JP2017153622A - Pulse diagnostic apparatus - Google Patents

Pulse diagnostic apparatus Download PDF

Info

Publication number
JP2017153622A
JP2017153622A JP2016038242A JP2016038242A JP2017153622A JP 2017153622 A JP2017153622 A JP 2017153622A JP 2016038242 A JP2016038242 A JP 2016038242A JP 2016038242 A JP2016038242 A JP 2016038242A JP 2017153622 A JP2017153622 A JP 2017153622A
Authority
JP
Japan
Prior art keywords
pulse
doctor
pressure sensor
finger
pulse diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038242A
Other languages
Japanese (ja)
Inventor
中村 浩行
Hiroyuki Nakamura
浩行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2016038242A priority Critical patent/JP2017153622A/en
Publication of JP2017153622A publication Critical patent/JP2017153622A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that since pulse diagnosis requires direct contact by a finger of a doctor performing pulse diagnosis, it is necessary for the doctor to visit a residence of a patient to be diagnosed, and that there is no means to compensate for a change in finger feelings over time resulting from aging and injuries of the doctor himself/herself.SOLUTION: A multiaxial pressure sensor is used as an alternative to a finger. A device is provided for amplifying a signal acquired by the pressure sensor and transmitting it to a doctor's finger anew. Also, a doctor's movement can be reduced by transferring the signal acquired by the pressure sensor to a remote place.SELECTED DRAWING: Figure 1

Description

本発明は、健康診断の一手法である脈診に供する脈波検出及び診断装置に関するものである。 The present invention relates to a pulse wave detection and diagnosis apparatus used for pulse diagnosis, which is a method of health check.

医師が自身の手指の先端の感覚を以って患者の脈を触診する診断法があり、脈診といわれる。患者の脈の状態を定量的に判断することが困難であるため医師の属人的な技法であるが、この技法を極めた医師の診断には高い評価があるため、脈診を機械的に安定して行う装置の検討がなされてきた。 There is a diagnostic method in which a doctor palpates a patient's pulse with the sensation of the tip of his / her finger, which is called pulse diagnosis. Although it is difficult to quantitatively determine the state of the patient's pulse, it is a doctor's personal technique, but the doctor's diagnosis that uses this technique is highly evaluated, so the pulse diagnosis is mechanically performed. Devices that perform stably have been studied.

例えば先行技術文献のようなものである。 For example, it is like a prior art document.

特開平07−136139号公報JP 07-136139 A 特開2000−005139号公報JP 2000-005139 A

上述の先行技術文献に記載の装置は圧力センサーを用いた脈診装置に関するものであるが、一般的な圧力センサーで検出可能であるZ軸方向(脈が人体表面を押し上げる方向)の脈波圧力の波形のみを取得し解析することが可能であった。
しかしながら、人間は手指に限らず皮膚表面の圧力感応に方向成分があり、単なる押し上げ力の変化のみではなく方向の変化も感じ取ることが可能である。よって、上述の先行技術文献に記載の装置では人間の関知し得る圧力を忠実に取得できないため、脈診可能な医師の持つ属人的な技法への適用が不可能であるといった課題があった。
The device described in the above-mentioned prior art document relates to a pulse diagnosis device using a pressure sensor, but the pulse wave pressure in the Z-axis direction (the direction in which the pulse pushes up the human body surface) can be detected by a general pressure sensor. It was possible to acquire and analyze only the waveform.
However, humans have not only fingers but also directional components in the pressure sensitivity of the skin surface, and it is possible to sense not only mere changes in push-up force but also changes in direction. Therefore, the apparatus described in the above-mentioned prior art document has a problem in that it cannot be applied to a personal technique possessed by a doctor capable of performing pulse diagnosis because the pressure that can be recognized by human beings cannot be faithfully acquired. .

特に、中国医学やインドの伝承医学として広く認知されている脈診は、その習得までに長期の鍛錬や経験が必要であり、人間の手指の触覚を最大限に利用することが要求される触診の一手法である。しかし、従来の技術はその手指触覚に重要であるX軸やY軸方向(人体表面の横方向)の剪断力を取得することができずZ軸方向成分のみから導出された結果であるため、人間の手指による脈診の代替となり得るまでの高精度な診察を行う事は不可能であった。 In particular, pulse diagnosis, which is widely recognized as Chinese medicine and Indian traditional medicine, requires long-term training and experience to acquire it, and palpation is required to make the best use of the sense of touch of human fingers. It is one method. However, since the conventional technique cannot obtain the shearing force in the X-axis or Y-axis direction (the lateral direction of the human body surface) that is important for the finger tactile sense, it is a result derived only from the Z-axis direction component. It was impossible to conduct a highly accurate examination until it could be a substitute for pulse examination using human fingers.

そこで本願発明者はこれらの問題を解決すべく、本願発明を成した。 Therefore, the present inventor made the present invention in order to solve these problems.

本発明の脈診装置は、
「3つの多軸圧力センサーと
前記各3つの圧力センサーが取得した信号を処理する信号処理部と
を有する」
ことを特徴としている。
The pulse diagnosis apparatus of the present invention is
“It has three multi-axis pressure sensors and a signal processing unit for processing signals acquired by the three pressure sensors.”
It is characterized by that.

本発明により、医師の手指の感覚を多軸圧力センサーの各軸の圧力として取得でき、これに基づいて脈診に必要な情報を判断可能となる。 According to the present invention, it is possible to acquire a doctor's finger sensation as the pressure of each axis of the multi-axis pressure sensor, and based on this, information necessary for pulse diagnosis can be determined.

脈診における多軸圧力センサーの機能を示す図である。It is a figure which shows the function of the multi-axis pressure sensor in a pulse diagnosis. 血管の硬度による多軸圧力センサーの機能の違いを示す図である。It is a figure which shows the difference in the function of the multiaxial pressure sensor by the hardness of the blood vessel. 本発明の脈診装置のブロック図である。It is a block diagram of the pulse diagnosis apparatus of the present invention. 疾患による脈波波形の違いを示す図である。It is a figure which shows the difference in the pulse wave waveform by a disease.

本発明では多軸圧力センサーとして3軸圧力センサーを使用することを前提としている。
以下、図面を参照しながら本発明を説明してゆく。
In the present invention, it is assumed that a triaxial pressure sensor is used as the multiaxial pressure sensor.
The present invention will be described below with reference to the drawings.

(実施例1)
図1は、脈診において医師が手指を当てる3つの箇所(尺・関・寸)において3軸圧力センサーを設置した状態を示している。具体的には手首付近である。
圧力センサーの3軸についてここで改めて定義する。Z軸は皮膚表面に対して垂直方向である、Y軸は血管の長手方向であり、X軸は血管の断面方向でかつZ軸と垂直の方向である。
3つ(尺・関・寸)の多軸圧力センサーでは血流の時間差をもって脈波をそれぞれ計測し波形を取得する。
Example 1
FIG. 1 shows a state in which a triaxial pressure sensor is installed at three locations (scale / function / dimension) where a doctor touches a finger during pulse diagnosis. Specifically, it is near the wrist.
The three axes of the pressure sensor will be redefined here. The Z-axis is perpendicular to the skin surface, the Y-axis is the longitudinal direction of the blood vessel, and the X-axis is the cross-sectional direction of the blood vessel and the direction perpendicular to the Z-axis.
Three (axis / function / dimension) multi-axis pressure sensors measure the pulse wave with the time difference of blood flow and acquire the waveform.

図2は、図1の状態において血管の硬度の違いが3つ(尺・関・寸)の各3軸圧力センサーにおいてどの様に波形が取得されるかを示している。血管硬度が高いと伝搬に時間がかかる。また波高値の減衰も速くなる。 FIG. 2 shows how a waveform is acquired in each of the three-axis pressure sensors having three differences in blood vessel hardness (scale, function, and dimension) in the state of FIG. Propagation takes time when blood vessel hardness is high. Moreover, the peak value decays faster.

図3は、本実施例の脈診装置のブロック図である。
3箇所(尺・関・寸)に3軸圧力センサーが設置されているので、XYZ各軸のデータを尺関寸それぞれについて取得できる。これらはアナログの電気信号として取得され、増幅器で増幅された上で、AD変換器でディジタル信号に変換される。
FIG. 3 is a block diagram of the pulse diagnosis apparatus of the present embodiment.
Since three-axis pressure sensors are installed at three locations (scales / functions / dimensions), data for each axis of XYZ can be acquired for each of the dimensions of the dimensions. These are acquired as analog electric signals, amplified by an amplifier, and then converted into digital signals by an AD converter.

尺関寸の各ディジタル信号を演算処理部へ入力する。
演算処理部は例えばCPUとソフトウェアで実現されるシステムである。
制御部は記憶部・外部接続部・位相差比較器・波形解析器を制御する。
位相差比較器で尺関寸の各ディジタル信号を比較して位相差を算出し、結果として伝搬時間が得られる。
波形解析器で尺関寸の各ディジタル信号の波形を解析し、脈拍や血圧などを推定する。
記憶部ではディジタル信号や伝搬時間や波形の解析結果などを記憶する。
外部接続部は記憶部に記憶した情報を外部へ送信する。
Each digital signal of the shank dimension is input to the arithmetic processing unit.
The arithmetic processing unit is a system realized by a CPU and software, for example.
The control unit controls the storage unit, the external connection unit, the phase difference comparator, and the waveform analyzer.
The phase difference is calculated by comparing each digital signal of the scale with the phase difference comparator, and the propagation time is obtained as a result.
The waveform analyzer analyzes the waveform of each digital signal of the shank dimensions and estimates the pulse and blood pressure.
The storage unit stores digital signals, propagation times, waveform analysis results, and the like.
The external connection unit transmits the information stored in the storage unit to the outside.

ここでは、一般的な脈診の項目についての概要を説明している。
前述の尺関寸は、手首において心臓に近い順に並べる。
脈の深さ・速さ・強さなどを医師の手指の感覚で診るが、これらが3軸圧力センサーにより精度高く検出できるため、本発明の脈診装置で診断が可能となる。
Here, an outline of general pulse diagnosis items is described.
The aforementioned shank dimensions are arranged in order from the wrist to the heart.
The depth, speed, strength, etc. of the pulse are examined with the senses of the fingers of the doctor. Since these can be detected with high accuracy by the triaxial pressure sensor, the pulse diagnosis device of the present invention can be used for diagnosis.

脈診に於ける本発明の意義を説明する。
脈とは、心臓において血液が加圧されて、その加圧が血液の圧力波として血管中を伝播するものである。その際に血管は柔軟に変形するが、その変形は立体的である。このため、通常の圧力センサーだけを使用した場合には脈診装置のセンサーとして適切で無かったのである。
本発明では3軸圧力センサーを用いることを特徴としているので、XYZ各軸の波形を合成することで圧力のベクトル(絶対値と方向)を得ることができる。このため、圧力センサーを厳密に血管の直上に設置する必要がなく、設置の自由度が向上する。
また、通常の圧力センサーと異なって圧力を絶対値と方向とに分離できるので、方向成分の変化も診断材料として活用が可能となる。この点が手指感覚による脈診に代替し得る最大の理由である。
The significance of the present invention in pulse diagnosis will be described.
A pulse is a pressure in which blood is pressurized in the heart and the pressure propagates through the blood vessel as a pressure wave of the blood. At that time, the blood vessel deforms flexibly, but the deformation is three-dimensional. For this reason, when only a normal pressure sensor was used, it was not suitable as a sensor for a pulse diagnosis device.
Since the present invention is characterized by using a triaxial pressure sensor, a pressure vector (absolute value and direction) can be obtained by synthesizing the waveforms of the XYZ axes. For this reason, it is not necessary to install the pressure sensor strictly above the blood vessel, and the degree of freedom of installation is improved.
In addition, unlike a normal pressure sensor, the pressure can be separated into an absolute value and a direction, so that a change in the direction component can also be used as a diagnostic material. This is the greatest reason that can be substituted for pulse diagnosis by finger sensation.

図4に、妊婦の脈波波形に影響の現れる疾病の例を挙げる。
正常妊婦の波形と比して、妊娠高血圧症やHELLP症は明らかに異なる脈波波形を示しており、当然ながらこれを本発明の脈診装置で取得すれば、当該波形(絶対値)と方向の変化、伝搬時間による血管の硬度、などが関連して取得可能であり、脈診装置としての精度が向上する。
FIG. 4 shows an example of a disease that affects the pulse waveform of a pregnant woman.
Pregnant hypertension and HELLP disease show distinctly different pulse wave waveforms compared to normal pregnant women's waveforms. Naturally, if this is obtained with the pulse diagnosis apparatus of the present invention, the waveform (absolute value) and direction Change, the hardness of the blood vessel according to the propagation time, and the like can be acquired in association with each other, and the accuracy as a pulse diagnosis device is improved.

(実施例2)
実施例1では図3の制御部が脈診を行う前提で説明を行ったが、実施例2では人間(医師)が脈診を行うことを支援する装置について説明する。
尺関寸の各3軸圧力センサーのディジタル信号を外部接続部を通して外部装置へ出力する。
このディジタル信号を図示しない脈診補助装置へ入力する。この脈診補助装置は、例えば大型の指サック状であり、指の腹が接する部分に外から指を押す向きで3軸独立制御可能な加圧装置を設けられており、この補助装置はそれぞれ尺関寸に相当する手指へ装着する。
この構成により、尺関寸の各3軸圧力センサーが取得した脈波を増幅した上で人間(医師)が触診(=脈診)することが可能となる。医師自身の老化による指先感覚の低下が生じた際には増幅率を上げることでより正確に脈診が可能となるし、また医師の脈診を行うことができる現役としての期間が延長できる。
さらに、脈診を習得途上の医師においては、脈波の微妙な違いを増幅率の調整で複数回試すことが可能であるので、習得の知見を積む上で非常に有用である。
(Example 2)
In the first embodiment, the description has been made on the assumption that the control unit in FIG. 3 performs pulse diagnosis. However, in the second embodiment, a device that assists a human (doctor) to perform pulse diagnosis will be described.
The digital signal of each triaxial pressure sensor with a shank dimension is output to an external device through an external connection.
This digital signal is input to a pulse diagnosis assisting device (not shown). This pulse diagnosis assisting device has, for example, a large finger sac shape, and is provided with a pressurizing device that can independently control three axes in the direction in which the finger is pressed from the outside at the part where the belly of the finger contacts. Attach it to the finger corresponding to the shakuseki dimension.
With this configuration, it becomes possible for a human (physician) to palpate (= pulse examination) after amplifying the pulse wave obtained by each of the three-axis pressure sensors of the shank dimension. When the fingertip sensation is lowered due to the aging of the doctor, the pulse rate can be more accurately increased by increasing the amplification factor, and the active period during which the doctor can perform pulse diagnosis can be extended.
Further, doctors who are learning pulse diagnosis can try a subtle difference in pulse wave multiple times by adjusting the amplification factor, which is very useful for accumulating knowledge of acquisition.

(実施例3)
実施例2の脈診補助装置を遠隔地に設置するようにしても良い。脈診装置と脈診補助装置の間を有線や無線などで実現する通信手段によって接続することで、本実施例が可能となる。
これにより、脈診を受ける患者の居所まで医師が移動する必要が無くなり、一人の医師が広範囲に散在する患者を効率良く脈診することが可能となる。
(Example 3)
You may make it install the pulse diagnosis assistance apparatus of Example 2 in a remote place. The present embodiment can be realized by connecting the pulse diagnosis device and the pulse diagnosis assisting device by communication means realized by wire or wireless.
This eliminates the need for a doctor to move to the location of the patient undergoing pulse diagnosis, and enables a single doctor to efficiently perform pulse diagnosis for patients scattered over a wide area.

(実施例4)
脈診を行う医師の指先に多軸圧力センサーを取り付けるようにしてもよい。この場合、手袋状のウェアを用意し、指先に相当する箇所に多軸圧力センサーを取り付ける。
なお、この手袋にはFBGを織込むことで各手指の形状を独立して計測可能となり、各手指の相対的な位置関係を算出可能となるので、脈波伝搬速度を計測する際にこの相対的位置関係を参酌するとより高精度な脈診が可能となる。
Example 4
A multi-axis pressure sensor may be attached to the fingertip of a doctor performing pulse diagnosis. In this case, a glove-like garment is prepared, and a multi-axis pressure sensor is attached to a location corresponding to the fingertip.
In addition, since the shape of each finger can be measured independently by weaving FBG into this glove, and the relative positional relationship of each finger can be calculated, this relative wave length is measured when measuring the pulse wave propagation velocity. Considering the positional relationship, more accurate pulse diagnosis becomes possible.

(実施例5)
実施例2・3は3軸圧力センサーが取得した脈波を改めて指先で再現するものであったが、本実施例は音に変換する。
一つの3軸圧力センサーは各軸の波形を合成して絶対値と方向とを算出可能であるので、これをサラウンド(立体音場)に変換し、尺を最も遠い音源・関を次に遠い音源・寸を最も近い音源となるように設定する。脈波信号そのものは可聴周波数では無いので、脈波信号を周波数変換するか特定正弦波(例えば4kHz)を脈波信号で周波数変調しても良い。周波数変調をする場合には、特定正弦波を尺関寸ごとに異なる周波数(例えば尺関寸の順に高い周波数となる)としても良い。
この立体音場を聴取する際には特殊なヘッドフォンを用いても良いし、専用のオーディオルームで実現しても良い。
(Example 5)
In the second and third embodiments, the pulse wave acquired by the three-axis pressure sensor is reproduced again with the fingertip, but in this embodiment, the pulse wave is converted into sound.
Since one triaxial pressure sensor can calculate the absolute value and direction by synthesizing the waveforms of each axis, it converts this to surround (stereoscopic sound field), and the farthest sound source / seki is next. Set the sound source / dimension to the closest sound source. Since the pulse wave signal itself is not an audible frequency, the pulse wave signal may be frequency converted or a specific sine wave (for example, 4 kHz) may be frequency-modulated with the pulse wave signal. In the case of frequency modulation, the specific sine wave may have a different frequency for each scale dimension (for example, a higher frequency in the order of the scale dimension).
When listening to this three-dimensional sound field, special headphones may be used, or a dedicated audio room may be used.

本発明では多軸圧力センサーとして3軸圧力センサーを例に説明したが、更に軸数が多いものでも良いし、センサーの数も3より多い数でも良い。 In the present invention, a three-axis pressure sensor has been described as an example of the multi-axis pressure sensor. However, the number of axes may be greater, and the number of sensors may be greater than three.

以上、本発明について好適な実施例を挙げて説明したが、本発明はこれらの実施例に限定されるものではなく、発明の精神を逸脱しない限り多くの改変を施すことが可能であるのは勿論である。 The present invention has been described with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

量産可能な多軸圧力センサーや電子機器を用いて脈診装置を実現することができ、脈診の精度や能率の向上が可能で、医師の移動を極小にするなど低コスト化を実現させるなどの効果を有している。 A pulse diagnosis device can be realized using multi-axis pressure sensors and electronic equipment that can be mass-produced, and the accuracy and efficiency of pulse diagnosis can be improved. It has the effect of.

Claims (1)

多軸圧力センサーを用いた脈診装置であって、
2つの多軸圧力センサーと
前記各2つの圧力センサーが取得した信号を処理する信号処理部と
を有することを特徴とする脈診装置。
A pulse diagnosis device using a multi-axis pressure sensor,
A pulse diagnosis apparatus comprising: two multi-axis pressure sensors; and a signal processing unit that processes signals acquired by the two pressure sensors.
JP2016038242A 2016-02-29 2016-02-29 Pulse diagnostic apparatus Pending JP2017153622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038242A JP2017153622A (en) 2016-02-29 2016-02-29 Pulse diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038242A JP2017153622A (en) 2016-02-29 2016-02-29 Pulse diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2017153622A true JP2017153622A (en) 2017-09-07

Family

ID=59807358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038242A Pending JP2017153622A (en) 2016-02-29 2016-02-29 Pulse diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2017153622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472153B1 (en) * 2018-11-08 2019-02-20 兆奇 胡 Health condition evaluation system by pulse measurement and its operation method
CN110772238A (en) * 2019-12-05 2020-02-11 广州西思数字科技有限公司 Pulse-taking automatic safety protection device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472153B1 (en) * 2018-11-08 2019-02-20 兆奇 胡 Health condition evaluation system by pulse measurement and its operation method
JP2020074940A (en) * 2018-11-08 2020-05-21 兆奇 胡 Health state evaluation system by measuring pulse and actuation method thereof
US10765333B2 (en) 2018-11-08 2020-09-08 Zhao Qi Hu System that assesses health condition by measuring pulse and method of assessing the same
CN110772238A (en) * 2019-12-05 2020-02-11 广州西思数字科技有限公司 Pulse-taking automatic safety protection device and method
CN110772238B (en) * 2019-12-05 2023-05-30 广州西思数字科技有限公司 Automatic pulse diagnosis safety protection device and method

Similar Documents

Publication Publication Date Title
US20240016444A1 (en) Fetal position monitoring system and method
EP3157416B1 (en) System for cuff-less blood pressure (bp) measurement of a subject
Sofia et al. Mechanical and psychophysical studies of surface wave propagation during vibrotactile stimulation
Siddiqui et al. Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist
US20170265799A1 (en) Fetal movement measuring device
US20160058393A1 (en) Diagnostic apparatus, diagnostic method, and computer-readable storage medium
Dai et al. A novel glove monitoring system used to quantify neurological symptoms during deep-brain stimulation surgery
Han et al. Active muscle stiffness sensor based on piezoelectric resonance for muscle contraction estimation
AU2020233670A1 (en) Intraoperative magnetometry monitoring system
Arathy et al. Accelerometric patch probe for cuffless blood pressure evaluation from carotid local pulse wave velocity: Design, development, and in vivo experimental study
KR20170130773A (en) Device for checking uterine contraction based on user eeg and emg signal and method thereof
JP2017153622A (en) Pulse diagnostic apparatus
Zou et al. A multimodal fusion model for estimating human hand force: Comparing surface electromyography and ultrasound signals
Lu et al. Development of a wearable gesture recognition system based on two-terminal electrical impedance tomography
EP3287069B1 (en) Biological information reading device
Dai et al. A portable system for quantitative assessment of parkinsonian bradykinesia during deep-brain stimulation surgery
Wei et al. A portable three-channel data collector for Chinese medicine pulses
Hernandez et al. From on-body sensors to in-body data for health monitoring and medical robotics: A survey
CN103054591A (en) In-vitro waist massage manipulation measuring apparatus
KR100745034B1 (en) Integrative muscle function analysis device
KR20180007223A (en) Apparatus and method for measuring stiffness of abdomen based on press-fit
Bobrova et al. Method of fetal movement registration for remote monitoring systems
Chung et al. New vision of the pulse conditions using bi-sensing pulse diagnosis instrument
Wang et al. Estimation of knee extension force using mechanomyography signals detected through clothing
CZ307554B6 (en) A device for measurement and diagnosis of galvanic skin response while working with the computer, and a method of measurement and performing the diagnosis using this device