JP2017150030A - Method of separating rare earth elements - Google Patents

Method of separating rare earth elements Download PDF

Info

Publication number
JP2017150030A
JP2017150030A JP2016033007A JP2016033007A JP2017150030A JP 2017150030 A JP2017150030 A JP 2017150030A JP 2016033007 A JP2016033007 A JP 2016033007A JP 2016033007 A JP2016033007 A JP 2016033007A JP 2017150030 A JP2017150030 A JP 2017150030A
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
organic solvent
raw material
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033007A
Other languages
Japanese (ja)
Other versions
JP6775966B2 (en
Inventor
持田 裕美
Hiromi Mochida
裕美 持田
卓裕 宮本
Takuhiro Miyamoto
卓裕 宮本
芳徳 仲村
Yoshinori Nakamura
芳徳 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Techno Corp
Original Assignee
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Techno Corp filed Critical Mitsubishi Materials Techno Corp
Priority to JP2016033007A priority Critical patent/JP6775966B2/en
Priority to PCT/JP2017/007152 priority patent/WO2017146219A1/en
Publication of JP2017150030A publication Critical patent/JP2017150030A/en
Application granted granted Critical
Publication of JP6775966B2 publication Critical patent/JP6775966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of separating rare earth elements, which can largely down-size the necessary apparatus and largely reduce the chemicals to be used in a step of separating the rare earth elements by solvent extraction by increasing the concentration of the rare earth elements contained in an original liquid.SOLUTION: A method of separating rare earth elements for separating one or more kinds of the rare earth elements using a solvent extraction method from a raw material liquid containing a plurality of kinds of rare earth elements in an aqueous solution includes a step of forming an original liquid by extracting the plurality of kinds of rare earth elements with an organic solvent by contacting the organic solvent with the raw material liquid, and then, a step of separating the rare earth elements using the solvent extraction method on the original liquid.SELECTED DRAWING: Figure 1

Description

本発明は、複数種の希土類元素を含む元液から、溶媒抽出法によって1種または複数種の希土類元素を分離するために希土類元素の分離方法に関するものである。   The present invention relates to a method for separating rare earth elements in order to separate one or more kinds of rare earth elements from a source solution containing a plurality of kinds of rare earth elements by a solvent extraction method.

近年、各種のハイブリッド車や最先端のOA機器、家電製品には、高性能磁石として様々な希土類磁石が用いられている。このような希土類磁石を構成するデスプロシウム(Dy)、ネオジウム(Nd)等の希土類元素は、その埋蔵量が少なく、かつ生産地あるいは生産国に偏りがあることから、安定供給を図るために、使用後のリサイクルによる有効活用が要請されている。   In recent years, various rare earth magnets have been used as high-performance magnets in various hybrid vehicles, state-of-the-art OA equipment, and home appliances. Rare earth elements such as desprosium (Dy) and neodymium (Nd) that make up such rare earth magnets are used for stable supply because their reserves are small and production areas or countries are biased. Effective use by later recycling is required.

ところで、複数種の希土類元素や不純物を含む原料から、使用目的に応じた希土類元素を選択的に抽出・分離しようとする場合には、一般的に希土類元素の分離方法においては、複数種の希土類元素やその他の不純物を含む鉱石(バネストサイト、モナザイト等)あるいはスラグ等を原料とし、これを硫酸分解法、アルカリ分解法等の処理を行い、不純物除去剤による処理によって不純物が除去された希土溶液あるいは塩化希土、水酸化希土を得て、当該不純物が除去された希土溶液あるいは塩化希土、水酸化希土を無機酸で溶解した水溶液中に上記複数種元液の希土類元素を含む元液を得て、この元液に対して、例えば下記特許文献1等において開示されている従来の有機溶媒抽出法を用いる方法が採用されている。   By the way, when it is intended to selectively extract / separate rare earth elements according to the purpose of use from a raw material containing plural kinds of rare earth elements and impurities, generally, in the rare earth element separation method, plural kinds of rare earth elements are used. Rare earth from which ores containing elements and other impurities (banestite, monazite, etc.) or slag are used as raw materials, and these are treated with sulfuric acid decomposition method, alkali decomposition method, etc., and impurities are removed by treatment with impurity remover A rare earth element of the above-mentioned multiple species solution is obtained in a rare earth solution from which the impurities have been removed or an aqueous solution in which the rare earth chloride or rare earth hydroxide is dissolved with an inorganic acid. A method using a conventional organic solvent extraction method disclosed in, for example, Patent Document 1 below is adopted for the original solution obtained.

ところが、上記有機溶媒抽出法によって所望とする希土類元素を抽出・分離しようとすると、上記元液中の希土類元素の濃度が低いために、所望とする量の希土類元素を分離するために必要となる元液の量が増大する。このため、一度に処理しなければならない量が増大し、結果ミキサーセトラ容量を大きくすることになり、装置に大型化を招く。   However, when the desired rare earth element is extracted / separated by the organic solvent extraction method, the concentration of the rare earth element in the original solution is low, which is necessary for separating the desired amount of rare earth element. The amount of the original solution increases. For this reason, the quantity which must be processed at a time increases, resulting in an increase in the mixer settling capacity, leading to an increase in size of the apparatus.

特開2011−001584号公報JP 2011-001584 A

この結果、設備コストが極めて大きなものになるという問題がある。加えて、装置自体が大型化するため、処理に要する有機溶媒等の薬剤の量が多く、薬剤コスト高を招くといった問題がある。   As a result, there is a problem that the equipment cost becomes extremely large. In addition, since the apparatus itself is increased in size, there is a problem that the amount of the chemical such as an organic solvent required for the processing is large and the cost of the chemical is increased.

本発明は、上記事情に鑑みてなされたものであり、元液に含まれる希土類元素の濃度を高めて、溶媒抽出法による上記希土類元素の分離工程において必要な設備の大幅な小型化および使用する薬剤の低減化を図ることができる希土類元素の分離方法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and by increasing the concentration of rare earth elements contained in the original solution, the equipment required in the rare earth element separation step by the solvent extraction method can be greatly downsized and used. It is an object of the present invention to provide a rare earth element separation method capable of reducing the number of drugs.

上記課題を解決するため、請求項1に記載の発明は、水溶液中に複数種の希土類元素を含む原料液から、溶媒抽出法を用いて上記希土類元素を1種以上に分離するための希土類元素の分離方法において、上記原料液に有機溶媒を接触させることにより上記複数種の希土類元素を上記有機溶媒に抽出して元液とし、次いでこの元液に対して上記溶媒抽出法を用いて、上記希土類元素を分離することを特徴とするものである。   In order to solve the above problems, the invention described in claim 1 is a rare earth element for separating the rare earth element into one or more kinds from a raw material liquid containing a plurality of rare earth elements in an aqueous solution using a solvent extraction method. In the separation method, the plurality of rare earth elements are extracted into the organic solvent by bringing the organic liquid into contact with the raw material liquid to obtain the original liquid, and then the solvent extraction method is used for the original liquid. It is characterized by separating rare earth elements.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記複数種の希土類元素を上記有機溶媒に抽出するに際して、pHを0.3〜5.0の範囲に制御することを特徴とするものである。   Further, in the invention described in claim 2, in the invention described in claim 1, the pH is controlled in the range of 0.3 to 5.0 when extracting the plural kinds of rare earth elements into the organic solvent. It is characterized by.

請求項1または2に記載の発明においては、水溶液中に上記複数種の希土類元素を低濃度で含む原料液に対し、溶媒抽出法を用いて複数種の希土類元素を互いに分離する前に、有機溶媒と接触させて上記複数種の希土類元素を上記有機溶媒に抽出し、これを元液として上記溶媒抽出法を用いた希土類元素の分離工程を行っているために、上記元液に含まれる希土類元素の濃度が高くなり、この結果、溶媒抽出法による上記希土類元素の分離工程において必要な設備の大幅な小型化および使用する薬剤の低減化を図ることができる。   In the first or second aspect of the present invention, an organic solvent is used before separating a plurality of rare earth elements from each other using a solvent extraction method with respect to a raw material liquid containing the plurality of rare earth elements at a low concentration in an aqueous solution. Since the plurality of types of rare earth elements are extracted into the organic solvent by contacting with a solvent, and the step of separating the rare earth elements using the solvent extraction method is performed using this as the original liquid, the rare earth contained in the original liquid is used. As a result, the concentration of the element becomes high, and as a result, it is possible to greatly reduce the size of equipment necessary for the rare earth element separation step by the solvent extraction method and to reduce the number of chemicals used.

ちなみに、上記複数種の希土類元素を上記有機溶媒に抽出するに際して、請求項2に記載の発明にように、そのpHを0.3〜5.0の範囲に制御すれば、1種以上の希土類元素の99%を有機溶媒へと移行させることができて好適である。   Incidentally, when extracting the plural kinds of rare earth elements into the organic solvent, if the pH is controlled in the range of 0.3 to 5.0 as in the invention according to claim 2, one or more kinds of rare earth elements are used. 99% of the elements can be transferred to the organic solvent, which is preferable.

本発明の希土類元素の分離方法の一実施形態における工程の前段を示すフロー図である。It is a flowchart which shows the front | former stage of the process in one Embodiment of the separation method of the rare earth elements of this invention. 上記実施形態における工程の後段を示すフロー図である。It is a flowchart which shows the back | latter stage of the process in the said embodiment. 本発明の実施例1において原料液(水相)に含まれる希土類元素の成分濃度および元液(溶媒)に含まれる希土類元素の成分濃度を示す図表である。It is a graph which shows the component concentration of the rare earth element contained in the raw material liquid (aqueous phase) in Example 1 of this invention, and the component concentration of the rare earth element contained in the original liquid (solvent). 上記実施例1においてミキサーセトラ1段とした時の希土類元素の有機溶媒への移行率とpHとの関係を示す図表である。It is a table | surface which shows the relationship between the transfer rate to the organic solvent of the rare earth element at the time of setting the mixer setra 1 step in the said Example 1, and pH. 上記実施例2においてミキサーセトラ2段とした時の希土類元素の有機溶媒への移行率とpHとの関係を示す図表である。It is a table | surface which shows the relationship between the transfer rate to the organic solvent of rare earth elements, and pH when it is set as the mixer-settler two steps in the said Example 2.

以下、図面に基づいて、本発明に係る希土類元素の分離方法の一実施形態を説明する。
一般的に、希土類元素の分離方法においては、複数種の希土類元素やその他不純物を含む鉱石(バネストサイト、モナザイト等)あるいはスラグ等を原料とし、これに硫酸分解法やアルカリ分解法等の処理を行い、不純物除去剤による処理によって不純物が除去された希土溶液あるいは塩化希土、水酸化希土を得て、当該不純物が除去された希土溶液あるいは塩化希土、水酸化希土を無機酸で溶解した液が原料液として用いられている。
Hereinafter, an embodiment of a method for separating rare earth elements according to the present invention will be described with reference to the drawings.
Generally, in rare earth element separation methods, ore (banestite, monazite, etc.) or slag containing multiple types of rare earth elements and other impurities is used as a raw material, and this is treated with a sulfuric acid decomposition method or an alkali decomposition method. To obtain a rare earth solution from which impurities have been removed by treatment with an impurity remover, or a rare earth chloride solution or a rare earth hydroxide, and remove the rare earth solution from which the impurities have been removed, or a rare earth chloride chloride or rare earth hydroxide to an inorganic acid. The solution dissolved in is used as a raw material solution.

そして、この希土類元素の分離方法においては、先ず上記原料液に含まれる上記複数種の希土類元素を、有機溶媒への移行装置1を用いて有機溶媒に移行させて元液とし、次いでこの元液に対して溶媒抽出法を用いた抽出装置2および逆抽出装置3を用いて、上記希土類元素を分離する。   In this rare earth element separation method, first, the plurality of types of rare earth elements contained in the raw material liquid are transferred to an organic solvent using the transfer apparatus 1 to an organic solvent, and then the original liquid is obtained. On the other hand, the rare earth elements are separated using the extraction device 2 and the back extraction device 3 using the solvent extraction method.

上記有機溶媒への移行装置1は、図1に示すように、直列に配置された複数のミキサーセトラ4によって構成されたもので、これら複数のミキサーセトラ4の図中左側の端部から右側の端部に向けて、順次ライン5を通じて有機溶媒が供給されるとともに、右側の端部から左側の端部に向けて、ライン6を通じてpH調整用の無機酸もしくはアルカリの水溶液が供給されるようになっている。   As shown in FIG. 1, the apparatus 1 for transferring to an organic solvent is composed of a plurality of mixer-settlers 4 arranged in series. An organic solvent is sequentially supplied through the line 5 toward the end, and an aqueous solution of an inorganic acid or alkali for pH adjustment is supplied through the line 6 from the right end to the left end. It has become.

ここで、上記有機溶媒としては、酸性リン酸エステル系、カルボン酸系、ジグリコールアミド酸系の抽出剤を用いたものが適用可能である、その中でも、酸性リン酸エステル系の抽出剤である2−エチルヘキシルホスホン酸モノ−2エチルヘキシル(商品名:PC88A)を希釈剤(例えば、ケロシン)によって希釈されたものが好適に用いられる。   Here, as the organic solvent, those using an acidic phosphate ester-based, carboxylic acid-based, diglycolamide-based extractant can be applied. Among them, acidic phosphate ester-based extractants are applicable. What diluted 2-ethylhexyl phosphonic acid mono-2 ethylhexyl (brand name: PC88A) with the diluent (for example, kerosene) is used suitably.

また、上記抽出装置2は、直列に配置された複数のミキサーセトラ7〜7によって構成されたもので、これら複数のミキサーセトラ7〜7の図中左側端部のミキサーセトラ7から図中右側端部のミキサーセトラ7に向けて、ライン8を通じて順次有機溶媒が供給されるとともに、逆にミキサーセトラ7からミキサーセトラ7に向けて、ライン9を通じて順次無機酸Aの水溶液が供給されるようになっている。 Further, the extraction unit 2 has been constituted by a plurality of mixer-settler 7 1 to 7-n which are arranged in series, a mixer-settler 71 in the figure the left end of the plurality of mixer-settler 7 1 to 7-n from toward mixer-settler 7 n in FIG right end, with successively an organic solvent is fed through line 8, conversely toward the mixer-settler 7 n in mixer-settler 71, the sequential inorganic acids a through line 9 An aqueous solution is supplied.

本実施形態においては、この抽出装置2においても上記有機溶媒として酸性リン酸エステル系、カルボン酸系、ジグリコールアミド酸系の抽出剤を用いたものが適用可能であり、その中でも、酸性リン酸エステル系の抽出剤である2−エチルヘキシルホスホン酸モノ−2エチルヘキシル(商品名:PC88A)を希釈剤(例えば、ケロシン)によって希釈されたものが用いられている。   In the present embodiment, the extraction apparatus 2 can also use an organic phosphate-based, carboxylic acid-based, or diglycolamide-based based extractant as the organic solvent, and among them, acidic phosphoric acid. An ester-based extractant obtained by diluting 2-ethylhexyl phosphonate mono-2-ethylhexyl phosphonate (trade name: PC88A) with a diluent (for example, kerosene) is used.

さらに、この抽出装置2の後段に設けられた逆抽出装置3は、抽出装置2の上記ミキサーセトラ7からライン8を介して排出された有機溶媒に、ミキサーセトラ10において無機酸B(無機酸)の水溶液を接触させて有機溶媒側に含まれていた希土類元素を無機酸Bの水溶液側に逆抽出するものである。 Further, the back extraction device 3 provided in the subsequent stage of the extraction device 2 is supplied with an inorganic acid B (inorganic acid B) in the mixer setra 10 by passing the organic solvent discharged from the mixer setra 7 n of the extraction device 2 through the line 8. ) In contact with the aqueous solution, and the rare earth element contained on the organic solvent side is back-extracted to the aqueous solution side of the inorganic acid B.

そして先ず、図1に示すように、不純物が除去された上記原料液を、有機溶媒への移行装置1の図中右側端部のミキサーセトラ4からライン6を介して順次図中左方へと供給することにより、ライン5から供給される有機溶媒と接触させる。この際に、pH調整用の無機酸もしくはアルカリによって、pHを0.3〜5.0の範囲、より好ましくは2.4〜5.0の範囲に制御する。   First, as shown in FIG. 1, the raw material liquid from which impurities have been removed is sequentially transferred from the mixer setra 4 at the right end of the apparatus 1 to the organic solvent to the left in the figure via a line 6. By supplying, the organic solvent supplied from the line 5 is brought into contact. At this time, the pH is controlled in the range of 0.3 to 5.0, more preferably in the range of 2.4 to 5.0 with an inorganic acid or alkali for pH adjustment.

これにより、上記ミキサーセトラ4において、水溶液の原料液に含まれていた希土類元素が有機溶媒に抽出され、当該有機溶媒に同伴して図中右側端部のミキサーセトラ4からライン5を介して排出される。そして、この移行装置1から排出された希土類元素を含む有機溶媒を、図2に示す抽出装置2への元液とする。   Thereby, in the mixer setra 4, the rare earth element contained in the raw material solution of the aqueous solution is extracted into the organic solvent, and is accompanied by the organic solvent and discharged from the mixer setra 4 at the right end portion in the drawing through the line 5. Is done. And the organic solvent containing the rare earth element discharged | emitted from this transfer apparatus 1 is used as the original liquid to the extraction apparatus 2 shown in FIG.

すなわち、図2に示すように、上記抽出装置2において、上記元液を複数のミキサーセトラ7〜7のうちの、例えば図中左側端部から2番目に位置するミキサーセトラ7から排出された有機溶媒のライン8に供給する。すると、ライン8を通じて図中右方のミキサーセトラ7に向けて送られてゆく過程において、ライン9から供給される上記無機酸Aと接触することにより、上記元液中に含まれていた希土類元素の一部が、上記無機酸A側に逆抽出されて分離される。そして、逆抽出された希土類元素の一部は、ミキサーセトラ7からの抽出残液とともに排出される。 That is, as shown in FIG. 2 emission, in the extraction device 2, of the original liquid of a plurality of mixer-settler 7 1 to 7-n, for example from the mixer settler 7 2 located second from the left in the figure ends To the organic solvent line 8. Then, in the process of being sent through the line 8 toward the mixer setra 7 n on the right side in the figure, the rare earth contained in the original liquid is brought into contact with the inorganic acid A supplied from the line 9. A part of the element is back-extracted and separated on the inorganic acid A side. A portion of the reverse extracted rare earth element is discharged together with the raffinate from the mixer-settler 7 1.

他方、希土類元素の一部が逆抽出された有機溶媒は、ライン8を介して最終的に他端側のミキサーセトラ7から逆抽出装置3のミキサーセトラ10に送られ、無機酸Bの水溶液と接触させられることにより、有機溶媒に残っていた希土類元素の他部が、無機酸Bの水溶液側に逆抽出されて、当該逆抽出液とともに排出される。 On the other hand, the organic solvent in which a part of the rare earth element is back-extracted is finally sent from the mixer setra 7 n on the other end side to the mixer setra 10 of the back-extraction device 3 via the line 8, and the aqueous solution of the inorganic acid B The other part of the rare earth element remaining in the organic solvent is back-extracted to the aqueous solution side of the inorganic acid B and discharged together with the back-extracted liquid.

(実施例1)
原料として11種類(図3参照)の希土類元素およびその他不純物を含むスラグを用い、これの硫酸浸出を行って得られた浸出液に、中和剤として酸化マグネシウムを添加してpHを1〜6の間で制御することにより希土類元素以外の元素を沈殿させた。そして、これを固液分離することにより、上記その他不純物が除去された水溶液中に11種類の希土類元素を含む原料液を得た。図3の「原料液(水相)」の欄は、この原料液中に含まれる希土類元素の濃度を示すものである。
Example 1
Using slag containing 11 kinds of rare earth elements (see FIG. 3) and other impurities as raw materials, and adding the magnesium oxide as a neutralizing agent to the leachate obtained by leaching this with sulfuric acid, the pH is adjusted to 1-6 By controlling in between, elements other than rare earth elements were precipitated. And the raw material liquid which contains 11 types of rare earth elements in the aqueous solution from which the said other impurities were removed was obtained by carrying out solid-liquid separation of this. The column of “raw material liquid (aqueous phase)” in FIG. 3 indicates the concentration of rare earth elements contained in this raw material liquid.

次いで、上記移行装置1において、上記原料液を一段のミキサーセトラ4を用いて有機溶媒と接触させることにより、上記原料液に含まれる上記希土類元素を上記有機溶媒に抽出させた。この際に、有機溶媒として、酸性リン酸エステル系の抽出剤であるPC88Aをケロシンで希釈したものを用いた。また、原料液(水相)のpHを、上記希土類元素が有機溶媒に移行する条件として0.3、2.4、5.0に調整し、各々の場合の11種の希土類元素の移行率を確認した。   Next, in the transfer device 1, the rare earth element contained in the raw material liquid was extracted into the organic solvent by bringing the raw material liquid into contact with an organic solvent using a single-stage mixer setra 4. At this time, an organic solvent obtained by diluting PC88A, which is an acidic phosphate ester extractant, with kerosene was used. In addition, the pH of the raw material liquid (aqueous phase) was adjusted to 0.3, 2.4, and 5.0 as the conditions under which the rare earth elements migrate to the organic solvent, and the migration rates of 11 types of rare earth elements in each case It was confirmed.

図4は、この結果を示すもので、特に上記原料液のpHを2.4〜5.0の範囲に制御することにより、全ての希土類元素の99%以上を有機溶媒に移行させ得ることが確認され、ある1つの希土類元素(有機溶媒に抽出されやすいLu)を注目した場合は、pH0.3〜5.0で99%以上を移行させ得ることが確認された。   FIG. 4 shows this result. In particular, 99% or more of all rare earth elements can be transferred to an organic solvent by controlling the pH of the raw material liquid in the range of 2.4 to 5.0. It was confirmed that when one particular rare earth element (Lu that is easily extracted into an organic solvent) was noted, it was confirmed that 99% or more could be transferred at pH 0.3 to 5.0.

また、図3の「元液(溶媒)」の欄は、pHを2.4とした場合における元液中の希土類元素の濃度を、原料液における濃度と対比させて示したものである。これにより、後工程の溶媒抽出法による希土類元素の分離に供される元液においては、希土類元素の濃度が原料液(水相)中の希土類元素の濃度よりも2.5倍以上に濃縮されていることが判る。   The column of “original solution (solvent)” in FIG. 3 shows the concentration of the rare earth element in the original solution when the pH is 2.4, in contrast to the concentration in the raw material solution. As a result, the concentration of the rare earth element is concentrated 2.5 times or more than the concentration of the rare earth element in the raw material liquid (aqueous phase) in the original solution used for the separation of the rare earth element by the solvent extraction method in the subsequent step. You can see that

(実施例2)
実施例1と同様にして得られた原料液に、上記移行装置1において二段のミキサーセトラ4を用いて有機溶媒と接触させることにより、上記原料液に含まれる上記希土類元素を上記有機溶媒に抽出させた。この際に、実施例と同様に、有機溶媒として酸性リン酸エステル系の抽出剤であるPC88Aをケロシンで希釈したものを用いた。
(Example 2)
The rare earth element contained in the raw material liquid is converted into the organic solvent by bringing the raw material liquid obtained in the same manner as in Example 1 into contact with the organic solvent using the two-stage mixer setra 4 in the transfer device 1. Extracted. At this time, as in the example, PC88A, which is an acidic phosphate ester extractant, diluted with kerosene was used as the organic solvent.

また、有機出口段における原料液(水相)のpHを、上記希土類元素が有機溶媒に移行する条件として、0.5、2.6、4.8に調整し、同様に各々の場合の11種の希土類元素の移行率を確認した。   Further, the pH of the raw material liquid (aqueous phase) at the organic outlet stage was adjusted to 0.5, 2.6, and 4.8 as the conditions for the rare earth element to transfer to the organic solvent. The migration rate of the rare earth elements of the seeds was confirmed.

図5は、この結果を示すもので、特に上記原料液のpHを2.6〜4.8の範囲に制御することにより、全ての希土類元素の99%以上を有機溶媒に移行させ得ることが確認され、ある1つの希土類元素(有機溶媒に抽出されやすいLu)を注目した場合は、pH0.5〜4.8で99%以上を移行させ得ることが確認された。   FIG. 5 shows this result. In particular, 99% or more of all rare earth elements can be transferred to an organic solvent by controlling the pH of the raw material liquid in the range of 2.6 to 4.8. It was confirmed that when one particular rare earth element (Lu that is easily extracted into an organic solvent) was noted, it was confirmed that 99% or more could be transferred at pH 0.5 to 4.8.

以上の実施例1および実施例2に示したように、水溶液中に複数種の希土類元素を低濃度で含む原料液に対し、溶媒抽出法を用いて複数種の希土類元素を互いに分離する前に、有機溶媒と接触させて上記複数種の希土類元素を上記有機溶媒に抽出し、これを元液として上記溶媒抽出法を用いた希土類元素の分離工程を行うことにより、上記元液に含まれる希土類元素の濃度を高めることができる。   As shown in Example 1 and Example 2 above, before separating a plurality of rare earth elements from each other using a solvent extraction method with respect to a raw material solution containing a plurality of rare earth elements in an aqueous solution at a low concentration. The rare earth element contained in the original solution is extracted by bringing the plurality of rare earth elements into contact with an organic solvent and extracting the rare earth element into the organic solvent, and performing a rare earth element separation step using the solvent extraction method as a base solution. The concentration of the element can be increased.

したがって、本発明においては直接的な処理対象としていないものの、希土類元素と化学的に類似した特性を有する他の元素、例えば希土類元素に近接したアルカリ土類金属やチタン属に本発明を適用した場合にも、同様の作用効果が得られることが期待される。   Therefore, when the present invention is applied to other elements having characteristics chemically similar to rare earth elements, such as alkaline earth metals and titanium genus close to rare earth elements, although not directly treated in the present invention. In addition, it is expected that the same effect can be obtained.

Claims (2)

水溶液中に複数種の希土類元素を含む原料液から、溶媒抽出法を用いて上記希土類元素を1種以上に分離するための希土類元素の分離方法において、
上記原料液に有機溶媒を接触させることにより上記複数種の希土類元素を上記有機溶媒に抽出して元液とし、次いでこの元液に対して上記溶媒抽出法を用いて、上記希土類元素を分離することを特徴とする希土類元素の分離方法。
In a rare earth element separation method for separating the rare earth element into one or more using a solvent extraction method from a raw material liquid containing a plurality of rare earth elements in an aqueous solution,
By bringing an organic solvent into contact with the raw material liquid, the plurality of types of rare earth elements are extracted into the organic solvent to form an original liquid, and then the rare earth elements are separated from the original liquid using the solvent extraction method. A method for separating rare earth elements.
上記複数種の希土類元素を上記有機溶媒に抽出するに際して、pHを0.3〜5.0の範囲に制御することを特徴とする請求項1に記載の希土類元素の分離方法。   2. The method for separating rare earth elements according to claim 1, wherein the pH is controlled in a range of 0.3 to 5.0 when the plurality of rare earth elements are extracted into the organic solvent.
JP2016033007A 2016-02-24 2016-02-24 Rare earth element separation method Active JP6775966B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016033007A JP6775966B2 (en) 2016-02-24 2016-02-24 Rare earth element separation method
PCT/JP2017/007152 WO2017146219A1 (en) 2016-02-24 2017-02-24 Rare earth element separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033007A JP6775966B2 (en) 2016-02-24 2016-02-24 Rare earth element separation method

Publications (2)

Publication Number Publication Date
JP2017150030A true JP2017150030A (en) 2017-08-31
JP6775966B2 JP6775966B2 (en) 2020-10-28

Family

ID=59685301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033007A Active JP6775966B2 (en) 2016-02-24 2016-02-24 Rare earth element separation method

Country Status (2)

Country Link
JP (1) JP6775966B2 (en)
WO (1) WO2017146219A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082327A (en) * 2018-11-30 2020-06-04 株式会社マキタ Electric tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155897B2 (en) 2017-11-09 2021-10-26 University Of Kentucky Research Foundation Low-cost selective precipitation circuit for recovery of rare earth elements from acid leachate of coal waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480222A (en) * 1977-12-09 1979-06-26 Mitsubishi Chem Ind Ltd Yttrium separating method
JPH05105975A (en) * 1991-04-11 1993-04-27 Mitsubishi Materials Corp Separation of rare-earth elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082327A (en) * 2018-11-30 2020-06-04 株式会社マキタ Electric tool
JP7278063B2 (en) 2018-11-30 2023-05-19 株式会社マキタ Electric tool

Also Published As

Publication number Publication date
WO2017146219A1 (en) 2017-08-31
JP6775966B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
Abreu et al. Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents
US8177881B2 (en) Method for extracting and separating rare earth elements
CN111886352B (en) Solvent extraction process
JP5545418B2 (en) Recovery method of rare earth elements
JP5499353B2 (en) Extraction and separation method of rare earth elements
RU2685835C2 (en) Extraction method
CN103468950A (en) Method for removing metal ion purity of rare earth aqueous solution extraction
JP2756794B2 (en) Rare earth element separation method
BR112017001370B1 (en) method for recovery of rare earths by fractional extraction
JP2013152854A (en) Method of separating valuable metal from waste secondary battery, and method of recovering valuable metal using the same
CN113195121B (en) Method for recovering valuable metals
JP2011001586A (en) Method for extracting and separating rare earth elements
CA2943483A1 (en) Copper removal method for aqueous nickel chloride solution
JP2017150030A (en) Method of separating rare earth elements
JP5867727B2 (en) Separation method of rare earth elements
JP6256875B2 (en) Separation method of rare earth elements
JP6576817B2 (en) Separation method of rare earth elements
JPWO2008075636A1 (en) Method for regenerating phosphoric acid-containing metal etching solution or phosphoric acid
JP5360483B2 (en) Method for recovering nickel from electroless nickel plating waste liquid and nickel ion extractant used therefor
CN103966441A (en) Method for continuously extracting aluminum from rare earth liquid
JP2015036428A (en) Ce RECOVERY METHOD
JP2015212424A (en) Method for producing cobalt sulfate
CN106834758B (en) A method of removing Fe impurity in Nd using solvent extraction
KR102529742B1 (en) Method for solvent extraction of Mo(IV) and Re(VII)
JPH11100622A (en) Method for separating and recovering rare-earth metal ion

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6775966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250