する陽イオン(以下、「特定陽イオン」ともいう)とリン酸イオンの接触は、例えば、蛍光体粒子を含む液媒体に、リン酸イオンを含む溶液と所望の陽イオンを含む溶液とを加えることで行なうことができる。また、蛍光体粒子とリン酸イオンを含む液媒体に、所望の陽イオンを含む溶液を加えてもよい。 Contact between a cation forming a phosphate compound (hereinafter also referred to as “specific cation”) and a phosphate ion is performed by, for example, bringing a solution containing a phosphate ion and a desired cation into a liquid medium containing phosphor particles. It can carry out by adding the solution containing. Further, a solution containing a desired cation may be added to a liquid medium containing phosphor particles and phosphate ions.
特定陽イオンとリン酸イオンとの接触に用いる液媒体は、例えば水を含み、必要に応じて有機溶剤、pH調整剤等を含んでいてもよい。液媒体が含み得る有機溶剤としては、エタノール、イソプロパノール等のアルコールなどを挙げることができる。pH調整剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム等の塩基性化合物、塩酸、硝酸、硫酸、酢酸等の酸性化合物が挙げられる。液媒体がpH調整剤を含む場合、液媒体のpHは、例えば4から12であり、6から9が好ましい。なお、液媒体のpHはリン酸化合物を形成する陽イオン及びリン酸イオンを含んだ状態での測定値である。 The liquid medium used for the contact between the specific cation and the phosphate ion includes, for example, water, and may include an organic solvent, a pH adjuster, and the like as necessary. Examples of the organic solvent that can be contained in the liquid medium include alcohols such as ethanol and isopropanol. Examples of the pH adjuster include basic compounds such as ammonia, sodium hydroxide, and potassium hydroxide, and acidic compounds such as hydrochloric acid, nitric acid, sulfuric acid, and acetic acid. When the liquid medium includes a pH adjuster, the pH of the liquid medium is, for example, 4 to 12, and preferably 6 to 9. In addition, pH of a liquid medium is a measured value in the state containing the cation and phosphate ion which form a phosphate compound.
蛍光体粒子に対する液媒体の質量比率は、例えば100質量%以上1000質量%以下であり、200質量%以上800質量%以下が好ましい。液媒体の質量比率が下限値以上であると、リン酸化合物を蛍光体粒子表面により均一に付着させることが容易になり、液媒体の質量比率が上限値以下であるとリン酸化合物の蛍光体への付着率がより向上する傾向がある。 The mass ratio of the liquid medium to the phosphor particles is, for example, 100% by mass to 1000% by mass, and preferably 200% by mass to 800% by mass. When the mass ratio of the liquid medium is equal to or higher than the lower limit, the phosphoric acid compound can be more uniformly attached to the surface of the phosphor particles, and when the mass ratio of the liquid medium is equal to or lower than the upper limit, the phosphor of the phosphoric acid compound There exists a tendency for the adhesion rate to to improve more.
リン酸イオンには、オルトリン酸イオン、ポリリン酸(メタリン酸)イオン、亜リン酸イオン、次亜リン酸イオンが含まれる。ポリリン酸イオンには、ピロリン酸イオン、トリポリリン酸イオン等の直鎖構造のポリリン酸イオン、ヘキサメタリン酸等の環状ポリリン酸イオンが含まれる。 The phosphate ion includes orthophosphate ion, polyphosphate (metaphosphate) ion, phosphite ion, and hypophosphite ion. Polyphosphate ions include polyphosphate ions having a linear structure such as pyrophosphate ions and tripolyphosphate ions, and cyclic polyphosphate ions such as hexametaphosphate.
リン酸イオンを含む溶液は、水等の溶媒にリン酸イオン源となる化合物が溶解した溶液である。リン酸イオン源として具体的には、リン酸;メタリン酸;リン酸ナトリウム、リン酸カリウム等のアルカリ金属リン酸塩;リン酸水素ナトリウム、リン酸水素カリウム等のアルカリ金属リン酸水素塩;リン酸二水素ナトリウム、リン酸二水素カリウム等のアルカリ金属リン酸二水素塩;ヘキサメタリン酸ナトリウム、ヘキサメタリン酸カリウム等のアルカリ金属ヘキサメタリン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;リン酸アンモニウム等のリン酸アンモニウム塩等が挙げられる。 The solution containing phosphate ions is a solution in which a compound serving as a phosphate ion source is dissolved in a solvent such as water. Specific examples of the phosphate ion source include phosphoric acid; metaphosphoric acid; alkali metal phosphates such as sodium phosphate and potassium phosphate; alkali metal hydrogen phosphates such as sodium hydrogen phosphate and potassium hydrogen phosphate; phosphorus Alkali metal dihydrogen phosphates such as sodium dihydrogen phosphate and potassium dihydrogen phosphate; alkali metal hexametaphosphates such as sodium hexametaphosphate and potassium hexametaphosphate; alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate; Examples thereof include ammonium phosphate salts such as ammonium phosphate.
特定陽イオンとリン酸イオンとを接触させる液媒体における、リン酸イオン源の濃度はリン酸イオン(PO4 3−)の含有率として、例えば0.1質量%以上5.0質量%以下であり、0.2質量%以上3.0質量%以下が好ましい。また液媒体における蛍光体粒子量に対するリン酸イオン源の含有率は、例えば0.5質量%以上20.0質量%以下であり、1.0質量%以上10.0質量%以下が好ましい。リン酸イオン源の濃度が下限値以上であると、リン酸化合物の蛍光体への付着率がより向上する傾向があり、リン酸イオン源の濃度が上限値以下であると、リン酸化合物を蛍光体粒子表面により均一に付着させることが容易になる傾向がある。 The concentration of the phosphate ion source in the liquid medium in which the specific cation and the phosphate ion are brought into contact is, for example, 0.1% by mass or more and 5.0% by mass or less as the content of phosphate ion (PO 4 3− ). Yes, 0.2 mass% or more and 3.0 mass% or less are preferable. Moreover, the content rate of the phosphate ion source with respect to the quantity of the fluorescent substance particles in a liquid medium is 0.5 mass% or more and 20.0 mass% or less, for example, and 1.0 mass% or more and 10.0 mass% or less are preferable. When the concentration of the phosphate ion source is not less than the lower limit, the adhesion rate of the phosphate compound to the phosphor tends to be further improved, and when the concentration of the phosphate ion source is not more than the upper limit, It tends to be easier to adhere more uniformly to the phosphor particle surface.
特定陽イオンを含む溶液は、水等の溶媒に陽イオン源となる化合物(例えば金属塩)を溶解することで調製することができる。金属塩を構成する陰イオンとしては、硝酸イオン、硫酸イオン、酢酸イオン、塩化物イオン等を挙げることができる。 A solution containing a specific cation can be prepared by dissolving a compound (for example, a metal salt) serving as a cation source in a solvent such as water. Examples of the anion constituting the metal salt include nitrate ion, sulfate ion, acetate ion, chloride ion and the like.
特定陽イオンとリン酸イオンとを接触させる液媒体における、特定陽イオンの含有率は、例えば0.05質量%以上4.0質量%以下であり、0.1質量%以上3.0質量%以下が好ましい。また液媒体における蛍光体粒子量に対する特定陽イオンの含有率は、例えば0.1質量%以上15質量%以下であり、0.2質量%以上8.0質量%以下が好ましい。特定陽イオンの含有率が上記下限値以上であると、リン酸化合物の蛍光体への付着率がより向上する傾向があり、特定陽イオンの含有率が上記上限値以下であると、リン酸化合物を蛍光体粒子表面により均一に付着させることが容易になる傾向がある。 The content rate of the specific cation in the liquid medium in which the specific cation and the phosphate ion are brought into contact is, for example, 0.05% by mass or more and 4.0% by mass or less, and 0.1% by mass or more and 3.0% by mass. The following is preferred. Moreover, the content rate of the specific cation with respect to the amount of phosphor particles in the liquid medium is, for example, 0.1% by mass or more and 15% by mass or less, and preferably 0.2% by mass or more and 8.0% by mass or less. When the content rate of the specific cation is not less than the above lower limit value, the adhesion rate of the phosphoric acid compound to the phosphor tends to be further improved, and when the content rate of the specific cation is not more than the above upper limit value, phosphoric acid. It tends to be easier to adhere the compound more uniformly to the phosphor particle surface.
リン酸化合物を形成する陽イオンとリン酸イオンとの接触温度は、例えば10℃から50℃であり、20℃から35℃が好ましい。また接触時間は、例えば1分から1時間であり、3分から30分が好ましい。接触は液媒体を撹拌しながら行ってもよい。
蛍光体粒子にリン酸化合物を付着させた後、例えば固液分離、乾燥処理を行うことでリン酸化合物付着蛍光体粒子を得ることができる。乾燥処理は、室温で行ってもよく、加熱して行ってもよい。乾燥処理で加熱する場合、例えば95℃から115℃とすることができる。
The contact temperature between the cation forming the phosphate compound and the phosphate ion is, for example, 10 ° C. to 50 ° C., and preferably 20 ° C. to 35 ° C. The contact time is, for example, 1 minute to 1 hour, and preferably 3 minutes to 30 minutes. The contact may be performed while stirring the liquid medium.
After making a phosphoric acid compound adhere to fluorescent substance particles, phosphoric acid compound adhesion fluorescent substance particles can be obtained by performing solid-liquid separation and drying processing, for example. The drying process may be performed at room temperature or may be performed by heating. When heating by a drying process, it can be 95 degreeC to 115 degreeC, for example.
蛍光体粒子表面へのリン酸化合物の付着は、ファンデルワールス力、静電相互作用等の物理的な相互作用、部分的な化学反応による化学的な相互作用等のいずれによるものであってもよい。また、リン酸化合物は粒子状態で付着していても、膜状に付着していてもよく、耐湿性の観点から、少なくとも一部は膜状に付着していることが好ましい。 The phosphoric acid compound adheres to the surface of the phosphor particles regardless of whether it is a Van der Waals force, a physical interaction such as electrostatic interaction, or a chemical interaction due to a partial chemical reaction. Good. Further, the phosphoric acid compound may be attached in the form of particles or may be attached in a film form, and at least a part of the phosphate compound is preferably attached in a film form from the viewpoint of moisture resistance.
リン酸化合物付着蛍光体粒子におけるリン酸化合物の付着量は、例えばリン酸の含有率として0.0001質量%以上20質量%以下であり、0.1質量%以上10質量%以下が好ましく、1.5質量%以上5.6質量%以下がより好ましい。リン酸化合物の付着量が上記下限値以上であると充分な耐湿性が得られる傾向がある。また上記上限値以下であると蛍光体としての発光特性の低下を抑制することができる。また、リン酸化合物を構成する金属の含有率として0.0001質量%以上20質量%以下であり、0.01質量%以上10質量%以下が好ましく、0.36質量%以上1.4質量%以下がより好ましい。この範囲内であるとリン酸化合物の結晶構造や組成が本発明の目的を達成する上でより効果的になる傾向がある。 The amount of the phosphoric acid compound attached to the phosphoric acid compound-attached phosphor particles is, for example, 0.0001% by mass or more and 20% by mass or less, preferably 0.1% by mass or more and 10% by mass or less as the phosphoric acid content. More preferably, the content is from 5% by mass to 5.6% by mass. There exists a tendency for sufficient moisture resistance to be acquired as the adhesion amount of a phosphoric acid compound is more than the said lower limit. Moreover, the fall of the light emission characteristic as fluorescent substance can be suppressed as it is below the said upper limit. Further, the content of the metal constituting the phosphoric acid compound is 0.0001% by mass or more and 20% by mass or less, preferably 0.01% by mass or more and 10% by mass or less, and 0.36% by mass or more and 1.4% by mass. The following is more preferable. Within this range, the crystal structure and composition of the phosphate compound tend to be more effective in achieving the object of the present invention.
ここでリン酸化合物付着蛍光体粒子におけるリン酸及びリン酸化合物を構成する金属の含有率はそれぞれ、ICP−AES(高周波誘導結合プラズマ発光分光分析法)を用いて測定することができる。リン酸はリン酸イオン(PO4 3−)として換算した値を示す。またリン酸化合物付着蛍光体粒子におけるリン酸化合物の含有率は、リン酸の含有率とリン酸化合物を構成する金属の含有率の和として求められる。 Here, the phosphoric acid and phosphorous compound-containing metal content in the phosphoric acid compound-attached phosphor particles can be measured using ICP-AES (High Frequency Inductively Coupled Plasma Emission Spectroscopy). Phosphoric acid shows the value converted as phosphate ion (PO 4 3− ). Moreover, the content rate of the phosphoric acid compound in phosphoric acid compound adhesion fluorescent substance particles is calculated | required as the sum of the content rate of a phosphoric acid, and the content rate of the metal which comprises a phosphoric acid compound.
熱処理
得られたリン酸化合物付着蛍光体粒子は、500℃以上700℃以下、好ましくは550℃以上650℃以下で熱処理される。特定の温度範囲で熱処理することにより、耐湿性と発光効率とに優れる蛍光体を得ることができる。これは例えば、熱処理により、吸着水、結晶水等が除去されたり、付着したリン酸化合物の結晶性、化学的安定性等が改善されたりするため、優れた耐湿性が達成できると考えられる。
Heat treatment The phosphor compound-attached phosphor particles obtained are heat-treated at a temperature of 500 ° C. or higher and 700 ° C. or lower, preferably 550 ° C. or higher and 650 ° C. or lower. By performing a heat treatment in a specific temperature range, a phosphor excellent in moisture resistance and luminous efficiency can be obtained. For example, it is considered that excellent moisture resistance can be achieved because adsorbed water, crystal water and the like are removed by heat treatment, and the crystallinity and chemical stability of the adhered phosphate compound are improved.
熱処理の時間は、例えば1時間から20時間であり、3時間から15時間が好ましい。
熱処理時の雰囲気は、例えば大気、不活性ガス雰囲気とすることができ、大気に不活性ガスを混合した雰囲気としてもよい。不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン等の希ガスが挙げられる。また熱処理の雰囲気は、非還元性雰囲気又は低還元性雰囲気であることが好ましく、例えば水素ガスの濃度が3体積%以下であり、1体積%以下が好ましい。
また熱処理時の圧力は、例えば0.05MPaから0.2MPaである。
The heat treatment time is, for example, 1 hour to 20 hours, and preferably 3 hours to 15 hours.
The atmosphere at the time of heat treatment can be, for example, air or an inert gas atmosphere, or an atmosphere in which an inert gas is mixed with the air. Examples of the inert gas include rare gases such as nitrogen, helium, and argon. The heat treatment atmosphere is preferably a non-reducing atmosphere or a low reducing atmosphere. For example, the concentration of hydrogen gas is 3% by volume or less, and preferably 1% by volume or less.
The pressure during the heat treatment is, for example, 0.05 MPa to 0.2 MPa.
熱処理して得られた蛍光体には、必要に応じて解砕処理、分散処理、篩処理、分級処理等をおこなってもよい。 The phosphor obtained by the heat treatment may be subjected to a crushing process, a dispersion process, a sieving process, a classification process, and the like as necessary.
前記製造方法により、アルカリ土類金属アルミン酸塩を含む蛍光体粒子と、蛍光体粒子の表面に配置されるリン酸化合物とを有し、示差走査熱量測定において、25℃から650℃における吸熱量が50J/g以下である蛍光体を効率的に製造することができる。得られる蛍光体は、優れた耐湿性を有する。 According to the manufacturing method, phosphor particles containing an alkaline earth metal aluminate and a phosphoric acid compound disposed on the surface of the phosphor particles, and in the differential scanning calorimetry, the endotherm at 25 ° C. to 650 ° C. Can be produced efficiently with a phosphor of 50 J / g or less. The obtained phosphor has excellent moisture resistance.
[蛍光体]
本実施形態に係る蛍光体は、アルカリ土類金属アルミン酸塩を含む蛍光体粒子と、その蛍光体粒子の表面に配置されるリン酸化合物とを有し、示差走査熱量測定において、25℃から650℃における吸熱量が50J/g以下である。
[Phosphor]
The phosphor according to the present embodiment has phosphor particles containing an alkaline earth metal aluminate and a phosphoric acid compound disposed on the surface of the phosphor particles, and in differential scanning calorimetry, from 25 ° C. The endothermic amount at 650 ° C. is 50 J / g or less.
本実施形態に係る蛍光体は、蛍光体を構成する蛍光体粒子表面に配置されるリン酸化合物が、特定の温度範囲における吸熱量が特定の値以下となる状態で配置されており、優れた耐湿性を示すことができる。蛍光体は例えば、既述の蛍光体の製造方法で製造することができる。 In the phosphor according to the present embodiment, the phosphoric acid compound disposed on the surface of the phosphor particles constituting the phosphor is disposed in a state where the endothermic amount in a specific temperature range is a specific value or less. It can show moisture resistance. The phosphor can be manufactured, for example, by the above-described phosphor manufacturing method.
アルカリ土類金属アルミン酸塩は、少なくとも220nm以上470nm以下の光で励起され、440nm以上530nm以下の範囲に発光ピーク波長を有する光を発する。アルカリ土類金属アルミン酸塩として具体的には、既述の式(1)から(4)からなる群から選択されるいずれかの式で表される組成を有する化合物であることが好ましく、発光特性の観点から、式(1)及び(3)からなる群から選択されるいずれかの式で表される組成を有する少なくとも1種が好ましく、下記式(1)で表される組成を有することがより好ましい。
(Sr1−x,Eux)4Al14O25 (1)
式(1)中、xは、0.05≦x≦0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。発光効率の観点から、xは0.1≦x≦0.3を満たすことが好ましい。Srの一部がMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されている場合、その置換量は例えば50モル%以下であり、1モル%以上30モル%以下が好ましい。
The alkaline earth metal aluminate is excited by light of at least 220 nm to 470 nm and emits light having an emission peak wavelength in the range of 440 nm to 530 nm. Specifically, the alkaline earth metal aluminate is preferably a compound having a composition represented by any one selected from the group consisting of the aforementioned formulas (1) to (4), and emitting light From the viewpoint of characteristics, at least one having a composition represented by any formula selected from the group consisting of formulas (1) and (3) is preferable, and has a composition represented by the following formula (1) Is more preferable.
(Sr 1-x , Eu x ) 4 Al 14 O 25 (1)
In the formula (1), x satisfies 0.05 ≦ x ≦ 0.4, and a part of Sr is substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn. Also good. From the viewpoint of luminous efficiency, x preferably satisfies 0.1 ≦ x ≦ 0.3. When a part of Sr is substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn, the substitution amount is, for example, 50 mol% or less, and 1 mol% or more and 30 mol% The following is preferred.
リン酸化合物は、蛍光体粒子の表面に配置される。リン酸化合物の詳細は既述のとおりであり、好ましい態様も同様である。リン酸化合物の配置は、ファンデルワールス力、静電相互作用等の物理的な相互作用、部分的な化学反応による化学的な相互作用等のいずれによるものであってもよい。また、リン酸化合物は粒子状態で配置されていても、膜状に配置されていてもよく、耐湿性をより向上させるため、膜状に配置されていることが好ましい。ここで、リン酸化合物が膜状に配置されているとは、リン酸化合物粒子が観察されず、蛍光体粒子の表面が、その面積の50%以上、好ましくは70%以上をリン酸化合物に覆われていることを言う。 The phosphoric acid compound is disposed on the surface of the phosphor particles. The details of the phosphoric acid compound are as described above, and the preferred embodiments are also the same. The arrangement of the phosphoric acid compound may be any of physical interaction such as van der Waals force and electrostatic interaction, chemical interaction due to partial chemical reaction, and the like. Moreover, the phosphoric acid compound may be arrange | positioned in the particle | grain state, may be arrange | positioned at the film form, and in order to improve moisture resistance more, it is preferable to arrange | position at the film form. Here, the phosphoric acid compound is arranged in the form of a film means that phosphoric acid compound particles are not observed, and the surface of the phosphor particles accounts for 50% or more, preferably 70% or more of the area of the phosphor particles. Say that it is covered.
蛍光体におけるリン酸化合物の含有率は、蛍光体の総質量中に、例えばリン酸の含有率として0.0001質量%以上20質量%以下であり、0.1質量%以上10質量%以下が好ましく、1質量%以上8質量%以下がより好ましく、1.5質量%以上5.6質量%以下がさらに好ましい。リン酸化合物の含有率が上記下限値以上であると充分な耐湿性が得られる傾向があり、上記上限値以下であると蛍光体としての発光効率の低下を抑制することができる。また、リン酸化合物を構成する金属の含有率として0.0001質量%以上20質量%以下であり、0.01質量%以上10質量%以下が好ましく、0.2質量%以上3質量%以上がより好ましく、0.36質量%以上1.4質量%以下がさらに好ましい。この範囲内にあるとリン酸化合物の結晶構造や組成が本発明の目的を達成する上でより効果的になる傾向がある。 The phosphoric acid compound content in the phosphor is, for example, 0.0001 mass% or more and 20 mass% or less, and 0.1 mass% or more and 10 mass% or less as the phosphoric acid content in the total mass of the phosphor. It is preferably 1% by mass or more and 8% by mass or less, and more preferably 1.5% by mass or more and 5.6% by mass or less. When the content of the phosphoric acid compound is not less than the above lower limit value, sufficient moisture resistance tends to be obtained, and when it is not more than the above upper limit value, it is possible to suppress a decrease in luminous efficiency as a phosphor. The content of the metal constituting the phosphoric acid compound is 0.0001% by mass to 20% by mass, preferably 0.01% by mass to 10% by mass, and more preferably 0.2% by mass to 3% by mass. More preferably, it is 0.36 mass% or more and 1.4 mass% or less. Within this range, the crystal structure and composition of the phosphate compound tend to be more effective in achieving the object of the present invention.
ここで蛍光体におけるリン酸及びリン酸化合物を構成する金属の含有率はそれぞれ、ICP−AES(高周波誘導結合プラズマ発光分光分析法)を用いて測定することができる。リン酸はPO4として換算した値を示した。またリン酸化合物付着蛍光体粒子におけるリン酸化合物の含有率は、リン酸の含有率とリン酸化合物を構成する金属の含有率の和として求められる。 Here, the content rate of the metal which comprises phosphoric acid and a phosphoric acid compound in a fluorescent substance can each be measured using ICP-AES (high frequency inductively coupled plasma emission spectroscopy). Phosphoric acid showed values converted as PO 4. Moreover, the content rate of the phosphoric acid compound in phosphoric acid compound adhesion fluorescent substance particles is calculated | required as the sum of the content rate of a phosphoric acid, and the content rate of the metal which comprises a phosphoric acid compound.
蛍光体は、示差走査熱量測定(DSC)において、25℃から650℃における吸熱量が50J/g以下であり、20J/g以下が好ましく、15J/g以下がより好ましく、実質的に0J/gであることがさらに好ましい。例えば、既述の蛍光体の製造方法におけるリン酸化合物付着蛍光体粒子を特定の温度で熱処理すると、付着したリン酸化合物が、熱を吸収して物理的又は化学的に変化することで、蛍光体に優れた耐湿性を付与することができると考えられる。したがって、熱処理後の蛍光体の吸熱量が所定値以下であることは、付着したリン酸化合物の物理的又は化学的変化が充分に進行したことを意味すると考えられる。 In the differential scanning calorimetry (DSC), the phosphor has an endotherm at 25 ° C. to 650 ° C. of 50 J / g or less, preferably 20 J / g or less, more preferably 15 J / g or less, and substantially 0 J / g. More preferably. For example, when phosphoric acid compound-attached phosphor particles in the above-described phosphor manufacturing method are heat-treated at a specific temperature, the adhering phosphate compound absorbs heat and changes physically or chemically. It is thought that excellent moisture resistance can be imparted to the body. Therefore, it is considered that the endothermic amount of the phosphor after the heat treatment is not more than a predetermined value means that the physical or chemical change of the attached phosphate compound has sufficiently progressed.
蛍光体は、リン酸化合物の含有率が1.5質量%以上5質量%以下であって、DSCの25℃から650℃における吸熱量が20J/g以下であることが好ましく、リン酸化合物の含有率が1.86質量%以上3.24質量%以下であって、DSCの25℃から650℃における吸熱量が20J/g以下であることがより好ましく、リン酸化合物の含有率が5.2質量%以上7.0質量%以下であって、DSCの25℃から650℃における吸熱量が50J/g以下であることがさらに好ましい。 The phosphor preferably has a phosphoric acid compound content of 1.5% by mass or more and 5% by mass or less, and an endothermic amount of DSC at 25 ° C. to 650 ° C. of 20 J / g or less. More preferably, the content is 1.86% by mass or more and 3.24% by mass or less, and the endothermic amount of DSC at 25 ° C. to 650 ° C. is 20 J / g or less, and the content of the phosphoric acid compound is 5. More preferably, the heat absorption amount at 25 ° C. to 650 ° C. of DSC is 50 J / g or less.
吸熱量は、横軸に温度、縦軸に熱量を取ったDSC曲線における吸熱ピークについて、吸熱ピークの両肩を結ぶ直線とDSC曲線とで囲まれる面積に対応する値として算出される。所定の温度範囲に複数の吸熱ピークが存在する場合には、それぞれの吸熱ピークの面積の総和に対応する値とする。DSC曲線において吸熱ピークが認められない場合には、吸熱量は実質的に0J/gとする。 The endothermic amount is calculated as a value corresponding to the area surrounded by a straight line connecting both shoulders of the endothermic peak and the DSC curve with respect to the endothermic peak in the DSC curve with the temperature on the horizontal axis and the amount of heat on the vertical axis. When a plurality of endothermic peaks exist in a predetermined temperature range, the value corresponds to the sum of the areas of the respective endothermic peaks. When no endothermic peak is observed in the DSC curve, the endothermic amount is substantially 0 J / g.
蛍光体は、発光効率の観点から、リン酸化合物付着蛍光体粒子を特定の温度以下で熱処理されてなることが好ましい。蛍光体は特定の温度以下で熱処理されてなることで、例えば、励起スペクトルにおける最大ピーク強度を100%とする場合に270nmにおける相対強度を60%以上とすることができ、好ましくは70%以上とすることができる。 From the viewpoint of luminous efficiency, the phosphor is preferably obtained by heat treating phosphor compound-attached phosphor particles at a specific temperature or lower. The phosphor is heat-treated at a specific temperature or lower. For example, when the maximum peak intensity in the excitation spectrum is 100%, the relative intensity at 270 nm can be 60% or more, preferably 70% or more. can do.
熱処理後の蛍光体の空気透過法を用いて測定される平均粒子径は、例えば5μm以上であり、10μm以上が好ましく、また例えば30μm以下であり、25μm以下が好ましい。また細孔電気抵抗法を用いて測定される体積メジアン径は、例えば10μm以上であり、15μm以上が好ましく、また例えば35μm以下であり、30μm以下が好ましい。 The average particle diameter measured using the air permeation method of the phosphor after the heat treatment is, for example, 5 μm or more, preferably 10 μm or more, and for example, 30 μm or less, preferably 25 μm or less. The volume median diameter measured using the pore electrical resistance method is, for example, 10 μm or more, preferably 15 μm or more, and for example, 35 μm or less, preferably 30 μm or less.
[発光装置]
発光装置は、前記蛍光体(以下、「第一蛍光体」ともいう)と、380nm以上470nm以下の波長範囲に発光ピーク波長を有する発光素子と、を備え、発光スペクトルにおいて、前記蛍光体の発光ピーク波長における発光強度に対する、前記発光素子の発光ピーク波長における発光強度の比が、10以下である。前記蛍光体と発光素子とを組合せることで、耐湿性に優れる発光装置を構成することができる。発光装置は、更に他の蛍光体(以下、「第二蛍光体」ともいう)を組合せて含むことができる。
[Light emitting device]
A light-emitting device includes the phosphor (hereinafter also referred to as “first phosphor”) and a light-emitting element having an emission peak wavelength in a wavelength range of 380 nm to 470 nm, and the emission of the phosphor in an emission spectrum. The ratio of the emission intensity at the emission peak wavelength of the light emitting device to the emission intensity at the peak wavelength is 10 or less. By combining the phosphor and the light emitting element, a light emitting device having excellent moisture resistance can be configured. The light emitting device can further include another phosphor (hereinafter, also referred to as “second phosphor”) in combination.
発光装置の形式としては、ピン貫通型、表面実装型等を挙げることができる。一般にピン貫通型とは、実装基板に設けられたスルーホールに発光装置のリード(ピン)を貫通させて発光装置を固定するものを指す。また表面実装型とは、実装基板の表面において発光装置のリードを固定するものを指す。 Examples of the light emitting device include a pin penetration type and a surface mounting type. In general, the pin through type refers to a type in which a light emitting device is fixed by penetrating leads (pins) of the light emitting device through through holes provided in a mounting substrate. The surface mount type refers to a type in which the lead of the light emitting device is fixed on the surface of the mounting substrate.
本発明の一実施形態に係る発光装置100を図面に基づいて説明する。図1及び図2は、発光装置100を示す概略断面図である。発光装置100は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば、380nm以上485nm以下の範囲)の光を発し、発光ピーク波長が430nm以上470nm以下の範囲内にある窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40と、を有する。成形体40は、第1のリード20及び第2のリード30と、熱可塑性樹脂又は熱硬化性樹脂を含む樹脂部42とが一体的に成形されてなるものである。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は例えば、図1では発光素子10からの光を波長変換する蛍光体70と樹脂とを含有してなり、図2では蛍光体70として第一蛍光体71及び第二蛍光体72と樹脂とを含有してなる。
A light emitting device 100 according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are schematic cross-sectional views showing the light emitting device 100. FIG. The light emitting device 100 is an example of a surface mount type light emitting device.
The light emitting device 100 emits light on the short wavelength side of visible light (for example, a range of 380 nm to 485 nm), and the light emitting device 10 of a gallium nitride compound semiconductor having an emission peak wavelength in a range of 430 nm to 470 nm, And a molded body 40 on which the light emitting element 10 is placed. The molded body 40 is formed by integrally molding the first lead 20 and the second lead 30 and a resin portion 42 containing a thermoplastic resin or a thermosetting resin. The molded body 40 has a recess having a bottom surface and side surfaces, and the light emitting element 10 is placed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through wires 60, respectively. The light emitting element 10 is covered with a fluorescent member 50. The fluorescent member 50 includes, for example, a phosphor 70 that converts the wavelength of light from the light emitting element 10 and a resin in FIG. 1, and a first phosphor 71 and a second phosphor 72 as the phosphor 70 in FIG. 2. Resin.
蛍光部材50は、発光素子10が発する光を波長変換するだけではなく、外部環境から発光素子10を保護するための部材としても機能する。図1及び図2では、蛍光体70は蛍光部材50中で偏在している。このように発光素子10に接近して蛍光体70を配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置とできる。なお、蛍光体70を含む蛍光部材50と、発光素子10との配置は、それらを接近して配置させる形態に限定されることなく、蛍光体70への熱の影響を考慮して、蛍光部材50中で発光素子10と、蛍光体70との間隔を空けて配置することもできる。また蛍光体70を蛍光部材50の全体にほぼ均一の割合で混合することによって、色ムラがより抑制された光を得るようにすることもできる。
また図2では、蛍光体70は、第一蛍光体71及び第二蛍光体72が混合されて構成されているが、第一蛍光体71上に第二蛍光体72が配置され(図示せず)てもよく、又は第二蛍光体72上に第一蛍光体71が配置されて(図示せず)構成されていてもよい。
The fluorescent member 50 not only converts the wavelength of light emitted from the light emitting element 10, but also functions as a member for protecting the light emitting element 10 from the external environment. In FIGS. 1 and 2, the phosphor 70 is unevenly distributed in the fluorescent member 50. Thus, by arranging the phosphor 70 close to the light emitting element 10, the wavelength of light from the light emitting element 10 can be efficiently converted, and a light emitting device having excellent light emission efficiency can be obtained. The arrangement of the fluorescent member 50 including the phosphor 70 and the light emitting element 10 is not limited to the form in which they are arranged close to each other, and the fluorescent member is considered in consideration of the influence of heat on the phosphor 70. 50, the light emitting element 10 and the phosphor 70 may be spaced apart. In addition, by mixing the phosphor 70 with the entire fluorescent member 50 at a substantially uniform ratio, it is possible to obtain light in which color unevenness is further suppressed.
In FIG. 2, the phosphor 70 is configured by mixing a first phosphor 71 and a second phosphor 72, but the second phosphor 72 is disposed on the first phosphor 71 (not shown). Or the first phosphor 71 may be disposed on the second phosphor 72 (not shown).
発光素子
発光素子の発光ピーク波長は、430nm以上470nm以下の範囲にあり、発光装置の発光効率の観点から、440nm以上460nm以下の範囲にあることが好ましく、445nm以上455nm以下の範囲にあることがより好ましい。このような発光素子を励起光源として用い、発光素子からの光と蛍光体からの蛍光との混色光を発する発光装置を構成する。
Light-Emitting Element The emission peak wavelength of the light-emitting element is in the range of 430 nm to 470 nm, and is preferably in the range of 440 nm to 460 nm, preferably in the range of 445 nm to 455 nm, from the viewpoint of the light emission efficiency of the light-emitting device. More preferred. A light-emitting device that uses such a light-emitting element as an excitation light source and emits mixed-color light of light from the light-emitting element and fluorescence from a phosphor is configured.
発光素子の発光スペクトルの半値幅は、例えば、30nm以下とすることができる。
発光素子にはLEDなどの半導体発光素子を用いることが好ましい。光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
半導体発光素子としては、例えば、窒化物系半導体(InXAlYGa1−X−YN、ここでX及びYは、0≦X、0≦Y、X+Y≦1を満たす)を用いた青色に発光する半導体発光素子を用いることができる。
The half width of the emission spectrum of the light emitting element can be set to 30 nm or less, for example.
It is preferable to use a semiconductor light emitting element such as an LED as the light emitting element. By using a semiconductor light emitting element as a light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and strong against mechanical shock.
As a semiconductor light emitting element, for example, a blue color using a nitride semiconductor (In X Al Y Ga 1- XYN, where X and Y satisfy 0 ≦ X, 0 ≦ Y, and X + Y ≦ 1). A semiconductor light emitting element that emits light can be used.
第一蛍光体
発光装置は、表面にリン酸化合物が配置され、アルカリ土類アルミン酸塩を含む蛍光体粒子を含む第一蛍光体の少なくとも1種を備える。
第一蛍光体の詳細は既述のとおりであり、好ましい態様も同様である。
The first phosphor The light emitting device includes at least one of the first phosphors including phosphor particles on the surface of which phosphoric acid compounds are arranged and containing alkaline earth aluminate.
The details of the first phosphor are as described above, and the preferred embodiments are also the same.
第一蛍光体は、樹脂とともに蛍光部材に含まれて発光装置を構成することができる。第一蛍光体の含有率は、蛍光部材の樹脂量に対して、例えば2質量%以上であり、10質量%以上が好ましく、40質量%以上がより好ましく、また例えば190質量%以下であり、160質量%以下が好ましく、130質量%以下がより好ましい。 A 1st fluorescent substance can be contained in a fluorescent member with resin, and can comprise a light-emitting device. The content of the first phosphor is, for example, 2% by mass or more, preferably 10% by mass or more, more preferably 40% by mass or more, and for example, 190% by mass or less, with respect to the resin amount of the fluorescent member. 160 mass% or less is preferable and 130 mass% or less is more preferable.
発光装置においては、第一蛍光体の発光ピーク波長における発光強度に対する、発光素子の発光ピーク波長における発光強度の比(以下、「発光強度比」ともいう)が10以下であり、1以下が好ましい。また発光強度比は例えば0.2以上であり、0.4以上が好ましい。ここで第一蛍光体の発光ピーク波長は、発光装置の発光スペクトルにおける485nm以上500nm以下の波長範囲において相対強度の極大値を与える波長である。また発光強度比は、発光装置における第一蛍光体の含有量を調整することで制御することができる。 In the light emitting device, the ratio of the emission intensity at the emission peak wavelength of the light emitting element to the emission intensity at the emission peak wavelength of the first phosphor (hereinafter also referred to as “emission intensity ratio”) is 10 or less, preferably 1 or less. . The emission intensity ratio is, for example, 0.2 or more, preferably 0.4 or more. Here, the emission peak wavelength of the first phosphor is a wavelength that gives the maximum value of the relative intensity in the wavelength range of 485 nm to 500 nm in the emission spectrum of the light emitting device. The light emission intensity ratio can be controlled by adjusting the content of the first phosphor in the light emitting device.
発光強度比が10以下である発光装置の発光スペクトルは、例えば、ある程度の深さにおける海水透過後の太陽光のスペクトルに近いものとなる。これにより例えば発光装置を集魚灯に適用することで、優れた耐湿性および集魚効果を達成すると予想される。 The light emission spectrum of the light emitting device having a light emission intensity ratio of 10 or less is, for example, close to the spectrum of sunlight after passing through seawater at a certain depth. Thus, for example, by applying the light emitting device to a fish collection lamp, it is expected that excellent moisture resistance and fish collection effect can be achieved.
第二蛍光体
本実施形態の発光装置は、蛍光体として第一蛍光体に加えて、第一蛍光体とは発光ピーク波長が異なる第二蛍光体を更に有していてもよい。第二蛍光体を有することで、多様な色相の光を放出可能な発光装置を構成することができる。
Second phosphor In addition to the first phosphor, the light-emitting device of the present embodiment may further include a second phosphor having a light emission peak wavelength different from that of the first phosphor. By having the second phosphor, a light emitting device capable of emitting light of various hues can be configured.
第二蛍光体としては、例えば発光ピーク波長が450nm以上700nm以下の波長範囲にある蛍光体を挙げることができる。 Examples of the second phosphor include a phosphor having an emission peak wavelength in a wavelength range of 450 nm to 700 nm.
第二蛍光体として具体的には、下記式(I)から(X)のいずれかで表される組成を有する蛍光体を挙げることができる。第二蛍光体として、これらの蛍光体から選択された少なくとも1種を用いることができる。
(Ca1−p−qSrpEuq)AlSiN3 (I)
式(I)中、p及びqは、0≦p≦1.0、0<q<1.0及びp+q<1.0を満たす。
Specific examples of the second phosphor include phosphors having a composition represented by any of the following formulas (I) to (X). As the second phosphor, at least one selected from these phosphors can be used.
(Ca 1-p-q Sr p Eu q) AlSiN 3 (I)
In formula (I), p and q satisfy 0 ≦ p ≦ 1.0, 0 <q <1.0 and p + q <1.0.
(Ca1−r−s−tSrrBasEut)2Si5N8 (II)
式(II)中、r、s及びtは、0≦r≦1.0、0≦s≦1.0、0<t<1.0及びr+s+t≦1.0を満たす。
(Ca 1-r-s- t Sr r Ba s Eu t) 2 Si 5 N 8 (II)
In the formula (II), r, s, and t satisfy 0 ≦ r ≦ 1.0, 0 ≦ s ≦ 1.0, 0 <t <1.0, and r + s + t ≦ 1.0.
A2[M1 1−uMn4+ uF6] (III)
式(III)中、Aは、K、Li、Na、Rb、Cs及びNH4からなる群から選択される少なくとも1種であり、M1は、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、uは0<u<0.2を満たす。
A 2 [M 1 1-u Mn 4+ u F 6 ] (III)
In Formula (III), A is at least one selected from the group consisting of K, Li, Na, Rb, Cs and NH 4 , and M 1 is a group consisting of Group 4 elements and Group 14 elements. And u satisfies 0 <u <0.2.
(i-j)MgO・(j/2)Sc2O3・kMgF2・mCaF2・(1-n)GeO2・(n/2)Mt 2O3:zMn4+ (IV)
式(IV)中、MtはAl、Ga及Inからなる群から選択される少なくとも1種であり、i、j、k、m、n及びzはそれぞれ、2≦i≦4、0<k<1.5、0<z<0.05、0≦j<0.5、0<n<0.5、及び0≦m<1.5を満たす。
(I-j) MgO. (J / 2) Sc 2 O 3 .kMgF 2 .mCaF 2. (1-n) GeO 2. (N / 2) M t 2 O 3 : zMn 4+ (IV)
In the formula (IV), M t is at least one selected from the group consisting of Al, Ga and In, and i, j, k, m, n and z are 2 ≦ i ≦ 4 and 0 <k, respectively. <1.5, 0 <z <0.05, 0 ≦ j <0.5, 0 <n <0.5, and 0 ≦ m <1.5.
M11 8MgSi4O16X11 2:Eu (V)
式(V)中、M11はCa、Sr、Ba及びZnからなる群から選択される少なくとも1種であり、X11はF、Cl、Br及びIからなる群から選択される少なくとも1種である。
M 11 8 MgSi 4 O 16 X 11 2 : Eu (V)
In formula (V), M 11 is at least one selected from the group consisting of Ca, Sr, Ba and Zn, and X 11 is at least one selected from the group consisting of F, Cl, Br and I. is there.
Si6−zAlzOzN8−z:Eu (VI)
式(VI)中、zは0<z<4.2を満たす。
Si 6-z Al z O z N 8-z: Eu (VI)
In the formula (VI), z satisfies 0 <z <4.2.
Mm/nSi12−(m+n)Al(m+n)OnN(16−n):Eu (VII)
式(VII)中、Mは、Sr、Ca、Li及びYからなる群から選ばれる少なくとも1種である。nは0から2.5であり、mは0.5から5であり、nはMの電荷であり、xは0.75から1.5である。
M m / n Si 12- (m + n) Al (m + n) O n N (16-n): Eu (VII)
In formula (VII), M is at least one selected from the group consisting of Sr, Ca, Li and Y. n is 0 to 2.5, m is 0.5 to 5, n is the charge of M, and x is 0.75 to 1.5.
M13Ga2S4:Eu (VIII)
式(VIII)中、M13は、Mg,Ca,Sr及びBaからなる群から選ばれる少なくとも1種である。
M 13 Ga 2 S 4 : Eu (VIII)
In the formula (VIII), M 13 is at least one selected from the group consisting of Mg, Ca, Sr and Ba.
(Y,Lu,Gd,Tb)3(Al,Ga)5O12:Ce (IX) (Y, Lu, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce (IX)
Ma vMb wMc xAl3−ySiyNz (X)
式(X)中、Maは、Ca、Sr、Ba及びMgからなる群より選択される少なくとも1種の元素であり、Mbは、Li、Na及びKからなる群より選択される少なくとも1種の元素であり、Mcは、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v、w、x、y及びzは、それぞれ0.80≦v≦1.05、0.80≦w≦1.05、0.001<x≦0.1、0≦y≦0.5、3.0≦z≦5.0を満たす。
M a v M b w M c x Al 3-y Si y N z (X)
In formula (X), M a is at least one element selected from the group consisting of Ca, Sr, Ba and Mg, and M b is at least one selected from the group consisting of Li, Na and K. And M c is at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and v, w, x, y and z are each 0.80 ≦ v ≦ 1.05, 0.80 ≦ w ≦ 1.05, 0.001 <x ≦ 0.1, 0 ≦ y ≦ 0.5, 3.0 ≦ z ≦ 5.0 are satisfied.
発光装置が第一蛍光体に加えて第二蛍光体と樹脂とを含む蛍光部材を備える場合、第二蛍光体の含有率は、樹脂量に対して例えば1質量%以上であり、5質量%以上が好ましく、10質量%以上がより好ましく、また例えば200質量%以下であり、150質量%以下が好ましく、100質量%以下がより好ましい。 When the light emitting device includes a fluorescent member including a second phosphor and a resin in addition to the first phosphor, the content of the second phosphor is, for example, 1% by mass or more with respect to the amount of the resin, and 5% by mass. The above is preferable, 10 mass% or more is more preferable, and it is 200 mass% or less, for example, 150 mass% or less is preferable, and 100 mass% or less is more preferable.
蛍光部材
発光装置は、例えば、蛍光体及び樹脂を含み、発光素子を被覆する蛍光部材を備える。蛍光部材を構成する樹脂としては、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。熱硬化性樹脂として、具体的には、エポキシ樹脂、シリコーン樹脂、エポキシ変性シリコーン樹脂等の変性シリコーン樹脂などを挙げることができる。
蛍光部材は、蛍光体及び樹脂に加えてその他の成分を必要に応じて含んでいてもよい。その他の成分としては、シリカ、チタン酸バリウム、酸化チタン、酸化アルミニウム等のフィラー、光安定化剤、着色剤等を挙げることができる。蛍光部材がその他の成分を含む場合、その含有量は目的等に応じて適宜選択することができる。例えば、その他の成分として、フィラーを含む場合、その含有量は樹脂に対して、0.01質量%から20質量%とすることができる。
Fluorescent Member The light emitting device includes, for example, a fluorescent member that includes a phosphor and a resin and covers the light emitting element. Examples of the resin constituting the fluorescent member include thermoplastic resins and thermosetting resins. Specific examples of the thermosetting resin include modified silicone resins such as epoxy resins, silicone resins, and epoxy-modified silicone resins.
The fluorescent member may contain other components as needed in addition to the phosphor and the resin. Examples of other components include fillers such as silica, barium titanate, titanium oxide, and aluminum oxide, light stabilizers, and colorants. When the fluorescent member contains other components, the content thereof can be appropriately selected according to the purpose and the like. For example, when a filler is included as another component, the content thereof can be 0.01% by mass to 20% by mass with respect to the resin.
以下、本発明に係る実施例を具体的に説明する。 Examples according to the present invention will be specifically described below.
(製造例)
蛍光体粒子の製造方法
(アルカリ土類金属アルミン酸塩蛍光体の製造方法)
式(1)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体を、「蛍光体ハンドブック」、蛍光体同学会編(オーム社)、227から228頁等に記載の製造方法を参照して製造した。具体的には、表1に示した配合量で各種原料を計量後、乾式混合を行い、還元雰囲気中、1350℃で10時間、焼成を行った。更に、分散処理後、湿式フルイ等で粗大粒子や微小粒子を除去して、表2に粉体特性を示したアルカリ土類金属アルミン酸塩蛍光体A〜Fをそれぞれ準備した。
(Production example)
Method for producing phosphor particles (Method for producing alkaline earth metal aluminate phosphor)
For the alkaline earth metal aluminate phosphor having the composition represented by the formula (1), refer to the production method described in “Phosphor Handbook”, edited by Phosphors Association (Ohm), pages 227 to 228, etc. And manufactured. Specifically, after various raw materials were weighed in the blending amounts shown in Table 1, dry mixing was performed, and firing was performed at 1350 ° C. for 10 hours in a reducing atmosphere. Further, after the dispersion treatment, coarse particles and fine particles were removed with a wet sieve or the like, and alkaline earth metal aluminate phosphors A to F having powder characteristics shown in Table 2 were prepared.
表2において、平均粒径はフィッシャー・サブ・シーブ・サイザーズ・ナンバーであり、空気透過法を用いてフィッシャー・サブ・シーブ・サイザー(フィッシャー社製)にて測定した。Dmは、体積メジアン径であり、細孔電気抵抗法を用いてCoulter Multisizer II(ベックマン・コールター社製)にて測定した。
発光特性として450nmの励起光による蛍光の色度座標xおよびyと、発光強度を示すENG値を示した。なお、ENG値は後述する実施例1で得られた蛍光体1を基準とした相対値として示した。また、それぞれの励起スペクトルにおける最大強度を100%とした場合の270nmにおける相対強度(%)を励起スペクトル相対強度(%)として示した。
ここで、蛍光体Aは式(1)におけるxが0.1/4=0.025である蛍光体に該当し、蛍光体Bはxが0.2/4=0.05である蛍光体に該当し、蛍光体CからFについても同様にxの値が計算される。
In Table 2, the average particle diameter is the Fischer sub-sieve sizer number, and was measured with Fischer sub-sieve sizer (manufactured by Fischer) using the air permeation method. Dm is a volume median diameter, and was measured with a Coulter Multisizer II (manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method.
As emission characteristics, chromaticity coordinates x and y of fluorescence by excitation light of 450 nm and an ENG value indicating emission intensity are shown. The ENG value is shown as a relative value based on the phosphor 1 obtained in Example 1 described later. The relative intensity (%) at 270 nm when the maximum intensity in each excitation spectrum was 100% was shown as the excitation spectrum relative intensity (%).
Here, the phosphor A corresponds to a phosphor in which x in the formula (1) is 0.1 / 4 = 0.025, and the phosphor B is a phosphor in which x is 0.2 / 4 = 0.05. And the value of x is similarly calculated for phosphors C to F.
(実施例1)
蛍光体粒子として上記の方法で合成された蛍光体Bを用い、蛍光体150gに対して純水300gを加えて攪拌し、分散液を得た。その分散液に、リン酸のナトリウム塩溶液(リン酸イオン含有率2.25質量%)を245.1g滴下した。次いで硝酸カルシウム溶液(Ca含有率2.0質量%)を174.5g滴下した。更にNaOH溶液を用いてpHを7.5に調整して反応液を得た。反応液を室温(25℃)で1時間撹拌した後、ろ過を行って固液分離後、乾燥処理して、リン酸化合物付着蛍光体粒子を得た。
得られたリン酸化合物付着蛍光体粒子をICP−AES(高周波誘導結合プラズマ発光分光分析法)で分析したところ、リン酸イオン(PO4 3−)換算したリン酸分析値が2.6質量%であり、Ca分析値が0.62質量%であるリン酸化合物が検出された。
さらに大気中、600℃で10時間の熱処理を行い、蛍光体1を得た。
得られた蛍光体1の粉体特性、分析値を表3に示した。
Example 1
Using phosphor B synthesized by the above method as phosphor particles, 300 g of pure water was added to 150 g of phosphor and stirred to obtain a dispersion. To the dispersion, 245.1 g of a sodium salt solution of phosphoric acid (phosphate ion content 2.25% by mass) was dropped. Next, 174.5 g of a calcium nitrate solution (Ca content 2.0 mass%) was dropped. Furthermore, pH was adjusted to 7.5 using NaOH solution, and the reaction liquid was obtained. The reaction solution was stirred at room temperature (25 ° C.) for 1 hour, filtered, solid-liquid separated and then dried to obtain phosphoric acid compound-attached phosphor particles.
When the obtained phosphor compound-attached phosphor particles were analyzed by ICP-AES (High Frequency Inductively Coupled Plasma Emission Spectroscopy), the phosphate analysis value in terms of phosphate ion (PO 4 3− ) was 2.6% by mass. A phosphoric acid compound having a Ca analysis value of 0.62% by mass was detected.
Further, a heat treatment was performed in the atmosphere at 600 ° C. for 10 hours to obtain phosphor 1.
Table 3 shows the powder characteristics and analytical values of the obtained phosphor 1.
(実施例2から6)
蛍光体粒子として蛍光体Bの代わりに、蛍光体CからF及びAを用いたこと以外は実施例1と同様にして、蛍光体2から6を得た。得られた蛍光体の粉体特性、分析値を表3に示した。
(Examples 2 to 6)
Phosphors 2 to 6 were obtained in the same manner as in Example 1 except that phosphors C to F and A were used instead of phosphor B as phosphor particles. Table 3 shows the powder characteristics and analytical values of the obtained phosphor.
(実施例7)
蛍光体粒子として蛍光体Dを用いたこと、リン酸のナトリウム溶液(リン酸イオン含有率2.25質量%)の滴下量を122.4gに変更したこと、及び硝酸カルシウム溶液(Ca含有率2.0質量%)の滴下量を87.2gに変更したこと以外は、実施例1と同様にして、蛍光体7を得た。得られた蛍光体7の粉体特性、分析値を表3に示した。
(Example 7)
Using phosphor D as the phosphor particles, changing the dropping amount of sodium phosphate solution (phosphate ion content 2.25 mass%) to 122.4 g, and calcium nitrate solution (Ca content 2) Phosphor mass 7 was obtained in the same manner as in Example 1 except that the dripping amount of 0.0 mass% was changed to 87.2 g. Table 3 shows the powder characteristics and analysis values of the obtained phosphor 7.
(実施例8)
蛍光体粒子として蛍光体Dを用いたこと、リン酸のナトリウム溶液(リン酸イオン含有率2.25質量%)の滴下量を367.6gに変更したこと、及び硝酸カルシウム溶液(Ca含有率2.0質量%)の滴下量を261.8gに変更したこと以外は、実施例1と同様にして、蛍光体8を得た。得られた蛍光体8の粉体特性、分析値を表3に示した。
(Example 8)
Use of phosphor D as phosphor particles, change of dropping amount of sodium phosphate solution (phosphate ion content 2.25% by mass) to 367.6 g, and calcium nitrate solution (Ca content 2) Phosphor mass 8 was obtained in the same manner as in Example 1, except that the dripping amount of 0.0 mass% was changed to 261.8 g. Table 3 shows the powder characteristics and analysis values of the obtained phosphor 8.
(実施例9)
蛍光体粒子として蛍光体Dを用いたこと、リン酸のナトリウム溶液(リン酸イオン含有率2.25質量%)の滴下量を489.8gに変更したこと、及び硝酸カルシウム溶液(Ca含有率2.0質量%)の滴下量を348.8gに変更したこと以外は、実施例1と同様にして、リン酸化合物付着蛍光体粒子9pを得た後、同様に熱処理して蛍光体9を得た。得られた蛍光体9の粉体特性、分析値を表3に示した。
Example 9
The phosphor D was used as the phosphor particles, the dropping amount of the sodium phosphate solution (phosphate ion content 2.25% by mass) was changed to 489.8 g, and the calcium nitrate solution (Ca content 2). 0.0 mass%) except that the amount of dripping was changed to 348.8 g, phosphorous compound-attached phosphor particles 9p were obtained in the same manner as in Example 1 and then heat treated in the same manner to obtain phosphor 9. It was. Table 3 shows the powder characteristics and analytical values of the phosphor 9 obtained.
(実施例10)
熱処理の雰囲気を窒素雰囲気に変更したこと以外は、実施例3と同様にして、蛍光体10を得た。得られた蛍光体10の粉体特性、分析値を表3に示した。
(Example 10)
A phosphor 10 was obtained in the same manner as in Example 3 except that the heat treatment atmosphere was changed to a nitrogen atmosphere. Table 3 shows the powder characteristics and analysis values of the obtained phosphor 10.
(実施例11)
150gの蛍光体Dを酸性溶液(0.2質量%塩酸)1500mlに入れて洗浄した後、固液分離し、更に水洗、乾燥処理することで精製された蛍光体D1を得た。
蛍光体D1を用いたこと以外は、実施例10と同様にして、蛍光体11を得た。得られた蛍光体11の粉体特性、分析値を表3に示した。
(Example 11)
After 150 g of phosphor D was put in 1500 ml of an acidic solution (0.2% by mass hydrochloric acid) and washed, it was separated into solid and liquid, and further washed with water and dried to obtain purified phosphor D1.
A phosphor 11 was obtained in the same manner as in Example 10 except that the phosphor D1 was used. Table 3 shows the powder characteristics and analysis values of the obtained phosphor 11.
50gの蛍光体D1と純水100mlとを250ml φ65mmのポリ容器に入れて85rpmで2hr回転させた後、上澄み液中のSr濃度を分析したところ、Sr分析値は35ppmであった。一方、同様にして分析した蛍光体DのSr分析値は250ppmであった。 50 g of phosphor D1 and 100 ml of pure water were placed in a 250 ml φ65 mm plastic container and rotated at 85 rpm for 2 hours, and then the Sr concentration in the supernatant was analyzed. As a result, the Sr analysis value was 35 ppm. On the other hand, the Sr analysis value of phosphor D analyzed in the same manner was 250 ppm.
(実施例12)
150gの蛍光体Dを酸性溶液(0.2質量%塩酸)1500mlに入れて洗浄した後、固液分離し、更に水洗して固液分離することで精製された蛍光体D2を得た。得られた蛍光体D2のSr分析値は蛍光体D1の場合と同様であった。
蛍光体D2を用いたこと以外は、実施例10と同様にして、リン酸化合物を付着させた後に熱処理して蛍光体12を得た。得られた蛍光体12の粉体特性、分析値を表3に示した。
(Example 12)
150 g of phosphor D was put in 1500 ml of an acidic solution (0.2% by mass hydrochloric acid) and washed, followed by solid-liquid separation, and further washing with water and solid-liquid separation to obtain purified phosphor D2. The Sr analysis value of the obtained phosphor D2 was the same as that of the phosphor D1.
Except having used fluorescent substance D2, it carried out similarly to Example 10, and after making a phosphoric acid compound adhere, it heat-processed and obtained fluorescent substance 12. Table 3 shows the powder characteristics and analytical values of the phosphor 12 obtained.
(実施例13)
実施例12で得られた蛍光体D2を用いたこと以外は、実施例3と同様にして、リン酸化合物を付着させた後に熱処理して蛍光体13を得た。得られた蛍光体13の粉体特性、分析値を表3に示した。
(Example 13)
Except that the phosphor D2 obtained in Example 12 was used, in the same manner as in Example 3, a phosphoric acid compound was attached and then heat treated to obtain phosphor 13. Table 3 shows the powder characteristics and analytical values of the phosphor 13 obtained.
(比較例1)
蛍光体粒子として蛍光体Dを用いたこと、熱処理を行わなかったこと以外は実施例1と同様にして、蛍光体C1を得た。得られた蛍光体C1の粉体特性、分析値を表4に示した。
(Comparative Example 1)
A phosphor C1 was obtained in the same manner as in Example 1 except that the phosphor D was used as the phosphor particles and no heat treatment was performed. Table 4 shows the powder characteristics and analysis values of the obtained phosphor C1.
(比較例2)
蛍光体粒子として蛍光体Dを用いたこと、熱処理の温度を400℃としたこと以外は実施例1と同様にして、蛍光体C2を得た。得られた蛍光体C2の粉体特性、分析値を表4に示した。
(Comparative Example 2)
A phosphor C2 was obtained in the same manner as in Example 1 except that the phosphor D was used as the phosphor particles and the temperature of the heat treatment was 400 ° C. Table 4 shows the powder characteristics and analysis values of the obtained phosphor C2.
(比較例3)
蛍光体粒子として蛍光体Dを用いたこと、熱処理の温度を800℃としたこと以外は実施例1と同様にして、蛍光体C3を得た。得られた蛍光体C3の粉体特性、分析値を表4に示した。
(Comparative Example 3)
A phosphor C3 was obtained in the same manner as in Example 1 except that the phosphor D was used as the phosphor particles and the temperature of the heat treatment was 800 ° C. Table 4 shows the powder characteristics and analysis values of the obtained phosphor C3.
蛍光体の示差走査熱量測定(DSC)
実施例9で得られた熱処理後の蛍光体9と、熱処理前のリン酸化合物付着蛍光体粒子9pについて、以下の測定条件で示差走査熱量測定を行った。測定結果を図9及び10に示す。図9にリン酸化合物付着蛍光体粒子9pのDSC曲線を示し、図10に蛍光体9のDSC曲線を示す。
Differential scanning calorimetry (DSC) of phosphors
Differential scanning calorimetry was performed on the phosphor 9 after heat treatment obtained in Example 9 and the phosphor compound-attached phosphor particles 9p before heat treatment under the following measurement conditions. The measurement results are shown in FIGS. FIG. 9 shows a DSC curve of the phosphor compound-attached phosphor particles 9p, and FIG. 10 shows a DSC curve of the phosphor 9.
(DSC条件)
装置:EXSTAR6000 (日立ハイテクサイエンス(株)製)
試料量:18.5mg
測定温度範囲:25℃から650℃
昇温速度:10℃/min
雰囲気:大気
流量:50ml/min
(DSC condition)
Equipment: EXSTAR6000 (manufactured by Hitachi High-Tech Science Co., Ltd.)
Sample amount: 18.5mg
Measurement temperature range: 25 ° C to 650 ° C
Temperature increase rate: 10 ° C / min
Atmosphere: Air Flow rate: 50 ml / min
図9及び図10のDSC曲線から、熱処理前のリン酸化合物付着蛍光体粒子9pでは2つの吸熱ピークが認められ、熱処理後の蛍光体9では明確な吸熱ピークが認められないことが分かる。得られたDSC曲線から、25℃から650℃における吸熱量を算出したところ、蛍光体9については0J/gであり、リン酸化合物付着蛍光体粒子9pについては、112J/gであった。
実施例1から8、及び10から13の蛍光体についても、25℃から650℃における吸熱量は蛍光体9と同様である。
From the DSC curves of FIGS. 9 and 10, it can be seen that two endothermic peaks are observed in the phosphor compound-attached phosphor particles 9p before the heat treatment, and no clear endothermic peak is observed in the phosphor 9 after the heat treatment. From the obtained DSC curve, the endothermic amount at 25 ° C. to 650 ° C. was calculated, and it was 0 J / g for the phosphor 9 and 112 J / g for the phosphor compound-attached phosphor particles 9p.
Regarding the phosphors of Examples 1 to 8 and 10 to 13, the endothermic amount at 25 ° C. to 650 ° C. is the same as that of the phosphor 9.
発光装置の作製
(実施例L1)
実施例1で得られた蛍光体1を、発光装置が発する光の色度座標がx=0.150、y=0.175付近となるように、表5に示すシリコーン樹脂に対する含有率で添加し、混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次にこの蛍光体含有樹脂組成物をLEDパッケージ(発光素子の発光ピーク波長450nm)の発光素子上に注入、充填し、さらに150℃で4時間加熱することで樹脂組成物を硬化させた。このような工程により発光装置1を作製した。なお、蛍光体含有率はシリコーン樹脂を100質量%とした場合の質量基準の百分率である。
Production of light-emitting device (Example L1)
The phosphor 1 obtained in Example 1 was added at a content rate relative to the silicone resin shown in Table 5 so that the chromaticity coordinates of the light emitted from the light-emitting device were in the vicinity of x = 0.150 and y = 0.175. Then, after mixing and dispersing, further defoaming was performed to obtain a phosphor-containing resin composition. Next, this phosphor-containing resin composition was injected and filled onto a light emitting device of an LED package (emission peak wavelength of light emitting device 450 nm), and further heated at 150 ° C. for 4 hours to cure the resin composition. The light emitting device 1 was manufactured through such steps. The phosphor content is a percentage based on mass when the silicone resin is 100 mass%.
得られた発光装置1について、発光特性を測定した。また、得られた発光装置1を温度60℃、湿度90%に設定した恒温槽に設置し、150mAの電流値で点灯させて発光装置1の信頼性試験を行った。発光装置1の信頼性は、恒温槽で点灯させる前後の色調を測定して評価した。具体的には、色調は恒温槽で点灯させる前の色調に対する、恒温槽で点灯1000時間経過後の色調のシフト量(下記Δyで定義される)で評価した。色調のシフト量は、色度座標のy値で評価した。以上の評価結果を表5に示す。
Δy=(1000時間経過後のy値)−(点灯前のy値)
The obtained light emitting device 1 was measured for light emission characteristics. Moreover, the obtained light-emitting device 1 was installed in a thermostat set to a temperature of 60 ° C. and a humidity of 90%, and the light-emitting device 1 was lit at a current value of 150 mA to perform a reliability test of the light-emitting device 1. The reliability of the light-emitting device 1 was evaluated by measuring the color tone before and after lighting in a thermostatic chamber. Specifically, the color tone was evaluated by the shift amount (defined by Δy below) of the color tone after 1000 hours of lighting in the thermostatic chamber with respect to the color tone before lighting in the thermostatic bath. The shift amount of the color tone was evaluated by the y value of the chromaticity coordinates. The above evaluation results are shown in Table 5.
Δy = (y value after 1000 hours) − (y value before lighting)
(実施例L2からL11)
蛍光体として、蛍光体1の代わりに、表5に示したように蛍光体2から11をそれぞれ用いたこと以外は実施例L1と同様にして、発光装置2から11を作製し、同様にして評価した。評価結果を表5に示す。
(Examples L2 to L11)
As the phosphor, instead of phosphor 1, phosphors 2 to 11 as shown in Table 5 were used, respectively, except that phosphors 2 to 11 were used, and light emitting devices 2 to 11 were produced. evaluated. The evaluation results are shown in Table 5.
(比較例L1からL5)
蛍光体として、蛍光体1の代わりに表6に示したように蛍光体C1、C2及び蛍光体DからFをそれぞれ用いたこと以外は実施例L1と同様にして、発光装置を作製し、同様にして評価した。評価結果を実施例L3の結果と共に表6に示す。
(Comparative Examples L1 to L5)
A light-emitting device was fabricated in the same manner as in Example L1 except that phosphors C1, C2 and phosphors D to F were used as phosphors instead of phosphor 1, respectively, as shown in Table 6. And evaluated. The evaluation results are shown in Table 6 together with the results of Example L3.
(実施例21から29)
実施例3で得られた蛍光体3を、表7に示すシリコーン樹脂に対する含有率で添加し、さらにシリカフィラーを樹脂に対して0.4質量%添加し、混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次にこの蛍光体含有樹脂組成物をLEDパッケージ(発光素子の発光ピーク波長450nm)の発光素子上に注入、充填し、さらに150℃で4時間加熱することで樹脂組成物を硬化させた。このような工程により発光装置21から29をそれぞれ作製した。
(Examples 21 to 29)
The phosphor 3 obtained in Example 3 was added at a content rate relative to the silicone resin shown in Table 7. Further, 0.4% by mass of silica filler was added to the resin, mixed and dispersed, and then defoamed. Thus, a phosphor-containing resin composition was obtained. Next, this phosphor-containing resin composition was injected and filled onto a light emitting device of an LED package (emission peak wavelength of light emitting device 450 nm), and further heated at 150 ° C. for 4 hours to cure the resin composition. The light emitting devices 21 to 29 were produced by such processes.
得られた発光装置について、発光特性を測定した。また、発光素子の発光ピーク波長における発光強度を「発光素子発光強度A」とし、蛍光体の発光ピーク波長における発光強度を「蛍光体発光強度B」として、蛍光体発光強度Bに対する発光素子発光強度Aの比(A/B)を算出した。結果を表7に示す。また、発光装置21から29の発光スペクトルを図8に示す。 The light emitting characteristics of the obtained light emitting device were measured. Further, the light emission intensity at the emission peak wavelength of the light emitting element is “light emission element emission intensity A”, and the emission intensity at the emission peak wavelength of the phosphor is “phosphor emission intensity B”. A ratio (A / B) was calculated. The results are shown in Table 7. Further, emission spectra of the light emitting devices 21 to 29 are shown in FIG.
蛍光体組成中のEu量と粉体特性について
蛍光体AからF、蛍光体1から6について、表2、3及び4から、式(1)におけるxの値が、0.05≦x≦0.4の範囲で特に発光効率が高いことが分かる。
Regarding the amount of Eu and the powder characteristics in the phosphor composition For phosphors A to F and phosphors 1 to 6, from Tables 2, 3 and 4, the value of x in the formula (1) is 0.05 ≦ x ≦ 0. It can be seen that the luminous efficiency is particularly high in the range of .4.
LED信頼性について
表6における比較例L3からL5の湿熱に対するLED信頼性は、Eu量が多くなるに従い△yが大きくなっており、蛍光体の劣化がより大きいことが分かる。表5及び表6における実施例L1からL6の湿熱に対するLED信頼性は、△yが小さく蛍光体の劣化が小さいことが分かる。
About LED reliability As for the LED reliability with respect to the wet heat of Comparative Examples L3 to L5 in Table 6, Δy increases as the amount of Eu increases, and it can be seen that the deterioration of the phosphor is larger. It can be seen that the LED reliability with respect to the wet heat of Examples L1 to L6 in Tables 5 and 6 is small in Δy and the deterioration of the phosphor is small.
以上より、従来技術の蛍光体では、蛍光体組成におけるEu量が0.2から1.6、つまり式(1)のxが、0.05≦x≦0.4では発光効率が高い反面、信頼性が低く、効率と信頼性の両立が難しかった。しかしながら、本実施形態に係るリン酸化合物処理と熱処理を行うことで、発光効率が高い0.05≦x≦0.4においても高いLED信頼性を有しており、高い発光効率とLED信頼性を両立させることが可能である。 As described above, in the phosphor of the prior art, the Eu amount in the phosphor composition is 0.2 to 1.6, that is, the luminous efficiency is high when x in the formula (1) is 0.05 ≦ x ≦ 0.4, The reliability was low and it was difficult to achieve both efficiency and reliability. However, by performing the phosphoric acid compound treatment and heat treatment according to the present embodiment, the LED has high LED reliability even when the light emission efficiency is high, 0.05 ≦ x ≦ 0.4, and high light emission efficiency and LED reliability. It is possible to achieve both.
熱処理の温度について
蛍光体DのSEM画像を図3に、熱処理していない蛍光体C1のSEM画像を図4に、400℃で熱処理した蛍光体C2のSEM画像を図5に、600℃で熱処理した蛍光体3のSEM画像を図6にそれぞれ示した。
SEM画像から、リン酸化合物付着処理後は、リン酸化合物が微粒子または膜の状態で蛍光体粒子の表面に付着していることが分かる。400℃の熱処理後では、リン酸化合物の少なくとも一部が微粒子の状態で付着しているが、600℃熱処理後では、リン酸化合物が溶融して膜状に蛍光体粒子表面に付着していることが分かる。
蛍光体C1及びC2を用いた発光装置は、蛍光体3を用いた発光装置よりも△yのシフトが大きく、LED信頼性が低いことから、500℃以上の温度で熱処理することでLED信頼性の改善効果がより大きくなることが分かる。
Heat Treatment Temperature FIG. 3 shows an SEM image of phosphor D, FIG. 4 shows an SEM image of phosphor C1 that has not been heat treated, FIG. 5 shows an SEM image of phosphor C2 heat treated at 400 ° C., and heat treatment at 600 ° C. The SEM images of the phosphor 3 thus obtained are shown in FIG.
From the SEM image, it can be seen that after the phosphate compound adhesion treatment, the phosphate compound is adhered to the surface of the phosphor particles in the form of fine particles or a film. After the heat treatment at 400 ° C., at least a part of the phosphoric acid compound adheres in the form of fine particles, but after the heat treatment at 600 ° C., the phosphoric acid compound melts and adheres to the surface of the phosphor particles in the form of a film. I understand that.
The light emitting device using the phosphors C1 and C2 has a larger Δy shift than the light emitting device using the phosphor 3, and the LED reliability is low. Therefore, the LED reliability is obtained by heat treatment at a temperature of 500 ° C. or higher. It turns out that the improvement effect of becomes larger.
図7に、熱処理していない蛍光体C1、400℃で熱処理した蛍光体C2、800℃で熱処理した蛍光体C3、及び600℃で熱処理した蛍光体3の励起スペクトルを示す。800℃で熱処理した蛍光体C3では、励起スペクトルのピーク強度を100%としたときの、270nmにおける相対強度が40%となっており、相対強度が低下していることが分かる。これは熱処理温度が高すぎるために蛍光体が劣化したと考えられる。 FIG. 7 shows excitation spectra of phosphor C1 that has not been heat-treated, phosphor C2 that has been heat-treated at 400 ° C., phosphor C3 that has been heat-treated at 800 ° C., and phosphor 3 that has been heat-treated at 600 ° C. In the phosphor C3 heat-treated at 800 ° C., the relative intensity at 270 nm is 40% when the peak intensity of the excitation spectrum is 100%, and it can be seen that the relative intensity is reduced. This is probably because the phosphor was deteriorated because the heat treatment temperature was too high.
リン酸化合物の付着量について
表3における実施例3、7、8及び9より、リン酸分析値とCa分析値の和が3.24〜7.0の範囲で△yのシフトが小さく、LED信頼性の改善効果がより高いことが確認できる。
About the adhesion amount of a phosphoric acid compound From Example 3, 7, 8, and 9 in Table 3, the shift of (DELTA) y is small in the range whose sum of a phosphoric acid analysis value and Ca analysis value is 3.24-7.0, LED. It can be confirmed that the reliability improvement effect is higher.
熱処理時の雰囲気について
実施例3、10より、大気及び窒素雰囲気中での熱処理により、発光効率およびLED信頼性を高くできたことが確認できる。
About the atmosphere at the time of heat processing From Examples 3 and 10, it can be confirmed that the light emission efficiency and the LED reliability were improved by the heat treatment in the air and nitrogen atmosphere.
蛍光体粒子の精製処理について
実施例10、11より、酸性溶液等で洗浄処理を行い、Sr分析値が少ない蛍光体にリン酸化合物処理と熱処理を行うことで、より高効率であることが確認できる。Sr分析値について、実施例10では250ppm、実施例11では35ppm、実施例12では14ppmである。蛍光体粒子表面からの蛍光体成分の溶出量を減らすことで、リン酸化合物付着処理中の蛍光体粒子からの蛍光体成分の溶出量が低減し、リン酸化合物付着処理がより効果的に行えると考えられる。
また実施例12、13より、蛍光体粒子の精製処理は、洗浄処理で十分であり、乾燥処理は必須ではないことが分かる。
Regarding purification treatment of phosphor particles From Examples 10 and 11, it is confirmed that the phosphor particles are treated with an acidic solution and the phosphor compound treatment and heat treatment are performed on a phosphor having a small Sr analysis value, thereby achieving higher efficiency. it can. The Sr analysis values are 250 ppm in Example 10, 35 ppm in Example 11, and 14 ppm in Example 12. By reducing the amount of phosphor components eluted from the surface of the phosphor particles, the amount of phosphor components eluted from the phosphor particles during the phosphate compound deposition treatment is reduced, and the phosphate compound deposition treatment can be performed more effectively. it is conceivable that.
Moreover, from Examples 12 and 13, it can be seen that the cleaning treatment is sufficient for the purification treatment of the phosphor particles, and the drying treatment is not essential.
図11に、横軸に波長、縦軸に光強度を示す各種光源についてのスペクトルを示す。図11には、太陽光、1W出力のメタルハライドランプ、1W出力の白色発光装置(相関色温度5000K)、1W出力の490nmに発光ピークを有する半導体発光素子、及び1W出力の本開示に係る発光装置を光源としたスペクトルが示されている。スペクトルから、太陽光は幅広い波長範囲に渡って同等の光強度を示し、集魚灯として用いられるメタルハライドランプ(1W)は590nm付近に発光ピークを有するものの、やはり幅広い範囲に渡って同程度の光強度を示すことが分かる。一方、白色発光装置、半導体発光素子及び本実施形態に係る発光装置では、それぞれ特定の波長に発光ピークを有するスペクトルを示すことが分かる。 FIG. 11 shows spectra for various light sources, the wavelength on the horizontal axis and the light intensity on the vertical axis. FIG. 11 shows sunlight, a 1 W output metal halide lamp, a 1 W output white light emitting device (correlated color temperature 5000K), a 1 W output semiconductor light emitting element having an emission peak at 490 nm, and a 1 W output light emitting device according to the present disclosure. A spectrum with 光源 as a light source is shown. From the spectrum, sunlight shows the same light intensity over a wide wavelength range, and the metal halide lamp (1W) used as a fish collection lamp has a light emission peak near 590 nm, but the light intensity is also comparable over a wide range. It can be seen that On the other hand, it can be seen that the white light emitting device, the semiconductor light emitting element, and the light emitting device according to the present embodiment each show a spectrum having an emission peak at a specific wavelength.
図12には、水深50mの海水を透過した後に観測される各種光源のスペクトルを示す。太陽光は490nm付近にピークを有する比較的幅広で光強度の強いスペクトルを示すことが分かる。メタルハライドランプ及び白色発光装置では光強度が低下することが分かる。また半導体発光素子は高い光強度を示すものの、スペクトル半値幅が太陽光に比べて半分程度となることが分かる。一方、本実施形態に係る発光装置では、太陽光と同等のスペクトルを示すことが分かる。海中生物(例えば、イカ)の視感度曲線は490nm付近にピークを有し比較的半値幅の広いスペクトルであるため、本実施形態に係る発光装置を、例えば集魚灯に適用することで、従来のメタルハライドランプや半導体発光素子を用いる場合に比べて、優れたエネルギー効率で優れた集魚効果が期待できることが分かる。 FIG. 12 shows spectra of various light sources observed after passing through seawater having a depth of 50 m. It can be seen that sunlight shows a relatively wide spectrum with a strong light intensity having a peak near 490 nm. It can be seen that the light intensity decreases in the metal halide lamp and the white light emitting device. Moreover, although a semiconductor light-emitting device shows high light intensity, it turns out that a spectrum half value width becomes about half compared with sunlight. On the other hand, it turns out that the light-emitting device which concerns on this embodiment shows a spectrum equivalent to sunlight. Since the visibility curve of marine organisms (for example, squid) is a spectrum having a peak at around 490 nm and a relatively wide half-value width, by applying the light emitting device according to this embodiment to a fish collection lamp, for example, It can be seen that an excellent fish collection effect can be expected with excellent energy efficiency as compared with the case of using a metal halide lamp or a semiconductor light emitting element.
本実施形態に係る蛍光体及びその製造方法並びに発光装置は、一般照明、車載照明、ディスプレイ、集魚灯、観賞用照明、警告灯、防犯灯、表示灯、液晶用のバックライト等の幅広い分野で用いることができる。 The phosphor according to the present embodiment, the manufacturing method thereof, and the light-emitting device are used in a wide range of fields such as general lighting, in-vehicle lighting, display, fishlight, ornamental lighting, warning light, security light, display light, and liquid crystal backlight. Can be used.
10:発光素子、50:蛍光部材、70:蛍光体、71:第一蛍光体、72:第二蛍光体、100:発光装置 10: Light emitting element, 50: Fluorescent member, 70: Phosphor, 71: First phosphor, 72: Second phosphor, 100: Light emitting device
Claims (11)
準備した蛍光体粒子を、水を含む液媒体と接触させることと、
接触させた液媒体の少なくとも一部を除去して精製された蛍光体粒子を得ることと、
前記精製された蛍光体粒子の表面にリン酸化合物を付着させてリン酸化合物付着蛍光体粒子を得ることと、
前記リン酸化合物付着蛍光体粒子を500℃以上700℃以下で熱処理することと、
を含む蛍光体の製造方法。
(Sr1−x,Eux)4Al14O25 (1)
(ただし、式(1)中、xは、0.05≦x≦0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。) Preparing phosphor particles containing an alkaline earth metal aluminate having a composition represented by the following formula (1):
Bringing the prepared phosphor particles into contact with a liquid medium containing water;
Removing at least a portion of the contacted liquid medium to obtain purified phosphor particles;
Attaching a phosphoric acid compound to the surface of the purified phosphor particles to obtain phosphoric acid compound-attached phosphor particles;
Heat-treating the phosphor compound-attached phosphor particles at 500 ° C. or more and 700 ° C. or less;
The manufacturing method of the fluorescent substance containing this.
(Sr 1-x , Eu x ) 4 Al 14 O 25 (1)
(In the formula (1), x satisfies 0.05 ≦ x ≦ 0.4, and a part of Sr is substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn. May be.)
示差走査熱量測定において、25℃から650℃における吸熱量が50J/g以下である蛍光体。 Phosphor particles containing alkaline earth metal aluminate, and phosphoric acid compound disposed on the surface of the phosphor particles,
A phosphor having an endotherm at 25 ° C. to 650 ° C. of 50 J / g or less in differential scanning calorimetry.
(Sr1−x,Eux)4Al14O25 (1)
(ただし、式(1)中、xは、0.05≦x≦0.4を満たし、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。) The phosphor according to claim 6, wherein the alkaline earth metal aluminate has a composition represented by the following formula (1).
(Sr 1-x , Eu x ) 4 Al 14 O 25 (1)
(In the formula (1), x satisfies 0.05 ≦ x ≦ 0.4, and a part of Sr is substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn. May be.)
発光スペクトルにおいて、前記蛍光体の発光ピーク波長における発光強度に対する、前記発光素子の発光ピーク波長における発光強度の比が、10以下である発光装置。 An emission intensity at an emission peak wavelength of the phosphor in an emission spectrum, comprising: the phosphor according to any one of claims 6 to 9; and a light emitting element having an emission peak wavelength in a wavelength range of 380 nm to 470 nm. A light emitting device having a ratio of light emission intensity at a light emission peak wavelength of the light emitting element to 10 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/440,719 US10153405B2 (en) | 2016-02-26 | 2017-02-23 | Fluorescent material, light emitting device, and method for producing fluorescent material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016036395 | 2016-02-26 | ||
JP2016036395 | 2016-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017155217A true JP2017155217A (en) | 2017-09-07 |
JP6406369B2 JP6406369B2 (en) | 2018-10-17 |
Family
ID=59809268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017019626A Active JP6406369B2 (en) | 2016-02-26 | 2017-02-06 | Phosphor, light emitting device, and method of manufacturing phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6406369B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020019921A (en) * | 2018-02-06 | 2020-02-06 | 信越化学工業株式会社 | Phosphor particle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169885A (en) * | 1984-09-12 | 1986-04-10 | Matsushita Electronics Corp | Phosphor |
JPH08151574A (en) * | 1994-09-29 | 1996-06-11 | Nichia Chem Ind Ltd | Fluorescent substance having afterglow property |
JP2001089759A (en) * | 1999-08-07 | 2001-04-03 | Koninkl Philips Electronics Nv | Plasma image screen |
WO2001027220A1 (en) * | 1999-10-07 | 2001-04-19 | Matsui Shikiso Chemical Co., Ltd. | Process for producing luminous pigment with water resistance |
WO2013183620A1 (en) * | 2012-06-08 | 2013-12-12 | 電気化学工業株式会社 | Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device |
WO2015083814A1 (en) * | 2013-12-06 | 2015-06-11 | 堺化学工業株式会社 | Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body |
-
2017
- 2017-02-06 JP JP2017019626A patent/JP6406369B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169885A (en) * | 1984-09-12 | 1986-04-10 | Matsushita Electronics Corp | Phosphor |
JPH08151574A (en) * | 1994-09-29 | 1996-06-11 | Nichia Chem Ind Ltd | Fluorescent substance having afterglow property |
JP2001089759A (en) * | 1999-08-07 | 2001-04-03 | Koninkl Philips Electronics Nv | Plasma image screen |
WO2001027220A1 (en) * | 1999-10-07 | 2001-04-19 | Matsui Shikiso Chemical Co., Ltd. | Process for producing luminous pigment with water resistance |
WO2013183620A1 (en) * | 2012-06-08 | 2013-12-12 | 電気化学工業株式会社 | Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device |
WO2015083814A1 (en) * | 2013-12-06 | 2015-06-11 | 堺化学工業株式会社 | Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body |
EP3078722A1 (en) * | 2013-12-06 | 2016-10-12 | Sakai Chemical Industry Co., Ltd. | Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020019921A (en) * | 2018-02-06 | 2020-02-06 | 信越化学工業株式会社 | Phosphor particle |
Also Published As
Publication number | Publication date |
---|---|
JP6406369B2 (en) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5234781B2 (en) | Phosphor, method for producing the same, and light emitting device | |
TWI299055B (en) | ||
JP4362625B2 (en) | Method for manufacturing phosphor | |
JP5035818B2 (en) | Oxynitride phosphor and light emitting device | |
KR101265030B1 (en) | LI-CONTAINING α-SIALON FLUORESCENT SUBSTANCE AND METHOD FOR MANUFACTURING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE | |
KR101216923B1 (en) | Phosphor, method for producing the same, and light-emitting device using the same | |
JP5833918B2 (en) | Phosphor, method for producing the same, and light emitting device using the same | |
JP6485467B2 (en) | Phosphor, light emitting device, and method of manufacturing phosphor | |
JP5294245B2 (en) | Phosphor, method for producing the same, and light emitting device | |
KR20060123209A (en) | Phosphor and light emission appliance using phosphor | |
KR20070046795A (en) | Fluorescent substance and light-emitting equipment | |
KR20140100499A (en) | Phosphor, production method therefor, light emission device, and image display device | |
WO2006101096A1 (en) | Fluorescent substance, process for producing the same, and luminescent device | |
JP2007262417A (en) | Fluorescent substance | |
EP3103854A1 (en) | Acid nitride phosphor powder and method for producing same | |
JP2009030042A (en) | Phosphor, method for producing phosphor, phosphor-containing composition, and light-emitting device | |
TWI673343B (en) | Phosphor, light emitting device, illumination device and image display device | |
WO2006035995A1 (en) | Oxynitride-based fluorescent material and method for production thereof | |
JP3975451B2 (en) | Luminaire and image display device using phosphor | |
EP3124572A1 (en) | Phosphor and use thereof | |
JP2007113019A (en) | Method for production of phosphor | |
JP6240962B2 (en) | Phosphor, method for producing the same, and light emitting device using the same | |
JP6406369B2 (en) | Phosphor, light emitting device, and method of manufacturing phosphor | |
US10153405B2 (en) | Fluorescent material, light emitting device, and method for producing fluorescent material | |
JP5920773B2 (en) | Phosphor, method for manufacturing the same, light emitting device, and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6406369 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |