JP2017151689A - Measuring system - Google Patents

Measuring system Download PDF

Info

Publication number
JP2017151689A
JP2017151689A JP2016033067A JP2016033067A JP2017151689A JP 2017151689 A JP2017151689 A JP 2017151689A JP 2016033067 A JP2016033067 A JP 2016033067A JP 2016033067 A JP2016033067 A JP 2016033067A JP 2017151689 A JP2017151689 A JP 2017151689A
Authority
JP
Japan
Prior art keywords
measurement
time
server
unit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033067A
Other languages
Japanese (ja)
Other versions
JP6703418B2 (en
JP2017151689A5 (en
Inventor
竹生 檜山
Takeo Hiyama
竹生 檜山
田中 雅人
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abit Corp
Original Assignee
Abit Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abit Corp filed Critical Abit Corp
Priority to JP2016033067A priority Critical patent/JP6703418B2/en
Publication of JP2017151689A publication Critical patent/JP2017151689A/en
Publication of JP2017151689A5 publication Critical patent/JP2017151689A5/ja
Application granted granted Critical
Publication of JP6703418B2 publication Critical patent/JP6703418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the power consumption of a battery-driven measuring element.SOLUTION: A measuring system comprises: a measuring element including a sensor unit, a communication unit, a clock unit, and a power supply unit; and a measuring server via a communication network. The measuring server gives the measuring element instructions on communication date and time from the measuring element to the measuring server, power is supplied to the sensor unit and the communication unit at prescribed time corresponding to the communication date and time, measurement data at the sensor unit is transmitted to the measuring server, thereby the number of access times from the measuring element to the measuring server is reduced to the minimum, and power consumption of the measuring unit and the communication unit of the measuring element is kept down to the necessity minimum.SELECTED DRAWING: Figure 1

Description

本発明は、各種センサの情報を通信網を利用して集中的に管理する計測サーバーシステムに関するもので、計測素子、特に電池で駆動される計測素子に好適な省電力化手段に関するものである。   The present invention relates to a measurement server system that centrally manages information of various sensors using a communication network, and relates to power saving means suitable for a measurement element, particularly a measurement element driven by a battery.

近年、いろいろなセンサ技術が発達し、温度センサ、風量計、風速計、雨量計、地震計等の気象観測のためのセンサや、血圧計、心拍数計等の生体情報センサ、放射線量、PM2.5測定器、塵埃計、臭気計等の環境センサ、さらには、人感センサ、監視カメラ等、あらゆるセンサ(計測素子)の情報がインタネットに接続され、集中的な観測が行われている。これらのセンサは屋内はもとより屋外にも設置され、その電源として商用電源を用いるもののほか、電池で駆動されるセンサも多用化されてきている。また通信手段も、無線技術の発達により有線から無線へと推移していて、計測素子は、それ単独で見るとセンサ情報(計測データ)をサーバーへ送信する無線通信端末とも言えるものになってきている。   In recent years, various sensor technologies have been developed. Sensors for weather observation such as temperature sensors, anemometers, anemometers, rain gauges, seismometers, biological information sensors such as sphygmomanometers, heart rate meters, radiation doses, PM2 .5 Information from various sensors (measuring elements) such as environmental sensors such as measuring instruments, dust meters, odor meters, and human sensors, surveillance cameras, etc. are connected to the Internet for intensive observation. These sensors are installed not only indoors but also outdoors, and in addition to those using commercial power sources as their power sources, sensors driven by batteries have been used widely. In addition, the communication means has also changed from wired to wireless due to the development of wireless technology, and the measurement element can be said to be a wireless communication terminal that transmits sensor information (measurement data) to the server when viewed alone. Yes.

無線通信端末というと携帯電話やタブレットが代表的であり、電池駆動であるがゆえの省電力化対策が採られていて、人が操作をしない時には電源供給を、静止し(ほぼ停止状態)、静止時は、人が操作を開始するかどうかをセンスする回路のみに電力を供給する方法が一般的である。人の操作によらず自動的に省電力化を図る技術としては先行技術文献には、携帯電話のカメラモジュールで顔を認識し、人の存否によって省電力モードへ切り替える技術が開示されている。また、パソコンや携帯電話やタブレットなどインタネット通信を行う端末では、一定の時間間隔で受信メールサーバーにメールの問合せを行うことで、省電力化を図っている。しかし、定期的に受信メールの問合せをしても受信メールがない時は、結果的には無駄な問合せ、つまり無駄な電力消費を行ったことになる。   When it comes to wireless communication terminals, mobile phones and tablets are typical, and power-saving measures are taken because they are battery-powered. When people do not operate, the power supply is stopped (almost stopped), In a stationary state, a method of supplying power only to a circuit that senses whether or not a person starts an operation is common. As a technique for automatically saving power regardless of a human operation, the prior art document discloses a technique for recognizing a face with a camera module of a mobile phone and switching to a power saving mode depending on the presence or absence of a person. In addition, terminals such as personal computers, mobile phones, and tablets that communicate with the Internet attempt to save power by inquiring mails to the incoming mail server at regular intervals. However, if there is no received mail even if the received mail is periodically inquired, the result is that a useless inquiry, that is, useless power consumption is performed.

最近、IoT(Internet of Things)と称し、あらゆるものがインタネットに接続される時代が到来すると言われているが、IoT時代とは、計測素子や各種センサが、監視カメラの例に見るように街中のいたるところに設置され、計測データを集中的に管理することで、人々に有益な情報をキメ細かく提供できる時代とも言えるわけで、計測素子の設置数が爆発的に伸び、それゆえ計測素子の消費電力を更に軽減することが、計測素子に使用する電池寿命の長期化に貢献できるだけでなく、より少ないエネルギーの消費という点でも社会的な課題になってくる。   Recently, it is called IoT (Internet of Things), and it is said that the era will come when everything is connected to the Internet. In the IoT era, the measurement elements and various sensors are seen in the city as seen in the example of surveillance cameras. It can be said that it can be said that it is possible to provide useful information finely to people by centrally managing measurement data, and the number of measurement elements installed has increased explosively, and therefore consumption of measurement elements. Further reduction of electric power not only contributes to extending the life of the battery used for the measuring element, but also becomes a social issue in terms of consuming less energy.

特開2014−27386JP2014-27386

計測素子の低消費電力化を図り、電池寿命を長期化することが望ましい。   It is desirable to reduce the power consumption of the measuring element and extend the battery life.

計測素子が計測を行うタイミングを計測サーバーが指示し計測結果を計測サーバーへ送信する。このため計測素子と計測サーバーとの通信時に、計測サーバーは次回の計測と通信日時を指示する。この方法により計測素子の電源供給は常時は時計部のみになり、センサ部(計測部)、通信部への電源供給は、計測時、通信時のみとなり、大幅な省電力化が図れる。また計測素子の時計精度が低いと次回の計測日時が電力メーターのように1カ月後とかになると日時がずれるため、計測素子が所有する時計の精度情報をもとに計測サーバーからの日時情報を利用して時計の時刻校正を行う。また、計測素子の異常(回路故障等)を判断するため、計測素子には自己診断回路を設け、診断結果を計測サーバーへ送信報告する。   The measurement server instructs the timing at which the measurement element performs measurement, and transmits the measurement result to the measurement server. Therefore, at the time of communication between the measurement element and the measurement server, the measurement server instructs the next measurement and the communication date and time. With this method, the power supply of the measuring element is always only the clock unit, and the power supply to the sensor unit (measuring unit) and the communication unit is only during measurement and communication, so that significant power saving can be achieved. Also, if the clock accuracy of the measuring element is low, the date and time will be shifted when the next measurement date and time is one month later, such as a power meter. Therefore, the date and time information from the measurement server is obtained based on the accuracy information of the clock owned by the measuring element. Use this to calibrate the clock time. Further, in order to determine an abnormality (circuit failure or the like) of the measurement element, a self-diagnosis circuit is provided in the measurement element, and the diagnosis result is transmitted and reported to the measurement server.

計測素子への電源供給は常時は時計部のみとなり、センサ部と通信部は計測・通信時のみに給電されることで、計測素子としては大幅な、省電力化が図れる。   The power supply to the measurement element is always only the clock unit, and the sensor unit and the communication unit are supplied with power only during measurement / communication, so that the power consumption of the measurement element can be greatly reduced.

本発明による計測システムの全体構成図である。1 is an overall configuration diagram of a measurement system according to the present invention. 本発明による計測システムの計測素子の内部構成を示すブロック線図である。It is a block diagram which shows the internal structure of the measurement element of the measurement system by this invention. 本発明による計測システムの計測サーバーの構成例を示すブロック線図である。It is a block diagram which shows the structural example of the measurement server of the measurement system by this invention. 本発明による計測システムの計測素子と計測サーバー間の通信信号の内容を示す図である。It is a figure which shows the content of the communication signal between the measurement element of the measurement system by this invention, and a measurement server.

図1は、本発明の全体構成概念図であり、1a、1b、1cで示されるような数多くの計測素子(以下個別に参照数字「1」として説明する)が無線通信網2に接続されている。各々の計測素子1で計測されるデータとともに、各計測素子1についての管理データを集中的に管理する計測サーバー3が、無線通信網2に接続されている。図示しないが、無線通信網とともに有線通信網に接続される計測素子もあろうが、すべての計測素子の情報は、計測サーバー3で集中管理されている。無線通信網としては、3G、4G、PHS等の公衆無線通信網であったり、自営の専用無線通信網であってもよい。自営の無線通信網の例としては、PHSの自営モードや、サブギガ波と称す920MHZ帯を使用した無線方式があろう。   FIG. 1 is a conceptual diagram of the overall configuration of the present invention. A large number of measurement elements (hereinafter referred to as reference numeral “1”) as indicated by 1a, 1b, and 1c are connected to a wireless communication network 2. Yes. A measurement server 3 that centrally manages management data for each measurement element 1 together with data measured by each measurement element 1 is connected to the wireless communication network 2. Although not shown, there may be measuring elements connected to the wired communication network together with the wireless communication network, but information on all the measuring elements is centrally managed by the measurement server 3. The wireless communication network may be a public wireless communication network such as 3G, 4G, or PHS, or a private wireless communication network that is self-employed. As an example of a self-supporting wireless communication network, there may be a self-supporting mode of PHS or a wireless system using a 920 MHZ band called a sub-giga wave.

計測素子は多種多様であり、気象観測のための温度計、風量計、雨量計、地震計等の素子や、生体情報管理のための血圧計、心拍数計、体温計等の素子、環境管理のための放射線量計、PM2.5測定計、塵埃測定計、臭気計等の素子、建築物の劣化管理のための機械的歪測定計、使用料管理のための水道メータ、ガスメータ、電気メータ等、さらに防犯対策のための人感センサ、監視カメラ等がある。   There are a wide variety of measuring elements, including elements such as thermometers, air flow meters, rain gauges, and seismometers for weather observation, blood pressure meters, heart rate meters, thermometers, etc. Radiation meter, PM2.5 meter, dust meter, odor meter, etc., mechanical strain meter for building deterioration management, water meter, gas meter, electric meter, etc. Furthermore, there are human sensors and security cameras for crime prevention.

計測サーバー3は、計測事業者自身のものであったり、複数の計測事業者から委託される計測サーバーセンタ的な形態もあろう。水道メータなどは水道事業者自身が管理するかもしれないし、生体情報管理は医療関係事業者自身が管理する、あるいは複数の医療関係事業者が計測サーバーセンタに計測を委託し、計測結果情報を受け取り、各医療事業者が結果情報を解析し、顧客に情報提供するサービス形態もあろう。様々な形態が考えられるが、本発明においてはその形態は問わない。   The measurement server 3 may be a measurement provider's own or a measurement server center that is entrusted by a plurality of measurement operators. The water meter may be managed by the water company itself, and the biometric information management is managed by the medical company itself, or multiple medical companies outsource measurement to the measurement server center and receive the measurement result information. There may be a service form in which each medical provider analyzes the result information and provides information to the customer. Various forms are possible, but the form is not limited in the present invention.

計測素子1は計測目的によって、計測頻度(計測の時間間隔)は異なり、月1回のものや、1日3回、1時間毎、1分毎とかの頻度のものがあろう。また計測された数値を平常時のデータと比較し、少し異変が起きていると感じた時は計測頻度を上げたり、あるいは天気予報などの他の情報をもとに、台風の接近をより細かく観察する時は計測頻度を上げるなど、計測頻度は状況に応じて随時変更制御される。計測素子の電源は、商用電源を用いるものや、電池を用いるものがあるが、本発明は計測素子の省電力化に関するもので、電池駆動型の計測素子により好適なものである。   The measurement element 1 has a different measurement frequency (measurement time interval) depending on the purpose of measurement. The measurement element 1 may have a frequency of once a month or three times a day, every hour, or every minute. Also, compare the measured values with normal data, and if you feel that something has changed a little, increase the frequency of measurement, or use other information such as weather forecasts to make the typhoon approach closer When observing, the measurement frequency is changed at any time according to the situation, such as increasing the measurement frequency. The power source of the measuring element includes a commercial power source and a battery. However, the present invention relates to power saving of the measuring element, and is more suitable for a battery-driven measuring element.

計測サーバー3は、表1に示すように各々の計測素子毎に管理データを集計し管理している。表1に示す管理データの意味は後述する。   As shown in Table 1, the measurement server 3 collects and manages management data for each measurement element. The meaning of the management data shown in Table 1 will be described later.

Figure 2017151689
Figure 2017151689

図2は電池駆動型の計測素子1の内部構成を示す。   FIG. 2 shows the internal configuration of the battery-driven measuring element 1.

計測素子1は、電源が常時供給される時計部13、電源制御部18によって動作が必要な時のみに通電されるセンサ部11(センサ部は計測部とも言える)、素子通信部12、電池残量検知部20、自己診断を行うための自己診断制御回路21、バイアス回路22、比較判定回路23とからなる。時計部13の中には、時計17のほか、動作を後述するサーバー日時管理M(メモリ)15、次回通信日時管理M(メモリ)16、自己診断日時管理M(メモリ)14がある。   The measuring element 1 includes a clock unit 13 that is constantly supplied with power, a sensor unit 11 that is energized only when operation is required by the power control unit 18 (the sensor unit can also be referred to as a measuring unit), an element communication unit 12, a battery remaining The quantity detection unit 20 includes a self-diagnosis control circuit 21 for performing self-diagnosis, a bias circuit 22, and a comparison determination circuit 23. In addition to the clock 17, the clock unit 13 includes a server date / time management M (memory) 15, a next communication date / time management M (memory) 16, and a self-diagnosis date / time management M (memory) 14 whose operations will be described later.

これらの日時情報は、2011年3月11日14時46分45秒のように、西暦から始まり、秒までを含む。表1で示す次回通信日時は、スペースの関係上、V,B,C(V時B分C秒)と簡略化されているが、実際は、2011年3月11日14時46分45秒のようになっている。   These date and time information starts from the Christian era and includes up to the second as March 11, 2011 14:46:45. The next communication date and time shown in Table 1 is simplified to V, B, C (V hour B minute C second) due to space limitations, but in actuality, it was 14:46:45 on March 11, 2011. It is like that.

素子通信部12は、無線通信網2を介して計測サーバー3と通信を行うが、本発明においては通信のための発呼は、計測素子1からのみであり、計測サーバー3が計測素子1に発呼することはなく、計測素子1は計測サーバー3からの着呼に備える必要はない。   The element communication unit 12 communicates with the measurement server 3 via the wireless communication network 2, but in the present invention, the call for communication is only from the measurement element 1, and the measurement server 3 communicates with the measurement element 1. No call is made and the measuring element 1 does not have to prepare for an incoming call from the measuring server 3.

計測素子1の動作は、次回通信日時管理M16が、計測と通信を行う日時になったら、電源制御部18に、センサ部11に計測を行うことを指示し、計測結果データを素子通信部12へ送り、素子通信部12は、計測サーバー3へデータを送信する。センサ部へ電源を供給する時間は、センサが必要とする計測時間に応じている。   As for the operation of the measuring element 1, when the next communication date and time management M16 comes to the date and time for measurement and communication, the power supply control unit 18 is instructed to perform measurement on the sensor unit 11, and the measurement result data is sent to the element communication unit 12 The element communication unit 12 transmits data to the measurement server 3. The time for supplying power to the sensor unit depends on the measurement time required by the sensor.

体温とかの計測では1分程度の計測時間を要すが、気温などは秒程度で良いだろう。素子通信部12への電源供給時間は、通信に必要な時間で、伝送速度にもよるが数秒程度以下のオーダであり、センサ部の測定時間を考慮しながら、センサ部と同時に給電してもよいし、センサ部の給電時間が1分とか長い時は、時間的に分割して給電すればよい。   Measurements such as body temperature take about 1 minute of measurement time, but the temperature may be about seconds. The power supply time to the element communication unit 12 is a time required for communication, which is on the order of several seconds or less depending on the transmission speed, and can be supplied simultaneously with the sensor unit while taking into account the measurement time of the sensor unit. In addition, when the power supply time of the sensor unit is as long as 1 minute, the power supply may be divided in time.

計測結果の送信データの形式は、図4(a)に示す。   The format of the transmission data of the measurement result is shown in FIG.

送信データは、個別の素子に応じた「素子ID」と「電話番号」あるいはIPアドレスなどの通信に必要な情報に加え、「計測情報」とともに、「電池残量」、「現在日時」、「設置エリア」信号を送信する。電池残量は、計測サーバー3が個々の計測素子の状況を確認するのに必要なデータであり、現在日時は、計測素子1の時計情報である。   In addition to information necessary for communication such as “element ID” and “phone number” or IP address according to individual elements, the transmission data includes “remaining battery”, “current date and time”, “ Send the “Installation Area” signal. The battery remaining amount is data necessary for the measurement server 3 to check the status of each measurement element, and the current date and time is clock information of the measurement element 1.

「計測情報」としては、「計測データ」と、後記する「データなし」と、「自己診断結果」の3種があり、図4(c)に示すように、計測情報部は、前記3つの「情報種別」を表す部分と「データ」を表す部分の2つの構成になっている。なお、情報種別で「データなし」のときは後続の「データ」は省略される。   There are three types of “measurement information”: “measurement data”, “no data” to be described later, and “self-diagnosis result”. As shown in FIG. It has two components, a part representing “information type” and a part representing “data”. If the information type is “no data”, the subsequent “data” is omitted.

なお、これらの計測情報(計測データ、自己診断結果、後記する時刻校正信号)が、計測サーバー3が指定した日時に計測サーバー3で受信できない時は、計測素子1が故障か盗難を疑い、計測事業者に別途電子メールや電話で連絡を行う。   In addition, when these measurement information (measurement data, self-diagnosis result, time calibration signal described later) cannot be received by the measurement server 3 at the date and time designated by the measurement server 3, the measurement element 1 is suspected of malfunctioning or theft, and measurement is performed. Contact the operator separately by e-mail or telephone.

また「設置エリア」は、計測素子の設置されている場所を、無線通信を利用して通信する際に得られる基地局の情報をそのまま利用するものである。なお、計測素子1が別途GPSセンサを具備していれば、「設置エリア」情報としてはGPS情報を利用する。   The “installation area” is used as it is information on the base station obtained when the place where the measurement element is installed is communicated using wireless communication. Note that if the measuring element 1 has a separate GPS sensor, GPS information is used as the “installation area” information.

なお、計測のサービスエリアが狭く、すべての計測素子が、一つのアンテナ圏内(基地局圏内)に設置されているときは、設置エリア情報としては、図示しないが、アンテナからの距離情報に相当する電界強度情報を代替するものとして、受信電波の「受信レベル」情報を用いる。   When the measurement service area is narrow and all measurement elements are installed in one antenna area (base station area), the installation area information is equivalent to distance information from the antenna, although not shown. As an alternative to the electric field strength information, “reception level” information of the received radio wave is used.

つまり、設置エリア情報としては、基地局情報、GPS情報、受信レベル情報の3種がある。   That is, there are three types of installation area information: base station information, GPS information, and reception level information.

計測サーバー3では設置エリア情報を通信の都度確認し、表1で管理されている本来の設置エリア情報と異なる場合は、計測素子1が盗難されていると判断する。   The measurement server 3 checks the installation area information every time communication is performed. If the measurement server 3 is different from the original installation area information managed in Table 1, it is determined that the measurement element 1 is stolen.

表1に示した管理データの中で、「時計精度」、「電池残量」、「異常状態」、「次回通信日時」は通信の都度データが更新され、「計測周期」、「自己診断周期」は、結果情報をもとに必要があれば通信によって変更される。その他のデータの更新は、設置場所の変更とか、変更の必要がある時に、データ入力部40(図3参照)から更新される。   In the management data shown in Table 1, “clock accuracy”, “remaining battery power”, “abnormal state”, and “next communication date / time” are updated every time communication is performed, and “measurement cycle”, “self-diagnosis cycle” "Is changed by communication if necessary based on the result information. The other data is updated from the data input unit 40 (see FIG. 3) when the installation location is changed or when a change is necessary.

表1の時計精度は、計測素子1から送られてきた計測素子の現在日時と、計測サーバー3の現在日時とを対比し、計測サーバー3では、前回通信日時をもとに1日に生じた誤差を計算し、更新される。時計精度を管理することで、計測素子1の時計部品である水晶振動子に高い精度を要求することは必要なく、計測素子のコストを低減できる。計測素子が、電波時計を使用すれば理想的であるが、電波時計は常時電力を消費することと、屋内では設置場所によっては電波受信が出来にくいことを留意したうえで、使用を決める必要がある。   The clock accuracy in Table 1 is based on the current date and time of the measurement element sent from the measurement element 1 and the current date and time of the measurement server 3, and the measurement server 3 occurred on the first day based on the previous communication date and time. The error is calculated and updated. By managing the timepiece accuracy, it is not necessary to require high accuracy for the crystal resonator that is the timepiece component of the measuring device 1, and the cost of the measuring device can be reduced. The measurement element is ideal if a radio clock is used, but it is necessary to decide on the use of radio clocks, taking into account that they always consume power and that it is difficult to receive radio waves indoors depending on the installation location. is there.

通信の都度、計測サーバー3からは、図4(b)に示すように、次回通信日時とサーバ―日時が計測素子1に届く、計測素子1では、サーバー日時管理M15の情報をもとに、時計17をサーバー日時に校正する。また次回通信日時管理M16に次回通信日時を書込み、次回の通信に備え、通信日時になったら前記した動作を行う。   As shown in FIG. 4 (b), the next communication date and time and the server-date and time arrive at the measuring element 1 every time communication is performed. In the measuring element 1, based on the information of the server date and time management M15, The clock 17 is calibrated to the server date. The next communication date / time is written in the next communication date / time management M16, and the above-described operation is performed when the communication date / time is reached in preparation for the next communication.

計測素子1は、故障診断のために自己診断機能を有している。自己診断周期は、計測素子の故障率とともに計測周期を勘案しながら計測素子そのものが決めるが、その周期情報は、別途、表1に示すように、計測サーバー3で管理されていて、計測サーバー3では自己診断を行うべき時間に診断結果が送信されることを待っている。   The measuring element 1 has a self-diagnosis function for failure diagnosis. The self-diagnosis cycle is determined by the measurement element itself while taking into account the measurement cycle as well as the failure rate of the measurement element. The cycle information is separately managed by the measurement server 3 as shown in Table 1, and the measurement server 3 Then, it waits for a diagnostic result to be transmitted at the time when self-diagnosis should be performed.

計測素子1が自己診断を行うには、計測周期に応じて、自己診断日時管理M14が、診断日時になったら、電源制御部18に自己診断制御回路21を駆動するように指示する。自己診断制御回路21は、センサ部11が出力する最小値、最大値、中間値が診断時に出力されるよう、センサ部11へのバイアス値をバイアス回路22から出力し、設定したバイアス値に対するセンサ出力になっているかを比較判定回路23で判定を行う。バイアス回路22では、センサ部11の動作パラメータを変化させるが、別の方法として、センサ部11への入力信号レベルを擬装的に変化してもよい。どの方法でも、変化に応じセンサ部11の出力が変化していれば動作は正常と判断する。その判断は、比較判定回路23で行う。比較判定回路23の出力としては、OK、NGの他に、「とりあえずは使用可であるが近日中に修理必要」とかの情報も出力する。これらの情報は、診断結果情報として、図4(a)の計測情報において、「情報種別」は自己診断結果、「データ」は、OK、NG、その他の情報(前記「とりあえずは使用可であるが近日中に修理必要」とかの情報)に対応し、別途関連付けされたデータとして送信される。   In order for the measuring element 1 to perform self-diagnosis, the self-diagnosis date management M14 instructs the power supply control unit 18 to drive the self-diagnosis control circuit 21 when the diagnosis date / time is reached, according to the measurement cycle. The self-diagnosis control circuit 21 outputs a bias value to the sensor unit 11 from the bias circuit 22 so that the minimum value, maximum value, and intermediate value output by the sensor unit 11 are output at the time of diagnosis, and a sensor for the set bias value. The comparison judgment circuit 23 judges whether or not the output is present. In the bias circuit 22, the operation parameter of the sensor unit 11 is changed. Alternatively, the input signal level to the sensor unit 11 may be changed in a pseudo manner. In any method, if the output of the sensor unit 11 changes according to the change, it is determined that the operation is normal. This determination is made by the comparison determination circuit 23. As an output of the comparison / determination circuit 23, in addition to OK and NG, information such as “can be used for the time being, but need repair in the near future” is also output. These pieces of information are diagnostic result information. In the measurement information of FIG. 4A, “information type” is a self-diagnosis result, “data” is OK, NG, and other information (the above can be used for the time being. Will be sent as separately associated data.

自己診断の周期は、診断結果を見ながら変化することができる。このため、図4(b)に示すように、計測サーバー3から計測素子1へ送る信号として「次回要求データ」というフィールドがある。「次回要求データ」としては、本発明の主目的からして、定常的には計測データであるが、前記のように「自己診断周期を変更する」要求、さらに後記するが、「日時校正」の要求がある。これら3種の要求に対応した通信符号が「次回要求データ」フィールドに別途割り当てられている。なお、自己診断周期を変更する要求をしたときは、変更したい「周期情報」を送る必要があり、図4(b)に示すように、「自己診断周期」のデータフィールドを用いて送信する。   The self-diagnosis cycle can be changed while observing the diagnosis result. Therefore, as shown in FIG. 4B, there is a field called “next request data” as a signal sent from the measurement server 3 to the measurement element 1. As the “next request data”, for the main purpose of the present invention, it is measurement data on a regular basis, but as described above, a request to “change the self-diagnosis cycle” is described later. There is a request. Communication codes corresponding to these three types of requests are separately assigned to the “next request data” field. When a request to change the self-diagnosis cycle is made, it is necessary to send “cycle information” to be changed, and the data is transmitted using the data field of “self-diagnosis cycle” as shown in FIG.

図3は計測サーバー3の内部構成を示す。   FIG. 3 shows the internal configuration of the measurement server 3.

計測サーバー3は、サーバー通信部30、次回通信日時管理部31、計測頻度管理部32、時計精度管理部33、異常状態検出管理部34、計測データベース35、次回受信管理部36、計測データ管理部37、頻度情報付加部38、外部情報交換部39、データ入力部40、自己診断結果情報管理部41で構成される。なお、図示しないが高精度の時計を有し、時計情報は、必要な各部へ供給されている。   The measurement server 3 includes a server communication unit 30, a next communication date management unit 31, a measurement frequency management unit 32, a clock accuracy management unit 33, an abnormal state detection management unit 34, a measurement database 35, a next reception management unit 36, and a measurement data management unit. 37, a frequency information addition unit 38, an external information exchange unit 39, a data input unit 40, and a self-diagnosis result information management unit 41. Although not shown, a high-precision timepiece is provided, and timepiece information is supplied to each necessary unit.

計測データベース35は、計測サーバー3の管理対象下にあるすべての計測素子の管理情報(表1に示す情報)を保存・管理している。   The measurement database 35 stores and manages management information (information shown in Table 1) of all measurement elements under the management target of the measurement server 3.

また、計測素子毎の計測結果データの計測履歴は、計測データ管理部37に別途管理されている。   The measurement history of measurement result data for each measurement element is separately managed by the measurement data management unit 37.

サーバー通信部30は、計測素子1と無縁通信網2を介して通信を行う。   The server communication unit 30 communicates with the measurement element 1 via the no-communication network 2.

次回受信管理部36には、計測データベース35の次回通信日時データをもとに、次回受信する可能性のある(受信日時誤差として設定した例えば3秒の誤差範囲内で受信の可能性のある)計測素子からの受信日時とID信号、がロードされている。その日時に受信したデータからID信号を復元すると、計測データベース35から当該IDに関する管理データが、計測頻度管理部32、時計精度管理部33へロードされる。   The next reception management unit 36 may receive the next time based on the next communication date and time data in the measurement database 35 (there is a possibility of reception within an error range of, for example, 3 seconds set as the reception date and time error). The date and time of reception from the measuring element and the ID signal are loaded. When the ID signal is restored from the data received at the date and time, management data relating to the ID is loaded from the measurement database 35 to the measurement frequency management unit 32 and the clock accuracy management unit 33.

時計精度管理部33には、計測データベース35から当該計測素子の時計精度データがロードされる。   The clock accuracy management unit 33 is loaded with the clock accuracy data of the measurement element from the measurement database 35.

計測頻度管理部32では、計測周期を変更することが必要かどうかを判断する。計測データ管理部37の計測結果から、計測結果が定常的かどうかを判断し、異常性が感じられるときは計測周期を短くする対応、また頻度情報付加部38が、台風が接近しているので、あるエリア内にある計測素子は計測周期を短くするなどの要求を出しているかを確認し、しばらくの間は、計測データベース35で管理されている計測周期を変更し、何時間毎、何分毎とかの計測周期を決め、次回通信日時管理部31に伝える。   The measurement frequency management unit 32 determines whether it is necessary to change the measurement cycle. From the measurement result of the measurement data management unit 37, it is determined whether or not the measurement result is steady. When abnormality is felt, the measurement cycle is shortened, and the frequency information adding unit 38 is approaching the typhoon. Confirm that the measuring element in a certain area has issued a request to shorten the measurement cycle, etc., and for a while, change the measurement cycle managed in the measurement database 35, how many hours, how many minutes The measurement cycle is determined every time, and is communicated to the next communication date management unit 31.

なお、計測周期を変更した原因が解除されれば、計測データベース35の計測周期に関する管理データを元に戻す等の対応を採る。いずれにせよ、計測周期は固定的なものでなく、状況に応じ随時変更される。   If the cause of the change in the measurement cycle is canceled, the management data related to the measurement cycle in the measurement database 35 is restored. In any case, the measurement cycle is not fixed and is changed as needed according to the situation.

次回通信日時管理部31は、これらの情報に基づき次回の通信日時を算出するが、その時、時計精度管理部33の情報をもとに次回通信日時までに生じるであろう計測素子の時計誤差が、3秒とかの、ある閾値以下であれば、算出された日時を次回通信日時として送信する。もし、閾値以上であれば、次回の計測日時までに、時計合わせを行っておく必要があるので、時計の誤差が閾値以内の日時を次回通信日時データとして送る。   The next communication date and time management unit 31 calculates the next communication date and time based on these pieces of information. At that time, based on the information of the clock accuracy management unit 33, the clock error of the measuring element that will occur until the next communication date and time is calculated. If it is less than a certain threshold such as 3 seconds, the calculated date is transmitted as the next communication date. If it is equal to or greater than the threshold value, it is necessary to set the clock by the next measurement date and time, so the date and time within which the clock error is within the threshold value is sent as the next communication date and time data.

つまり、「次回通信日時での計測素子の時間が、計測サーバーで受信管理できる時間誤差を超過する」と時間精度情報を用いて計算されるときは、次回の通信は計測素子1の時計17の日時校正のために行うことが必要になる。例えば、とある計測素子の時計精度が一日に1秒ずれるとする。次回の計測が7日後とすると、7日後には7秒ずれるので、ズレが受信管理できる時間誤差の3秒以内におさまる3日前の4日(7−3)後を次回通信日時として設定する。なお、このとき、次回の送信時には計測素子の計測データは不要の旨を伝えるため、図4(b)の「次回要求データ」フィールドに「日時校正」を意味する信号を送る。   That is, when the time accuracy of the measuring element 1 is calculated using the time accuracy information that “the time of the measuring element at the next communication date and time exceeds the time error that can be received and managed by the measuring server”, the next communication is performed by the clock 17 of the measuring element 1. It will be necessary to calibrate the date and time. For example, it is assumed that the clock accuracy of a certain measuring element is shifted by 1 second per day. Assuming that the next measurement is 7 days later, 7 seconds later, there will be a shift of 7 seconds, so 4 days (7-3) before 3 days that fall within 3 seconds of the time error that can be received and managed are set as the next communication date and time. At this time, in order to notify that the measurement data of the measurement element is unnecessary at the next transmission, a signal meaning “date and time calibration” is sent to the “next request data” field in FIG. 4B.

次回要求データとして「日時校正」信号を受信した計測素子1は、次回の送信時には、図4(a)の計測情報部には、情報種別として「データなし」を送る。この場合、計測素子1からの送信信号は時刻校正信号とも言える。   The measuring element 1 that has received the “date and time calibration” signal as the next request data sends “no data” as the information type to the measurement information section of FIG. In this case, the transmission signal from the measuring element 1 can also be said to be a time calibration signal.

自己診断結果情報管理部41は、自己診断の結果情報を保存・管理するもので、自己診断結果が正常とは言いきれないときに、過去の診断結果情報と対比しながら「正常」と判断するか、「もう少し様子を見るために自己診断周期を変えてみよう」と判断するのに使用される。特に自己診断結果が、「とりあえずは使用可であるが近日中に修理必要」とされたときは、過去の自己診断結果情報が参照され、自己診断周期を短くするとかの対応が採られよう。   The self-diagnosis result information management unit 41 stores and manages self-diagnosis result information. When the self-diagnosis result cannot be said to be normal, the self-diagnosis result information management unit 41 determines that the result is “normal” by comparing with the past diagnosis result information. Or, it is used to judge "Let's change the self-diagnosis cycle to see a little more." In particular, when the self-diagnosis result is “can be used for the time being, but needs repair soon”, the past self-diagnosis result information is referred to, and a countermeasure such as shortening the self-diagnosis cycle may be taken.

異常状態検出管理部34は、計測素子1からの受信信号(図4(a))の中から、電池残量が20%とか少なくなったこと、自己診断結果情報がOKでないことの確認に加え、設置エリア情報が計測データベースで管理されている設置エリア情報との対比を行い、エリア情報が異なる時は、計測素子が盗難にあっていると判断する。   The abnormal state detection management unit 34 confirms that the remaining battery level is 20% from the received signal (FIG. 4A) from the measuring element 1 and that the self-diagnosis result information is not OK. The installation area information is compared with the installation area information managed in the measurement database. When the area information is different, it is determined that the measurement element is stolen.

異常状態検出管理部34の出力は外部情報交換部39へ届き、計測事業者にその状態を伝えるなどの処置が採られる。伝える内容としては、「電池残量が少ないので交換か充電してください」、「盗難にあっていそうなので確認してください」、「故障していますので、交換してください」などがある。   The output of the abnormal state detection management unit 34 reaches the external information exchange unit 39, and measures such as reporting the state to the measurement operator are taken. The contents to be communicated include "please replace or charge because the remaining battery level is low", "check it because it seems to be stolen", and "replace it because it is out of order".

外部情報交換部39は、図示しないが電話や電子メールなどで外部との情報交換を行う。情報交換の内容としては、前記したように、頻度情報付加部38に伝えるものとして気象情報や犯罪情報(逃走犯探しのために監視カメラの測定頻度向上等)、異常状態検出管理部34で計測素子の異常(動作不良、電池消耗、盗難等)が検知されたときの連絡、計測素子事業者への連絡、各計測素子のデータ入力部40へ設定する情報の入手がある。   The external information exchanging unit 39 exchanges information with the outside by telephone or electronic mail (not shown). As described above, the contents of information exchange include weather information and crime information (such as improvement in the measurement frequency of a monitoring camera for searching for escape criminals), and abnormal state detection management unit 34 as information to be transmitted to frequency information adding unit 38 as described above. There is a notification when an element abnormality (operation failure, battery consumption, theft, etc.) is detected, a notification to a measurement element operator, and obtaining information to be set in the data input unit 40 of each measurement element.

データ入力部40では、運用開始前に初期データとして表1に示した管理データの素子ID、電話番号、電源、設置エリア、計測周期、自己診断間隔、時計精度が入力される。時計精度は、初期入力時は計測素子メーカーの情報を用いるが、運用が開始されると、通信の都度交換される日時情報から実用データに随時更新される。その他の管理データは変更あるときは、計測事業者からの連絡を受け、外部情報交換部39より変更データがデータ入力部40に届き更新される。   In the data input unit 40, the element ID, telephone number, power source, installation area, measurement cycle, self-diagnosis interval, and clock accuracy of the management data shown in Table 1 are input as initial data before the start of operation. As for the clock accuracy, information of the measuring element manufacturer is used at the time of initial input, but when the operation is started, it is updated from time / date information exchanged at every communication to practical data as needed. When there is a change in other management data, the change data is received from the external information exchanging unit 39 to the data input unit 40 and updated.

本発明による計測システムは、風速計とかのひとつのセンサを多くの場所に設置し、各地の風速を管理し情報提供する計測システムであったり、多種のセンサを多数設置し、センサの特性に応じた多数の情報サービスを提供するための大きな計測システムであったり出来るものであり、多くの計測事業者の多種の要望やビジネスモデルの要求に応えられるものである。   The measurement system according to the present invention is a measurement system in which one sensor such as an anemometer is installed in many places, and the wind speed in each place is managed and information is provided. In addition, it can be a large measurement system for providing a large number of information services, and can meet various requests and business model requests of many measurement operators.

計測素子の消費電力が低減されるとともに、電池寿命も長期化し、計測素子の時計精度への要求も緩和されるので、安価な計測素子が実現され、計測素子の経済性が向上する。このことは、IoTデバイスの普及に弾みがかかることになり、あわせて計測サービス事業というビジネスでいろいろなビジネスモデルを創造できるものである。   The power consumption of the measuring element is reduced, the battery life is prolonged, and the demand for the clock accuracy of the measuring element is eased, so that an inexpensive measuring element is realized and the economic efficiency of the measuring element is improved. This will push the spread of IoT devices, and together with this, it will be possible to create various business models in the business of measurement service business.

1(1a、1b、1c) 計測素子
2 無線通信網
3 計測サーバー
11 センサ部
12 素子通信部
13 時計部
14 自己診断日時管理M(メモリ)
15 サーバー日時管理M(メモリ)
16 次回通信日時管理M(メモリ)
17 時計
18 電源制御部
19 電池
20 電池残量検知部
21 自己診断制御回路
22 バイアス回路
23 比較判定回路
30 サーバー通信部
31 次回通信日時管理部
32 計測頻度管理部
33 時計精度管理部
34 異常状態検出管理部
35 計測データベース
36 次回受信管理部
37 計測データ管理部
38 頻度情報付加部
39 外部情報交換部
40 データ入力部
41 自己診断結果情報管理部
1 (1a, 1b, 1c) Measurement element 2 Wireless communication network 3 Measurement server 11 Sensor unit 12 Element communication unit 13 Clock unit 14 Self-diagnosis date management M (memory)
15 Server date and time management M (memory)
16 Next communication date and time management M (memory)
DESCRIPTION OF SYMBOLS 17 Clock 18 Power supply control part 19 Battery 20 Battery remaining charge detection part 21 Self-diagnosis control circuit 22 Bias circuit 23 Comparison determination circuit 30 Server communication part 31 Next communication date management part 32 Measurement frequency management part 33 Clock precision management part 34 Abnormal state detection 34 Management unit 35 Measurement database 36 Next reception management unit 37 Measurement data management unit 38 Frequency information addition unit 39 External information exchange unit 40 Data input unit
41 Self-diagnosis result information management department

Claims (4)

センサ部、通信部、時計部、電源部を有する計測素子と通信網を介した計測サーバーとからなる計測システムにおいて、前記計測素子が前記計測サーバーに計測データを送信する通信日時を、計測サーバーから指示するとともに、前記通信日時に対応した所定の時間に、前記センサ部と通信部に電源が供給され、前記センサ部の計測データが計測サーバーに送信されることを特徴とする計測システム。   In a measurement system including a measurement element having a sensor unit, a communication unit, a clock unit, and a power supply unit and a measurement server via a communication network, a communication date and time when the measurement element transmits measurement data to the measurement server is determined from the measurement server. A measurement system characterized in that power is supplied to the sensor unit and the communication unit and measurement data of the sensor unit is transmitted to a measurement server at a predetermined time corresponding to the communication date and time. 前記計測素子の時計の時計精度情報が、前記計測サーバーで管理され、計測素子の時計情報と計測サーバーの時計情報が、計測素子と計測サーバー間の通信の都度交信され、計測素子の時計が計測サーバーの時計に校正されることを特徴とする請求項1に記載の計測システム。   The clock accuracy information of the measurement element clock is managed by the measurement server, the clock information of the measurement element and the clock information of the measurement server are communicated each time communication is performed between the measurement element and the measurement server, and the measurement element clock is measured. The measurement system according to claim 1, wherein the measurement system is calibrated to a clock of a server. 前記計測素子の時間誤差が、計測素子の次回の通信日時までに、前記計測サーバーで受信管理できる時間誤差を超過すると推定されるときは、計測サーバーより計測素子に対して次回は時刻校正信号の送信を要求することを特徴とする請求項2に記載の計測システム。   When it is estimated that the time error of the measurement element exceeds the time error that can be received and managed by the measurement server by the next communication date and time of the measurement element, the next time calibration signal is sent from the measurement server to the measurement element. The measurement system according to claim 2, wherein transmission is requested. 前記計測素子が、センサ部の動作パラメータの変化に対応したセンサ出力が得られているかを確認することで定期的に自己診断を行い、診断結果情報を計測サーバーに送信し、計測素子の異常状態が検知されることを特徴とする請求項1に記載の計測システム。   Periodic self-diagnosis is performed by checking whether the sensor output corresponding to the change in the operation parameter of the sensor unit is obtained, and the diagnosis result information is transmitted to the measurement server, and the measurement element is in an abnormal state. The measurement system according to claim 1, wherein: is detected.
JP2016033067A 2016-02-24 2016-02-24 Measuring system Active JP6703418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033067A JP6703418B2 (en) 2016-02-24 2016-02-24 Measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033067A JP6703418B2 (en) 2016-02-24 2016-02-24 Measuring system

Publications (3)

Publication Number Publication Date
JP2017151689A true JP2017151689A (en) 2017-08-31
JP2017151689A5 JP2017151689A5 (en) 2019-01-31
JP6703418B2 JP6703418B2 (en) 2020-06-03

Family

ID=59740886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033067A Active JP6703418B2 (en) 2016-02-24 2016-02-24 Measuring system

Country Status (1)

Country Link
JP (1) JP6703418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220152628A (en) * 2021-05-10 2022-11-17 박정휘 Air measurement facility based on internet-of-things and smoke control system including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294314A (en) * 2003-03-27 2004-10-21 Osaka Gas Co Ltd Clock system
US20100008275A1 (en) * 2006-09-29 2010-01-14 Lee In-Hwan Node synchronization system for low-power in sensor network and method thereof
JP2014098983A (en) * 2012-11-13 2014-05-29 Fujifilm Corp Sensor terminal, collection terminal, measured data collection system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294314A (en) * 2003-03-27 2004-10-21 Osaka Gas Co Ltd Clock system
US20100008275A1 (en) * 2006-09-29 2010-01-14 Lee In-Hwan Node synchronization system for low-power in sensor network and method thereof
JP2014098983A (en) * 2012-11-13 2014-05-29 Fujifilm Corp Sensor terminal, collection terminal, measured data collection system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220152628A (en) * 2021-05-10 2022-11-17 박정휘 Air measurement facility based on internet-of-things and smoke control system including the same
KR102609870B1 (en) * 2021-05-10 2023-12-05 주식회사 글로벌이앤피 Air measurement facility based on internet-of-things and smoke control system including the same

Also Published As

Publication number Publication date
JP6703418B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
US11025291B2 (en) Low power, centralized data collection
US10515530B2 (en) Gas leak detection and location determination
US20190226898A1 (en) Environmental sensor platform, system and method
Hu et al. A wireless sensor network‐based structural health monitoring system for highway bridges
US7859403B2 (en) Monitoring and alarming system and method
US20180224314A1 (en) Water level gauge, water pressure sensor device, and water level measurement system
US9794942B1 (en) System and method for saving energy in a locator apparatus
JP2016535256A (en) Noise surveillance system
KR101178669B1 (en) APPARATUS AND METHOD FOR ASSET TRACKING BASED ON Ubiquitous Sensor Network USING MOTION SENSING
US20120219418A1 (en) Gps automated tracking of mobile monitoring units
JP6703418B2 (en) Measuring system
CN113064088B (en) Internet of things device and battery electric quantity detection method
CN103017824A (en) Monitoring system using measurement robot
JP2013003078A (en) Radiation monitoring system
JP2019102864A (en) Sensor network system design method and program therefor
Stoev et al. Microclimatic data collection multisensor system for design of energy model in residential buildings
KR101000764B1 (en) Rainfall measurement device and rainfall prediction system having the same
KR102344499B1 (en) Electronic device for determining state of charge based on charge factor and method for operating thereof
Ball et al. Battery patterns and forecasting in a large-scale smartphone-based travel survey
JP2019121155A (en) Sensor network system and center device
JP2019030138A (en) Watt-hour meter
Kumberg et al. Wake-up transceivers for structural health monitoring of bridges
Aboelela et al. Design and Implementation of a Wireless Sensor Network Based Scalable Monitoring System (WiSe-SMS).
US20240133687A1 (en) Systems and methods for determining an altitude of a wireless station
US20240230328A9 (en) Systems and methods for determining an altitude of a wireless station

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200508

R150 Certificate of patent or registration of utility model

Ref document number: 6703418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250