JP2017147751A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2017147751A
JP2017147751A JP2017084424A JP2017084424A JP2017147751A JP 2017147751 A JP2017147751 A JP 2017147751A JP 2017084424 A JP2017084424 A JP 2017084424A JP 2017084424 A JP2017084424 A JP 2017084424A JP 2017147751 A JP2017147751 A JP 2017147751A
Authority
JP
Japan
Prior art keywords
voltage value
semiconductor elements
semiconductor device
load
fets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017084424A
Other languages
Japanese (ja)
Other versions
JP6265293B2 (en
Inventor
克馬 塚本
Katsuma Tsukamoto
克馬 塚本
佑典 矢野
Yusuke Yano
佑典 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2017084424A priority Critical patent/JP6265293B2/en
Publication of JP2017147751A publication Critical patent/JP2017147751A/en
Application granted granted Critical
Publication of JP6265293B2 publication Critical patent/JP6265293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of preventing burning of a semiconductor element without incorporating a fuse.SOLUTION: A semiconductor device comprises a plurality of semiconductor elements 3 and 4 parallel-connected between a DC power supply and a load 2, and is configured to turn on and off the plurality of semiconductor elements 3 and 4 simultaneously. The semiconductor device comprises: voltage detection means 9 that detects a voltage value between a connection node of the plurality of semiconductor elements 3 and 4 and the load 2, and a fixed potential; means 1 that determines whether or not the voltage value detected by the voltage detection means 9 is higher than a predetermined voltage value in a case where the plurality of semiconductor elements 3 and 4 are in an off state; and means 1 that turns on the plurality of semiconductor elements 3 and 4 when the determining means 1 determined that the voltage value is higher the predetermined voltage value.SELECTED DRAWING: Figure 1

Description

本発明は、直流電源及び負荷間に接続される複数の半導体素子を備え、複数の半導体素子を同時的にオン又はオフにするように構成してある半導体装置に関するものである。   The present invention relates to a semiconductor device including a plurality of semiconductor elements connected between a DC power supply and a load, and configured to simultaneously turn on or off the plurality of semiconductor elements.

従来の半導体装置では、半導体リレーとして使用される半導体素子(例えばMOSFET(金属酸化膜半導体電界効果トランジスタ))がショート故障した場合は、半導体素子のパッケージ内部に設けられたヒューズ機構で電流を遮断することにより、半導体素子自身の焼損防止、並びに下流側の電線及び負荷の保護を行っている。
また、半導体素子(半導体リレー)は、電流容量を増加させる為に、複数を並列に接続して使用されることが多く、また、ボディダイオード(寄生ダイオード)経由で逆流しないように、逆直列に接続した対で使用されることが多い。
In a conventional semiconductor device, when a semiconductor element used as a semiconductor relay (for example, a MOSFET (metal oxide semiconductor field effect transistor)) is short-circuited, current is cut off by a fuse mechanism provided inside the package of the semiconductor element. In this way, the semiconductor element itself is prevented from being burned out and the downstream wires and loads are protected.
In addition, semiconductor elements (semiconductor relays) are often used by connecting a plurality of them in parallel to increase the current capacity, and in reverse series so as not to reversely flow through the body diode (parasitic diode). Often used in connected pairs.

特許文献1には、回路基板上に半導体装置に隣接して形成され、上面に溝が形成された導体のパターンと、パターンの上面かつ前記溝の一側端周縁部を含む領域に低融点金属部材で形成された電極とからなるヒューズ機構と、一端が前記半導体装置の電極に接続され他端が前記ヒューズ機構の電極に接続されたワイヤとを備えたヒューズ付き半導体装置が開示されている。前記パターンに過電流が流れたときに、前記ヒューズ機構の電極が溶けて前記溝に流れ込み、前記ワイヤの他端と切断されて前記半導体装置と前記パターンとが遮断される。   Patent Document 1 discloses a conductor pattern formed on a circuit board adjacent to a semiconductor device and having a groove formed on the upper surface, and a low melting point metal in a region including the upper surface of the pattern and the peripheral edge of one side of the groove. There is disclosed a fuse-equipped semiconductor device including a fuse mechanism including an electrode formed of a member and a wire having one end connected to an electrode of the semiconductor device and the other end connected to an electrode of the fuse mechanism. When an overcurrent flows through the pattern, the electrode of the fuse mechanism melts and flows into the groove, and is cut off from the other end of the wire to cut off the semiconductor device and the pattern.

特許第4593518号公報Japanese Patent No. 4593518

上述したような半導体装置では、半導体素子のパッケージ内にヒューズ機構を設けることは、オン抵抗が増加する為、半導体素子の性能が低下する上、部品コストが増加するという問題がある。
本発明は、上述したような事情に鑑みてなされたものであり、ヒューズを内蔵することなく、半導体素子の焼損防止ができる半導体装置を提供することを目的とする。
In the semiconductor device as described above, the provision of the fuse mechanism in the package of the semiconductor element has a problem that the on-resistance increases, so that the performance of the semiconductor element is deteriorated and the component cost is increased.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a semiconductor device capable of preventing burning of a semiconductor element without incorporating a fuse.

第1発明に係る半導体装置は、直流電源及び負荷間に逆直列に接続される2つの半導体素子を備え、該2つの半導体素子を同時的にオン又はオフにするように構成してある半導体装置において、前記2つの半導体素子の接続節点及び固定電位間の電圧値を検出する電圧検出手段と、前記2つの半導体素子がオフである場合に、前記電圧検出手段が検出した電圧値の所定電圧値との高低を判定する手段と、該手段が所定電圧値より高いと判定したときに、前記2つの半導体素子をオンにする手段とを備えることを特徴とする。   A semiconductor device according to a first aspect of the present invention includes two semiconductor elements connected in reverse series between a DC power source and a load, and is configured to simultaneously turn on or off the two semiconductor elements. And a voltage detection means for detecting a voltage value between a connection node of the two semiconductor elements and a fixed potential, and a predetermined voltage value detected by the voltage detection means when the two semiconductor elements are off. And means for turning on the two semiconductor elements when it is determined that the means is higher than a predetermined voltage value.

この半導体装置では、2つの半導体素子が、直流電源及び負荷間に逆直列に接続され、2つの半導体素子を同時的にオン又はオフにするように構成してある。電圧検出手段が、2つの半導体素子の接続節点及び固定電位間の電圧値を検出する。2つの半導体素子がオフである場合に、電圧検出手段が検出した電圧値の所定電圧値との高低を判定し、所定電圧値より高いと判定したときに、2つの半導体素子をオンにする。   In this semiconductor device, two semiconductor elements are connected in anti-series between a DC power source and a load, and the two semiconductor elements are simultaneously turned on or off. The voltage detection means detects the voltage value between the connection node of the two semiconductor elements and the fixed potential. When the two semiconductor elements are off, it is determined whether the voltage value detected by the voltage detection means is higher or lower than the predetermined voltage value, and when it is determined that the voltage value is higher than the predetermined voltage value, the two semiconductor elements are turned on.

第2発明に係る半導体装置は、直流電源及び負荷間に逆直列に接続される2つの半導体素子を備え、該2つの半導体素子を同時的にオン又はオフにするように構成してある半導体装置において、前記2つの半導体素子の接続節点及び固定電位間の電圧値を検出する電圧検出手段と、前記2つの半導体素子がオフである場合に、前記電圧検出手段が検出した電圧値の所定電圧値との高低を判定する手段と、該手段が所定電圧値より低いと判定したときに、前記2つの半導体素子をオンにする手段とを備えることを特徴とする。   A semiconductor device according to a second aspect of the present invention includes two semiconductor elements connected in reverse series between a DC power source and a load, and is configured to simultaneously turn on or off the two semiconductor elements. And a voltage detection means for detecting a voltage value between a connection node of the two semiconductor elements and a fixed potential, and a predetermined voltage value detected by the voltage detection means when the two semiconductor elements are off. And means for turning on the two semiconductor elements when it is determined that the means is lower than a predetermined voltage value.

この半導体装置では、2つの半導体素子が、直流電源及び負荷間に逆直列に接続され、2つの半導体素子を同時的にオン又はオフにするように構成してある。電圧検出手段が、2つの半導体素子の接続節点及び固定電位間の電圧値を検出する。2つの半導体素子がオフである場合に、電圧検出手段が検出した電圧値の所定電圧値との高低を判定し、所定電圧値より低いと判定したときに、2つの半導体素子をオンにする。   In this semiconductor device, two semiconductor elements are connected in anti-series between a DC power source and a load, and the two semiconductor elements are simultaneously turned on or off. The voltage detection means detects the voltage value between the connection node of the two semiconductor elements and the fixed potential. When the two semiconductor elements are off, it is determined whether the voltage value detected by the voltage detection means is higher or lower than the predetermined voltage value, and when it is determined that the voltage value is lower than the predetermined voltage value, the two semiconductor elements are turned on.

本発明に係る半導体装置によれば、ヒューズを内蔵することなく、半導体素子の焼損防止ができる半導体装置を実現することができる。   According to the semiconductor device of the present invention, it is possible to realize a semiconductor device that can prevent burning of a semiconductor element without incorporating a fuse.

本発明に係る半導体装置の実施の形態の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structure of embodiment of the semiconductor device which concerns on this invention. 図1に示す半導体装置の動作の例を説明する為の説明図である。FIG. 2 is an explanatory diagram for explaining an example of the operation of the semiconductor device shown in FIG. 1. 本発明に係る半導体装置の実施の形態の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structure of embodiment of the semiconductor device which concerns on this invention. 図3に示す半導体装置の動作の例を説明する為の説明図である。FIG. 4 is an explanatory diagram for explaining an example of the operation of the semiconductor device shown in FIG. 3. 本発明に係る半導体装置の実施の形態の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structure of embodiment of the semiconductor device which concerns on this invention. 図5に示す半導体装置の動作の例を説明する為の説明図である。FIG. 6 is an explanatory diagram for explaining an example of the operation of the semiconductor device shown in FIG. 5.

以下に、本発明をその実施の形態を示す図面に基づき説明する。
(実施の形態1)
図1は、本発明に係る半導体装置の実施の形態1の要部構成を示す回路図である。この半導体装置は、直流電源及び負荷2間に、Nチャネル型MOSFET(半導体素子)3,4が並列に接続されている。FET3,4の各ドレインが直流電源に、各ソースが負荷2の一方の端子にそれぞれ接続され、負荷2の他方の端子は接地されている(固定電位に接続されている)。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
FIG. 1 is a circuit diagram showing the main configuration of the first embodiment of the semiconductor device according to the present invention. In this semiconductor device, N-channel MOSFETs (semiconductor elements) 3 and 4 are connected in parallel between a DC power source and a load 2. Each drain of the FETs 3 and 4 is connected to a DC power source, each source is connected to one terminal of the load 2, and the other terminal of the load 2 is grounded (connected to a fixed potential).

FET3,4の各ソース(負荷2の一方の端子)の電圧値が、制御部1が内蔵する電圧検出手段9により検出される。FET3,4は、それぞれ逆並列に形成されたボディダイオード(寄生ダイオード)を有している。制御部1は、マイクロコンピュータを備えており、FET3,4の各ゲートに接続され、FET3,4を同時的にオン又はオフに作動させる。   The voltage value of each source (one terminal of load 2) of FET3, 4 is detected by the voltage detection means 9 which the control part 1 incorporates. Each of the FETs 3 and 4 has a body diode (parasitic diode) formed in antiparallel. The control unit 1 includes a microcomputer, is connected to the gates of the FETs 3 and 4, and operates the FETs 3 and 4 simultaneously to be turned on or off.

このような構成の半導体装置では、制御部1は、負荷2を駆動させる指示信号を受けたときは、FET3,4を同時的にオンにし、負荷2を停止させる指示信号を受けたときは、FET3,4を同時的にオフにする。FET3,4がオフである場合、FET3,4が正常であれば、電圧検出手段9が検出する電圧値は0である。   In the semiconductor device having such a configuration, when the control unit 1 receives an instruction signal for driving the load 2, the control unit 1 simultaneously turns on the FETs 3 and 4 and receives an instruction signal for stopping the load 2. The FETs 3 and 4 are simultaneously turned off. When the FETs 3 and 4 are off, the voltage value detected by the voltage detection means 9 is 0 if the FETs 3 and 4 are normal.

ここで、例えば、図1に示すように、FET3,4がオフである場合に、FET3がショート故障したとき、FET3は、オン抵抗が通常より大きい状態で半導通になり、電圧検出手段9が検出する電圧値は上昇する。制御部(判定する手段、オンにする手段)1は、電圧検出手段9が検出した電圧値が所定電圧値より高いか否かを判定しており、所定電圧値より高いと判定したときは、FET3,4をオンにする。   Here, for example, as shown in FIG. 1, when the FETs 3 and 4 are off, and the FET 3 is short-circuited, the FET 3 becomes semi-conductive with the on-resistance larger than normal, and the voltage detection means 9 The detected voltage value increases. The control unit (determining means, turning on means) 1 determines whether or not the voltage value detected by the voltage detecting means 9 is higher than a predetermined voltage value. When it is determined that the voltage value is higher than the predetermined voltage value, The FETs 3 and 4 are turned on.

これにより、図2に示すように、FET4にも電流が流れて、ショート故障したFET3に流れる電流が減少し、FET3での発熱量を低減でき、焼損を防止できるので、フェールセーフが実現する。また、負荷2は、FET3の半導通により、中途半端に駆動する状態になっているので、FET3,4をオンにしても、負荷2への新たな負担は小さい。   As a result, as shown in FIG. 2, a current also flows in the FET 4, the current flowing in the short-circuited FET 3 is reduced, the amount of heat generated in the FET 3 can be reduced, and burnout can be prevented, thereby realizing fail-safe. Further, since the load 2 is driven halfway due to the semi-conduction of the FET 3, even if the FETs 3 and 4 are turned on, a new burden on the load 2 is small.

尚、上述した実施の形態1では、半導体素子を2つ並列に接続してある例を説明しているが、半導体素子を3つ以上並列に接続してある場合でも、同様に作動させることが可能である。また、上述した実施の形態1では、半導体素子としてNチャネル型MOSFET3,4を使用しているが、Pチャネル型MOSFETを使用した場合でも、同様に作動させることが可能である。   In the first embodiment described above, an example in which two semiconductor elements are connected in parallel has been described. However, even when three or more semiconductor elements are connected in parallel, the same operation can be performed. Is possible. In the first embodiment described above, the N-channel MOSFETs 3 and 4 are used as semiconductor elements. However, even when a P-channel MOSFET is used, it can be operated in the same manner.

(実施の形態2)
図3は、本発明に係る半導体装置の実施の形態2の要部構成を示す回路図である。この半導体装置は、直流電源及び負荷2間に、Nチャネル型MOSFET(半導体素子)5,6が逆直列に接続されている。FET5のドレインが直流電源に接続され、FET5,6の各ソースが共通接続され、FET6のドレインが負荷2の一方の端子に接続され、負荷2の他方の端子は接地されている(固定電位に接続されている)。
(Embodiment 2)
FIG. 3 is a circuit diagram showing a main configuration of the semiconductor device according to the second embodiment of the present invention. In this semiconductor device, N-channel MOSFETs (semiconductor elements) 5 and 6 are connected in reverse series between a DC power source and a load 2. The drain of the FET 5 is connected to a DC power source, the sources of the FETs 5 and 6 are connected in common, the drain of the FET 6 is connected to one terminal of the load 2, and the other terminal of the load 2 is grounded (at a fixed potential). It is connected).

FET5,6の各ソース及び接地端子間に抵抗Rが接続され、抵抗Rの両端電圧値が、制御部1が内蔵する電圧検出手段9により検出される。FET5,6は、それぞれ逆並列に形成されたボディダイオード(寄生ダイオード)を有している。制御部1は、マイクロコンピュータを備えており、FET5,6の各ゲートに接続され、FET5,6を同時的にオン又はオフに作動させる。尚、負荷2は、バッテリ等のサブ電源であっても良く、この場合、FET5のドレインから他の負荷へ分岐させ、FET5,6は、サブ電源の充電時及び放電時はオンになって、電源及びサブ電源の切替えを行う。   A resistor R is connected between the sources of the FETs 5 and 6 and the ground terminal, and the voltage value across the resistor R is detected by the voltage detection means 9 built in the control unit 1. The FETs 5 and 6 each have a body diode (parasitic diode) formed in antiparallel. The control unit 1 includes a microcomputer and is connected to the gates of the FETs 5 and 6 to simultaneously turn on or off the FETs 5 and 6. The load 2 may be a sub power source such as a battery. In this case, the FET 5 is branched from the drain of the FET 5 to another load, and the FETs 5 and 6 are turned on when the sub power source is charged and discharged. Switch between power supply and sub power supply.

このような構成の半導体装置では、制御部1は、負荷2を駆動させる指示信号を受けたときは、FET5,6を同時的にオンにし、負荷2を停止させる指示信号を受けたときは、FET5,6を同時的にオフにする。FET5,6がオフである場合、FET5,6が正常であれば、電圧検出手段9が検出する電圧値は0である。   In the semiconductor device having such a configuration, when the control unit 1 receives an instruction signal for driving the load 2, the control unit 1 simultaneously turns on the FETs 5 and 6 and receives an instruction signal for stopping the load 2. The FETs 5 and 6 are turned off simultaneously. When the FETs 5 and 6 are off, and the FETs 5 and 6 are normal, the voltage value detected by the voltage detection means 9 is zero.

ここで、例えば、図3に示すように、FET5,6がオフである場合に、FET5がショート故障したとき、FET5は、オン抵抗が通常より大きい状態で半導通になり、FET6のボディダイオード及び抵抗Rを通じて電流が流れて、電圧検出手段9が検出する電圧値は上昇する。但し、抵抗Rは、大きくしてあるので、電流が殆ど流れない。制御部(判定する手段、オンにする手段)1は、電圧検出手段9が検出した電圧値が所定電圧値より高いか否かを判定しており、所定電圧値より高いと判定したときは、FET5,6をオンにする。   Here, for example, as shown in FIG. 3, when the FETs 5 and 6 are OFF and the FET 5 is short-circuited, the FET 5 becomes semi-conductive with the ON resistance larger than normal, and the body diode of the FET 6 and A current flows through the resistor R, and the voltage value detected by the voltage detecting means 9 increases. However, since the resistance R is increased, almost no current flows. The control unit (determining means, turning on means) 1 determines whether or not the voltage value detected by the voltage detecting means 9 is higher than a predetermined voltage value. When it is determined that the voltage value is higher than the predetermined voltage value, The FETs 5 and 6 are turned on.

これにより、図4に示すように、FET6にも電流が流れて、FET6のボディダイオードに流れる電流が減少し、FET6での発熱量を低減でき、焼損を防止できるので、フェールセーフが実現する。尚、逆直列に接続したFET5,6の対を複数並列に接続した場合は、FET5,6をオンにすることにより、ショート故障したFET5に流れる電流も減少し、FET5での発熱量も低減できる。また、負荷2は、FET5の半導通、及びFET6のボディダイオードの導通により、中途半端に駆動する状態になっているので、FET5,6をオンにしても、負荷2への新たな負担は小さい。   As a result, as shown in FIG. 4, a current also flows through the FET 6, the current flowing through the body diode of the FET 6 decreases, the amount of heat generated in the FET 6 can be reduced, and burnout can be prevented, thereby realizing fail-safe. When a plurality of pairs of FETs 5 and 6 connected in anti-series are connected in parallel, by turning on FETs 5 and 6, the current flowing through the short-circuited FET 5 is reduced and the amount of heat generated in the FET 5 can be reduced. . In addition, since the load 2 is in a state of being driven halfway due to the half-conduction of the FET 5 and the conduction of the body diode of the FET 6, even if the FETs 5 and 6 are turned on, a new burden on the load 2 is small. .

(実施の形態3)
図5は、本発明に係る半導体装置の実施の形態3の要部構成を示す回路図である。この半導体装置は、直流電源及び負荷2間に、Nチャネル型MOSFET(半導体素子)7,8が逆直列に接続されている。FET7のソースが直流電源に接続され、FET7,8の各ドレインが共通接続され、FET8のソースが負荷2の一方の端子に接続され、負荷2の他方の端子は接地されている(固定電位に接続されている)。
(Embodiment 3)
FIG. 5 is a circuit diagram showing a main configuration of the semiconductor device according to the third embodiment of the present invention. In this semiconductor device, N-channel MOSFETs (semiconductor elements) 7 and 8 are connected in reverse series between a DC power source and a load 2. The source of the FET 7 is connected to a DC power source, the drains of the FETs 7 and 8 are connected in common, the source of the FET 8 is connected to one terminal of the load 2, and the other terminal of the load 2 is grounded (at a fixed potential). It is connected).

FET7,8の各ドレイン及び接地端子間に抵抗Rが接続され、抵抗Rの両端電圧値が、制御部1が内蔵する電圧検出手段9により検出される。FET7,8は、それぞれ逆並列に形成されたボディダイオード(寄生ダイオード)を有している。制御部1は、マイクロコンピュータを備えており、FET7,8の各ゲートに接続され、FET7,8を同時的にオン又はオフに作動させる。尚、負荷2は、バッテリ等のサブ電源であっても良く、この場合、FET7のソースから他の負荷へ分岐させ、FET7,8は、サブ電源の充電時及び放電時はオンになって、電源及びサブ電源の切替えを行う。   A resistor R is connected between the drains of the FETs 7 and 8 and the ground terminal, and the voltage value across the resistor R is detected by the voltage detection means 9 built in the control unit 1. The FETs 7 and 8 each have a body diode (parasitic diode) formed in antiparallel. The control unit 1 includes a microcomputer, is connected to the gates of the FETs 7 and 8, and operates the FETs 7 and 8 simultaneously on or off. The load 2 may be a sub power source such as a battery. In this case, the source of the FET 7 is branched to another load, and the FETs 7 and 8 are turned on when the sub power source is charged and discharged. Switch between power supply and sub power supply.

このような構成の半導体装置では、制御部1は、負荷2を駆動させる指示信号を受けた
ときは、FET7,8を同時的にオンにし、負荷2を停止させる指示信号を受けたときは
、FET7,8を同時的にオフにする。FET7,8がオフである場合、FET7,8が正常であれば、FET7のボディダイオードが導通しているので、電圧検出手段9が検出する電圧値は略電源の電圧値である。但し、抵抗Rは、大きくしてあるので、電流が殆ど流れない。
In the semiconductor device having such a configuration, when the control unit 1 receives an instruction signal for driving the load 2, the control unit 1 simultaneously turns on the FETs 7 and 8 and receives an instruction signal for stopping the load 2. The FETs 7 and 8 are turned off simultaneously. When the FETs 7 and 8 are off, if the FETs 7 and 8 are normal, the body diode of the FET 7 is conductive, so that the voltage value detected by the voltage detection means 9 is substantially the voltage value of the power supply. However, since the resistance R is increased, almost no current flows.

ここで、例えば、図5に示すように、FET7,8がオフである場合に、FET8がショート故障したとき、FET8は、オン抵抗が通常より大きい状態で半導通になり、FET7のボディダイオードを通じて負荷2に電流が流れて、電圧検出手段9が検出する電圧値は降下する。但し、抵抗Rは、上述したように、電流が殆ど流れない。制御部(判定する手段、オンにする手段)1は、電圧検出手段9が検出した電圧値が所定電圧値より低いか否かを判定しており、所定電圧値より低いと判定したときは、FET7,8をオンにする。   Here, for example, as shown in FIG. 5, when the FETs 8 and 8 are OFF, when the FET 8 is short-circuited, the FET 8 becomes semi-conductive in a state where the ON resistance is larger than normal, and passes through the body diode of the FET 7. A current flows through the load 2 and the voltage value detected by the voltage detecting means 9 drops. However, almost no current flows through the resistor R as described above. The control unit (determination means, turning on means) 1 determines whether or not the voltage value detected by the voltage detection means 9 is lower than a predetermined voltage value. When it is determined that the voltage value is lower than the predetermined voltage value, The FETs 7 and 8 are turned on.

これにより、図6に示すように、FET7にも電流が流れて、FET7のボディダイオードに流れる電流が減少し、FET7での発熱量を低減でき、焼損を防止できるので、フェールセーフが実現する。尚、逆直列に接続したFET7,8の対を複数並列に接続した場合は、FET7,8をオンにすることにより、ショート故障したFET8に流れる電流も減少し、FET8での発熱量も低減できる。また、負荷2は、FET8の半導通、及びFET7のボディダイオードの導通により、中途半端に駆動する状態になっているので、FET7,8をオンにしても、負荷2への新たな負担は小さい。   As a result, as shown in FIG. 6, a current also flows through the FET 7, the current flowing through the body diode of the FET 7 is reduced, the amount of heat generated in the FET 7 can be reduced, and burnout can be prevented, thereby realizing fail-safe. When a plurality of pairs of FETs 7 and 8 connected in anti-series are connected in parallel, by turning on the FETs 7 and 8, the current flowing through the short-circuited FET 8 is reduced and the amount of heat generated in the FET 8 can be reduced. . Further, since the load 2 is in a state of being driven halfway due to the half-conduction of the FET 8 and the conduction of the body diode of the FET 7, even if the FETs 7 and 8 are turned on, a new burden on the load 2 is small. .

尚、上述した実施の形態2,3では、2つの半導体素子を逆直列に接続した1対の例を説明しているが、2つの半導体素子を逆直列に接続した対を2つ以上並列に接続してある場合でも、同様に作動させることが可能である。また、上述した実施の形態2,3では、半導体素子としてNチャネル型MOSFETを使用しているが、Pチャネル型MOSFETを使用した場合でも、同様に作動させることが可能である。   In the second and third embodiments described above, an example of a pair in which two semiconductor elements are connected in anti-series is described. However, two or more pairs in which two semiconductor elements are connected in anti-series are connected in parallel. Even when connected, it is possible to operate similarly. In the second and third embodiments described above, an N-channel MOSFET is used as a semiconductor element. However, even when a P-channel MOSFET is used, it can be operated similarly.

1 制御部(判定する手段、オンにする手段)
2 負荷
3,4,5,6,7,8 FET(半導体素子)
9 電圧検出手段
R 抵抗
1 Control unit (means for judging, means for turning on)
2 Load 3, 4, 5, 6, 7, 8 FET (semiconductor element)
9 Voltage detection means R Resistance

Claims (2)

直流電源及び負荷間に逆直列に接続される2つの半導体素子を備え、該2つの半導体素子を同時的にオン又はオフにするように構成してある半導体装置において、
前記2つの半導体素子の接続節点及び固定電位間の電圧値を検出する電圧検出手段と、前記2つの半導体素子がオフである場合に、前記電圧検出手段が検出した電圧値の所定電圧値との高低を判定する手段と、該手段が所定電圧値より高いと判定したときに、前記2つの半導体素子をオンにする手段とを備えることを特徴とする半導体装置。
In a semiconductor device comprising two semiconductor elements connected in reverse series between a DC power source and a load, and configured to turn on or off the two semiconductor elements simultaneously,
A voltage detection means for detecting a voltage value between a connection node of the two semiconductor elements and a fixed potential; and a predetermined voltage value detected by the voltage detection means when the two semiconductor elements are off. A semiconductor device comprising: means for determining a level; and means for turning on the two semiconductor elements when it is determined that the means is higher than a predetermined voltage value.
直流電源及び負荷間に逆直列に接続される2つの半導体素子を備え、該2つの半導体素子を同時的にオン又はオフにするように構成してある半導体装置において、
前記2つの半導体素子の接続節点及び固定電位間の電圧値を検出する電圧検出手段と、前記2つの半導体素子がオフである場合に、前記電圧検出手段が検出した電圧値の所定電圧値との高低を判定する手段と、該手段が所定電圧値より低いと判定したときに、前記2つの半導体素子をオンにする手段とを備えることを特徴とする半導体装置。
In a semiconductor device comprising two semiconductor elements connected in reverse series between a DC power source and a load, and configured to turn on or off the two semiconductor elements simultaneously,
A voltage detection means for detecting a voltage value between a connection node of the two semiconductor elements and a fixed potential; and a predetermined voltage value detected by the voltage detection means when the two semiconductor elements are off. A semiconductor device comprising: means for determining a level; and means for turning on the two semiconductor elements when it is determined that the means is lower than a predetermined voltage value.
JP2017084424A 2017-04-21 2017-04-21 Semiconductor device Active JP6265293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084424A JP6265293B2 (en) 2017-04-21 2017-04-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084424A JP6265293B2 (en) 2017-04-21 2017-04-21 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013179755A Division JP6217248B2 (en) 2013-08-30 2013-08-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2017147751A true JP2017147751A (en) 2017-08-24
JP6265293B2 JP6265293B2 (en) 2018-01-24

Family

ID=59683342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084424A Active JP6265293B2 (en) 2017-04-21 2017-04-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6265293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128131B2 (en) 2018-09-19 2021-09-21 Renesas Electronics Corporation Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150461A (en) * 1997-11-13 1999-06-02 Nissin High Voltage Co Ltd High voltage switch circuit
JP2003158447A (en) * 2001-11-22 2003-05-30 Denso Corp Abnormality detecting device of device for driving electrical load and ic for driving electrical load
JP2005039385A (en) * 2003-07-16 2005-02-10 Bosch Automotive Systems Corp Control unit for vehicle
JP2008182872A (en) * 2006-12-25 2008-08-07 Matsushita Electric Ind Co Ltd Electricity storing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150461A (en) * 1997-11-13 1999-06-02 Nissin High Voltage Co Ltd High voltage switch circuit
JP2003158447A (en) * 2001-11-22 2003-05-30 Denso Corp Abnormality detecting device of device for driving electrical load and ic for driving electrical load
JP2005039385A (en) * 2003-07-16 2005-02-10 Bosch Automotive Systems Corp Control unit for vehicle
JP2008182872A (en) * 2006-12-25 2008-08-07 Matsushita Electric Ind Co Ltd Electricity storing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128131B2 (en) 2018-09-19 2021-09-21 Renesas Electronics Corporation Semiconductor device

Also Published As

Publication number Publication date
JP6265293B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6217248B2 (en) Semiconductor device
JP6669097B2 (en) Power supply control device
JP5590031B2 (en) Power supply protection circuit and motor drive device including the same
JP2017216795A5 (en)
US9013161B2 (en) Load drive circuit
JP2008540925A (en) Short circuit protection device
JP5201268B2 (en) Semiconductor drive device
JP5744144B2 (en) Inductive load power supply control device
JP2017079534A (en) Gate control circuit
JP3964833B2 (en) Intelligent power device and load short circuit protection method thereof
JP2005241463A (en) Current detection circuit and protection circuit
JP6265293B2 (en) Semiconductor device
JP2024036350A (en) Reverse connection failure preventing circuit
CN112448363B (en) Electrical safety system providing over-current protection of electrical circuits in a vehicle
US11128131B2 (en) Semiconductor device
JP5799793B2 (en) Power relay circuit for vehicles
JP5124292B2 (en) Power switch circuit
US20150002973A1 (en) Overheat protection circuit and overheat protection method
EP3723289B1 (en) Load drive circuit
JP6322957B2 (en) Overcurrent protection circuit
JP2005236731A (en) Overcurrent protection circuit and semiconductor device
JPH08308116A (en) Circuit device with reverse-current blocking circuit
JP2010220415A (en) Dc power supply device
JP2007294513A (en) Semiconductor protection circuit
JP2007336620A (en) Power supply input circuit

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170601

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6265293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150