JP2017152845A - Information prediction method, information prediction system and information prediction program - Google Patents

Information prediction method, information prediction system and information prediction program Download PDF

Info

Publication number
JP2017152845A
JP2017152845A JP2016032150A JP2016032150A JP2017152845A JP 2017152845 A JP2017152845 A JP 2017152845A JP 2016032150 A JP2016032150 A JP 2016032150A JP 2016032150 A JP2016032150 A JP 2016032150A JP 2017152845 A JP2017152845 A JP 2017152845A
Authority
JP
Japan
Prior art keywords
information
prediction
time
difference information
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016032150A
Other languages
Japanese (ja)
Other versions
JP6534626B2 (en
Inventor
聞杰 姜
Bunketsu Kyo
聞杰 姜
泰司 鷹取
Taiji Takatori
泰司 鷹取
匡人 溝口
Masato Mizoguchi
匡人 溝口
匡夫 中川
Tadao Nakagawa
匡夫 中川
一浩 上原
Kazuhiro Uehara
一浩 上原
知明 大槻
Tomoaki Otsuki
知明 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Keio University
Original Assignee
Nippon Telegraph and Telephone Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Keio University filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016032150A priority Critical patent/JP6534626B2/en
Publication of JP2017152845A publication Critical patent/JP2017152845A/en
Application granted granted Critical
Publication of JP6534626B2 publication Critical patent/JP6534626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce required computational complexity that is required for prediction, by realizing high prediction accuracy when predicting unknown information at a future time based on known information of a time-varying prediction object.SOLUTION: Known information of a prediction object is stored S21, first to Sth differential information are successively generated from the known information or last differential information while defining an N unit time as an interval S22. Based on the generated Sth differential information, a prediction coefficient required for prediction calculation is generated S23 and based on the generated prediction coefficient and Sth differential information, Sth differential information after the N unit time is predicted S24. Based on the predicted Sth differential information after the N unit time, first differential information after the N unit time is predicted by accumulating every differential information S25 and based on the predicted first differential information after the N unit time, unknown information after the N unit time is predicted and outputted S26.SELECTED DRAWING: Figure 6

Description

本発明は、時間変動する予測対象の既知情報に基づいて、将来の未知情報を予測する情報予測方法、情報予測システムおよび情報予測プログラムに関する。   The present invention relates to an information prediction method, an information prediction system, and an information prediction program for predicting future unknown information based on known information of a prediction target that varies with time.

本発明は、例えば送信ウェイト制御や受信ウェイト制御が適用されるマルチユーザ通信ネットワークあるいは異種システムが混在する異種通信ネットワークにおいて、通信路の伝搬応答(チャネル応答)の時間変動に起因する送信ウェイトや受信ウェイトによる制御精度の劣化を回避または緩和するための伝搬応答あるいは伝搬応答に依存する情報の予測技術に関する。また、本発明は、時間変動する音声情報または映像情報の予測にも適用可能な予測技術に関する。   The present invention, for example, in a multi-user communication network to which transmission weight control or reception weight control is applied or in a heterogeneous communication network in which heterogeneous systems coexist, allows transmission weight and reception due to time fluctuation of a channel propagation response (channel response). The present invention relates to a propagation response for avoiding or mitigating deterioration of control accuracy due to weights or a technology for predicting information depending on the propagation response. The present invention also relates to a prediction technique applicable to prediction of audio information or video information that varies with time.

近年、利便性、小型化、モバイルアプリの普及などの諸要因に後押しされ、無線通信局の機能を備えた無線基地局および無線端末が急増している。それに伴い、限られた無線通信に適した電波資源の高効率な利用がますます求められている。   In recent years, wireless base stations and wireless terminals having functions of wireless communication stations have been rapidly increased, supported by various factors such as convenience, miniaturization, and the spread of mobile applications. Accordingly, there is an increasing demand for highly efficient use of radio wave resources suitable for limited wireless communication.

従来は、多数の無線局が送信する無線信号を互いに干渉してスループットが低下することを回避するために、電波資源を周波数軸上あるいは時間軸上あるいは空間軸上、または周波数軸と時間軸と空間軸とを組み合わせた多元軸上での分割利用が主流である。具体的には、従来の干渉制御技術では、多数の無線局に対して利用できる電波資源全体をまず分割し、各無線局が分割で得られた電波資源の範囲内で通信を行うことにより他の無線局との干渉を回避している。   Conventionally, in order to avoid a decrease in throughput due to interference between radio signals transmitted by a large number of radio stations, radio resources are arranged on a frequency axis, a time axis, a space axis, or a frequency axis and a time axis. Divided use on a multi-axis combined with a space axis is the mainstream. Specifically, in the conventional interference control technology, the entire radio resources that can be used for a large number of radio stations are first divided, and each radio station performs communication within the range of radio resources obtained by the division. Interference with other radio stations is avoided.

一方、近年新たな干渉制御の技術アプローチとして、マルチユーザMIMO(Multiuser MIMO、以下MU−MIMOという)技術(非特許文献1,2)や、干渉アライメント(Interference Alignment、以下IAという)技術(非特許文献3,4)が提案されている。これらの干渉制御技術は、従来のように多数の無線局で利用できる電波資源全体を分割するのではなく、各無線局が電波資源全体を利用できるように無線局間に生じる干渉を許容している。そして、分割しない代わりに各無線局が送受ウェイトや受信ウェイトを通して、所望信号以外の干渉信号に対する干渉制御を行っている。   On the other hand, as a new interference control technology approach in recent years, multiuser MIMO (hereinafter referred to as MU-MIMO) technology (Non-Patent Documents 1 and 2), interference alignment (Interference Alignment, hereinafter referred to as IA) technology (non-patent) Documents 3 and 4) have been proposed. These interference control technologies do not divide the entire radio resources that can be used by many radio stations as in the past, but allow for interference that occurs between radio stations so that each radio station can use the entire radio resources. Yes. Then, instead of dividing, each wireless station performs interference control for interference signals other than the desired signal through transmission / reception weights and reception weights.

MU−MIMO技術やIA技術による干渉制御を実現するには、正確な伝搬応答に基づいて算出された高精度な送信ウェイトや受信ウェイトが必要不可欠である。一方、伝搬応答の取得時刻と情報パケットの送信時刻との間には時間差があり、伝搬路の時間変動が速い場合では、取得した伝搬応答が時間とともに陳腐化してしまう。そのような陳腐化した不正確な伝搬応答から生成された送信ウェイトや受信ウェイトは精度が大きく劣化してしまい、MU−MIMO技術やIA技術による干渉制御効果が著しく低下する。   In order to realize interference control by the MU-MIMO technique and the IA technique, highly accurate transmission weights and reception weights calculated based on accurate propagation responses are indispensable. On the other hand, there is a time difference between the acquisition time of the propagation response and the transmission time of the information packet, and when the time variation of the propagation path is fast, the acquired propagation response becomes obsolete with time. The accuracy of transmission weights and reception weights generated from such an obsolete inaccurate propagation response is greatly degraded, and the interference control effect by the MU-MIMO technique and the IA technique is significantly reduced.

一方、伝搬路の時間変動に起因する伝搬応答の陳腐化およびそれによる送受信ウェイトの精度劣化問題の対策として、伝搬応答の予測技術(非特許文献5,6)が提案されている。しかし、いずれもゆるやかな伝搬路時間変動の環境にしか対応できず、伝搬路の時間変動が比較的に速い環境での適用は困難である。また、従来の伝搬応答の予測技術では所要演算量も大きく、実用化には大きな困難を伴う。   On the other hand, a propagation response prediction technique (Non-Patent Documents 5 and 6) has been proposed as a countermeasure against the deterioration of propagation response due to time variation of the propagation path and the deterioration of transmission / reception weight accuracy. However, any of them can only deal with an environment where the propagation path time fluctuates slowly, and is difficult to apply in an environment where the propagation path time fluctuation is relatively fast. In addition, the conventional propagation response prediction technology requires a large amount of computation, and it is very difficult to put it to practical use.

Quentin H. Spencer, A. Lee Swindlehurst, and Martin Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMOChannels, ”IEEE Trans. on Signal Processing, vol.52, no.2, pp.461-471, Feb. 2004.Quentin H. Spencer, A. Lee Swindlehurst, and Martin Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMOChannels,” IEEE Trans. On Signal Processing, vol.52, no.2, pp.461-471, Feb . 2004. David Gesbert, Marios Kountouris, Robert W. Heath Jr., Chan-Byoung Chae, and Thomas Salzer, “Shifting the MIMO Paradigm, ”IEEE Signal Processing Magazine, vol.24, no.5, pp.36-46, September 2007.David Gesbert, Marios Kountouris, Robert W. Heath Jr., Chan-Byoung Chae, and Thomas Salzer, “Shifting the MIMO Paradigm,” IEEE Signal Processing Magazine, vol.24, no.5, pp.36-46, September 2007 . V. Cadambe and S. Jafar,“Interference alignment and degrees of freedom of the K-user interference channel, ”IEEE Trans. Infomation Theory, vol.54, no.8, pp.3425-3441, Aug. 2008.V. Cadambe and S. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,” IEEE Trans. Infomation Theory, vol.54, no.8, pp.3425-3441, Aug. 2008. K. Gomadam, V. R. Cadambe and S. A. Jafar,“A Distributed Numerical Approach to Interference Alignment and Applications to Wireless Interference Networks, ”IEEE Trans. Inf. Theory, vol.57, no.6, pp.3309-3322, June 2011.K. Gomadam, V. R. Cadambe and S. A. Jafar, “A Distributed Numerical Approach to Interference Alignment and Applications to Wireless Interference Networks,” IEEE Trans. Inf. Theory, vol.57, no.6, pp.3309-3322, June 2011. D. Anming, Z. Haixia and Y. Dongfeng, “Achievable rate improvement through channel prediction for interference alignment, ” in Proc. Asia-Pacic Conference on Communications (APCC), pp.293-298, Aug. 2013.D. Anming, Z. Haixia and Y. Dongfeng, “Achievable rate improvement through channel prediction for interference alignment,” in Proc. Asia-Pacic Conference on Communications (APCC), pp.293-298, Aug. 2013. T. Al-Naffouri, “An EM-based forward-backward kalman filter for the estimation of time-variant channels in OFDM, ”IEEE Trans. Signal Processing, vol.55, no.7, pp.3924-3930, 2007.T. Al-Naffouri, “An EM-based forward-backward kalman filter for the estimation of time-variant channels in OFDM,” IEEE Trans. Signal Processing, vol.55, no.7, pp.3924-3930, 2007.

時間変動する通信路の伝搬応答などの従来の情報予測技術の課題として以下のものがあげられる。
(1) 通信路の時間変動が比較的に速い場合には、伝搬応答の予測精度が低下してしまい、干渉制御のために生成された送信ウェイトや受信ウェイトの精度も著しく劣化する。
(2) 予測に必要な所要演算量が大きく、実用化には演算量を大幅に低減可能な工夫が必要になる。
The following are examples of problems in conventional information prediction techniques such as propagation response of communication channels that fluctuate over time.
(1) When the time fluctuation of the communication path is relatively fast, the prediction accuracy of the propagation response is lowered, and the accuracy of the transmission weight and the reception weight generated for interference control is significantly deteriorated.
(2) The amount of computation required for prediction is large, and in order to put it to practical use, a device that can greatly reduce the amount of computation is required.

本発明は、例えばMU−MIMO技術やIA技術による干渉制御のために時間変動する伝搬応答を予測する際に、予測値の範囲を制限することによって予測誤りを抑制して高い予測精度を実現するとともに、予測に必要な所要演算量を削減することができる情報予測方法、情報予測システムおよび情報予測プログラムを提供することを目的とする。   The present invention achieves high prediction accuracy by suppressing prediction errors by limiting the range of prediction values when predicting a time-varying propagation response for interference control by, for example, MU-MIMO technology or IA technology. In addition, an object of the present invention is to provide an information prediction method, an information prediction system, and an information prediction program that can reduce the amount of calculation required for prediction.

第1の発明は、時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測する情報予測方法において、予測対象の既知情報を保存し、N単位時間(Nは1以上の整数)を間隔として既知情報または前回の差分情報から1〜S回目(Sは1以上の整数)の差分情報を順番に生成するステップ1と、生成したS回目の差分情報に基づき、予測計算に必要な予測係数を生成するステップ2と、生成した予測係数とS回目の差分情報に基づき、N単位時間先のS回目の差分情報を予測するステップ3と、予測したN単位時間先のS回目の差分情報に基づき、各回の差分情報の累加によりN単位時間先の1回目の差分情報を予測するステップ4と、予測したN単位時間先の1回目の差分情報に基づき、N単位時間先の未知情報を予測し、出力するステップ5とを有する。また、ステップ1は、既知情報を少なくともS+2個保存し、S回目の差分情報を少なくとも2個生成する。   1st invention preserve | saves the known information of a prediction object in the information prediction method which estimates unknown information of the future time based on the known information of the prediction object which fluctuates with time, N unit time (N is an integer greater than or equal to 1) Necessary for prediction calculation based on step 1 for generating the first to S-th difference information (S is an integer of 1 or more) in order from the known information or the previous difference information, and the generated S-th difference information. Step 2 for generating a prediction coefficient, Step 3 for predicting the S-th difference information that is N unit time ahead based on the generated prediction coefficient and the S-th difference information, and the S-th difference that is N unit time ahead Based on the information, Step 4 for predicting the first difference information of N unit time ahead by accumulating the difference information of each time, and unknown information of N unit time ahead based on the first difference information of the predicted N unit time ahead Predict and And a step 5 of. In step 1, at least S + 2 pieces of known information are stored, and at least two pieces of difference information for the Sth time are generated.

第2の発明は、時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測する情報予測システムにおいて、予測対象の既知情報を保存し、N単位時間(Nは1以上の整数)を間隔として既知情報または前回の差分情報から1〜S回目(Sは1以上の整数)の差分情報を順番に生成する第1の手段と、生成したS回目の差分情報に基づき、予測計算に必要な予測係数を生成する第2の手段と、生成した予測係数とS回目の差分情報に基づき、N単位時間先のS回目の差分情報を予測する第2の手段と、予測したN単位時間先のS回目の差分情報に基づき、各回の差分情報の累加によりN単位時間先の1回目の差分情報を予測する第4の手段と、予測したN単位時間先の1回目の差分情報に基づき、N単位時間先の未知情報を予測し、出力する第5の手段とを備える。また、第1の手段は、既知情報を少なくともS+2個保存し、S回目の差分情報を少なくとも2個生成する構成とする。   According to a second aspect of the present invention, in the information prediction system for predicting unknown information of the future time based on the known information of the prediction target that fluctuates over time, the known information of the prediction target is stored, and N unit time (N is an integer of 1 or more) Based on the first means for sequentially generating the first to S-th difference information (S is an integer of 1 or more) from the known information or the previous difference information, and the generated S-th difference information. A second means for generating a necessary prediction coefficient; a second means for predicting the S-th difference information ahead of N unit times based on the generated prediction coefficient and the S-th difference information; and a predicted N unit time Based on the difference information of the previous S time, based on the fourth means for predicting the first difference information of N unit time ahead by the accumulation of the difference information of each time, and based on the first difference information of the predicted N unit time ahead , Predict unknown information N units ahead And a fifth means for outputting. Further, the first means is configured to store at least S + 2 pieces of known information and generate at least two pieces of difference information for the Sth time.

第2の発明の情報予測システムにおいて、同一周波数および同一時刻に無線通信を行う少なくとも1つの送信局と複数の受信局との間で、時間変動する通信路の伝搬応答に応じてそれぞれの送信ウェイトおよび受信ウェイトを設定して各受信局における所望信号以外の干渉信号を抑圧するために、予測対象の情報として該伝搬応答または該伝搬応答に依存する情報の予測を行う構成としてもよい。   In the information prediction system according to the second aspect of the present invention, the transmission weights of at least one transmitting station and a plurality of receiving stations that perform wireless communication at the same frequency and at the same time depend on the propagation response of the communication channel that varies with time. In order to suppress interference signals other than the desired signal at each receiving station by setting reception weights, the propagation response or information depending on the propagation response may be predicted as information to be predicted.

第2の発明の情報予測システムにおいて、送信局または受信局または送信局に接続される中央処理局が、既知の伝搬応答の情報を保存し、未知の伝搬応答または伝搬応答に依存する情報の予測を行う構成としてもよい。   In the information prediction system according to the second aspect of the invention, a transmitting station or a receiving station or a central processing station connected to the transmitting station stores information on a known propagation response, and predicts information depending on an unknown propagation response or propagation response. It is good also as composition which performs.

第3の発明の情報予測プログラムは、第2の発明の情報予測システムの各手段における処理をコンピュータに実行させ、時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測する。   The information prediction program of the third invention causes the computer to execute processing in each means of the information prediction system of the second invention, and predicts unknown information of the future time based on the known information of the prediction target that fluctuates over time.

本発明では、例えば伝搬応答の時間変動に比べ、伝搬応答の差分情報の値幅が小さい特徴に着目し、既知の伝搬応答から未知の伝搬応答を直接予測する代わりに、まず値幅の小さい伝搬応答の差分情報を予測し、次に予測した差分情報と既知の伝搬応答を足すことで未知の伝搬応答を予測することができる。このように本発明の情報予測技術では、予測値の範囲を制限することによって予測誤りを抑制し、従来の情報予測技術より高い予測精度が期待できる。   In the present invention, for example, paying attention to the feature that the value width of the difference information of the propagation response is small compared to the time variation of the propagation response, for example, instead of directly predicting the unknown propagation response from the known propagation response, An unknown propagation response can be predicted by predicting the difference information and then adding the predicted difference information and the known propagation response. As described above, in the information prediction technique of the present invention, the prediction error is suppressed by limiting the range of the prediction value, and higher prediction accuracy than that of the conventional information prediction technique can be expected.

さらに、本発明の情報予測技術において複数の単位時間先の予測値を算出するには、従来の情報予測技術のように1単位時間先の予測を複数回行うだけではなく、複数の単位時間先の予測を1回だけで算出できるため、予測に必要な所要演算量が大幅に削減できる。   Furthermore, in order to calculate a prediction value of a plurality of unit time ahead in the information prediction technique of the present invention, the prediction of one unit time ahead is not performed a plurality of times as in the conventional information prediction technique, but a plurality of unit time ahead is calculated. Can be calculated only once, the required amount of computation required for the prediction can be greatly reduced.

さらに、本発明の情報予測技術では、従来の情報予測技術が用いた予測モデルに比べ、新たに次元の縮小した予測モデルであるため、予測計算の次元を抑えることによって所要演算量を大きく削減できる。   Furthermore, since the information prediction technology of the present invention is a prediction model with a newly reduced dimension compared to the prediction model used in the conventional information prediction technology, the required amount of computation can be greatly reduced by suppressing the dimensions of the prediction calculation. .

本発明の情報予測方法が適用される無線通信システムの構成例1を示す図である。It is a figure which shows the structural example 1 of the radio | wireless communications system to which the information prediction method of this invention is applied. 本発明の情報予測方法が適用される無線通信システムの構成例2を示す図である。It is a figure which shows the structural example 2 of the radio | wireless communications system with which the information prediction method of this invention is applied. 本発明の情報予測方法の概要を示す図である。It is a figure which shows the outline | summary of the information prediction method of this invention. 本発明の情報予測方法の処理例を示す図である。It is a figure which shows the process example of the information prediction method of this invention. 本発明の情報予測方法による処理手順例1を示すフローチャートである。It is a flowchart which shows the process procedure example 1 by the information prediction method of this invention. 本発明の情報予測方法による処理手順例2を示すフローチャートである。It is a flowchart which shows the process procedure example 2 by the information prediction method of this invention. 本発明の情報予測方法の評価を行うシミュレーション諸元を示す図である。It is a figure which shows the simulation item which evaluates the information prediction method of this invention. 予測誤差の特性評価を示す図である。It is a figure which shows the characteristic evaluation of a prediction error. 所要演算量の特性評価を示す図である。It is a figure which shows the characteristic evaluation of a required calculation amount.

図1は、本発明の情報予測方法が適用される無線通信システムの構成例1を示す。
図1において、1個の送信局1とK個(Kは2以上の整数)の受信局2−i(iは1〜K)が存在し、1個の送信局1がK個の受信局2−iへ向かって同時に情報伝送を行うMU−MIMO構成である。その場合、送信局1が各受信局2−i宛の所望信号を送ると同時に、各受信局2−iへの干渉信号を抑圧あるいは回避できるように、送信局1の送信ウェイトVおよび受信局2−1〜2−Kの受信ウェイトU1 〜UK による干渉信号の制御が行われる。
FIG. 1 shows a configuration example 1 of a wireless communication system to which the information prediction method of the present invention is applied.
In FIG. 1, there is one transmitting station 1 and K (K is an integer of 2 or more) receiving stations 2-i (i is 1 to K), and one transmitting station 1 is K receiving stations. This is a MU-MIMO configuration that simultaneously transmits information toward 2-i. In that case, the transmission station 1 transmits the desired signal addressed to each receiving station 2-i, and at the same time, the transmission weight V and the receiving station of the transmitting station 1 can be suppressed or avoided so that the interference signal to each receiving station 2-i can be suppressed or avoided. The interference signal is controlled by the reception weights U 1 to U K of 2-1 to 2-K.

図2は、本発明の情報予測方法が適用される無線通信システムの構成例2を示す。
図2おいて、K組の送信局1−iと受信局2−iが存在し、互いに同時に情報伝送を行うMU−MIMO構成である。その場合、受信局2−iは、無線通信を行う送信局1−iからの所望信号以外に、その他の送信局からK−1個の干渉信号も受信する。その干渉信号を各受信局の中で消去できるように、送信局1−1〜1−Kに送信ウェイトV1 〜VK を設定し、送信局2−1〜2−Kに受信ウェイトU1 〜UK を設定し、干渉信号の制御が行われる。
FIG. 2 shows a configuration example 2 of a wireless communication system to which the information prediction method of the present invention is applied.
In FIG. 2, there are K sets of transmitting stations 1-i and receiving stations 2-i, and the MU-MIMO configuration performs information transmission simultaneously. In this case, the receiving station 2-i receives K-1 interference signals from other transmitting stations in addition to the desired signal from the transmitting station 1-i that performs wireless communication. The transmission weights V 1 to V K are set in the transmission stations 1-1 to 1 -K so that the interference signal can be deleted in each reception station, and the reception weight U 1 is set to the transmission stations 2-1 to 2-K. set ~U K, the control of the interference signal is performed.

ここで、図1と図2に示す無線通信システムは、シングルキャリアシステムあるいはマルチキャリアシステムのいずれでもよい。   Here, the radio communication system shown in FIGS. 1 and 2 may be either a single carrier system or a multicarrier system.

また、干渉制御に用いる送信ウェイトや受信ウェイトは、送信局または受信局の中で既知の伝搬応答から未知の伝搬応答を予測して生成するか、送信局に接続される中央処理局3に入力する各送受信局間の既知の伝搬応答から未知の伝搬応答を予測して生成する構成でもよい。   The transmission weight and reception weight used for interference control are generated by predicting an unknown propagation response from a known propagation response in the transmitting station or the receiving station, or input to the central processing station 3 connected to the transmitting station. Alternatively, an unknown propagation response may be predicted and generated from a known propagation response between transmitting and receiving stations.

上記のように、MU−MIMO技術やAI技術による干渉制御を実現するには、正確な伝搬応答に基づいて生成された高精度な送信ウェイトや受信ウェイトが必要不可欠である。一方、伝搬応答の取得時刻と情報パケットの送信時刻との間には時間差があり、伝搬路の時間変動が速い場合には、取得した伝搬応答が時間とともに陳腐化してしまい、生成される送信ウェイトや受信ウェイトの精度が大きく劣化し、MU−MIMO技術やAI技術による干渉制御の効果が著しく低下する。   As described above, in order to realize the interference control by the MU-MIMO technique or the AI technique, a highly accurate transmission weight or reception weight generated based on an accurate propagation response is indispensable. On the other hand, there is a time difference between the acquisition time of the propagation response and the transmission time of the information packet, and when the time variation of the propagation path is fast, the acquired propagation response becomes obsolete with time, and the generated transmission weight is generated. In addition, the accuracy of the reception weight is greatly deteriorated, and the effect of the interference control by the MU-MIMO technique and the AI technique is remarkably reduced.

このような伝搬応答の時間変動による送信ウェイトや受信ウェイトの精度劣化問題は、特に伝搬路の時間変動が速い場合において深刻になる。その場合には、伝搬応答の時間変動が激しくなり、従来の予測技術による正確な伝搬応答予測が大変困難になる。   The problem of deterioration in accuracy of transmission weights and reception weights due to such time variation of propagation response becomes serious particularly when the time variation of the propagation path is fast. In that case, the time variation of the propagation response becomes severe, and it is very difficult to accurately predict the propagation response using the conventional prediction technique.

本発明の特徴は、伝搬応答の時間変動に比べ、伝搬応答の差分情報の値幅が小さい特徴に着目し、伝搬応答を直接予測する代わりに、まず値幅の小さい伝搬応答の差分情報を予測し、次に予測した差分情報と既知の伝搬応答を足すことで将来の未知の伝搬応答を予測するところにある。本発明では、予測値の範囲を制限することによって予測誤りを抑制し、従来の予測技術より高い予測精度が期待できる。   The feature of the present invention is to focus on the feature that the value width of the difference information of the propagation response is small compared to the time variation of the propagation response, and instead of directly predicting the propagation response, first predict the difference information of the propagation response having a small value width, Next, the future unknown propagation response is predicted by adding the predicted difference information and the known propagation response. In the present invention, the prediction error is suppressed by limiting the range of the prediction value, and higher prediction accuracy than the conventional prediction technology can be expected.

図3は、本発明の情報予測方法の概要を示す。
図3において、従来は、時間変動する既知情報h(t-1) ,h(t-2) ,…から、予測範囲として未知情報h(t) を直接予測しているのに対して、本発明の情報予測技術ではまず差分値d(t) を予測する。
FIG. 3 shows an overview of the information prediction method of the present invention.
In FIG. 3, conventionally, the unknown information h (t) is directly predicted as a prediction range from the known information h (t-1), h (t-2),. In the information prediction technique of the invention, the difference value d (t) is first predicted.

差分値d(t) は、
d(t) =h(t)−h(t-1)
であるため、本発明の情報予測技術は従来技術に比べて、h(t-1) 値幅部分に対する予測誤差を有効に抑制する。
The difference value d (t) is
d (t) = h (t) -h (t-1)
Therefore, the information prediction technique of the present invention effectively suppresses the prediction error with respect to the h (t-1) value width portion as compared with the conventional technique.

例えば、平均予測誤差がα=20%とする予測方法において、予測したい将来時刻の値h(t) =100 、差分値d(t) =h(t)−h(t-1)=10の場合、h(t) を直接予測する従来技術では予測し得る値h(t) は80〜120 の範囲内にあるのに対して、d(t) を予測する発明技術では予測し得る値h(t)=d(t)+h(t-1) は98〜102 の範囲内にある。従って、従来の情報予測技術に比べ本発明の情報予測技術の方がより正確に予測したい値をとらえている。   For example, in the prediction method in which the average prediction error is α = 20%, the future time value h (t) = 100 and the difference value d (t) = h (t) −h (t−1) = 10 to be predicted In this case, the value h (t) that can be predicted by the prior art that directly predicts h (t) is in the range of 80 to 120, whereas the value h that can be predicted by the inventive technology that predicts d (t). (t) = d (t) + h (t-1) is in the range of 98-102. Therefore, the information prediction technique of the present invention captures a value to be predicted more accurately than the conventional information prediction technique.

以下、本発明による差分情報に基づく情報予測技術の実施例について詳細に説明する。なお、予測処理は、図1または図2に示す無線通信システムでは送信局または受信局または中央処理局のいずれかで行われるが、以下「処理局」という。   Hereinafter, embodiments of the information prediction technique based on difference information according to the present invention will be described in detail. In the wireless communication system shown in FIG. 1 or FIG. 2, the prediction process is performed at any one of a transmitting station, a receiving station, and a central processing station.

(実施例1)
実施例1では、処理局が予測対象の既知情報を保存し、1単位時間を間隔として差分情報を生成し、その差分情報に基づいて1単位時間先の未知情報を前方後方カルマンフィルタを用いて予測する。
Example 1
In the first embodiment, the processing station stores the known information to be predicted, generates difference information at intervals of one unit time, and predicts unknown information one unit time ahead using the front-rear Kalman filter based on the difference information. To do.

図5は、本発明の情報処理方法による処理手順例1を示す。
図5において、処理局は、予測対象の既知情報(伝搬応答h(t-1) ,h(t-2) ,…,h(t-L) )をL個保存し、以下の式のように予測計算の入力値とする(S11)。すなわち、以下に示す予測計算の入力値d0(t)は、既知情報h(t) から差分情報を計算する前の初期値に相当する。
0(t-1) ←h(t-1)
0(t-2) ←h(t-2)

0(t-L) ←h(t-L)
FIG. 5 shows a processing procedure example 1 by the information processing method of the present invention.
In FIG. 5, the processing station stores L pieces of known information (propagation responses h (t-1), h (t-2),..., H (tL)) to be predicted, and predicts as shown in the following equation. It is set as an input value for calculation (S11). That is, an input value d 0 (t) for prediction calculation shown below corresponds to an initial value before calculating difference information from known information h (t).
d 0 (t-1) ← h (t-1)
d 0 (t-2) ← h (t-2)
:
d 0 (tL) ← h (tL)

次に、処理局が、1単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S12)。なお、S=1の場合は既知情報から1回目の差分情報の生成で終了し、S=2の場合は1回目の差分情報から2回目の差分情報を生成することになる。S=3以降も同様である。ここで、差分情報の生成回数S=2、予測計算に用いる既知情報の数L=4の場合の差分情報の生成例を図4に示す。図4に示すように、差分情報の生成回数Sの増加とともに差分情報がだんだん緩やかになることが分かる。ここで、大文字で表記するH(t),D(t)は予測対象の未知情報を示す。   Next, the processing station sequentially generates the first difference information from the known information to be predicted and the next difference information from the previous difference information until the S-th time in order by 1 unit time as an interval (S12). When S = 1, the first difference information is generated from the known information, and when S = 2, the second difference information is generated from the first difference information. The same applies to S = 3 and thereafter. Here, FIG. 4 shows an example of generation of difference information when the number of generations of difference information S = 2 and the number of known information L used for prediction calculation L = 4. As shown in FIG. 4, it can be seen that the difference information becomes gradually gentler as the difference information generation count S increases. Here, capital letters H (t) and D (t) indicate unknown information to be predicted.

以下、生成回数1,2,…,Sに応じた差分情報の生成例を示す。
1回目:D1(t-1)=D0(t) −d0(t-1)
1(t-2)=d0(t-1)−d0(t-2)
1(t-3)=d0(t-2)−d0(t-3)

1(t-L)=d0(t-L+1)−d0(t-L)

2回目:D2(t-2)=D1(t-1)−d1(t-2)
2(t-3)=d1(t-2)−d1(t-3)
2(t-4)=d1(t-3)−d1(t-4)

2(t-L)=d1(t-L+1)−d1(t-L)

S回目:DS(t-S) =DS-1(t-S+1)−dS-1(t-S)
S(t-S-1)=dS-1(t-S) −dS-1(t-S-1)
S(t-S-2)=dS-1(t-S-1)−dS-1(t-S-2)

S(t-L) =dS-1(t-L+1)−dS-1(t-L)
Hereinafter, a generation example of difference information corresponding to the number of generations 1, 2,.
First time: D 1 (t−1) = D 0 (t) −d 0 (t−1)
d 1 (t-2) = d 0 (t-1) −d 0 (t−2)
d 1 (t-3) = d 0 (t-2) −d 0 (t-3)
:
d 1 (tL) = d 0 (t−L + 1) −d 0 (tL)

Second time: D 2 (t−2) = D 1 (t−1) −d 1 (t−2)
d 2 (t-3) = d 1 (t-2) −d 1 (t-3)
d 2 (t-4) = d 1 (t-3) −d 1 (t-4)
:
d 2 (tL) = d 1 (t−L + 1) −d 1 (tL)

S-th: D S (tS) = D S-1 (t-S + 1) −d S-1 (tS)
d S (tS-1) = d S-1 (tS) −d S-1 (tS-1)
d S (tS-2) = d S-1 (tS-1) −d S-1 (tS-2)
:
d S (tL) = d S-1 (t-L + 1) −d S-1 (tL)

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S13)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する前方後方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for the prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S13). The prediction coefficient A (t-L) is determined by the prediction matrices B (t-L) and C (t-L) of the forward / backward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、1単位時間先のS回目差分情報DS(t-S)を予測する(S14)。

Figure 2017152845
Next, the processing station predicts the S-th difference information D S (tS) one unit time ahead based on the generated prediction coefficient A (tL) and the known S-th difference information (S14).
Figure 2017152845

次に、処理局は、生成した1単位時間先のS回目差分情報DS(t-S)に基づいて、各回差分情報の累加を通じて1単位時間先の1回目差分情報D1(t-1)を予測する(S15)。

Figure 2017152845
Next, based on the generated S-th difference information D S (tS) one unit time ahead, the processing station obtains the first difference information D 1 (t−1) one unit time ahead through the accumulation of the difference information. Predict (S15).
Figure 2017152845

次に、処理局は、生成した1単位時間先の1回目差分情報D1(t-1)に基づいて、1単位時間先の差分情報D0(t)を予測し、未知情報H(t) として出力する(S16)。
0(t)=d0(t-1)+D1(t-1)
H(t) ←D0(t)
Next, the processing station predicts difference information D 0 (t) one unit time ahead based on the generated first difference information D 1 (t−1) one unit time ahead, and unknown information H (t ) (S16).
D 0 (t) = d 0 (t-1) + D 1 (t-1)
H (t) ← D 0 (t)

(実施例2)
実施例2では、処理局が予測対象の既知情報を保存し、1単位時間を間隔として差分情報を生成し、その差分情報に基づいて1単位時間先の未知情報を前方カルマンフィルタを用いて予測する。
(Example 2)
In the second embodiment, the processing station stores the known information to be predicted, generates difference information at intervals of one unit time, and predicts unknown information one unit time ahead using the forward Kalman filter based on the difference information. .

実施例2の処理手順は、図5に示す処理手順例1と同様であり、処理局は予測対象の既知情報を保存して予測計算の入力値とし(S11)、次に1単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S12)。   The processing procedure of the second embodiment is the same as that of the processing procedure example 1 shown in FIG. 5, and the processing station saves the known information to be predicted and uses it as an input value for prediction calculation (S11). The first difference information from the known information to be predicted and the next difference information from the previous difference information are generated in order up to the Sth (S12).

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S13)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する前方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for the prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S13). The prediction coefficient A (t-L) is determined by the prediction matrix B (t-L) and C (t-L) of the forward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は実施例1と同様に、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、1単位時間先のS回目差分情報DS(t-S)を予測し(S14)、生成した1単位時間先のS回目差分情報DS(t-S)に基づいて、各回差分情報の累加を通じて1単位時間先の1回目差分情報D1(t-1)を予測し(S15)、予測した1単位時間先の1回目差分情報D1(t-1)に基づいて、1単位時間先の差分情報D0(t)を予測し、未知情報H(t) として出力する(S16)。 Next, as in the first embodiment, the processing station predicts the S-th difference information D S (tS) one unit time ahead based on the generated prediction coefficient A (tL) and the known S-th difference information ( S14), based on the generated S-th difference information D S (tS) one unit time ahead, the first difference information D 1 (t-1) one unit time ahead is predicted through the accumulation of the difference information (S15). ) Based on the predicted first difference information D 1 (t−1) one unit time ahead, the difference information D 0 (t) one unit time ahead is predicted and output as unknown information H (t) ( S16).

(実施例3)
実施例3では、処理局が予測対象の既知情報を保存し、1単位時間を間隔として差分情報を生成し、その差分情報に基づいて1単位時間先の未知情報を後方カルマンフィルタを用いて予測する。
(Example 3)
In the third embodiment, the processing station stores known information to be predicted, generates difference information at intervals of one unit time, and predicts unknown information one unit time ahead using a backward Kalman filter based on the difference information. .

実施例3の処理手順は、図5に示す処理手順例1と同様であり、処理局は予測対象の既知情報を保存して予測計算の入力値とし(S11)、次に1単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S12)。   The processing procedure of the third embodiment is the same as that of the processing procedure example 1 shown in FIG. 5, and the processing station stores the known information to be predicted as an input value for the prediction calculation (S11), and then 1 unit time interval. The first difference information from the known information to be predicted and the next difference information from the previous difference information are generated in order up to the Sth (S12).

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S13)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する後方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for the prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S13). The prediction coefficient A (t-L) is determined by the prediction matrices B (t-L) and C (t-L) of the backward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は実施例1と同様に、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、1単位時間先のS回目差分情報DS(t-S)を予測し(S14)、生成した1単位時間先のS回目差分情報DS(t-S)に基づいて、各回差分情報の累加を通じて1単位時間先の1回目差分情報D1(t-1)を予測し(S15)、予測した1単位時間先の1回目差分情報D1(t-1)に基づいて、1単位時間先の差分情報D0(t)を予測し、未知情報H(t) として出力する(S16)。 Next, as in the first embodiment, the processing station predicts the S-th difference information D S (tS) one unit time ahead based on the generated prediction coefficient A (tL) and the known S-th difference information ( S14), based on the generated S-th difference information D S (tS) one unit time ahead, the first difference information D 1 (t-1) one unit time ahead is predicted through the accumulation of the difference information (S15). ) Based on the predicted first difference information D 1 (t−1) one unit time ahead, the difference information D 0 (t) one unit time ahead is predicted and output as unknown information H (t) ( S16).

上記の実施例1〜実施例3は1単位時間先の未知情報を予測する例を示したが、以下に示す実施例4〜実施例6は、一般的にN単位時間先の未知情報を予測する例を示す。なお、Nは1以上の整数であるが、N=1の場合は実施例1〜実施例3となる。   In the above-described Examples 1 to 3, an example in which unknown information one unit time ahead is predicted is shown. However, in Examples 4 to 6 shown below, unknown information in general N unit time ahead is predicted. An example is shown. Note that N is an integer equal to or greater than 1. However, when N = 1, the first to third embodiments are obtained.

(実施例4)
実施例4では、処理局が予測対象の既知情報を保存し、N単位時間(Nは2以上の整数)を間隔として差分情報を生成して、その差分情報に基づいてN単位時間先の将来情報を前方後方カルマンフィルタを用いて予測する。
Example 4
In the fourth embodiment, the processing station stores the known information to be predicted, generates difference information at intervals of N unit times (N is an integer of 2 or more), and the future of N unit times ahead based on the difference information. Information is predicted using a front-back Kalman filter.

図6は、本発明の情報処理方法による処理手順例2を示す。
図6において、処理局は、予測対象の既知情報(伝搬応答h(t-1) ,h(t-2) ,…,h(t-L) )をL個保存し、以下の式のように予測計算の入力値とする(S21)。すなわち、以下に示すd0(t)は、既知情報h(t) から差分情報を計算する前の初期値に相当する。
0(t-1) ←h(t-1)
0(t-2) ←h(t-2)

0(t-L) ←h(t-L)
FIG. 6 shows a processing procedure example 2 according to the information processing method of the present invention.
In FIG. 6, the processing station stores L pieces of known information (propagation responses h (t-1), h (t-2),..., H (tL)) to be predicted, and predicts them as shown in the following equation. It is set as an input value for calculation (S21). That is, d 0 (t) shown below corresponds to an initial value before calculating difference information from known information h (t).
d 0 (t-1) ← h (t-1)
d 0 (t-2) ← h (t-2)
:
d 0 (tL) ← h (tL)

次に、処理局が、N単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S22)。ここで、図4はN=1において、差分情報の生成回数S=2、予測に用いる過去情報の数L=4の場合の差分情報の生成例を示すが、実施例4では差分情報に対応する時間間隔が1単位時間からN単位時間に拡大する。   Next, the processing station sequentially generates the first difference information from the known information to be predicted and the next difference information from the previous difference information up to the S-th time in order by N unit time as an interval (S22). Here, FIG. 4 shows an example of generation of difference information when N = 1, the number of generations of difference information S = 2, and the number of past information used for prediction L = 4. The time interval to be expanded from 1 unit time to N unit time.

以下、生成回数1,2,…,Sに応じた差分情報の生成例を示す。
1回目:D1(t-1) =D0(t+N-1)−d0(t-1)
1(t-N-1)=d0(t-1) −d0(t-N-1)
1(t-N-2)=d0(t-2) −d0(t-N-2)

1(t-L) =d0(t-L+N)−d0(t-L)

2回目:D2(t-N-1) =D1(t-1) −d1(t-N-1)
2(t-2N-1)=d1(t-N-1)−d1(t-2N-1)
2(t-2N-2)=d1(t-N-2)−d1(t-2N-2)

2(t-L) =d1(t-L+N)−d1(t-L)

S回目:DS(t-(S-1)N-1)=DS-1(t-(S-2)N-1)−dS-1(t-(S-1)N-1)
S(t-SN-1) =dS-1(t-(S-1)N-1)−dS-1(t-SN-1)
S(t-SN-2) =dS-1(t-(S-1)N-2)−dS-1(t-SN-2)

S(t-L) =dS-1(t-L+1) −dS-1(t-L)
Hereinafter, a generation example of difference information corresponding to the number of generations 1, 2,.
First time: D 1 (t−1) = D 0 (t + N−1) −d 0 (t−1)
d 1 (tN-1) = d 0 (t-1) -d 0 (tN-1)
d 1 (tN-2) = d 0 (t-2) −d 0 (tN-2)
:
d 1 (tL) = d 0 (t−L + N) −d 0 (tL)

Second time: D 2 (tN-1) = D 1 (t-1)-d 1 (tN-1)
d 2 (t-2N-1) = d 1 (tN-1) −d 1 (t-2N-1)
d 2 (t-2N-2) = d 1 (tN-2) −d 1 (t-2N-2)
:
d 2 (tL) = d 1 (t−L + N) −d 1 (tL)

S-th: D S (t- (S-1) N-1) = D S-1 (t- (S-2) N-1) -d S-1 (t- (S-1) N-1 )
d S (t-SN-1) = d S-1 (t- (S-1) N-1) −d S-1 (t-SN-1)
d S (t-SN-2) = d S-1 (t- (S-1) N-2) −d S-1 (t-SN-2)
:
d S (tL) = d S-1 (t-L + 1) −d S-1 (tL)

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S23)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する前方後方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S23). The prediction coefficient A (t-L) is determined by the prediction matrices B (t-L) and C (t-L) of the forward / backward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、N単位時間先のS回目差分情報DS(t-(S-1)N-1) を予測する(S24)。

Figure 2017152845
Next, based on the generated prediction coefficient A (tL) and the known S-th difference information, the processing station calculates the S-th difference information D S (t− (S−1) N−1) N units ahead. Prediction is made (S24).
Figure 2017152845

次に、処理局は、生成したN単位時間先のS回目差分情報DS(t-S)に基づいて、各回差分情報の累加を通じてN単位時間先の1回目差分情報D1(t-1)を予測する(S25)。

Figure 2017152845
Next, based on the generated S-th difference information D S (tS) ahead of the N unit time, the processing station obtains the first difference information D 1 (t−1) ahead of the N unit time through the accumulation of the difference information. Predict (S25).
Figure 2017152845

次に、処理局は、生成したN単位時間先の1回目差分情報D1(t-1)に基づいて、N単位時間先の差分情報D0(t+N-1)を予測し、未知情報H(t+N-1) として出力する(S26)。
0(t+N-1)=d0(t-1)+D1(t-1)
H(t+N-1) ←D0(t+N-1)
Next, the processing station predicts the difference information D 0 (t + N-1) of N unit time ahead based on the generated first difference information D 1 (t-1) of N unit time ahead, and is unknown. Information H (t + N-1) is output (S26).
D 0 (t + N-1) = d 0 (t-1) + D 1 (t-1)
H (t + N-1) ← D 0 (t + N-1)

(実施例5)
実施例5では、処理局が予測対象の既知情報を保存し、N単位時間を間隔として差分情報を生成して、その差分情報に基づいてN単位時間先の将来情報を前方カルマンフィルタを用いて予測する。
(Example 5)
In the fifth embodiment, the processing station stores the known information to be predicted, generates difference information at intervals of N unit time, and predicts future information ahead of N unit time using the forward Kalman filter based on the difference information. To do.

実施例5の処理手順は、図6に示す処理手順例2と同様であり、処理局は予測対象の既知情報を保存して予測計算の入力値とし(S21)、次にN単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S22)。   The processing procedure of the fifth embodiment is the same as that of the processing procedure example 2 shown in FIG. 6, and the processing station stores the known information to be predicted and uses it as an input value for prediction calculation (S21), and then sets N unit time intervals. The first difference information from the known information to be predicted and the next difference information from the previous difference information are generated in order up to the Sth (S22).

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S23)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する前方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S23). The prediction coefficient A (t-L) is determined by the prediction matrix B (t-L) and C (t-L) of the forward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は実施例4と同様に、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、N単位時間先のS回目差分情報DS(t-(S-1)N-1) を予測し(S24)、生成したN単位時間先のS回目差分情報DS(t-(S-1)N-1) に基づいて、各回差分情報の累加を通じてN単位時間先の1回目差分情報D1(t-1)を予測し(S25)、予測したN単位時間先の1回目差分情報D1(t-1)に基づいて、N単位時間先の差分情報D0(t+N-1)を予測し、未知情報H(t+N-1) として出力する(S26)。 Next, as in the fourth embodiment, the processing station, based on the generated prediction coefficient A (tL) and known S-th difference information, N-th time ahead S-th difference information D S (t− (S−1 ) N-1) is predicted (S24), and N unit time is obtained through accumulation of the difference information each time based on the generated Nth time difference information D S (t- (S-1) N-1) ahead of N unit time. The previous first difference information D 1 (t-1) is predicted (S25), and based on the predicted first difference information D 1 (t-1) N units ahead, the difference information D N units ahead 0 (t + N-1) is predicted and output as unknown information H (t + N-1) (S26).

(実施例6)
実施例6では、処理局が予測対象の既知情報を保存し、N単位時間を間隔として差分情報を生成して、その差分情報に基づいてN単位時間先の将来情報を後方カルマンフィルタを用いて予測する。
(Example 6)
In the sixth embodiment, the processing station stores the known information to be predicted, generates difference information at intervals of N unit time, and predicts future information ahead of N unit time using a backward Kalman filter based on the difference information. To do.

実施例6の処理手順は、図6に示す処理手順例2と同様であり、処理局は予測対象の既知情報を保存して予測計算の入力値とし(S21)、次にN単位時間を間隔として予測対象の既知情報から1回目の差分情報、さらに前回の差分情報から次の差分情報をS回目まで順番に生成する(S22)。   The processing procedure of the sixth embodiment is the same as that of the processing procedure example 2 shown in FIG. 6, and the processing station stores the known information to be predicted and uses it as an input value for prediction calculation (S21). The first difference information from the known information to be predicted and the next difference information from the previous difference information are generated in order up to the Sth (S22).

次に、処理局は、時刻t-L から時刻t-1 までの既知情報から生成したS回目差分情報に基づいて、予測計算に必要な予測係数A(t-L) を生成する(S23)。予測係数A(t-L) は、時刻t-L から時刻t-1 までの既知情報に依存する後方カルマンフィルタの予測行列B(t-L) とC(t-L) によって決定される。   Next, the processing station generates a prediction coefficient A (t-L) necessary for prediction calculation based on the S-th difference information generated from the known information from time t-L to time t-1 (S23). The prediction coefficient A (t-L) is determined by the prediction matrices B (t-L) and C (t-L) of the backward Kalman filter depending on the known information from time t-L to time t-1.

Figure 2017152845
Figure 2017152845

次に、処理局は実施例4と同様に、生成した予測係数A(t-L) および既知のS回目差分情報に基づいて、N単位時間先のS回目差分情報DS(t-(S-1)N-1) を予測し(S24)、生成したN単位時間先のS回目差分情報DS(t-(S-1)N-1) に基づいて、各回差分情報の累加を通じてN単位時間先の1回目差分情報D1(t-1)を予測し(S25)、予測したN単位時間先の1回目差分情報D1(t-1)に基づいて、N単位時間先の差分情報D0(t+N-1)を予測し、未知情報H(t+N-1) として出力する(S26)。 Next, as in the fourth embodiment, the processing station, based on the generated prediction coefficient A (tL) and known S-th difference information, N-th time ahead S-th difference information D S (t− (S−1 ) N-1) is predicted (S24), and N unit time is obtained through accumulation of the difference information each time based on the generated Nth time difference information D S (t- (S-1) N-1) ahead of N unit time. The previous first difference information D 1 (t-1) is predicted (S25), and based on the predicted first difference information D 1 (t-1) N units ahead, the difference information D N units ahead 0 (t + N-1) is predicted and output as unknown information H (t + N-1) (S26).

(補足)
上記実施例1,4は前方後方カルマンフィルタを用い、上記実施例2,5は前方カルマンフィルタを用い、上記実施例3,6は後方カルマンフィルタを用いる例を示したが、本発明の実施範囲は予測に用いる方式やアルゴリズムの違いによって制限されるものではない。
(Supplement)
In the first and fourth embodiments, the front and rear Kalman filters are used, in the second and fifth embodiments, the front Kalman filter is used. In the third and sixth embodiments, the rear Kalman filter is used. It is not limited by the difference in method or algorithm used.

また、上記実施例1〜6における「情報」は、時間変動する伝搬応答あるいは伝搬応答に依存する情報である。例えば、伝搬応答に依存する送信ウェイトや受信ウェイト、非特許文献4の式(18)や式(30)に書かれているような干渉量を表す干渉行列などは伝搬応答に依存する情報に相当する。本発明は、伝搬応答そのものだけではなく、時間変動する伝搬応答に依存するあらゆる情報への適用も可能である。   The “information” in the first to sixth embodiments is a propagation response that varies with time or information that depends on the propagation response. For example, transmission weights and reception weights that depend on the propagation response, and an interference matrix that represents the amount of interference as described in Equation (18) and Equation (30) of Non-Patent Document 4 correspond to information that depends on the propagation response. To do. The present invention can be applied not only to the propagation response itself, but also to any information that depends on a time-varying propagation response.

また、上記実施例1〜6は、複数の送信アンテナあるいは複数の受信アンテナを有するマルチアンテナ通信構成において、1つの送受信アンテナペア間、一部の送受信アンテナペア間、もしくは全ての送受信アンテナペア間の伝搬応答あるいは伝搬応答に依存する情報に対する適用が可能である。図1と図2のMU−MIMO通信構成やIA通信構成はマルチアンテナ通信構成の具体例である。   Further, in the first to sixth embodiments, in a multi-antenna communication configuration having a plurality of transmission antennas or a plurality of reception antennas, between one transmission / reception antenna pair, between some transmission / reception antenna pairs, or between all transmission / reception antenna pairs. Application to propagation response or information depending on propagation response is possible. The MU-MIMO communication configuration and the IA communication configuration in FIGS. 1 and 2 are specific examples of the multi-antenna communication configuration.

また、上記実施例1〜6における伝搬応答あるいは伝搬応答に依存する情報は、時間軸上に表現される時間領域の情報あるいは周波数軸上に表現される周波数領域の情報のいずれでも良い。時間領域の情報であれば、時間軸上の各遅延波成分に対して本発明の適用が可能である。周波数領域の情報であれば、周波数軸上の各サブキャリア成分に対して本発明の適用が可能である。   In addition, the propagation response or the information depending on the propagation response in the first to sixth embodiments may be either time-domain information expressed on the time axis or frequency-domain information expressed on the frequency axis. If the information is in the time domain, the present invention can be applied to each delayed wave component on the time axis. If it is information in the frequency domain, the present invention can be applied to each subcarrier component on the frequency axis.

ここで、図2に示すIAアライメント通信構成において行った定量評価を示す。定量数値評価に使用した諸元として、図7に示すように3つの送信局受信局ペアがあって、ここの送受信局は2本のアンテナを備えている。また、無線伝搬路の時変動として最大ドップラー周波数を100Hz とする。   Here, the quantitative evaluation performed in the IA alignment communication configuration shown in FIG. 2 is shown. As specifications used for the quantitative numerical evaluation, there are three transmitting station receiving station pairs as shown in FIG. 7, and the transmitting and receiving stations here are provided with two antennas. In addition, the maximum Doppler frequency is assumed to be 100 Hz as the time variation of the radio propagation path.

簡単のため、従来の予測技術は非特許文献6の前方後方カルマンフィルタ(Forward Backward Kalman Filter)技術、本発明の予測技術は実施例2を用いる。   For simplicity, the conventional prediction technique uses the Forward Backward Kalman Filter technique of Non-Patent Document 6, and the prediction technique of the present invention uses the second embodiment.

図8は、予測誤差の特性評価を示す。
本発明の予測技術における予測誤差は、実施例2に示す前方カルマンフィルタの予測精度を示す。従来の予測技術における予測誤差は、前方後方カルマンフィルタの予測精度を示す。予測精度を表す指標としてはRMSE(Root Mean Squared Error) を用いる。さらに、本発明の予測技術では、差分情報の生成回数がS=1,2,3の3つのパターンを示している。図8において、本発明の予測技術は、従来の予測技術に比べて高い予測精度を実現していることが分かる。また、本発明の予測技術の予測精度は差分情報の生成回数Sに増加に伴い向上することが確認できる。
FIG. 8 shows a prediction error characteristic evaluation.
The prediction error in the prediction technique of the present invention indicates the prediction accuracy of the forward Kalman filter shown in the second embodiment. The prediction error in the conventional prediction technique indicates the prediction accuracy of the front-rear Kalman filter. RMSE (Root Mean Squared Error) is used as an index representing the prediction accuracy. Furthermore, the prediction technique of the present invention shows three patterns in which the number of generations of difference information is S = 1, 2, 3. In FIG. 8, it can be seen that the prediction technique of the present invention achieves higher prediction accuracy than the conventional prediction technique. In addition, it can be confirmed that the prediction accuracy of the prediction technique of the present invention increases as the difference information generation count S increases.

図9は、所要演算量の特性評価を示す。
本発明の予測技術における所要演算量は実施例2におけるものである。所要演算量を表す指標として四則演算の回数を用いる。さらに、本発明の予測技術では差分情報の生成回数がS=1のパターンを示している。予測に用いるカルマンフィルタの次数は、本発明の予測技術と従来の予測技術ともに、M=2,3,4の3つのパターンを示している。図9において、いずれのカルマンフィルタ次数においても、本発明の予測技術は従来の予測技術に比べ所要演算量を削減していることが分かる。また、演算量削減効果はAR次数の増加ともに顕著になることも確認できる。
FIG. 9 shows a characteristic evaluation of the required calculation amount.
The required calculation amount in the prediction technique of the present invention is that in the second embodiment. The number of four arithmetic operations is used as an index representing the required calculation amount. Furthermore, the prediction technique of the present invention shows a pattern in which the number of generations of difference information is S = 1. The order of the Kalman filter used for the prediction shows three patterns of M = 2, 3, and 4 in both the prediction technique of the present invention and the conventional prediction technique. In FIG. 9, it can be seen that the prediction technique of the present invention reduces the required amount of calculation compared to the conventional prediction technique in any Kalman filter order. It can also be confirmed that the calculation amount reduction effect becomes remarkable as the AR order increases.

本発明は、例えば無線通信システムの送信局または受信局または中央処理局における伝搬応答の予測処理を、コンピュータと、上記の処理を行うコンピュータプログラムにより実現することができる。このコンピュータプログラムは、コンピュータが読み取り可能な記憶媒体に記憶することも、ネットワークを介して提供することも可能なものである。   The present invention can realize, for example, a propagation response prediction process in a transmission station, a reception station, or a central processing station of a wireless communication system by a computer and a computer program that performs the above process. This computer program can be stored in a computer-readable storage medium or provided via a network.

1 送信局
2 受信局
3 中央処理局
1 Transmitting station 2 Receiving station 3 Central processing station

Claims (7)

時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測する情報予測方法において、
前記予測対象の既知情報を保存し、N単位時間(Nは1以上の整数)を間隔として前記既知情報または前回の差分情報から1〜S回目(Sは1以上の整数)の差分情報を順番に生成するステップ1と、
前記生成したS回目の差分情報に基づき、予測計算に必要な予測係数を生成するステップ2と、
前記生成した予測係数と前記S回目の差分情報に基づき、N単位時間先のS回目の差分情報を予測するステップ3と、
前記予測したN単位時間先のS回目の差分情報に基づき、各回の差分情報の累加によりN単位時間先の1回目の差分情報を予測するステップ4と、
前記予測したN単位時間先の1回目の差分情報に基づき、N単位時間先の前記未知情報を予測し、出力するステップ5と
を有することを特徴とする情報予測方法。
In the information prediction method for predicting unknown information of the future time based on the known information of the prediction target that fluctuates over time,
The known information to be predicted is stored, and N-unit time (N is an integer of 1 or more) is used as an interval, and the first to S-th difference information (S is an integer of 1 or more) is sequentially ordered from the known information or the previous difference information. Step 1 to generate
Step 2 of generating a prediction coefficient necessary for prediction calculation based on the generated S-th difference information;
Based on the generated prediction coefficient and the S-th difference information, predicting S-th difference information N units time ahead;
Step 4 of predicting the first difference information of N unit time ahead by accumulating the difference information of each time based on the predicted S time difference information of N unit time ahead;
An information prediction method comprising: predicting and outputting the unknown information of N unit time ahead based on the first difference information of the predicted N unit time ahead.
請求項1に記載の情報予測方法において、
前記ステップ1は、前記既知情報を少なくともS+2個保存し、S回目の差分情報を少なくとも2個生成する
ことを特徴とする情報予測方法。
The information prediction method according to claim 1,
The step 1 stores at least S + 2 pieces of the known information, and generates at least two pieces of difference information for the Sth time.
時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測する情報予測システムにおいて、
前記予測対象の既知情報を保存し、N単位時間(Nは1以上の整数)を間隔として前記既知情報または前回の差分情報から1〜S回目(Sは1以上の整数)の差分情報を順番に生成する第1の手段と、
前記生成したS回目の差分情報に基づき、予測計算に必要な予測係数を生成する第2の手段と、
前記生成した予測係数と前記S回目の差分情報に基づき、N単位時間先のS回目の差分情報を予測する第2の手段と、
前記予測したN単位時間先のS回目の差分情報に基づき、各回の差分情報の累加によりN単位時間先の1回目の差分情報を予測する第4の手段と、
前記予測したN単位時間先の1回目の差分情報に基づき、N単位時間先の前記未知情報を予測し、出力する第5の手段と
を備えたことを特徴とする情報予測システム。
In an information prediction system that predicts unknown information of future time based on the known information of the prediction target that fluctuates over time,
The known information to be predicted is stored, and N-unit time (N is an integer of 1 or more) is used as an interval, and the first to S-th difference information (S is an integer of 1 or more) is sequentially ordered from the known information or the previous difference information. First means for generating
A second means for generating a prediction coefficient necessary for a prediction calculation based on the generated S-th difference information;
Based on the generated prediction coefficient and the S-th difference information, second means for predicting the S-th difference information N units ahead;
A fourth means for predicting the first difference information of N unit time ahead by accumulating the difference information of each time based on the predicted S time difference information of N unit time ahead;
An information prediction system comprising: fifth means for predicting and outputting the unknown information of N unit time ahead based on the first difference information of the predicted N unit time ahead.
請求項3に記載の情報予測システムにおいて、
前記第1の手段は、前記既知情報を少なくともS+2個保存し、S回目の差分情報を少なくとも2個生成する構成である
ことを特徴とする情報予測システム。
The information prediction system according to claim 3,
The information predicting system according to claim 1, wherein the first means is configured to store at least S + 2 pieces of the known information and generate at least two pieces of difference information for the Sth time.
請求項3に記載の情報予測システムにおいて、
同一周波数および同一時刻に無線通信を行う少なくとも1つの送信局と複数の受信局との間で、時間変動する通信路の伝搬応答に応じてそれぞれの送信ウェイトおよび受信ウェイトを設定して各受信局における所望信号以外の干渉信号を抑圧するために、前記予測対象の情報として該伝搬応答または該伝搬応答に依存する情報の予測を行う構成である
ことを特徴とする情報予測システム。
The information prediction system according to claim 3,
Each receiving station sets a transmission weight and a reception weight according to the propagation response of a communication path that varies in time between at least one transmitting station and a plurality of receiving stations that perform wireless communication at the same frequency and the same time. In order to suppress interference signals other than the desired signal, the information prediction system is configured to predict the propagation response or information dependent on the propagation response as the information to be predicted.
請求項5に記載の情報予測システムにおいて、
前記送信局または前記受信局または前記送信局に接続される中央処理局が、既知の前記伝搬応答の情報を入力し、未知の前記伝搬応答または前記伝搬応答に依存する情報の予測を行う構成である
ことを特徴とする情報予測システム。
The information prediction system according to claim 5,
A configuration in which a central processing station connected to the transmitting station, the receiving station or the transmitting station inputs information on the known propagation response and predicts the unknown propagation response or information dependent on the propagation response. An information prediction system characterized by being.
請求項3に記載の情報予測システムの各手段における処理をコンピュータに実行させ、時間変動する予測対象の既知情報に基づいて将来時間の未知情報を予測することを特徴とする情報予測プログラム。   An information prediction program for causing a computer to execute processing in each means of the information prediction system according to claim 3 and predicting unknown information of a future time based on known information of a prediction target that varies with time.
JP2016032150A 2016-02-23 2016-02-23 Information prediction method, information prediction system and information prediction program Active JP6534626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032150A JP6534626B2 (en) 2016-02-23 2016-02-23 Information prediction method, information prediction system and information prediction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032150A JP6534626B2 (en) 2016-02-23 2016-02-23 Information prediction method, information prediction system and information prediction program

Publications (2)

Publication Number Publication Date
JP2017152845A true JP2017152845A (en) 2017-08-31
JP6534626B2 JP6534626B2 (en) 2019-06-26

Family

ID=59742039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032150A Active JP6534626B2 (en) 2016-02-23 2016-02-23 Information prediction method, information prediction system and information prediction program

Country Status (1)

Country Link
JP (1) JP6534626B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185213A (en) * 1997-09-02 1999-03-30 N K S Kk Prediction method for time sequence continuous data, control method using the same and record medium
WO2006070320A1 (en) * 2004-12-28 2006-07-06 Koninklijke Philips Electronics N.V. Fine time tracking with improved resolution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185213A (en) * 1997-09-02 1999-03-30 N K S Kk Prediction method for time sequence continuous data, control method using the same and record medium
WO2006070320A1 (en) * 2004-12-28 2006-07-06 Koninklijke Philips Electronics N.V. Fine time tracking with improved resolution
JP2008526153A (en) * 2004-12-28 2008-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Precision time tracking with improved resolution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山田 渉 他: "伝搬チャネル変動予測アルゴリズムの予測精度評価", 電子情報通信学会技術研究報告 VOL.114 NO.149, vol. 第114巻, JPN6018044446, 17 July 2014 (2014-07-17), JP *

Also Published As

Publication number Publication date
JP6534626B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6169581B2 (en) System and method for suppressing interference in a signal received by a device having two or more antennas
KR101857669B1 (en) Method for reducing complexity of mimo receiver which shares preprocessing filter in a group unit by adaptively using covariance matrix
EP3977627A1 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
CN105246086B (en) A kind of method and apparatus of determining aerial angle
CN107294880B (en) Method and apparatus for determining channel information
US10181935B2 (en) Pilot configuration method and apparatus
JP2017512411A (en) Received signal processing method of MIMO receiver
CN106716862A (en) Codebook determination method and apparatus, and communication system
KR101418766B1 (en) Multiple antenna method for reducing inter-cell interference in multi-user wireless systems
US10979251B2 (en) Computing transmit and receive filters for a network device
US9690750B2 (en) Arithmetic device, arithmetic method, and wireless communication device
JP6534626B2 (en) Information prediction method, information prediction system and information prediction program
JP6852341B2 (en) Transmission control device and transmission control method
CN109787666B (en) Frequency domain scheduling method, device and equipment
KR20170001572A (en) Transceiver device and method of processing signals
JP6466313B2 (en) MIMO radio transmission system, MIMO radio transmission method, and receiver
EP3565199B1 (en) Channel estimation method and device
KR101691295B1 (en) Multi-antenna transmission beam design device and method, and transmission terminal thereof
US9882688B2 (en) Method, apparatus, and system for processing interference in massive multiple-input multiple-output system
CN115428345A (en) Multi-user precoding
JP6353375B2 (en) Base station apparatus, weight generation method, and radio communication system
CN113228528A (en) Precoding settings
JP6363962B2 (en) Base station apparatus, weight generation method, and radio communication system
JP7014155B2 (en) Wireless and control devices
JP6577417B2 (en) Wireless communication system, wireless communication method, and wireless communication program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190529

R150 Certificate of patent or registration of utility model

Ref document number: 6534626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250