JP2017151617A - Simulation device, simulation method, and program - Google Patents

Simulation device, simulation method, and program Download PDF

Info

Publication number
JP2017151617A
JP2017151617A JP2016032114A JP2016032114A JP2017151617A JP 2017151617 A JP2017151617 A JP 2017151617A JP 2016032114 A JP2016032114 A JP 2016032114A JP 2016032114 A JP2016032114 A JP 2016032114A JP 2017151617 A JP2017151617 A JP 2017151617A
Authority
JP
Japan
Prior art keywords
power consumption
heat source
source device
temperature
server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016032114A
Other languages
Japanese (ja)
Other versions
JP6455937B2 (en
Inventor
修 明石
Osamu Akashi
修 明石
暢 間野
Noboru Mano
暢 間野
茂登 松岡
Shigeto Matsuoka
茂登 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Osaka University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Osaka University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016032114A priority Critical patent/JP6455937B2/en
Publication of JP2017151617A publication Critical patent/JP2017151617A/en
Application granted granted Critical
Publication of JP6455937B2 publication Critical patent/JP6455937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Power Sources (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable electric power on a data center to be simulated using a power consumption model for individual apparatuses of the data center.SOLUTION: The present invention is a simulation device comprising: a first power consumption calculation unit (111) for holding a server power consumption model for each type of the server and, upon acquiring the type information and operation amount of the server, deriving the power consumption and temperature of the server after operation of the operation amount at a set intake air temperature using a server power consumption model that corresponds to the type information; a fluid analysis unit (12) for performing a thermal fluid analysis when an air conditioner is operated in a space in which the server is installed, and deriving the intake air temperature of the server after operation; and a second power consumption calculation unit (112) for holding an air conditioning power consumption model for each air conditioner, and deriving the power consumption of an air conditioner in order to bring the space to the intake air temperature after updating by the fluid analysis unit.SELECTED DRAWING: Figure 1

Description

本発明は、データセンタにおける消費電力を予測するためのシミュレーション装置、シミュレーション方法及びプログラムに関する。   The present invention relates to a simulation apparatus, a simulation method, and a program for predicting power consumption in a data center.

クラウドサービス等のデータセンタを介したサービスの需要の増加に伴って、その消費電力が増加している。データセンタの運用状況からその消費電力の把握が可能であれば、より効率の良い運用方針を決定することが出来る。   With increasing demand for services via data centers such as cloud services, the power consumption is increasing. If it is possible to grasp the power consumption from the operation status of the data center, a more efficient operation policy can be determined.

データセンタの電力を把握(予測)するためには、構成するすべてのサーバの稼働状況、その位置関係、あるいは空調条件などの多くの依存関係をすべて反映させた状態ですべての“構成要素の電力の和”を求める必要がある。そのためには、稼働状態とその際の実際の消費電力との関係を事前に学習させ、膨大なデータ収集を行ったのちに、実際の稼働条件から電力を予測する必要がある。   In order to ascertain (predict) the power of the data center, all “component power” must be reflected in the state of reflection of all dependencies such as the operating status of all the servers to be configured, their positional relationships, and air conditioning conditions. Needs to be calculated. For this purpose, it is necessary to learn in advance the relationship between the operating state and the actual power consumption at that time, collect huge amounts of data, and then predict the power from the actual operating conditions.

しかし、データセンタを構成するサーバなどの要素は他のサーバの稼働状況、その位置関係、あるいは空調条件などの多くの依存関係から成り立っており、データセンタ全体の消費電力の推定は難しい。このため、新しい機器を配置したり、配置を変更したり、事前の学習と違った状態で動作させてしまうと、改めて学習をやり直す必要があった。   However, elements such as servers that make up the data center are composed of many dependencies such as the operating status of other servers, their positional relationships, or air conditioning conditions, and it is difficult to estimate the power consumption of the entire data center. For this reason, when a new device is arranged, the arrangement is changed, or the operation is performed in a state different from the previous learning, it is necessary to perform learning again.

諏訪好英、「データセンタにおける空調気流方式の高効率化に関する研究」、日本建築学会環境論文集、第76巻、第663号、pp.501−508、2011年5月Yoshihide Suwa, “Study on High Efficiency of Air-Conditioning Airflow System at Data Center”, Architectural Institute of Japan Environmental Proceedings, Vols. 501-508, May 2011

そこで、本発明は、データセンタの個別の機器の消費電力モデルを用いて、データセンタの電力シミュレーションを可能にすることを目的とする。   Therefore, an object of the present invention is to enable power simulation of a data center using a power consumption model of individual devices in the data center.

上記目的を達成するために、本発明は、データセンタを構成する機器の個別の消費電力モデルを準備しておき、そのモデルと数値流体シミュレータを連携させることで、データセンタの電力シミュレーションを可能にする。   In order to achieve the above object, the present invention makes it possible to perform power simulation of a data center by preparing individual power consumption models of devices constituting the data center and linking the models with the numerical fluid simulator. To do.

具体的には、本発明に係るシミュレーション装置は、
熱源装置の稼働量に対する消費電力及び温度変化を示す熱源装置消費電力モデルを熱源装置の機種ごとに保持し、熱源装置の機種情報及び稼働量を取得すると、当該機種情報に該当する熱源装置消費電力モデルを用いて、設定された吸気温度において当該稼働量を稼働後の熱源装置の消費電力及び温度を導出する第1の消費電力算出部と、
前記第1の消費電力算出部の導出した熱源装置の消費電力及び温度を用いて、熱源装置の配置されている空間において空調装置を動作させた場合の熱流体解析を行い、当該稼働量を稼働後の熱源装置の吸気温度を導出し、前記設定された吸気温度を更新する流体解析部と、
空調装置の稼働量に対する消費電力及び温度変化を示す空調装置消費電力モデルを空調装置ごとに保持し、前記空間を前記流体解析部による更新後の吸気温度にするための空調装置の消費電力を導出する第2の消費電力算出部と、
を備える。
Specifically, the simulation apparatus according to the present invention is:
When a heat source device power consumption model that indicates the power consumption and temperature change with respect to the operating amount of the heat source device is held for each model of the heat source device and the model information and operating amount of the heat source device are acquired, the heat source device power consumption corresponding to the model information A first power consumption calculation unit for deriving power consumption and temperature of the heat source device after operating the operating amount at a set intake air temperature using a model;
Using the power consumption and temperature of the heat source device derived by the first power consumption calculation unit, a thermal fluid analysis is performed when the air conditioner is operated in the space where the heat source device is arranged, and the operation amount is operated. A fluid analysis unit for deriving an intake air temperature of a later heat source device and updating the set intake air temperature;
An air conditioner power consumption model indicating power consumption and temperature change with respect to the operating amount of the air conditioner is maintained for each air conditioner, and the power consumption of the air conditioner for deriving the space to the intake air temperature updated by the fluid analysis unit is derived. A second power consumption calculation unit,
Is provided.

具体的には、本発明に係るシミュレーション方法は、
熱源装置の稼働量に対する消費電力及び温度変化を示す熱源装置消費電力モデルを熱源装置の機種ごとに保持する記憶部を参照し、熱源装置の機種情報及び稼働量を取得すると、当該機種情報に該当する熱源装置消費電力モデルを用いて、設定された吸気温度において当該稼働量を稼働後の熱源装置の消費電力及び温度を導出する第1の消費電力算出手順と、
前記第1の消費電力算出手順で導出した熱源装置の消費電力及び温度を用いて、熱源装置の配置されている空間において空調装置を動作させた場合の熱流体解析を行い、当該稼働量を稼働後の熱源装置の吸気温度を導出し、前記設定された吸気温度を更新する流体解析手順と、
空調装置の稼働量に対する消費電力及び温度変化を示す空調装置消費電力モデルを空調装置ごとに保持する記憶部を参照し、前記空間を前記流体解析手順で更新後の吸気温度にするための空調装置の消費電力を導出する第2の消費電力算出手順と、
を、シミュレーション装置が実行する。
Specifically, the simulation method according to the present invention includes:
When the heat source device model information and operation amount are obtained by referring to the storage unit that holds the heat source device power consumption model for each heat source device model indicating the power consumption and temperature change with respect to the operating amount of the heat source device, it corresponds to the model information. A first power consumption calculation procedure for deriving power consumption and temperature of the heat source device after operating the operation amount at the set intake air temperature using the heat source device power consumption model
Using the power consumption and temperature of the heat source device derived in the first power consumption calculation procedure, a thermal fluid analysis is performed when the air conditioner is operated in the space where the heat source device is arranged, and the operation amount is operated. A fluid analysis procedure for deriving an intake air temperature of a later heat source device and updating the set intake air temperature;
An air conditioner for referring to a storage unit that holds an air conditioner power consumption model indicating a change in power consumption and temperature with respect to an operating amount of the air conditioner for each air conditioner and setting the space to the intake air temperature updated in the fluid analysis procedure A second power consumption calculation procedure for deriving power consumption of
Are executed by the simulation apparatus.

具体的には、本発明に係るシミュレーションプログラムは、本発明に係るシミュレーション方法に記載の第1の消費電力算出手順、流体解析手順及び第2の消費電力算出手順をコンピュータに実行させるためのプログラムである。   Specifically, the simulation program according to the present invention is a program for causing a computer to execute the first power consumption calculation procedure, the fluid analysis procedure, and the second power consumption calculation procedure described in the simulation method according to the present invention. is there.

本発明によれば、データセンタを構成する機器の消費電力モデルと数値流体シミュレータを連携させることで、データセンタの電力シミュレーションを行うことができる。   According to the present invention, a power simulation of a data center can be performed by linking a power consumption model of a device constituting the data center and a numerical fluid simulator.

実施形態に係るシミュレーション装置の構成例を示す。The structural example of the simulation apparatus which concerns on embodiment is shown. サーバ消費電力モデルの一例を示す。An example of a server power consumption model is shown. 空調消費電力モデルの一例を示す。An example of an air-conditioning power consumption model is shown. CFDシミュレーションを行うデータセンタの構成例を示す。The structural example of the data center which performs CFD simulation is shown. 実施形態を用いて予測したデータセンタの消費電力の一例を示す。An example of the power consumption of the data center estimated using embodiment is shown. 実施形態を用いて予測した予測値と実測値との比較結果の一例を示す。An example of the comparison result of the predicted value predicted using the embodiment and the actually measured value is shown. 予測値と実測値との誤差の一例を示す。An example of the error between the predicted value and the actually measured value is shown.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below. These embodiments are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.

実施形態においては、データセンタに、サーバなどの熱源となる熱源装置と、熱源装置を冷却するための空調装置と、が備わる例について説明する。本実施形態においては、理解の容易のため、サーバやスイッチなどのデータセンタに配置される任意の熱源装置を「サーバ」と呼ぶ。これに伴い、熱源装置消費電力モデルをサーバ消費電力モデルと称する。   In the embodiment, an example will be described in which a data center includes a heat source device serving as a heat source such as a server and an air conditioner for cooling the heat source device. In the present embodiment, for easy understanding, an arbitrary heat source device disposed in a data center such as a server or a switch is referred to as a “server”. Accordingly, the heat source device power consumption model is referred to as a server power consumption model.

サーバはデータセンタの熱源の大部分を占めるので、データセンタ内の温度予測の際に重要となるのが、サーバの排気温度の予測である。サーバの排気温度はサーバの発熱量とサーバ内を通過する風量に依存する。データセンタ内では機器のレイアウトの影響でサーバの位置によって吸気温度や風量が異なるので、同機種のサーバに同じタスクを割り当てたとしても、サーバの位置によってサーバ排気温度が異なる。   Since the server occupies most of the heat source of the data center, the prediction of the exhaust temperature of the server is important in predicting the temperature in the data center. The exhaust temperature of the server depends on the amount of heat generated by the server and the amount of air passing through the server. In the data center, the intake air temperature and the air volume differ depending on the server position due to the influence of the device layout. Even if the same task is assigned to the same model server, the server exhaust temperature varies depending on the server position.

このような各種パラメータの相互依存関係が存在する状況で、データセンタ内の温度をシミュレートする代表的な技術にComputational Fluid Dynamics(CFD)がある。CFDは流体力学の支配方程式を数値的に解く解析手法である。CFDシミュレーションは流体の動作を解析領域全体について計算するため、データセンタのような局所的な気流の解析にも適している。しかしながら、このCFDは温度をシミュレーションすることは可能であるが、電力をシミュレーションすることはできない。   Computational Fluid Dynamics (CFD) is a representative technique for simulating the temperature in a data center in a situation where such interdependencies of various parameters exist. CFD is an analysis method that numerically solves the governing equations of fluid dynamics. Since the CFD simulation calculates the operation of the fluid for the entire analysis region, it is also suitable for analysis of a local air current such as a data center. However, this CFD can simulate temperature, but cannot simulate power.

実施形態に係るシミュレーション装置91は、サーバや空調装置などのデータセンタに備わる各機器の個別の電力モデルを準備しておき、そのモデルを予測(シミュレーション)する技術と組み合わせることで、すべての状態を事前に学習させる必要がなく、どんな新しい配置や動作条件に対しても、全体の消費電力を事前に推定する。   The simulation device 91 according to the embodiment prepares an individual power model of each device provided in a data center such as a server or an air conditioner, and combines all the states with a technique for predicting (simulating) the model. There is no need to learn in advance, and the total power consumption is estimated in advance for any new arrangement or operating condition.

図1に、実施形態に係るシミュレーション装置91の構成例を示す。実施形態に係るシミュレーション装置91は、消費電力モデル演算部11及びCFDシミュレーション演算部12が備わる。消費電力モデル演算部11は、サーバ消費電力演算部111と、空調消費電力演算部112と、を備える。シミュレーション装置91には、事前にサーバ及び空調装置の稼働データが入力され(S1)、シミュレーション実行時にサーバ情報及び空調設定情報が入力される(S2)。   FIG. 1 shows a configuration example of a simulation apparatus 91 according to the embodiment. The simulation apparatus 91 according to the embodiment includes a power consumption model calculation unit 11 and a CFD simulation calculation unit 12. The power consumption model calculation unit 11 includes a server power consumption calculation unit 111 and an air conditioning power consumption calculation unit 112. The server 91 and the air conditioner operation data are input to the simulation device 91 in advance (S1), and server information and air conditioning setting information are input when the simulation is executed (S2).

サーバの稼働データは、データセンタに配置されるサーバの消費電力に関する情報をサーバごとに収集したデータである。サーバ消費電力演算部111は、サーバの稼働データを用いた機械学習によって、機種毎の消費電力モデル(サーバ消費電力モデル)を作成する(S1)。空調装置の稼働データは、データセンタに配置される空調装置の消費電力に関する情報を空調装置ごとに収集したデータである。空調消費電力演算部112は、空調装置の稼働データを用いた機械学習によって、空調装置の機種毎の消費電力モデルである空調装置消費電力モデル(以下、空調消費電力モデルと称する。)を作成する(S1)。これらのモデルは、種々の条件で事前に動作させて電力を測定することによって得られる。   The server operation data is data obtained by collecting, for each server, information related to the power consumption of the servers arranged in the data center. The server power consumption calculation unit 111 creates a power consumption model (server power consumption model) for each model by machine learning using server operation data (S1). The operation data of the air conditioner is data obtained by collecting information on the power consumption of the air conditioner arranged in the data center for each air conditioner. The air conditioning power consumption calculation unit 112 creates an air conditioner power consumption model (hereinafter referred to as an air conditioning power consumption model), which is a power consumption model for each air conditioner model, by machine learning using air conditioner operation data. (S1). These models are obtained by operating in advance under various conditions and measuring the power.

図2に、サーバ消費電力モデルの一例を示す。サーバ消費電力モデルは、サーバのCPU稼働率(%)に対する消費電力(W)及び温度(℃)を示す。サーバ消費電力モデルは、サーバを単体で動作させて構築する。サーバの機種毎にサーバ消費電力モデルを作成すればよく、実際にデータセンタに配置するサーバを用いてモデルを作成する必要はない。   FIG. 2 shows an example of the server power consumption model. The server power consumption model indicates power consumption (W) and temperature (° C.) with respect to the CPU operation rate (%) of the server. The server power consumption model is constructed by operating a server alone. It is only necessary to create a server power consumption model for each server model, and it is not necessary to create a model using a server that is actually arranged in the data center.

図3に、空調消費電力モデルの一例を示す。空調消費電力モデルは、空調装置の稼働量に対する温度(℃)及び電力効率(COP:Coefficient Of Performance)を示す。ここで、図3では、空調装置の稼働量の一例として、ファンの最大回転数に対する割合(%)で示した。また温度は、空調装置がデータセンタに供給する空気の給気温度である。空調装置の機種ごとに空調消費電力モデルを作成すればよく、実際にデータセンタに配置する空調を用いてモデルを作成する必要はない。   FIG. 3 shows an example of the air conditioning power consumption model. The air conditioning power consumption model indicates temperature (° C.) and power efficiency (COP: Coefficient Of Performance) with respect to the operating amount of the air conditioner. Here, in FIG. 3, as an example of the operation amount of the air conditioner, the ratio (%) with respect to the maximum rotation speed of the fan is shown. The temperature is a supply temperature of air supplied from the air conditioner to the data center. It is only necessary to create an air conditioning power consumption model for each air conditioner model, and it is not necessary to create a model using the air conditioning actually arranged in the data center.

サーバ情報は、各サーバへ割り当てられるタスク量、サーバへのタスクの割当状況、各サーバの稼働パターン、各サーバの吸気温度を含む。空調設定情報は、シミュレーションに用いる空調装置の設定を含む。設定は、温度、風向、風力を含む。   The server information includes the task amount allocated to each server, the task allocation status to the server, the operation pattern of each server, and the intake air temperature of each server. The air conditioning setting information includes the settings of the air conditioner used for the simulation. Settings include temperature, wind direction, and wind power.

シミュレーション装置91は、サーバ情報及び空調設定情報を取得すると、サーバ情報及び空調設定情報を消費電力モデル演算部11に入力し、空調設定情報をCFDシミュレーション演算部12に入力する(S2)。   When acquiring the server information and the air conditioning setting information, the simulation device 91 inputs the server information and the air conditioning setting information to the power consumption model calculation unit 11 and inputs the air conditioning setting information to the CFD simulation calculation unit 12 (S2).

サーバ消費電力演算部111は、第1の消費電力算出部として機能し、サーバ消費電力モデルを用いて、サーバ情報で指定された吸気温度のときに、サーバ情報で指定された稼働パターンで動作させたサーバの消費電力及び発熱量を、サーバごとに算出する(S3)。   The server power consumption calculation unit 111 functions as a first power consumption calculation unit, and uses the server power consumption model to operate with the operation pattern specified in the server information at the intake air temperature specified in the server information. The power consumption and heat generation amount of each server are calculated for each server (S3).

CFDシミュレーション演算部12は、流体解析部として機能し、推定した各サーバの発熱量、空調設定情報を用いてCFDシミュレーション(熱流体解析)を実行する(S3)。ここで、CFDは、流体の運動に関する種々の方程式をコンピュータで解くことによって流れを観察する数値解析・シミュレーション手法であり、特に流体の温度分布をシミュレーションする方法として使用される(例えば、非特許文献1参照。)。これにより、空調設定情報で指定された条件で空調装置が動作した環境下において、データセンタにおけるサーバがサーバ消費電力演算部111の算出した消費電力及び発熱量となったときに、各サーバの吸気温度が何度になるのかを導出する。   The CFD simulation calculation unit 12 functions as a fluid analysis unit, and executes a CFD simulation (thermal fluid analysis) using the estimated heat generation amount and air conditioning setting information of each server (S3). Here, the CFD is a numerical analysis / simulation method for observing a flow by solving various equations relating to fluid motion with a computer, and is particularly used as a method for simulating a fluid temperature distribution (for example, non-patent literature). 1). As a result, when the server in the data center reaches the power consumption and heat generation amount calculated by the server power consumption calculation unit 111 in an environment where the air conditioner operates under the conditions specified in the air conditioning setting information, the intake air of each server Derived how many times the temperature is.

図4に、CFDシミュレーションを行うデータセンタの構成例を示す。データセンタ81内に、12台のサーバ83と、1台の空調装置82に配置されている例を示す。空調装置82は、吸気口821から空気を取り込み、取り込んだ空気を冷却後、その背面からデータセンタ81に供給する。CFDシミュレーションによれば、データセンタ81内において、領域A1では50℃ほどになり、領域A2では45℃前後となり、領域A3では40℃前後となり、領域A4では35℃前後となり、領域A5では30℃前後となった。この場合、サーバ83#3の吸気温度は領域A3の40℃前後となり、サーバ83#5の吸気温度は領域A4の40℃前後となる。このように、CFDシミュレーション演算部12は、各サーバ83#1〜#12の吸気温度を導出する。   FIG. 4 shows a configuration example of a data center that performs CFD simulation. An example is shown in which 12 servers 83 and one air conditioner 82 are arranged in the data center 81. The air conditioner 82 takes in air from the air inlet 821, cools the taken-in air, and supplies the air to the data center 81 from the back side. According to the CFD simulation, in the data center 81, the temperature is about 50 ° C. in the region A1, about 45 ° C. in the region A2, about 40 ° C. in the region A3, about 35 ° C. in the region A4, and about 30 ° C. in the region A5. It was before and after. In this case, the intake air temperature of the server 83 # 3 is around 40 ° C. in the region A3, and the intake air temperature of the server 83 # 5 is around 40 ° C. in the region A4. In this way, the CFD simulation calculation unit 12 derives the intake air temperatures of the servers 83 # 1 to # 12.

データセンタ内部の状態が収束するまで、ステップS2及びS3を繰り返す(S4)。このとき、サーバ消費電力演算部111は、CFDシミュレーションの結果より得られた各サーバの吸気温度と、割り当てられたタスク量からサーバ消費電力モデルを用いて各サーバの消費電力を推定する。CFDシミュレーション演算部12は、各サーバの消費電力と空調の設定情報をパラメータに設定したCFDシミュレーションによって、空調への還気温度を求める。その結果、各サーバの消費電力と、データセンタにおける空調の還気温度を求めることができる。   Steps S2 and S3 are repeated until the state inside the data center converges (S4). At this time, the server power consumption calculation unit 111 estimates the power consumption of each server using the server power consumption model from the intake air temperature of each server obtained from the result of the CFD simulation and the assigned task amount. The CFD simulation calculation unit 12 obtains the return air temperature to the air conditioning by the CFD simulation in which the power consumption of each server and the setting information of the air conditioning are set as parameters. As a result, the power consumption of each server and the return air temperature of the air conditioning in the data center can be obtained.

データセンタ内部の状態が収束すると、空調消費電力演算部112が、ステップS5を実行する。例えば、サーバ消費電力演算部111が用いた各サーバ83#1〜#12の吸気温度と、CFDシミュレーション演算部12から出力された各サーバ83#1〜#12の吸気温度と、の温度差が設定された一定温度内になったとき、ステップS5を実行する。温度差が一定温度内になったか否かは、サーバごとに判断する。全てのサーバについて、温度差が一定温度内になったとき、データセンタ内部の状態が収束すると判定することができる。   When the state inside the data center converges, the air conditioning power consumption calculation unit 112 executes step S5. For example, the temperature difference between the intake air temperatures of the servers 83 # 1 to # 12 used by the server power consumption calculator 111 and the intake air temperatures of the servers 83 # 1 to # 12 output from the CFD simulation calculator 12 is as follows. When it is within the set constant temperature, step S5 is executed. Whether or not the temperature difference is within a certain temperature is determined for each server. For all servers, when the temperature difference falls within a certain temperature, it can be determined that the state inside the data center has converged.

その後、空調消費電力演算部112は、第2の消費電力算出部として機能し、空調設定情報で指定された条件化における空調消費電力モデルを用いて、CFDシミュレーションの結果より得られた空調の還気温度のときの空調装置の消費電力を推定する(S5)。   After that, the air conditioning power consumption calculation unit 112 functions as a second power consumption calculation unit, and uses the air conditioning power consumption model in the condition specified by the air conditioning setting information to return the air conditioning obtained from the result of the CFD simulation. The power consumption of the air conditioner at the air temperature is estimated (S5).

消費電力モデル演算部11は、推定した各サーバ及び各空調装置の消費電力の値を合計する(S6)。これにより、シミュレーション装置91は、データセンタの消費電力を推定することができる。   The power consumption model calculation unit 11 sums the estimated power consumption values of each server and each air conditioner (S6). Thereby, the simulation apparatus 91 can estimate the power consumption of the data center.

図5に、実施形態を用いて予測したデータセンタの消費電力の一例を示す。L1はサーバの消費電力の合計であり、L2は空調装置の消費電力の合計であり、L3はこれらを合計したデータセンタの消費電力の値である。空調装置の設定温度によって、データセンタの消費電力が変動することが分かる。   FIG. 5 shows an example of power consumption of the data center predicted using the embodiment. L1 is the total power consumption of the server, L2 is the total power consumption of the air conditioner, and L3 is the total power consumption value of the data center. It can be seen that the power consumption of the data center varies depending on the set temperature of the air conditioner.

図6は、実際のサーバの電力値に対して、実施形態のシミュレーション方法に基づいて得られたサーバの電力値の推定値の関係を示している。図7は、図6の実測値と推定値の関係をヒストグラム(発生頻度分布)で表したものである。この2つのグラフから、本実施形態のシミュレーション手法によって、サーバの電力値をきわめて高精度に推定できており、ひいてはデータセンタ全体の電力も高精度に推定できていることがわかる。   FIG. 6 shows the relationship between the actual power value of the server and the estimated value of the server power value obtained based on the simulation method of the embodiment. FIG. 7 is a histogram (occurrence frequency distribution) representing the relationship between the actually measured values and the estimated values in FIG. From these two graphs, it can be seen that the power value of the server can be estimated with extremely high accuracy by the simulation method of the present embodiment, and consequently the power of the entire data center can also be estimated with high accuracy.

なお、データセンタは、ビテオオンデマンドやクラウドストレージに限らず、複数の熱源装置が配置され、空調による温度調節が望ましい任意の空間を含む。   The data center is not limited to video-on-demand or cloud storage, and includes an arbitrary space in which a plurality of heat source devices are arranged and temperature adjustment by air conditioning is desirable.

また、実施形態に係るシミュレーション装置91は、コンピュータを消費電力モデル演算部11及びCFDシミュレーション演算部12として機能させることで実現してもよい。この場合、シミュレーション装置91内のCPU(Central Processing Unit)が、記憶部(不図示)に記憶されたコンピュータプログラムを実行することで、各構成を実現する。コンピュータプログラムは、コンピュータにより読み取可能な記録媒体に記録されていてもよい。   The simulation apparatus 91 according to the embodiment may be realized by causing a computer to function as the power consumption model calculation unit 11 and the CFD simulation calculation unit 12. In this case, each configuration is implemented by a CPU (Central Processing Unit) in the simulation apparatus 91 executing a computer program stored in a storage unit (not shown). The computer program may be recorded on a computer-readable recording medium.

一部サーバへのタスクの片寄を行い、使用しないサーバを停止することによってサーバの消費電力を削減できる。また、データセンタ内の温度分布に基づいて空調機設定を適切に行うことにより、空調機の電力効率か改善可能である。   By deallocating tasks to some servers and stopping unused servers, server power consumption can be reduced. Moreover, the power efficiency of the air conditioner can be improved by appropriately setting the air conditioner based on the temperature distribution in the data center.

実施形態に係るシミュレーション装置91は、データセンタ内の機器を連携制御させることができるため、データセンタのように様々な機器が同時に稼働している環境において、データセンタ全体の電力削減を達成することができる。   Since the simulation apparatus 91 according to the embodiment can control the devices in the data center in a coordinated manner, the power reduction of the entire data center can be achieved in an environment in which various devices are operating simultaneously, such as a data center. Can do.

ここで、実施形態に係るシミュレーション装置91は、各構成要素(サーバや空調機器)毎の個別の消費電力モデルを事前に作っておき、そのモデルを予測(シミュレーション)する技術と組み合わせることで、すべての状態を事前に学習させる必要がなく、どんな新しい配置や動作条件に対しても、全体の電力を事前に把握することが可能となる。   Here, the simulation apparatus 91 according to the embodiment is configured in advance by combining a technology for predicting (simulating) an individual power consumption model for each component (server or air conditioner) in advance. Therefore, it is possible to grasp the entire power in advance for any new arrangement or operating condition.

また、実施形態に係るシミュレーション装置91は、各構成要素の個別の消費電力モデルを準備するだけで、それぞれの相互作用や相対位置を反映させた全体の電力を把握することができるので、今までに搭載実績がない、いかなる要素(サーバなど)であっても、また構成を変化させても、それを搭載した際の全体の電力を、全体を事前に動作させることなく把握することができる。   In addition, since the simulation apparatus 91 according to the embodiment can grasp the total power reflecting each interaction and relative position only by preparing individual power consumption models of each component, Regardless of any element (such as a server) that has no track record of installation, even if the configuration is changed, it is possible to grasp the entire power when it is mounted without operating the entire system in advance.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:消費電力モデル演算部
111:サーバ消費電力演算部
112:空調消費電力演算部
12:CFDシミュレーション演算部
81:データセンタ
82:空調装置
821:吸気口
83:サーバ
91:シミュレーション装置
11: Power consumption model calculation unit 111: Server power consumption calculation unit 112: Air conditioning power consumption calculation unit 12: CFD simulation calculation unit 81: Data center 82: Air conditioner 821: Inlet 83: Server 91: Simulation device

Claims (3)

熱源装置の稼働量に対する消費電力及び温度変化を示す熱源装置消費電力モデルを熱源装置の機種ごとに保持し、熱源装置の機種情報及び稼働量を取得すると、当該機種情報に該当する熱源装置消費電力モデルを用いて、設定された吸気温度において当該稼働量を稼働後の熱源装置の消費電力及び温度を導出する第1の消費電力算出部と、
前記第1の消費電力算出部の導出した熱源装置の消費電力及び温度を用いて、熱源装置の配置されている空間において空調装置を動作させた場合の熱流体解析を行い、当該稼働量を稼働後の熱源装置の吸気温度を導出し、前記設定された吸気温度を更新する流体解析部と、
空調装置の稼働量に対する消費電力及び温度変化を示す空調装置消費電力モデルを空調装置ごとに保持し、前記空間を前記流体解析部による更新後の吸気温度にするための空調装置の消費電力を導出する第2の消費電力算出部と、
を備えるシミュレーション装置。
When a heat source device power consumption model that indicates the power consumption and temperature change with respect to the operating amount of the heat source device is held for each model of the heat source device and the model information and operating amount of the heat source device are acquired, the heat source device power consumption corresponding to the model information A first power consumption calculation unit for deriving power consumption and temperature of the heat source device after operating the operating amount at a set intake air temperature using a model;
Using the power consumption and temperature of the heat source device derived by the first power consumption calculation unit, a thermal fluid analysis is performed when the air conditioner is operated in the space where the heat source device is arranged, and the operation amount is operated. A fluid analysis unit for deriving an intake air temperature of a later heat source device and updating the set intake air temperature;
An air conditioner power consumption model indicating power consumption and temperature change with respect to the operating amount of the air conditioner is maintained for each air conditioner, and the power consumption of the air conditioner for deriving the space to the intake air temperature updated by the fluid analysis unit is derived. A second power consumption calculation unit,
A simulation apparatus comprising:
熱源装置の稼働量に対する消費電力及び温度変化を示す熱源装置消費電力モデルを熱源装置の機種ごとに保持する記憶部を参照し、熱源装置の機種情報及び稼働量を取得すると、当該機種情報に該当する熱源装置消費電力モデルを用いて、設定された吸気温度において当該稼働量を稼働後の熱源装置の消費電力及び温度を導出する第1の消費電力算出手順と、
前記第1の消費電力算出手順で導出した熱源装置の消費電力及び温度を用いて、熱源装置の配置されている空間において空調装置を動作させた場合の熱流体解析を行い、当該稼働量を稼働後の熱源装置の吸気温度を導出し、前記設定された吸気温度を更新する流体解析手順と、
空調装置の稼働量に対する消費電力及び温度変化を示す空調装置消費電力モデルを空調装置ごとに保持する記憶部を参照し、前記空間を前記流体解析手順で更新後の吸気温度にするための空調装置の消費電力を導出する第2の消費電力算出手順と、
を、シミュレーション装置が実行するシミュレーション方法。
When the heat source device model information and operation amount are obtained by referring to the storage unit that holds the heat source device power consumption model for each heat source device model indicating the power consumption and temperature change with respect to the operating amount of the heat source device, it corresponds to the model information. A first power consumption calculation procedure for deriving power consumption and temperature of the heat source device after operating the operation amount at the set intake air temperature using the heat source device power consumption model
Using the power consumption and temperature of the heat source device derived in the first power consumption calculation procedure, a thermal fluid analysis is performed when the air conditioner is operated in the space where the heat source device is arranged, and the operation amount is operated. A fluid analysis procedure for deriving an intake air temperature of a later heat source device and updating the set intake air temperature;
An air conditioner for referring to a storage unit that holds an air conditioner power consumption model indicating a change in power consumption and temperature with respect to an operating amount of the air conditioner for each air conditioner and setting the space to the intake air temperature updated in the fluid analysis procedure A second power consumption calculation procedure for deriving power consumption of
Is a simulation method in which the simulation apparatus executes.
請求項2に記載の第1の消費電力算出手順、流体解析手順及び第2の消費電力算出手順をコンピュータに実行させるためのプログラム。   A program for causing a computer to execute the first power consumption calculation procedure, the fluid analysis procedure, and the second power consumption calculation procedure according to claim 2.
JP2016032114A 2016-02-23 2016-02-23 Simulation apparatus, simulation method, and program Active JP6455937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032114A JP6455937B2 (en) 2016-02-23 2016-02-23 Simulation apparatus, simulation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032114A JP6455937B2 (en) 2016-02-23 2016-02-23 Simulation apparatus, simulation method, and program

Publications (2)

Publication Number Publication Date
JP2017151617A true JP2017151617A (en) 2017-08-31
JP6455937B2 JP6455937B2 (en) 2019-01-23

Family

ID=59739045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032114A Active JP6455937B2 (en) 2016-02-23 2016-02-23 Simulation apparatus, simulation method, and program

Country Status (1)

Country Link
JP (1) JP6455937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111859615A (en) * 2020-06-12 2020-10-30 菲尼克斯(上海)环境控制技术有限公司 Micro-module data center air conditioner design method based on CFD simulation
JP6910563B1 (en) * 2020-03-27 2021-07-28 三菱電機株式会社 Air conditioning control device, power consumption prediction device, learning device and air conditioning control method
KR20210107523A (en) * 2020-02-24 2021-09-01 앤시스, 인크 Method and system for rom based dynamic thermal management analysis and control
JP7038916B1 (en) * 2021-01-14 2022-03-18 三菱電機株式会社 Air conditioner controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032501A1 (en) * 2008-09-17 2010-03-25 株式会社日立製作所 Operation management method of infromation processing system
JP2011059740A (en) * 2009-09-04 2011-03-24 Fujitsu Ltd Thermal fluid simulation analyzer
JP2012149839A (en) * 2011-01-20 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Air conditioner linkage control system, air conditioner linkage control method, and air conditioner linkage control program
JP2013073402A (en) * 2011-09-27 2013-04-22 Fujitsu Ltd Power control device, power control method and power control program
WO2013145273A1 (en) * 2012-03-30 2013-10-03 富士通株式会社 Information processing device, control method and program
JP2015055431A (en) * 2013-09-12 2015-03-23 新日鉄住金エンジニアリング株式会社 Boundary condition setting device and simulation system
JP2015092124A (en) * 2013-11-08 2015-05-14 日立アプライアンス株式会社 Simulation device and simulation method
JP2016024562A (en) * 2014-07-17 2016-02-08 富士通株式会社 Air conditioning control system and air conditioning control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032501A1 (en) * 2008-09-17 2010-03-25 株式会社日立製作所 Operation management method of infromation processing system
JP2011059740A (en) * 2009-09-04 2011-03-24 Fujitsu Ltd Thermal fluid simulation analyzer
JP2012149839A (en) * 2011-01-20 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Air conditioner linkage control system, air conditioner linkage control method, and air conditioner linkage control program
JP2013073402A (en) * 2011-09-27 2013-04-22 Fujitsu Ltd Power control device, power control method and power control program
WO2013145273A1 (en) * 2012-03-30 2013-10-03 富士通株式会社 Information processing device, control method and program
JP2015055431A (en) * 2013-09-12 2015-03-23 新日鉄住金エンジニアリング株式会社 Boundary condition setting device and simulation system
JP2015092124A (en) * 2013-11-08 2015-05-14 日立アプライアンス株式会社 Simulation device and simulation method
JP2016024562A (en) * 2014-07-17 2016-02-08 富士通株式会社 Air conditioning control system and air conditioning control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210107523A (en) * 2020-02-24 2021-09-01 앤시스, 인크 Method and system for rom based dynamic thermal management analysis and control
KR102657224B1 (en) * 2020-02-24 2024-04-12 앤시스, 인크 Method and system for rom based dynamic thermal management analysis and control
JP6910563B1 (en) * 2020-03-27 2021-07-28 三菱電機株式会社 Air conditioning control device, power consumption prediction device, learning device and air conditioning control method
WO2021192201A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Air conditioning control device, power consumption prediction device, learning device, and air conditioning control method
CN111859615A (en) * 2020-06-12 2020-10-30 菲尼克斯(上海)环境控制技术有限公司 Micro-module data center air conditioner design method based on CFD simulation
JP7038916B1 (en) * 2021-01-14 2022-03-18 三菱電機株式会社 Air conditioner controller
WO2022153431A1 (en) * 2021-01-14 2022-07-21 三菱電機株式会社 Air conditioner control apparatus
EP4279830A4 (en) * 2021-01-14 2024-02-14 Mitsubishi Electric Corp Air conditioner control apparatus

Also Published As

Publication number Publication date
JP6455937B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5511698B2 (en) Air conditioner linkage control system, air conditioner linkage control method, and air conditioner linkage control program
Wang et al. Thermal aware workload placement with task-temperature profiles in a data center
US9959146B2 (en) Computing resources workload scheduling
US10180261B1 (en) Model based cooling control system
US8744818B2 (en) Thermal-fluid-simulation analyzing apparatus
JP6455937B2 (en) Simulation apparatus, simulation method, and program
US9015726B2 (en) Scheduling jobs of a multi-node computer system based on environmental impact
US9996092B2 (en) Determining a time for corrective action in a data center
Shoukourian et al. Predicting the energy and power consumption of strong and weak scaling HPC applications
Berezovskaya et al. Modular model of a data centre as a tool for improving its energy efficiency
Zapater et al. Runtime data center temperature prediction using grammatical evolution techniques
US20210034021A1 (en) Method for optimized operation of a fan or a fan assembly
JP2013152552A (en) Operation management method for information processing system
WO2023010556A1 (en) Dynamic prediction control method, apparatus and system for precision air conditioner
Fang et al. A neural-network enhanced modeling method for real-time evaluation of the temperature distribution in a data center
US10540457B2 (en) System and method for predicting thermal-insights of a data center
US20140316720A1 (en) Data processing system with real-time data center air flow simulator
WO2017217131A1 (en) Building thermal model generation apparatus, building thermal model generation method, and building thermal model generation program
Garraghan et al. A unified model for holistic power usage in cloud datacenter servers
Conficoni et al. Integrated energy-aware management of supercomputer hybrid cooling systems
CN104797990A (en) Method and apparatus for characterizing thermal transient performance
Diversi et al. Bias-compensated least squares identification of distributed thermal models for many-core systems-on-chip
KR20140119111A (en) Computational fluid dynamics systems and methods of use thereof
Tang et al. A unified methodology for scheduling in distributed cyber-physical systems
MirhoseiniNejad et al. ALTM: Adaptive learning-based thermal model for temperature predictions in data centers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6455937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250