JP2017147412A - Low leakage shaking open type magnetic shield structure - Google Patents

Low leakage shaking open type magnetic shield structure Download PDF

Info

Publication number
JP2017147412A
JP2017147412A JP2016030232A JP2016030232A JP2017147412A JP 2017147412 A JP2017147412 A JP 2017147412A JP 2016030232 A JP2016030232 A JP 2016030232A JP 2016030232 A JP2016030232 A JP 2016030232A JP 2017147412 A JP2017147412 A JP 2017147412A
Authority
JP
Japan
Prior art keywords
magnetic
shaking
coil
ring
magnetic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016030232A
Other languages
Japanese (ja)
Other versions
JP6628407B2 (en
Inventor
敏文 新納
Toshifumi Niino
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016030232A priority Critical patent/JP6628407B2/en
Publication of JP2017147412A publication Critical patent/JP2017147412A/en
Application granted granted Critical
Publication of JP6628407B2 publication Critical patent/JP6628407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low leakage shaking open type magnetic shield structure capable suppressing leakage of shaking noise small.SOLUTION: On multiple stages of parallel planes Pz1, Pz2, ... crossing a first direction axis Az penetrating a magnetic shield object space 1 at predetermined intervals dz, annular band-like magnetic plates 10 are provided in such a manner that the object space 1 is surrounded with a predetermined band width W. In multiple portions that are distributed in an annular axial direction, on each of the stages of the annular band-like magnetic plates 10, a lead wire coil unit 20 is wound and fitted in a direction that is substantially perpendicular to the annular axis, and both ends 22a and 22b of the lead wire coil unit are pulled out adjacently in parallel. The annular band-like magnetic plate 10 is magnetically shaken by a magnetic field that is generated by applying a shaking current I1 in a predetermined frequency in parallel to the pulled-out portions 22a and 22b of each lead wire coil unit 20 by a coil drive device 30. Preferably, both the ends 22a and 22b of each of the lead wire coil units 20 are pulled out while being twisted mutually.SELECTED DRAWING: Figure 1

Description

本発明は低漏洩シェイキング式開放型磁気シールド構造に関し,とくに磁気シェイキングを利用して遮蔽性能を向上させつつシェイキングノイズの漏洩を低く抑えた開放型磁気シールド構造に関する。   The present invention relates to a low-leakage shaking type open magnetic shield structure, and more particularly to an open-type magnetic shield structure that uses magnetic shaking to improve shielding performance and suppresses leakage of shaking noise.

半導体製造施設等で用いる電子顕微鏡,EB露光装置,EBステッパー等の電子ビーム応用装置は,微弱な磁気変動でも電子ビームの軌道が変化して製品の品質が劣化するため,外乱磁場変動を100nT(1mG)以下に制御された磁気シールドルーム(磁気シールド空間)に設置することが求められる。従来の一般的な磁気シールド空間はPCパーマロイ等の透磁率の高い磁性体で床,壁,天井の全体を隙間なく覆う構造(密閉型磁気シールド構造)であるが,材料サイズの制約等から接合部が多くなり,接合部からの外乱磁場の浸入に伴う性能劣化が問題となっていた。これに対し,図14に示すように,簾状又はルーバー状に並べた帯状磁性板(短冊形磁性板)を用いた磁気シールド構造(開放型磁気シールド構造)5が開発されている(特許文献1参照)。   Electron beam application devices such as electron microscopes, EB exposure devices, and EB steppers used in semiconductor manufacturing facilities, etc., even with weak magnetic fluctuations, change the trajectory of the electron beam and degrade the product quality. It is required to be installed in a magnetic shield room (magnetic shield space) controlled to 1 mG or less. The conventional general magnetic shield space is a structure (sealed magnetic shield structure) that covers the entire floor, wall, and ceiling with a magnetic material with high permeability such as PC permalloy (sealed magnetic shield structure). The number of parts increased, and the performance degradation due to the penetration of the disturbance magnetic field from the joints was a problem. On the other hand, as shown in FIG. 14, a magnetic shield structure (open magnetic shield structure) 5 using strip-shaped magnetic plates (strip-shaped magnetic plates) arranged in a bowl shape or a louver shape has been developed (Patent Literature). 1).

開放型磁気シールド構造5は,例えば幅50mm程度の複数の帯状磁性板2を長さ方向中心軸Cが同一面F上に平行に並ぶように所要の板厚方向間隔dで積み重ねてシールド簾体3とし(図14(A)参照),複数のシールド簾体3a,3b,3c,3dを対応する端縁の接合部9の重ね合わせにより磁気的に接合して環状に閉じた帯状磁性板(以下,環帯状磁性板という)10を形成し,複数の環帯状磁性板10によって磁気シールド対象空間を囲んだものである(図14(B)参照)。環帯状磁性板10の適切な間隔dを設計することにより,磁気シールド対象空間に開放性(透視性,透光性,放熱性)を与えつつ,環帯状磁性板10(磁性体回路)に磁束を集中させて間隔dからの磁束の侵入及び漏洩(性能劣化)を小さく抑えることができる。また,接合部9で磁気的連続性が確保しやすいことから,性能劣化が少なく,所期性能を発揮することが容易な構造となっている。更に,安全率を小さく抑え,従来の密閉型磁気シールド構造に比して使用する材料を減らすことができるため,コストダウンにも繋がる利点を有している。   The open type magnetic shield structure 5 includes a plurality of strip-like magnetic plates 2 having a width of about 50 mm, for example, which are stacked at a required thickness direction interval d so that the longitudinal central axes C are arranged in parallel on the same plane F. 3 (see FIG. 14 (A)), a plurality of shield housings 3a, 3b, 3c, 3d are magnetically joined by overlapping the corresponding joints 9 at the end edges, and a belt-like magnetic plate (annularly closed) (Hereinafter, referred to as an annular belt-shaped magnetic plate) 10 is formed, and a magnetic shield target space is surrounded by a plurality of annular belt-shaped magnetic plates 10 (see FIG. 14B). By designing an appropriate distance d of the ring-shaped magnetic plate 10, magnetic flux is applied to the ring-shaped magnetic plate 10 (magnetic circuit) while providing openness (permeability, translucency, heat dissipation) to the magnetic shield target space. , And the magnetic flux intrusion and leakage (performance degradation) from the interval d can be kept small. In addition, since the magnetic continuity can be easily secured at the joint 9, the performance is less deteriorated and the desired performance can be easily achieved. Furthermore, since the safety factor can be reduced and the amount of material used can be reduced compared to the conventional sealed magnetic shield structure, there is an advantage that leads to cost reduction.

また開放型磁気シールド構造5は,外乱磁場の周波数が高くなると環帯状磁性板10の断面に流れる渦電流によって磁気シールド性能が劣化しうるが,環帯状磁性板10(磁性体回路)に銅板やアルミニウム板等の環帯状導体(導体回路)を付加して導体シールド効果を重畳することにより,200Hz程度までの外乱磁場(交流磁場)においても直流磁場と同等以上の遮蔽性能を発揮することができる(特許文献2参照)。すなわち,環帯状磁性板で構成された開放型磁気シールド構造5,或いは必要に応じて導体回路を付加した開放型磁気シールド構造5により磁気シールド空間を構築すれば,環境磁気ノイズ(外乱磁場変動)を効率的に100nT以下にまで遮断し,電子ビーム応用装置等を設置するに相応しい磁気環境(磁気シールド空間)を提供することができる。   In the open type magnetic shield structure 5, the magnetic shield performance can be deteriorated by the eddy current flowing in the cross section of the ring-shaped magnetic plate 10 when the frequency of the disturbance magnetic field is increased. By adding a ring-shaped conductor (conductor circuit) such as an aluminum plate and superimposing the conductor shielding effect, even a disturbance magnetic field (AC magnetic field) up to about 200 Hz can exhibit shielding performance equivalent to or better than a DC magnetic field. (See Patent Document 2). That is, if the magnetic shield space is constructed by the open type magnetic shield structure 5 constituted by an annular magnetic plate 5 or the open type magnetic shield structure 5 to which a conductor circuit is added if necessary, environmental magnetic noise (disturbance magnetic field fluctuation) Can be effectively cut down to 100 nT or less, and a magnetic environment (magnetic shield space) suitable for installing an electron beam application apparatus or the like can be provided.

他方,医療施設や研究施設で用いるSQUID(超電導量子干渉素子)応用装置は,脳や心臓の活動に伴い発生する超微弱な脳磁波,心磁波等の磁場を測定するため,設置空間を1nT以下の磁気環境に制御することが求められる。このような超高度な磁気環境を得る手段として磁気シェイキングが提案されている(特許文献3,4,非特許文献1参照)。磁気シェイキングとは,周期的に変動する磁場(シェイキング磁場)を磁性体に印加して磁性体内部で磁束を揺らすことにより磁性体の磁気特性(実効的な透磁率)を向上させる手法である。例えば特許文献3は,比較的低コストで製造できる厚さ20μm以上500μm以下のフィルム(又はリボン)状のアモルファス磁性薄帯材で密閉型磁気シールド構造を構成し,磁気シェイキングによってパーマロイ並みの性能を得たことを報告している。   On the other hand, SQUID (Superconducting Quantum Interference Device) application devices used in medical facilities and research facilities measure the magnetic field such as ultra-weak brain magnetic waves and magneto-magnetic waves generated by the activity of the brain and heart. It is required to control the magnetic environment. Magnetic shaking has been proposed as means for obtaining such an ultra-high magnetic environment (see Patent Documents 3 and 4, Non-Patent Document 1). Magnetic shaking is a technique for improving the magnetic properties (effective permeability) of a magnetic material by applying a periodically varying magnetic field (shaking magnetic field) to the magnetic material to sway the magnetic flux inside the magnetic material. For example, in Patent Document 3, a sealed magnetic shield structure is constituted by an amorphous magnetic ribbon material in the form of a film (or ribbon) having a thickness of 20 μm or more and 500 μm or less which can be manufactured at a relatively low cost. It is reported that I got it.

磁気シェイキングでは,磁性体内部で磁束を揺らす(シェイキングする)ため,磁性体の磁化容易方向の軸の周りにほぼ垂直にシェイキングコイルを巻き,遮蔽したい環境磁気ノイズの周波数成分fnよりも高い周波数fの電流(シェイキング電流)を印加してシェイキング磁場を発生させる。例えば特許文献4の開示する密閉型磁気シールド用の磁気シールド部材40は,図15に示すように,基材41の表面上にリボン状の8本のアモルファス磁性薄帯42aを長手方向が縦方向で平行となるように所定間隙で配列し,その表面上にリボン状の8本のアモルファス磁性薄帯42bを長手方向が横方向で平行となるように所定間隙で配列し,井桁配置の磁性薄帯42a,42bの所定間隙に表裏を縫うようにシェイキングコイル43を巻き付ける。図示例のシェイキングコイル43は,入力端子44と出力端子45との間を16の部分に分け,図15(B)に示すように奇数の部分で表面を通過させると共に偶数の部分で裏面を通過させることにより,磁性薄帯42a,42bの何れの長手方向に対してもほぼ垂直方向に巻き付けられている。   In magnetic shaking, since the magnetic flux is swayed (shaked) inside the magnetic body, a shaking coil is wound almost perpendicularly around the axis of the magnetization direction of the magnetic body, and the frequency f higher than the frequency component fn of the environmental magnetic noise to be shielded. Is applied (shaking current) to generate a shaking magnetic field. For example, as shown in FIG. 15, a magnetic shield member 40 for a sealed magnetic shield disclosed in Patent Document 4 has eight ribbon-like amorphous magnetic ribbons 42a on the surface of a base material 41 in the longitudinal direction. Are arranged with a predetermined gap so as to be parallel with each other, and eight ribbon-like amorphous magnetic ribbons 42b are arranged with a predetermined gap so that the longitudinal direction thereof is parallel with the lateral direction on the surface thereof. The shaking coil 43 is wound so as to sew the front and back in a predetermined gap between the bands 42a and 42b. In the illustrated example, the shaking coil 43 is divided into 16 parts between the input terminal 44 and the output terminal 45, and the front part passes through the odd part and the rear part passes through the back part as shown in FIG. 15B. By doing so, the magnetic ribbons 42a and 42b are wound in a substantially vertical direction with respect to any longitudinal direction.

国際公開2004/084603号パンフレットInternational Publication No. 2004/084603 Pamphlet 特開2014−086647号公報JP 2014-0866647 A 特開平3−066839号公報Japanese Patent Laid-Open No. 3-066839 特開2013−197290号公報JP 2013-197290 A 特開2006−135116号公報JP 2006-135116 A

中小企業庁「平成24年度戦略的基盤技術高度化支援事業『高性能磁気シールド装置用磁性材料の熱処理技術開発』研究開発成果等報告書」平成25年3月,インターネット<http://www.chusho.meti.go.jp/keiei/sapoin/portal/seika/2010/22131316088.pdf>SME Agency “2012 Strategic Fundamental Technology Advancement Support Project“ Development of Heat Treatment Technology for Magnetic Materials for High-Performance Magnetic Shielding Devices ”Research and Development Report” March 2013, Internet <http: // www. chusho. meti. go. jp / keiei / sapon / portal / seika / 2010/22113116088. pdf>

しかし,従来の磁気シェイキングには,磁性体内部をシェイキングするための印加磁場(シェイキング磁場)が磁気シールド空間へ漏洩してしまう問題点がある。例えば図15の磁気シールド部材40において,シェイキングコイル43が表面及び裏面の両側に隣接平行している部分ではコイル外側の磁場が打ち消されるので磁気シールド空間への漏洩をある程度抑制できるが,シェイキングコイル43が表面又は裏面の片側のみに配置される周縁部分ではコイル外側の磁場(シェイキングノイズ)が磁気シールド空間に漏洩する。また,シェイキング効果を高めるためには磁性体の内部を均等にシェイキングすることが望ましいにも拘わらず,図15の磁気シールド部材40では,磁性薄帯42a,42bにそれぞれ長手方向のシェイキング磁場と他方の長手方向と交差する向きのシェイキング磁場とが同時に印加されるので,各磁性薄帯42a,42bの内部が均等にシェイキングされない問題点もある。   However, the conventional magnetic shaking has a problem that an applied magnetic field (shaking magnetic field) for shaking the inside of the magnetic material leaks to the magnetic shield space. For example, in the magnetic shield member 40 of FIG. 15, the magnetic field outside the coil is canceled at the portion where the shaking coil 43 is adjacent and parallel on both sides of the front and back surfaces, so that leakage to the magnetic shield space can be suppressed to some extent. In the peripheral portion where only the front surface or the back surface is disposed, the magnetic field (shaking noise) outside the coil leaks into the magnetic shield space. Further, in order to enhance the shaking effect, it is desirable to shake the inside of the magnetic material evenly. However, in the magnetic shield member 40 shown in FIG. Since the shaking magnetic field in the direction intersecting with the longitudinal direction of the magnetic ribbons is simultaneously applied, there is a problem that the insides of the magnetic ribbons 42a and 42b are not shaken evenly.

シェイキングノイズの漏洩を防止するため,例えば非特許文献1は,シェイキングコイルを巻き付けたアモルファス層の内側をアルミニウム層で被覆し,更にアルミニウム層の内側を磁気シェイキングのないアモルファス層で被覆する3層構造を提案している。ただし,このような3層構造の対策によっても磁気シールド空間の内壁付近において10nTを超えるシェイキングノイズが計測されている。また,3層構造のようなノイズ対策は,磁気シールドの施工コストの高騰に繋がる問題点もある。1nT以下の磁気シールド空間を磁気シェイキングによって実現するためには,磁性体内部を均等にシェイキングすると共に,シェイキングノイズを低減することが必要である。   In order to prevent leakage of shaking noise, for example, Non-Patent Document 1 discloses a three-layer structure in which an amorphous layer around which a shaking coil is wound is covered with an aluminum layer, and further, the inner side of the aluminum layer is covered with an amorphous layer without magnetic shaking. Has proposed. However, even with such a three-layer structure measure, shaking noise exceeding 10 nT is measured near the inner wall of the magnetic shield space. In addition, noise countermeasures such as a three-layer structure have a problem that leads to an increase in the construction cost of the magnetic shield. In order to realize a magnetic shield space of 1 nT or less by magnetic shaking, it is necessary to shake the inside of the magnetic material evenly and reduce shaking noise.

そこで本発明の目的は,シェイキングノイズの漏洩を小さく抑えることができる低漏洩シェイキング式開放型磁気シールド構造を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a low-leakage shaking type open magnetic shield structure capable of minimizing the leakage of shaking noise.

図1の実施例を参照するに,本発明による低漏洩シェイキング式開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ磁気シールド対象空間1を所定帯幅Wで囲むように設けた環帯状磁性板10(図1(A)及び(B)参照),環帯状磁性板10の各段の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに巻き付けて取り付け且つその両端22a,22bを平行に隣接させて引き出した導線コイルユニット20(図1(C)及び(D)参照),及び各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を印加するコイル駆動装置30を備え,各導線コイルユニット20の発生磁場により環帯状磁性板10を磁気シェイキングしてなるものである。   Referring to the embodiment of FIG. 1, a low-leakage shaking type open magnetic shield structure according to the present invention has a plurality of parallel planes Pz1 intersecting a first direction axis Az penetrating the magnetic shield target space 1 at a predetermined interval dz. , Pz2,..., PZ2,... Each of the ring-band magnetic plate 10 provided so as to surround the magnetic shield target space 1 with a predetermined band width W (see FIGS. 1A and 1B). The coil unit 20 is wound around and attached to a plurality of portions distributed in the direction of the annular axis substantially perpendicularly to the annular axis, and is drawn out with both ends 22a and 22b adjacent to each other in parallel (FIGS. 1C and 1D). And a coil driving device 30 that applies a shaking current I1 having a predetermined frequency to the lead portions 22a and 22b of each conductor coil unit 20, and a magnetic field generated by each conductor coil unit 20 In which more ring band magnetic plate 10 formed by magnetic shaking.

好ましい実施例では,図1(E)に示すように,各導線コイルユニット20の両端22a,22bを相互に撚りながら引き出す。更に好ましい実施例では,図10(A)に示すように,各導線コイルユニット20を環帯状磁性板10の各段に同じ右巻き又は左巻きとなるように巻き付け,コイル駆動装置30a,30bにより環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2を印加する。或いは,図10(B)に示すように,各導線コイルユニット20を環帯状磁性板10の隣接する段毎に逆の右巻き又は左巻きとなるように巻き付け,コイル駆動装置30により環帯状磁性板10の各段に同じ向きのシェイキング電流I1を印加してもよい。   In a preferred embodiment, as shown in FIG. 1 (E), both ends 22a and 22b of each conductor coil unit 20 are pulled out while twisting each other. In a more preferred embodiment, as shown in FIG. 10A, each conductor coil unit 20 is wound around each stage of the ring-shaped magnetic plate 10 so as to be the same right-handed or left-handed, and the coil drive devices 30a, 30b Reverse-direction shaking currents I1 and I2 are applied to each adjacent stage of the belt-like magnetic plate 10. Alternatively, as shown in FIG. 10B, each conductor coil unit 20 is wound so as to be reversed right-handed or left-handed for each adjacent stage of the annular belt-shaped magnetic plate 10, and the annular drive magnetic plate is formed by the coil driving device 30. The shaking current I1 in the same direction may be applied to each of the ten stages.

望ましい実施例では,図1及び図10に示すように,環帯状磁性板10の各段の複数の導線コイルユニット20を並列にコイル駆動装置30と接続する隣接平行配置の入出力ループ導線23a,23bを設け,その入出力ループ導線23a,23bの漏洩磁場を逆向きの入出力電流により打ち消す。他の望ましい実施例では,図11に示すように,環帯状磁性板10の各段の複数の導線コイルユニット20を環状軸方向に順次直列に接続する結合導線26,及びその結合導線26と隣接平行配置で逆向きの電流を流すループ導線27を設け,結合導線26及びループ導線27を介して各導線コイルユニット20をコイル駆動装置30に直列接続し,結合導線26及びループ導線27の漏洩磁場を逆向きの電流により打ち消す。環帯状磁性板10の各段の導線コイルユニット20の巻き付け部位の相互間隔Tは,環帯状磁性板10の内部に誘起されるシェイキング磁場が均等となるように設定することができる。   In a preferred embodiment, as shown in FIGS. 1 and 10, adjacent parallel-arranged input / output loop conductors 23a for connecting a plurality of conductor coil units 20 at each stage of the ring-shaped magnetic plate 10 to a coil driving device 30 in parallel. 23b is provided, and the leakage magnetic field of the input / output loop conductors 23a, 23b is canceled by the reverse input / output current. In another preferred embodiment, as shown in FIG. 11, a coupling conductor 26 for connecting a plurality of conductor coil units 20 at each stage of the ring-shaped magnetic plate 10 in series in the annular axial direction, and adjacent to the coupling conductor 26. A loop conductor 27 is provided in parallel arrangement to pass a reverse current, and each conductor coil unit 20 is connected in series to the coil driving device 30 via the coupling conductor 26 and the loop conductor 27, and the leakage magnetic field of the coupling conductor 26 and the loop conductor 27. Is canceled by the reverse current. The mutual interval T between the winding portions of the conductor coil unit 20 at each stage of the ring-shaped magnetic plate 10 can be set so that the shaking magnetic field induced inside the ring-shaped magnetic plate 10 is uniform.

本発明による低漏洩シェイキング式開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ磁気シールド対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設け,環帯状磁性板10の各段の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付けて取り付け且つその両端22a,22bを平行に隣接させて引き出し,コイル駆動装置30により各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を印加して発生させた磁場により環帯状磁性板10を磁気シェイキングするので,次の有利な効果を奏する。   The low leakage shaking type open type magnetic shield structure according to the present invention has magnetic shields on a plurality of parallel planes Pz1, Pz2,... Intersecting a first direction axis Az penetrating the magnetic shield target space 1 at a predetermined interval dz. An annular belt-shaped magnetic plate 10 is provided so as to surround the target space 1 with a predetermined band width W, and a conductive wire coil unit is disposed substantially perpendicularly to the annular shaft at a plurality of portions dispersed in the annular axial direction of each stage of the annular belt-shaped magnetic plate 10. 20 is wound and attached, and both ends 22a and 22b are pulled out in parallel, and a magnetic field generated by applying a shaking current I1 of a predetermined frequency to the lead-out portions 22a and 22b of each conductor coil unit 20 by the coil driving device 30. Thus, since the ring-shaped magnetic plate 10 is magnetically shaken, the following advantageous effects can be obtained.

(イ)環帯状磁性板10の各段に環状軸と実質上直角向きに導線コイルユニット20を巻き付け,環帯状磁性板10の環状軸の周りに同じ大きさでほぼ逆向きの電流を点対称で流すことにより,環帯状磁性板10の内側に軸方向に沿った均等なシェイキング磁場を発生させると共に,点対称で流れる逆向き電流の打ち消し効果によって導線コイルユニット20からの漏洩磁場(シェイキングノイズ)を低減することができる。
(ロ)環帯状磁性板10の内側に環状軸に沿った均等なシェイキング磁場を発生させることにより,磁性体内部の磁束を均等に揺らして磁気特性を効率的に向上させることができる。
(ハ)また,環帯状磁性板10に巻き付けた導線コイルユニット20の両端22a,22bを平行に隣接させて引き出すことにより,その引き出し部22a,22bを流れる逆向き電流の打ち消し効果によって巻き付け部以外からの漏洩磁場(シェイキングノイズ)も低減できる。
(A) A coil unit 20 is wound around each stage of the ring-shaped magnetic plate 10 in a direction substantially perpendicular to the annular axis, and currents of the same size and substantially opposite directions are point-symmetrical around the annular axis of the ring-shaped magnetic plate 10 To generate a uniform shaking magnetic field along the axial direction on the inner side of the ring-shaped magnetic plate 10, and a leakage magnetic field (shaking noise) from the conducting coil unit 20 due to the canceling effect of the reverse current flowing in a point-symmetric manner. Can be reduced.
(B) By generating a uniform shaking magnetic field along the annular axis on the inner side of the ring-shaped magnetic plate 10, the magnetic properties inside the magnetic body can be evenly shaken to efficiently improve the magnetic characteristics.
(C) Further, by pulling out the ends 22a and 22b of the conducting wire coil unit 20 wound around the ring-shaped magnetic plate 10 so as to be adjacent to each other in parallel, other than the winding portion due to the cancellation effect of the reverse current flowing through the leading portions 22a and 22b. Leakage magnetic field (shaking noise) can be reduced.

(ニ)更に,導線コイルユニット20の両端22a,22bを相互に撚りながら引き出すことにより,引き出し部22a,22bを流れる逆向き電流の打ち消し効果を高めて導線コイルユニット20からの漏洩磁場を極めて小さく抑えることができる。
(ホ)また,環帯状磁性板10の隣接する段毎にシェイキング電流の向きを逆向きとし又は導線コイルユニット20の巻き付け向きを逆向きとし,隣接する段の導線コイルユニット20から漏洩する逆向きの磁場を相互に打ち消すことにより,漏洩磁場(シェイキングノイズ)を更に低減することができる。
(へ)環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると共に,磁気シールド空間へ漏洩する磁場(シェイキングノイズ)を小さく抑えることにより,開放型磁気シールド構造の遮蔽性能を確実且つ大幅に向上させ,外乱磁場変動を1nT以下に制御することが期待できる。
(D) Further, by pulling out both ends 22a and 22b of the conductor coil unit 20 while twisting each other, the effect of canceling the reverse current flowing through the lead portions 22a and 22b is enhanced, and the leakage magnetic field from the conductor coil unit 20 is extremely small. Can be suppressed.
(E) The direction of the shaking current is reversed for each adjacent stage of the ring-shaped magnetic plate 10 or the winding direction of the conductive coil unit 20 is reversed, and the reverse direction leaks from the conductive coil unit 20 of the adjacent stage. By mutually canceling each other's magnetic field, the leakage magnetic field (shaking noise) can be further reduced.
(F) The magnetic properties inside the ring-shaped magnetic plate 10 are evenly swayed to improve the magnetic characteristics efficiently, and the magnetic field leaking to the magnetic shield space (shaking noise) is suppressed to a small size, thereby making the open magnetic shield structure It can be expected that the shielding performance is surely and greatly improved and the disturbance magnetic field fluctuation is controlled to 1 nT or less.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
環帯状磁性板10の各段の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付けた本発明によるシェイキング式開放型磁気シールド構造の実施例の説明図である。 環帯状磁性板10の各段にそれぞれ導線コイル25を所定ピッチT間隔で相互に独立させて取り付けたシェイキング式開放型磁気シールド構造の説明図である。 環帯状磁性板10の各段にそれぞれ導線コイル25を所定ピッチTで連続的に巻き付けたシェイキング式開放型磁気シールド構造の実施例の説明図である。 図2の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 図3の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 環帯状磁性板10の複数段に跨って導線コイル25を所定ピッチT間隔で相互に独立させて取り付けたシェイキング式開放型磁気シールド構造の説明図である。 図6の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 環帯状磁性板10の複数段に跨って導線コイル25を所定ピッチTで連続的に巻き付けたシェイキング式開放型磁気シールド構造の説明図である。 図8の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 環帯状磁性板10の隣接する段毎にシェイキング電流の向きを逆向きとし又は導線コイルユニット20の巻き付け向きを逆向きとした本発明によるシェイキング式開放型磁気シールド構造の実施例の説明図である。 環帯状磁性板10の各段の複数部位に巻き付けた導線コイルユニット20を順次に直列接続(結線)した本発明によるシェイキング式開放型磁気シールド構造の実施例の説明図である。 入れ子状に配置する3層のシェイキング式開放型磁気シールド構造5x,5y,5zの説明図である。 図12のシェイキング式開放型磁気シールド構造5zに対するシェイキング電流の印加方法の説明図である。 従来の開放型磁気シールド構造の説明図である。 従来のシェイキングを利用した磁気シールド部材の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
Explanatory drawing of the Example of the shaking type | mold open type | mold magnetic shield structure by this invention which wound the conducting wire coil unit 20 to the several site | part disperse | distributed to the annular-axis direction of each step of the ring-shaped magnetic plate 10 in the direction substantially orthogonal to the annular axis, respectively. It is. FIG. 3 is an explanatory view of a shaking type open magnetic shield structure in which conductive coil 25 is attached to each stage of the ring-shaped magnetic plate 10 independently at a predetermined pitch T interval. 3 is an explanatory view of an embodiment of a shaking type open magnetic shield structure in which a conductive coil 25 is continuously wound around each stage of the ring-shaped magnetic plate 10 at a predetermined pitch T. FIG. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. 2 is an explanatory view of a shaking type open magnetic shield structure in which conductor coils 25 are attached independently of each other at a predetermined pitch T interval across a plurality of stages of the ring-shaped magnetic plate 10. FIG. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. FIG. 3 is an explanatory diagram of a shaking type open magnetic shield structure in which a conductive coil 25 is continuously wound at a predetermined pitch T across a plurality of stages of an annular magnetic plate 10. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. It is explanatory drawing of the Example of the shaking type | mold open type | mold magnetic shield structure by this invention which made the direction of the shaking current reverse for every adjacent step of the ring-shaped magnetic board 10, or made the winding direction of the conducting wire coil unit 20 reverse. . It is explanatory drawing of the Example of the shaking type | mold open type | mold magnetic shield structure by this invention which connected the conducting wire coil unit 20 wound around the several site | part of each step of the ring-shaped magnetic board 10 in series (connection) sequentially. It is explanatory drawing of the three-layer shaking type | mold open-type magnetic shield structure 5x, 5y, 5z arrange | positioned in a nesting form. It is explanatory drawing of the application method of the shaking current with respect to the shaking type | mold open-type magnetic shield structure 5z of FIG. It is explanatory drawing of the conventional open type | mold magnetic shield structure. It is explanatory drawing of the magnetic shielding member using the conventional shaking.

図1は,磁気シールド対象空間1(例えば磁気シールドルーム)の周囲に配置する本発明のシェイキング式開放型磁気シールド構造の実施例を示す。図1(A)の開放型磁気シールド構造5zは,磁気シールド対象空間1の中心点Oを貫く第1方向軸Azと所定間隔dzで交差する複数の平行な平面Pz1,Pz2,……上にそれぞれ所定帯幅W(例えば50mm)で空間を囲む環帯状磁性板10を配置し,図14(B)と同様に複数の環帯状磁性板10によって磁気シールド対象空間1を囲んだものである。図1(B)は開放型磁気シールド構造5zの何れかの段の環帯状磁性板10を含むXY平面図を示し,その楕円C部分の拡大平面図及び拡大側面図を図1(C)及び(D)に示す。図示例は,各環帯状磁性板10の中心軸である第1方向軸Azを鉛直方向軸(Z軸)としているが,方向軸Azは外来磁場の到来方向に応じて適宜選択可能であり,図12(B)及び(C)に示すように,対象空間1を貫く水平なX軸又はY軸とすることができる。また,図示例では環帯状磁性板10を設ける各平面Pzを第1方向軸Azと直交させているが,交差角度を直交以外とすることも可能である。   FIG. 1 shows an embodiment of a shaking type open type magnetic shield structure of the present invention arranged around a magnetic shield target space 1 (for example, a magnetic shield room). An open type magnetic shield structure 5z in FIG. 1A is formed on a plurality of parallel planes Pz1, Pz2,... Intersecting a first direction axis Az penetrating the center point O of the magnetic shield target space 1 at a predetermined interval dz. An annular belt-like magnetic plate 10 is disposed so as to surround the space with a predetermined belt width W (for example, 50 mm), and the magnetic shield target space 1 is enclosed by a plurality of annular belt-like magnetic plates 10 as in FIG. 14B. FIG. 1B shows an XY plan view including an annular belt-like magnetic plate 10 at any stage of the open type magnetic shield structure 5z, and an enlarged plan view and an enlarged side view of the ellipse C portion are shown in FIG. Shown in (D). In the illustrated example, the first direction axis Az that is the central axis of each ring-shaped magnetic plate 10 is the vertical direction axis (Z axis), but the direction axis Az can be appropriately selected according to the arrival direction of the external magnetic field, As shown in FIGS. 12B and 12C, the horizontal X-axis or Y-axis penetrating the target space 1 can be used. In the illustrated example, each plane Pz on which the ring-shaped magnetic plate 10 is provided is orthogonal to the first direction axis Az, but the crossing angle may be other than orthogonal.

環帯状磁性板10は,例えば図14(A)に示すように,第1方向軸Azと交差する平面Pzと対象空間の内面との交差線に沿って,帯幅Wで適当な長さの複数の帯状導体板2を端縁の重ね合わせによって平らな多角形状(例えば井桁状)に接合することにより作成する。環帯状磁性板10は,磁気シェイキングにより磁気特性の向上が期待できる磁性体を用いて作成することができ,例えばコバルト系及び鉄系アモルファス,パーマロイ,電磁鋼板等とするが,とくに微弱磁場領域での透磁率が他と比べて格段に高いコバルト系アモルファスとすることが望ましい。一般にコバルト系アモルファスは,最大50mm程度の幅の薄帯状磁性板として提供され,それ以上の広幅材料は提供されていないので,密閉型磁気シールド構造では図15のように複数のアモルファス薄帯を平行に配列して磁気シールド面を形成する手間がかかるが,開放型磁気シールド構造では薄帯状磁性板をそのまま用いて環帯状磁性板10を形成できるので,開放型磁気シールド構造に適した磁性体ということができる。   For example, as shown in FIG. 14A, the ring-shaped magnetic plate 10 has a band width W and an appropriate length along the intersection line between the plane Pz intersecting the first direction axis Az and the inner surface of the target space. The plurality of strip-shaped conductor plates 2 are formed by joining the edges in a flat polygonal shape (for example, a cross-girder shape). The ring-shaped magnetic plate 10 can be made using a magnetic material that can be expected to improve magnetic properties by magnetic shaking, for example, cobalt-based and iron-based amorphous, permalloy, electromagnetic steel plate, etc., especially in the weak magnetic field region. It is desirable to use a cobalt-based amorphous material whose magnetic permeability is much higher than others. Generally, cobalt-based amorphous is provided as a ribbon-like magnetic plate with a maximum width of about 50 mm, and no wider material is provided. Therefore, in a sealed magnetic shield structure, a plurality of amorphous ribbons are paralleled as shown in FIG. However, in the open type magnetic shield structure, the annular belt-like magnetic plate 10 can be formed using the thin belt-like magnetic plate as it is, so that the magnetic material suitable for the open type magnetic shield structure is used. be able to.

図示例の磁気シールド構造は,図1(A)及び(B)に示すように,開放型磁気シールド構造5zの各段の環帯状磁性板10の複数部位にそれぞれ巻き付けた導線コイルユニット20と,その導線コイルユニット20に所定周波数のシェイキング電流を印加するコイル駆動装置30を有する。導線コイルユニット20は,環帯状磁性板10の全体に連続的に巻き付けるのではなく,環帯状磁性板10の環状軸方向に隔てた複数の部位にそれぞれ分散させて巻き付ける。環帯状磁性板10の磁気特性向上のためには環帯状磁性板10の内側に均等なシェイキング磁場を励起することが有効であり,環帯状磁性板10の全体に導線コイルを連続的に巻き付けることで均等なシェイキング磁場を発生させることもできるが,コイル外側の漏洩磁場(シェイキングノイズ)を低く抑えることが難しい(後述する実験例3を参照)。環帯状磁性板10の環状軸方向に分散した導線コイルユニット20を用いることにより,環帯状磁性板10の内側に均等なシェイキング磁場を発生させつつ,比較的容易に漏洩磁場(シェイキングノイズ)を低減することができる。   As shown in FIGS. 1A and 1B, the magnetic shield structure of the illustrated example includes a conductive coil unit 20 wound around a plurality of portions of the annular magnetic plate 10 at each stage of the open type magnetic shield structure 5z, A coil driving device 30 for applying a shaking current having a predetermined frequency to the conducting wire coil unit 20 is provided. The conducting coil unit 20 is not continuously wound around the entire ring-shaped magnetic plate 10 but is distributed and wound around a plurality of portions separated in the annular axial direction of the ring-shaped magnetic plate 10. In order to improve the magnetic properties of the annular belt-shaped magnetic plate 10, it is effective to excite a uniform shaking magnetic field inside the annular belt-shaped magnetic plate 10, and a conductive coil is continuously wound around the entire annular belt-shaped magnetic plate 10. It is also possible to generate a uniform shaking magnetic field, but it is difficult to keep the leakage magnetic field (shaking noise) outside the coil low (see Experimental Example 3 described later). By using the conductive coil unit 20 dispersed in the direction of the annular axis of the ring-shaped magnetic plate 10, a uniform magnetic field is generated inside the ring-shaped magnetic plate 10 and a leakage magnetic field (shaking noise) can be reduced relatively easily. can do.

図示例の導線コイルユニット20は,図1(C)及び(D)の拡大平面図及び拡大側面図に示すように,その中間部分を環帯状磁性板10にその環状軸と実質上直角向きに巻き付け,その両端22a,22bを平行に隣接させて引き出してコイル駆動装置30と接続する。例えば帯幅50mmの環帯状磁性板10に導線コイルユニット20の中間部分を1〜2mmピッチ程度で巻き付けることにより,環帯状磁性板10の環状軸に対する導線コイルユニット20(電流方向)のなす角度を89°程度とする。図1(D)に示すように,環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,環状軸と交差する断面(磁性体回路の断面)の重心に対して点対称の位置にシェイキング電流を流すことにより,環帯状磁性板10の内側に軸方向に沿って均等なシェイキング磁場を発生させ,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を発揮することができる。   As shown in the enlarged plan view and the enlarged side view of FIGS. 1C and 1D, the conductor coil unit 20 of the illustrated example has an intermediate portion on a ring-shaped magnetic plate 10 substantially perpendicular to the annular axis. Winding is performed, and both ends 22a and 22b are drawn out in parallel and connected to the coil driving device 30. For example, by winding an intermediate portion of the conductor coil unit 20 around the annular belt-shaped magnetic plate 10 having a belt width of 50 mm at a pitch of about 1 to 2 mm, the angle formed by the conductor coil unit 20 (current direction) with respect to the annular axis of the annular belt-shaped magnetic plate 10 is increased. It is about 89 °. As shown in FIG. 1 (D), the conducting coil unit 20 wound substantially perpendicularly to the annular axis is shaken at a point-symmetrical position with respect to the center of gravity of the cross section (the cross section of the magnetic circuit) intersecting the annular axis. By flowing a current, a uniform shaking magnetic field can be generated along the axial direction inside the ring-shaped magnetic plate 10, and the magnetic flux inside the ring-shaped magnetic plate 10 can be evenly shaken to exhibit a magnetic shaking effect. .

また,環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,磁性体回路の断面の重心に対して点対称で流れる逆向き電流の打ち消し効果によって環帯状磁性板10の外側への漏洩磁場(シェイキングノイズ)を低く抑えることができる。更に,導線コイルユニット20の引き出し部22a,22bを平行に隣接させて引き出すことにより,その引き出し部22a,22bを流れる逆向き電流の打ち消し効果によって巻き付け部以外からの漏洩磁場(シェイキングノイズ)も低減できる。図1(E)に示すように導線コイルユニット20の引き出し部22a,22bを相互に撚ることにより,逆向き電流の打ち消し効果を高めて漏洩磁場を更に抑えることも期待できる。このように図示例の導線コイルユニット20は,磁性体内側の均等なシェイキングと磁性体外側のシェイキングノイズの低減とが共に容易であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングによる遮蔽性能の大幅な向上が期待できる。   In addition, the conducting coil unit 20 wound substantially perpendicularly to the annular shaft has a leakage magnetic field to the outside of the ring-shaped magnetic plate 10 due to the effect of canceling the reverse current flowing symmetrically with respect to the center of gravity of the cross section of the magnetic circuit. (Shaking noise) can be kept low. Further, by pulling out the lead portions 22a and 22b of the conductor coil unit 20 in parallel, the leakage magnetic field (shaking noise) from other than the winding portion is reduced due to the effect of canceling the reverse current flowing through the lead portions 22a and 22b. it can. As shown in FIG. 1 (E), by twisting the lead portions 22a and 22b of the conductor coil unit 20 to each other, it is possible to enhance the reverse current cancellation effect and further suppress the leakage magnetic field. As described above, the lead coil unit 20 in the illustrated example can easily perform uniform shaking inside the magnetic body and reduce shaking noise outside the magnetic body. Therefore, the open type magnetic shield structure is compared with the sealed type magnetic shield structure. Thus, a significant improvement in shielding performance by magnetic shaking can be expected.

図1のコイル駆動装置30は,各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を並列に印加している。すなわち,環帯状磁性板10の各段に導線コイルユニット20を同じ右巻き又は左巻きとなるように巻き付けると共に,環帯状磁性板10と実質上同径の入出力ループ導線23a,23bを隣接させて平行に配置し,各導線コイルユニット20の一方の引き出し部22aを入力ループ導線(又は出力ループ導線)23aに接続すると共に,他方の引き出し部22bを出力ループ導線(又は入力ループ導線)23bに接続することにより,ループ導線23a,23bを介して各導線コイルユニット20をコイル駆動装置30と並列に接続する。   1 applies a shaking current I1 having a predetermined frequency to the lead portions 22a and 22b of each conductor coil unit 20 in parallel. That is, the conductor coil unit 20 is wound around each stage of the ring-shaped magnetic plate 10 so as to be the same right-handed or left-handed, and the input / output loop conductors 23a and 23b having substantially the same diameter as the ring-shaped magnetic plate 10 are adjacent to each other. Arranged in parallel, one lead portion 22a of each lead coil unit 20 is connected to an input loop lead (or output loop lead) 23a, and the other lead 22b is connected to an output loop lead (or input loop lead) 23b. By doing so, each conducting wire coil unit 20 is connected in parallel with the coil driving device 30 via the loop conducting wires 23a and 23b.

図1の実施例において,各導線コイルユニット20を接続する入出力ループ導線23a,23bからの磁場漏洩も問題となりうるが,図示例のように入出力ループ導線23a,23bを隣接させて平行に配置することにより,発生磁場を逆向きの入出力電流によって打ち消して入出力ループ導線23a,23bからの漏洩磁場を小さく抑えることができる。必要に応じて入出力ループ導線23a,23bを撚ることにより打ち消し効果を高めることも可能である。なお,入出力ループ導線23a,23bは環帯状磁性板10の各段に対応させて複数設ける必要はなく,図10(B)に示すように,単独の入出力ループ導線23a,23bを介して複数段の導線コイルユニット20にシェイキング電流I1を並列に印加することができる。   In the embodiment of FIG. 1, magnetic field leakage from the input / output loop conductors 23a and 23b connecting the conductor coil units 20 can also be a problem, but the input / output loop conductors 23a and 23b are adjacent to each other in parallel as in the illustrated example. By disposing, the generated magnetic field can be canceled by the reverse input / output current, and the leakage magnetic field from the input / output loop conductors 23a, 23b can be kept small. If necessary, the cancellation effect can be enhanced by twisting the input / output loop conductors 23a and 23b. Note that it is not necessary to provide a plurality of input / output loop conductors 23a, 23b corresponding to each stage of the ring-shaped magnetic plate 10, and as shown in FIG. 10 (B), via the individual input / output loop conductors 23a, 23b. The shaking current I1 can be applied in parallel to the multi-stage conducting wire coil unit 20.

また,コイル駆動装置30と各導線コイルユニット20との接続は図1のような並列接続に限定されるものではなく,例えば図11(A)に示すように,隣接する導線コイルユニット20の引き出し部22a,22bを順次に直列接続(結線)し,コイル駆動装置30によって各導線コイルユニット20の引き出し部22a,22bにシェイキング電流I1を直列に印加することも可能である。図11(A)の実施例では,環帯状磁性板10の各段の複数部位にそれぞれ導線コイルユニット20を環状軸と実質上直角向きに巻き付けると共に,各導線コイルユニット20の両端の引き出し部22a,22bを平行に隣接させて引き出し,環状軸方向に隣接する各導線コイルユニット20の引き出し部22a,22bを結合導線26によって直列に接続している。図11(B)は環帯状磁性板10のXY平面図を示し,図11(C)及び(D)はその楕円C部分の拡大平面図及び拡大側面図を示す。   Further, the connection between the coil driving device 30 and each conductor coil unit 20 is not limited to the parallel connection as shown in FIG. 1, and for example, as shown in FIG. It is also possible to sequentially connect (connect) the portions 22 a and 22 b in series, and apply the shaking current I 1 in series to the lead portions 22 a and 22 b of each conductor coil unit 20 by the coil driving device 30. In the embodiment of FIG. 11 (A), the conducting coil unit 20 is wound around each of the plurality of portions of each step of the ring-shaped magnetic plate 10 in a direction substantially perpendicular to the annular shaft, and the lead portions 22a at both ends of each conducting coil unit 20 are wound. , 22b are drawn adjacently in parallel, and the lead portions 22a, 22b of the respective conductive wire coil units 20 adjacent to each other in the annular axial direction are connected in series by a connecting wire 26. FIG. 11B shows an XY plan view of the ring-shaped magnetic plate 10, and FIGS. 11C and 11D show an enlarged plan view and an enlarged side view of the ellipse C portion.

図11の実施例において,各導線コイルユニット20を直列に接続する結合導線26からの磁場漏洩も問題となりうるが,図11(B)に示すように環帯状磁性板10の各段に結合導線26と隣接させて逆向きの電流を流すループ導線27を平行に配置し,結合導線26及びループ導線27を介して各導線コイルユニット20をコイル駆動装置30に直列接続することにより,結合導線26からの発生磁場を打ち消して漏洩磁場を小さく抑えることができる。必要に応じて結合導線26とループ導線27とを撚ることにより打ち消し効果を高めることも可能である。   In the embodiment shown in FIG. 11, magnetic field leakage from the coupling conductor 26 connecting the conductor coil units 20 in series can be a problem, but the coupling conductor is connected to each stage of the ring-shaped magnetic plate 10 as shown in FIG. 26 are arranged in parallel to each other so as to pass a reverse current and are connected in series to the coil driving device 30 via the coupling conductor 26 and the loop conductor 27, so that the coupling conductor 26 is connected. The magnetic field generated from the can be canceled out and the leakage magnetic field can be kept small. It is also possible to enhance the cancellation effect by twisting the coupling conductor 26 and the loop conductor 27 as necessary.

例えば図11に示すように,結合導線26によって環帯状磁性板10の複数部位の導線コイルユニット20を始端部位から終端部位まで環状軸方向に直列接続し,その終端部位から始端部位まで環状軸方向を逆向きに戻る導線(戻り導線)をループ導線27とし,コイル駆動装置30からのシェイキング電流I1を始端部位から終端部位の各導線コイルユニット20に結合導線26を介して順次印加するとともに,終端部位からループ導線27及び始端部位を介してコイル駆動装置30に戻す。なお,図示例では1本の導線を複数段の環帯状磁性板10に連続的に巻き付けているが,異なる段の導線コイルユニット20は必ずしも相互に接続する必要はなく,少なくとも1つの段の導線コイルユニット20が直列に接続されていれば足りる。例えば,段毎にコイル駆動装置30を設けて段毎に直接接続された導線コイルユニット20にシェイキング電流を個別に印加することもできる。   For example, as shown in FIG. 11, a plurality of conductor coil units 20 of the ring-shaped magnetic plate 10 are connected in series in the annular axial direction from the starting end portion to the terminating end portion by the coupling conductor 26, and the annular axial direction from the terminating portion to the starting end portion is connected. The conducting wire (return conducting wire) returning in the opposite direction is a loop conducting wire 27, and the shaking current I1 from the coil driving device 30 is sequentially applied to each conducting coil unit 20 from the starting end portion to the terminating portion via the coupling conducting wire 26, and the terminating end. It returns to the coil drive device 30 from the part through the loop conducting wire 27 and the starting end part. In the illustrated example, one conducting wire is continuously wound around a plurality of stages of the ring-shaped magnetic plate 10, but the conducting coil units 20 at different stages are not necessarily connected to each other, and at least one conducting wire is provided. It is sufficient if the coil units 20 are connected in series. For example, it is also possible to individually apply a shaking current to the conductive coil unit 20 that is provided with a coil driving device 30 for each stage and is directly connected to each stage.

[実験例1]
図1のシェイキング式開放型磁気シールド構造により漏洩磁場(シェイキングノイズ)が低減できることを確認する前に,先ず開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ導線コイル25を巻き付けた場合の漏洩磁場を確認するため,図2に示すようなモデル実験を行った。本実験では,図2(A)に示すように幅50mm,長さ1000mm,厚さ5mmの帯状磁性板4枚を井桁状に接合して外形950mmの環帯状磁性板10(磁性体回路)を構成し,その環帯状磁性板10を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,各段の環帯状磁性板10にそれぞれ環状軸と直角向きに導線コイル25を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加した。環帯状磁性板10の外形の大きさは,環状の磁性体回路の中心軸の長さを表している。
[Experimental Example 1]
Before confirming that the leakage magnetic field (shaking noise) can be reduced by the shaking type open magnetic shield structure of FIG. 1, first, the conductive coil 25 is wound around the ring-shaped magnetic plate 10 of each stage of the open type magnetic shield structure 5z. In order to confirm the leakage magnetic field in this case, a model experiment as shown in FIG. 2 was performed. In this experiment, as shown in FIG. 2 (A), four belt-like magnetic plates having a width of 50 mm, a length of 1000 mm, and a thickness of 5 mm were joined in a cross-beam shape to form an annular belt-like magnetic plate 10 (magnetic circuit) having an outer shape of 950 mm. The ring-shaped magnetic plate 10 is arranged in five stages at a predetermined interval dz = 200 mm to form an open-type magnetic shield structure 5z, and each of the ring-shaped magnetic plates 10 at each stage is arranged in a direction perpendicular to the annular axis. Was wound at a predetermined pitch T, and a shaking current (frequency: 200 Hz) was applied. The size of the outer shape of the ring-shaped magnetic plate 10 represents the length of the central axis of the annular magnetic circuit.

図2(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図2(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図2(D)は図2(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図2(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。この場合の導線コイル25は,図2(B)及び(D)に示すように相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定した。図2(C)及び(E)に示す各コイル(以下,1段コイルということがある)20は,発生する磁場の相殺効果を考慮して,磁性体回路の断面の重心に対して点対称の位置に配置されており,断面の大きさは50mm×5mmである。   2B shows a plan view parallel to the XY plane of the open type magnetic shield structure 5z, and FIG. 2C shows a cross-sectional view parallel to the YZ plane of the open type magnetic shield structure 5z. 2D is a schematic plan view of the coil current obtained by enlarging the ellipse D portion of FIG. 2B, and FIG. 2E is a schematic side view of the coil current viewed from the annular axis direction of the ring-shaped magnetic plate 10. The figure is shown. As shown in FIGS. 2B and 2D, the conductive coil 25 in this case is not continuous with each other, and a closed circuit independent of each other at each winding position at a predetermined pitch T interval is assumed. Each coil 20 (hereinafter also referred to as a single-stage coil) 20 shown in FIGS. 2C and 2E is point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit circuit in consideration of the canceling effect of the generated magnetic field. The cross-sectional size is 50 mm × 5 mm.

また,比較のため,図6に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル25を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加する実験を行った。図6に示す各コイル(以下,5段コイルということがある)20も相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定し,断面の大きさは50mm×805mmである。図2の1段コイルと図6の5段コイルとにそれぞれシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーション(三次元非線形磁場解析)により求めた。   For comparison, as shown in FIG. 6, a conducting coil 25 is wound around a five-step annular magnetic plate 10 (magnetic circuit) of an open magnetic shield structure 5z and wound at a predetermined pitch T to obtain a shaking current (frequency 200 Hz). ) Was applied. Each coil (hereinafter also referred to as a five-stage coil) 20 shown in FIG. 6 is not continuous with each other, and assumes a closed circuit independent at each winding position with a predetermined pitch T interval. Is 50 mm × 805 mm. Shaking currents were applied to the 1-stage coil of FIG. 2 and the 5-stage coil of FIG. 6, respectively, and the generated magnetic field inside the coil and the leakage magnetic field outside the coil were obtained by numerical simulation (three-dimensional nonlinear magnetic field analysis).

なお本実験では,図2の1段コイルと図6の5段コイルとで磁性体回路のシェイキング強度を揃えるため,環帯状磁性板10の内部に誘起される磁束密度が一致するように1段コイル及び5段コイルのシェイキング電流を設定した。すなわち,図2の1段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は19.6mTであるのに対し,図6の5段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は,1段目及び5段目では38.7mT,2段目〜4段目では57.8mTとなり,何れも1段コイルより大きくなった。これは5段コイルが各段の磁性体回路の間に跨っており,電流路が長いことに起因する。そのため,2段目〜4段目の磁束密度が1段コイルの19.6mTと一致するように,5段コイルに印加するシェイキング電流の電流値を0.339Aと設定した。   In this experiment, in order to make the shaking strength of the magnetic circuit uniform between the one-stage coil shown in FIG. 2 and the five-stage coil shown in FIG. 6, the one-stage coil so that the magnetic flux densities induced inside the annular magnetic plate 10 match. The shaking current of the coil and the 5-stage coil was set. That is, when a 1 A shaking current is applied to the 1-stage coil of FIG. 2, the magnetic flux density at the center of each side of the magnetic circuit of each stage is 19.6 mT, whereas the 1-A shaking is applied to the 5-stage coil of FIG. The magnetic flux density at the center of each stage of the magnetic circuit at each stage when current is applied is 38.7 mT in the first and fifth stages, and 57.8 mT in the second to fourth stages. It became bigger. This is due to the fact that the 5-stage coil straddles between the magnetic circuit of each stage and the current path is long. For this reason, the current value of the shaking current applied to the 5-stage coil was set to 0.339 A so that the magnetic flux density of the second to fourth stages coincided with 19.6 mT of the first-stage coil.

図4(A)及び(B)は,図2の1段コイル外側の漏洩磁場を,図2(B)及び(C)に示す開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図7(A)及び(B)は,図6の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。なお,図4及び図7はそれぞれ磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示しており,磁性体回路が存在する場合は,シェイキング電流により磁化された磁性体から発生する磁場が重畳されるため評価対象域Rの磁場分布は大きくなる。ただし,磁性体の種類,厚さ(積層枚数),大きさなどにより重畳される値は様々に変わるため,シェイキングコイルから発生する磁場のみを評価するためには,磁性体回路のないコイルのみの漏洩磁場を考慮することが有効である。   4 (A) and 4 (B) show the magnetic field distribution of the magnetic field distribution in the evaluation target region R inside the open type magnetic shield structure shown in FIGS. 2 (B) and 2 (C). It is represented as a figure / vector diagram. FIGS. 7A and 7B show the leakage magnetic field outside the five-stage coil in FIG. 6 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target region R. FIG. 4 and 7 each show a leakage magnetic field when only a coil having no magnetic circuit is arranged. When a magnetic circuit is present, the magnetic field generated from the magnetic material magnetized by the shaking current is shown. Is superimposed, the magnetic field distribution in the evaluation target region R becomes large. However, the superimposed value varies depending on the type, thickness (number of stacked layers), size, etc. of the magnetic material. Therefore, in order to evaluate only the magnetic field generated from the shaking coil, It is effective to consider the leakage magnetic field.

1段コイルの作る図4の磁場分布と,5段コイルの作る図7の磁場分布とを比較すると,1段コイルのほうが1/13程度小さくなっていることが分かる。また,いずれの場合も,漏洩磁場は水平成分のみであり,垂直方向の磁場は殆ど漏洩していないことが分かる。この理由は,図2(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Ib,Ic,Idは磁性体回路の断面の重心に対して点対称の位置(環状軸方向から見て点対称の位置)にあり,同じ大きさで方向が異なるため,電流Ia及びIcから発生する磁場(垂直成分)は打ち消し合ってゼロとなり,電流Ib及びIdから発生する磁場(水平成分)のみが評価対象域Rに漏洩するからである。5段コイルは,電流値は小さいにも拘わらず,磁場の水平成分を誘起する垂直電流路が長いため,漏洩磁場が大きくなっている。もっとも垂直方向の漏洩磁場についても,コイル近傍(評価対象域Rの周縁)では比較的大きいが,コイルから離れるに従って打ち消し合う効果が高まり,評価対象域Rの中心部(磁気シールド対象空間の中心部)では一気に小さくなっている。   Comparing the magnetic field distribution of FIG. 4 produced by the single-stage coil with the magnetic field distribution of FIG. 7 produced by the five-stage coil, it can be seen that the single-stage coil is about 1/13 smaller. In either case, the leakage magnetic field is only the horizontal component, and it can be seen that the magnetic field in the vertical direction hardly leaks. The reason for this is that the currents Ia, Ib, Ic, Id flowing through the coil are point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit, as can be seen from the schematic diagrams of the coil currents shown in FIGS. Because it is in a position (a point-symmetrical position when viewed from the annular axis direction), and has the same magnitude and different directions, the magnetic fields (vertical components) generated from the currents Ia and Ic cancel each other and become zero, and are generated from the currents Ib and Id. This is because only the magnetic field (horizontal component) to be leaked to the evaluation target region R. Although the 5-stage coil has a small current value, the leakage magnetic field is large because the vertical current path for inducing the horizontal component of the magnetic field is long. Of course, the leakage magnetic field in the vertical direction is relatively large in the vicinity of the coil (periphery of the evaluation target area R), but the effect of canceling out increases as the distance from the coil increases, and the central part of the evaluation target area R (the central part of the magnetic shield target space) ) Is getting smaller at once.

図4及び図7の磁場分布の比較から,図2のように開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ環状軸に沿って導線コイル25を巻き付けてシェイキング電流を印加することにより,導線コイル25の外側に漏洩する磁場(シェイキングノイズ)を十分に低減できることが分かる。密閉型磁気シールド構造をシェイキングする場合は図6の5段コイルと同様のコイルが必要であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングの漏洩磁場を小さくできる利点があるといえる。また,図2(E)に示すように,磁性体回路の軸方向から見て点対称の位置に巻き付けた1段コイルは,磁性体回路の内部に軸方向に沿ったシェイキング磁場のみを発生させるので,環帯状磁性板内部の磁束を均等に揺らせることが分かる。   From comparison of the magnetic field distributions of FIGS. 4 and 7, as shown in FIG. 2, a conducting coil 25 is wound around the annular belt-like magnetic plate 10 of each stage of the open magnetic shield structure 5z along the annular axis, and a shaking current is applied. Thus, it can be seen that the magnetic field (shaking noise) leaking to the outside of the conductor coil 25 can be sufficiently reduced. When the sealed magnetic shield structure is shaken, a coil similar to the five-stage coil shown in FIG. 6 is required. Therefore, the open magnetic shield structure can reduce the leakage magnetic field of the magnetic shaking compared to the sealed magnetic shield structure. It can be said that there is an advantage. In addition, as shown in FIG. 2E, a single-stage coil wound around a point-symmetrical position when viewed from the axial direction of the magnetic circuit generates only a shaking magnetic field along the axial direction inside the magnetic circuit. Therefore, it can be seen that the magnetic flux inside the ring-shaped magnetic plate is evenly swayed.

[実験例2]
図2のモデル実験では,環帯状磁性板10の所定ピッチTの巻き付け位置毎に独立した閉回路コイルを巻き付けているが,実際の開放型磁気シールド構造5zの環帯状磁性板10を閉回路コイルでシェイキングすることは難しい。そこで次に,図3のように各段の環帯状磁性板10の環状軸に沿って所定ピッチTで連続的に導線コイル25に巻き付けた場合の漏洩磁場(シェイキングノイズ)を確認するため,上述した実験例1と同様に外形(環状の磁性体回路の中心軸の長さ)950mmの環帯状磁性板10(磁性体回路)を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,図3(B)及び(C)に示すように5段の環帯状磁性板10の環状軸方向にそれぞれ所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に導線コイル25を巻き付けてシェイキング電流(周波数200Hz)を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。図3(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図3(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図3(D)は図3(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図3(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。
[Experiment 2]
In the model experiment of FIG. 2, an independent closed circuit coil is wound for each winding position of the ring-shaped magnetic plate 10 at a predetermined pitch T. However, the actual ring-shaped magnetic plate 10 of the open magnetic shield structure 5z is closed. Shaking with is difficult. Therefore, in order to confirm the leakage magnetic field (shaking noise) when continuously wound around the conducting coil 25 at a predetermined pitch T along the annular axis of the annular magnetic plate 10 at each stage as shown in FIG. In the same manner as in Experimental Example 1, an annular magnetic plate 10 (magnetic circuit) having an outer shape (the length of the central axis of the annular magnetic circuit) of 950 mm is arranged in five stages at a predetermined interval dz = 200 mm, and an open type magnetic shield structure 5z, and as shown in FIGS. 3B and 3C, each turn (100 mm width for one turn, each side of the ring-shaped magnetic plate (100 mm width) in the direction of the annular axis of the five-step ring-shaped magnetic plate 10 900 mm) and 9 turns), continuously winding the wire coil 25 and applying a shaking current (frequency 200 Hz) to obtain the generated magnetic field inside the coil and the leakage magnetic field outside the coil by numerical simulation. Experiments were carried out. 3B shows a plan view parallel to the XY plane of this open type magnetic shield structure 5z, and FIG. 3C shows a cross-sectional view parallel to the YZ plane of this open type magnetic shield structure 5z. 3D is a schematic plan view of the coil current obtained by enlarging the ellipse D portion of FIG. 3B, and FIG. 3E is a schematic side view of the coil current viewed from the annular axis direction of the ring-shaped magnetic plate 10. The figure is shown.

また,比較のため,図8に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル25を所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に巻き付けてシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えるため,図3の1段コイルに印加するシェイキング電流の電流値を1.414Aと設定し,図8の5段コイルに印加するシェイキング電流の電流値は0.339Aと設定した。   For comparison, as shown in FIG. 8, the conductor coil 25 is put together on a five-stage annular belt-like magnetic plate 10 (magnetic circuit) of the open type magnetic shield structure 5z, and the conductive coil 25 is turned at a predetermined pitch T (100 mm width, one turn). An experiment was performed in which a magnetic field generated inside the coil and a leakage magnetic field outside the coil were respectively obtained by numerical simulation by applying a shaking current by continuously winding the belt-shaped magnetic plate on each side (900 mm, 9 turns). In order to align the magnetic flux density induced inside the ring-shaped magnetic plate 10 with that of Experimental Example 1 (in the case of the single-stage coil in FIG. 2), the current value of the shaking current applied to the single-stage coil in FIG. The current value of the shaking current applied to the 5-stage coil of FIG. 8 was set to 0.339A.

図5(A)及び(B)は,図3の1段コイル外側の漏洩磁場を,開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図9(A)及び(B)は,図8の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。図5及び図9も,実験例1の図4及び図7の場合と同様に,磁性体から発生する磁場の重畳を避けるため,磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示している。   5A and 5B show the leakage magnetic field outside the first stage coil of FIG. 3 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target region R inside the open type magnetic shield structure. FIGS. 9A and 9B show the leakage magnetic field outside the five-stage coil of FIG. 8 as a contour diagram and vector diagram of the magnetic field distribution in the evaluation target region R. FIG. 5 and 9 also show the leakage magnetic field when only the coil having no magnetic material circuit is arranged in order to avoid the superposition of the magnetic field generated from the magnetic material, as in the case of FIGS. Show.

1段コイルの作る図5の磁場分布と,5段コイルの作る図9の磁場分布とを比較すると,何れも漏洩磁場は垂直成分が支配的であり,1段コイルのほうが30倍程度大きくなっていることが分かる。この理由は,図3(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Icは同じ大きさであるがXY平面上で方向が異なっているため,発生する磁場の垂直成分を打ち消し合う効果が不十分となるからである。図9の5段コイルでは,電流Ia,Icが離れているのである程度の打ち消し効果が見られるが,図5の1段コイルでは漏洩磁場の垂直成分が大きくなっている。なお,コイルに流れる電流Ib,IdもY軸方向で位置がずれているが,漏洩磁場(水平成分)への影響は比較的小さい。   Comparing the magnetic field distribution of FIG. 5 made by the single-stage coil with the magnetic field distribution of FIG. 9 made by the five-stage coil, the leakage magnetic field has a dominant vertical component, and the single-stage coil is about 30 times larger. I understand that The reason for this is that, as can be seen from the schematic diagrams of the coil currents shown in FIGS. 3D and 3E, the currents Ia and Ic flowing through the coils have the same magnitude but different directions on the XY plane. This is because the effect of canceling out the vertical component of the generated magnetic field is insufficient. In the five-stage coil of FIG. 9, the currents Ia and Ic are separated, so that a certain amount of cancellation effect is seen. However, the vertical component of the leakage magnetic field is large in the one-stage coil of FIG. The positions of the currents Ib and Id flowing through the coils are also shifted in the Y-axis direction, but the influence on the leakage magnetic field (horizontal component) is relatively small.

図5及び図9の磁場分布の比較から,開放型磁気シールド構造の磁性体回路に所定ピッチT(100mm幅で1ターン)で連続的に導線コイル25を巻き付けてシェイキング電流を印加した場合は,図8の5段コイルの漏洩磁場よりも図3の1段コイルの漏洩磁場が大きくなることが分かる。すなわち,図3のように環帯状磁性板10の環状軸方向から見て点対称の位置にシェイキング電流を流す1段コイルは,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を効率的に発揮させるために有効であるが,シェイキング電流に伴う漏洩磁場(シェイキングノイズ)によって磁気環境が劣化することが懸念される。   From the comparison of the magnetic field distributions in FIGS. 5 and 9, when a conducting current is applied by continuously winding the conducting coil 25 at a predetermined pitch T (one turn with a width of 100 mm) around a magnetic circuit having an open type magnetic shield structure, It can be seen that the leakage magnetic field of the first stage coil of FIG. 3 is larger than the leakage magnetic field of the five stage coil of FIG. That is, as shown in FIG. 3, the one-stage coil for passing a shaking current at a point-symmetrical position when viewed from the annular axis direction of the ring-shaped magnetic plate 10 uniformly shakes the magnetic flux inside the ring-shaped magnetic plate 10 to achieve the magnetic shaking effect. However, there is a concern that the magnetic environment may deteriorate due to the leakage magnetic field (shaking noise) accompanying the shaking current.

なお,図3の開放型磁気シールド構造5zでは,5段配置の環帯状磁性板10にそれぞれ導線コイル25を連続的に巻き付け,そのコイル20の一端及び他端を入出力ライン20a,20bに接続し,交流電源であるコイル駆動装置30から入出力ライン20a,20bにシェイキング電流を印加している。この場合に,各段の磁性体回路に巻き付けたコイル20と共に入出力ライン20a,20bからの磁場の漏洩も問題となりうるが,図示例のように入出力ライン20a,20bを隣接させて平行に配置することにより,入出力ライン20a,20bの発生磁場を逆向きの入出力電流によって打ち消して漏洩磁場を小さく抑えることができる。必要に応じて出力ライン20a,20bを撚ることにより打ち消し効果を高めることも有効である。ただし,導線コイル25は,図示例のように複数段の環帯状磁性板10に連続的に巻き付ける必要はなく,少なくとも1つの段において連続していれば足りる。その場合は,段毎にコイル駆動装置30を設けて段毎の導線コイル25にシェイキング電流を個別に印加する。   In the open type magnetic shield structure 5z shown in FIG. 3, the conductive coil 25 is continuously wound around the annular belt-like magnetic plate 10 arranged in five stages, and one end and the other end of the coil 20 are connected to the input / output lines 20a and 20b. In addition, a shaking current is applied to the input / output lines 20a and 20b from the coil driving device 30 which is an AC power supply. In this case, leakage of the magnetic field from the input / output lines 20a and 20b together with the coil 20 wound around the magnetic circuit at each stage may be a problem, but the input / output lines 20a and 20b are adjacent to each other in parallel as in the illustrated example. By disposing, the magnetic field generated in the input / output lines 20a and 20b can be canceled by the input / output current in the reverse direction, and the leakage magnetic field can be kept small. It is also effective to enhance the cancellation effect by twisting the output lines 20a and 20b as necessary. However, the conductor coil 25 does not need to be continuously wound around the plurality of stages of the annular belt-like magnetic plate 10 as in the illustrated example, and it is sufficient if it is continuous in at least one stage. In that case, a coil driving device 30 is provided for each stage, and a shaking current is individually applied to the conductive coil 25 for each stage.

[実験例3]
図3のように各段の環帯状磁性板10の各辺に所定ピッチTで連続的に導線コイル25に巻き付けた開放型磁気シールド構造5zにおいて,図3(D)及び(E)に示す所定ピッチTの導線コイル25のコイル電流Ia,Icを,図2(D)及び(E)に示す導線コイル25のコイル電流Ia,IcのようにXY平面上で近付ければ,図3の1段コイル20の作る図5の磁場分布を,図2の1段コイル20の作る図4の磁場分布に近付けて漏洩磁場を低減することが期待できる。そこで,図3の環帯状磁性板10の各辺(900mm)に連続的に巻き付ける導線コイル25の所定ピッチTを,(a)100mm(900mm幅で9ターン),(b)50mm(900mm幅では18ターン),(c)20mm(900mm幅では45ターン),(d)10mm(900mm幅では90ターン)と変えながら,評価対象域Rの漏洩磁場を数値シミュレーションにより順次求める実験を繰り返した。
[Experiment 3]
As shown in FIG. 3, in the open type magnetic shield structure 5z continuously wound around the conductor coil 25 at a predetermined pitch T around each side of the annular belt-like magnetic plate 10 in each step, the predetermined shown in FIGS. 3 (D) and 3 (E). If the coil currents Ia and Ic of the conductor coil 25 having the pitch T are brought close to each other on the XY plane like the coil currents Ia and Ic of the conductor coil 25 shown in FIGS. It can be expected that the magnetic field distribution of FIG. 5 made by the coil 20 is brought close to the magnetic field distribution of FIG. 4 made by the single-stage coil 20 of FIG. 2 to reduce the leakage magnetic field. Therefore, the predetermined pitch T of the conductive coil 25 continuously wound around each side (900 mm) of the ring-shaped magnetic plate 10 of FIG. 3 is (a) 100 mm (900 mm width 9 turns), (b) 50 mm (900 mm width) 18 turns), (c) 20 mm (45 turns for a 900 mm width), and (d) 10 mm (90 turns for a 900 mm width), and the experiment for sequentially obtaining the leakage magnetic field in the evaluation target region R by numerical simulation was repeated.

導線コイル25の所定ピッチTに拘わらず,環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えると,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは1.118A,(c)20mmのときは1.020A,(d)10mmのときは1.005Aとなる。また,所定ピッチTを小さくするとターン数(巻き数)が多くなるので,ターン数の増加に応じてシェイキング電流の電流値を小さくすることにより,シェイキングノイズの漏洩を更に低減することが期待できる。   Regardless of the predetermined pitch T of the conductor coil 25, when the magnetic flux density induced in the ring-shaped magnetic plate 10 is aligned with that of Experimental Example 1 (in the case of the one-stage coil in FIG. 2), (a) the predetermined pitch T = 100 mm In this case, the current value of the shaking current is 1.414 A, (b) 50 mm is 1.118 A, (c) 20 mm is 1.020 A, and (d) 10 mm is 1.005 A. Moreover, since the number of turns (the number of turns) increases when the predetermined pitch T is reduced, it is expected that the leakage of the shaking noise can be further reduced by reducing the current value of the shaking current as the number of turns increases.

一般に環帯状磁性板10の内部をシェイキングするために必要なシェイキング電流(励磁電流)は,巻き付けた導線コイル25の電流値(A)×ターン数(T)=アンペアターン(AT)で表すことができる。そこで本実験では,導線コイル25の所定ピッチTに拘わらず,ターン数を考慮してアンペアターン(AT)が実験例1(図2の1段コイルの場合)と一致するように,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは0.559A,(c)20mmのときは0.204A,(d)10mmのときは0.100Aに設定した。本実験の結果を表1に示す。   In general, the shaking current (excitation current) necessary for shaking the inside of the ring-shaped magnetic plate 10 can be expressed by the current value (A) of the wound conductive coil 25 × the number of turns (T) = ampere turns (AT). it can. Therefore, in this experiment, (a) so that the ampere turn (AT) matches the experimental example 1 (in the case of the one-stage coil in FIG. 2) in consideration of the number of turns regardless of the predetermined pitch T of the conductor coil 25. When the predetermined pitch T = 100 mm, the current value of the shaking current is 1.414 A, (b) 0.559 A when 50 mm, (c) 0.204 A when 20 mm, and (d) 0.100 A when 10 mm. Set to. The results of this experiment are shown in Table 1.

表1の5段コイル(連続)の欄は,図8のように5段の環帯状磁性板10に所定ピッチ100mmで連続的に巻き付けた導線コイル25の評価対象域Rにおける漏洩磁場を示す。また表1の1段コイル(連続)の漏洩磁場の平均値欄は,図3の1段導線コイル25の所定ピッチTを100mm,50mm,20mm,10mmと切り替えたときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。表1の5段コイル(連続)との比率欄から分かるように,図3の1段コイルのつくる水平面及び垂直面の漏洩磁場はともに,図8の5段コイルのつくる水平面及び垂直面の漏洩磁場よりも大きいが,1段コイルの所定ピッチTを小さく(ターン数を大きく)するとコイル電流Ia,IcがXY平面において接近するので(図3(D)及び(E)参照),漏洩磁場の打ち消し率を高めて水平面及び垂直面の漏洩磁場を何れも低減することができる。   The column of 5-step coil (continuous) in Table 1 shows the leakage magnetic field in the evaluation target region R of the conductive coil 25 continuously wound around the 5-step ring-shaped magnetic plate 10 at a predetermined pitch of 100 mm as shown in FIG. In addition, the average value field of the leakage magnetic field of the first stage coil (continuous) in Table 1 shows the leakage of the evaluation target area R when the predetermined pitch T of the first stage coil 25 in FIG. 3 is switched to 100 mm, 50 mm, 20 mm, and 10 mm. The average value of the magnetic field in the horizontal plane and the change in the average value in the vertical plane are shown. As can be seen from the ratio column with the 5-stage coil (continuous) in Table 1, both the horizontal and vertical leakage magnetic fields produced by the 1-stage coil in FIG. 3 are leaked from the horizontal and vertical planes produced by the 5-stage coil in FIG. Although it is larger than the magnetic field, if the predetermined pitch T of the one-stage coil is decreased (the number of turns is increased), the coil currents Ia and Ic approach in the XY plane (see FIGS. 3D and 3E). It is possible to increase the cancellation rate and reduce both the horizontal and vertical leakage magnetic fields.

表1から,磁気シールド空間1を囲む環帯状磁性板10の各段に軸方向に沿って導線コイル(1段コイル)20を所定ピッチTで巻き付け,導線コイル25外側の漏洩磁場が打ち消されるように導線コイル25の所定巻き付けピッチTを設定することにより,環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると同時に,磁気シールド空間1への漏洩磁場(シェイキングノイズ)を小さく抑えられることが分かる。ただし,1段コイルの所定ピッチTを10mmにまで小さくしても,漏洩磁場は所定ピッチが100mmの5段コイルよりも小さくならないので,漏洩磁場を更に低減するためにはピッチの設定以外の対策が求められる。   From Table 1, a wire coil (one-stage coil) 20 is wound around each step of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 along the axial direction at a predetermined pitch T so that the leakage magnetic field outside the wire coil 25 is canceled out. By setting a predetermined winding pitch T of the conductive coil 25, the magnetic properties inside the ring-shaped magnetic plate 10 are evenly swayed to improve the magnetic characteristics efficiently and at the same time, the leakage magnetic field (shaking) to the magnetic shield space 1 is improved. It can be seen that (noise) can be kept small. However, even if the predetermined pitch T of the first stage coil is reduced to 10 mm, the leakage magnetic field does not become smaller than that of the five-stage coil having a predetermined pitch of 100 mm. Therefore, in order to further reduce the leakage magnetic field, measures other than the pitch setting are required. Is required.

もっとも,表1は図3のモデル実験による漏洩磁場のシミュレーション結果であり,モデルが異なれば漏洩磁場も異なってくる。図3のモデル実験は比較的小型であるため漏洩磁場が大きくなっているが,磁気シールド空間1の大きさが変わると距離減衰効果によって漏洩磁場は低下し,通常の医療施設や研究施設の磁気シールドルームのサイズまで大きくすると漏洩磁場は大幅に低下するものと考えられる。すなわち,設計条件及び要求性能に応じて導線コイル25の所定ピッチTを適切に設定すれば,図3のように環帯状磁性板10の各段に所定ピッチTで連続的に導線コイル25に巻き付けたシェイキング式開放型磁気シールド構造は十分に実用化可能である。   However, Table 1 shows the simulation result of the leakage magnetic field by the model experiment of FIG. 3, and the leakage magnetic field differs depending on the model. Although the model experiment of FIG. 3 is relatively small, the leakage magnetic field is large. However, when the size of the magnetic shield space 1 is changed, the leakage magnetic field is reduced by the distance attenuation effect, and the magnetic field of a normal medical facility or research facility is reduced. It is considered that the leakage magnetic field is greatly reduced when the size of the shield room is increased. That is, if the predetermined pitch T of the conductor coil 25 is appropriately set according to the design conditions and the required performance, the conductor coil 25 is continuously wound around each stage of the ring-shaped magnetic plate 10 at the predetermined pitch T as shown in FIG. The shaking type open type magnetic shield structure is sufficiently practical.

[実験例4]
実験例3で確認したように,磁気シールド空間1を囲む環帯状磁性板10の各段に導線コイル25を連続的に巻き付けた開放型磁気シールド構造5zは比較的大きなシェイキングノイズ(垂直成分)を漏洩することから,図1(A)に示すように,外形(中心軸の長さ)950mmの環帯状磁性板10(磁性体回路)を5段配置した開放型磁気シールド構造5zにおいて,各環帯状磁性板10の環状軸方向に分散した複数の所定部位(各辺3箇所の部位)にそれぞれ導線コイルユニット20を環状軸と実質上直角向きに同じ右巻き又は左巻きで3ターン巻き付けることにより取り付け,巻き付け部の両端22a,22bを平行に隣接させて引き出してコイル駆動装置30により同じ向きのシェイキング電流I1(周波数200Hz)を印加した場合の漏洩磁場(シェイキングノイズ)を数値シミュレーションにより求める実験を行った。各導線コイルユニット20の引き出し部22a,22bは,図1(E)のように撚り線として引き出してコイル駆動装置30に並列に接続した。
[Experimental Example 4]
As confirmed in Experimental Example 3, the open type magnetic shield structure 5z in which the conductive coil 25 is continuously wound around each stage of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 generates relatively large shaking noise (vertical component). 1A. As shown in FIG. 1A, each ring has an open magnetic shield structure 5z in which an annular band-shaped magnetic plate 10 (magnetic circuit) having an outer shape (the length of the central axis) of 950 mm is arranged in five stages. A plurality of predetermined portions (three portions on each side) dispersed in the direction of the annular axis of the belt-like magnetic plate 10 are attached by winding the conductive coil unit 20 by three turns with the same right or left turn substantially perpendicular to the annular shaft. , Both ends 22a and 22b of the winding part are pulled out adjacent to each other in parallel, and a shaking current I1 (frequency: 200 Hz) in the same direction is applied by the coil driving device 30. Leakage magnetic field when (shaking noise) Experiments were conducted to determine the numerical simulation. The lead portions 22a and 22b of each conductor coil unit 20 were drawn out as stranded wires and connected in parallel to the coil driving device 30 as shown in FIG.

本実験においても,アンペアターン(AT)が実験例1(図2の1段コイルの場合)及び実験例3(図3の1段コイルの場合)と一致するように,シェイキング電流(励磁電流)の電流値を設定した。すなわち,図1(A)では環帯状磁性板10の各辺(900mm)あたり9ターンであることから,実験例1及び実験例3と同様にシェイキング電流(励磁電流)が9ATとなるように,各導線コイルユニット20に流す電流値を1Aに設定した。シェイキング電流の大きさを変更する場合は,各導線コイルユニット20に流す電流値により調整できるが,各所定部位における導線コイルユニット20の巻き数(ターン数)により調整することも可能であり,各環帯状磁性板10における導線コイルユニット20の取り付け部位の増減により調整することも可能である。本実験の結果を,上述した実験例3の結果と共に表1に合わせて示す。   Also in this experiment, the shaking current (excitation current) was set so that the ampere turn (AT) coincided with Experimental Example 1 (in the case of the single-stage coil in FIG. 2) and Experimental Example 3 (in the case of the single-stage coil in FIG. 3). The current value was set. That is, in FIG. 1A, since there are 9 turns per side (900 mm) of the ring-shaped magnetic plate 10, the shaking current (excitation current) is 9AT as in Experimental Example 1 and Experimental Example 3. The current value flowing through each conductor coil unit 20 was set to 1A. When changing the magnitude of the shaking current, it can be adjusted by the value of the current passed through each conductor coil unit 20, but it can also be adjusted by the number of turns (number of turns) of the conductor coil unit 20 at each predetermined part. It can also be adjusted by increasing or decreasing the attachment site of the conductive wire coil unit 20 in the ring-shaped magnetic plate 10. The results of this experiment are shown in Table 1 together with the results of Experimental Example 3 described above.

表1のコイル分散(上下2欄のうち上側欄)の漏洩磁場の平均値欄は,図1(A)のように各環帯状磁性板10の環状軸方向に分散して取り付けた導線コイルユニット20に同じ向きのシェイキング電流I1を印加したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示す。表1の5段コイル(連続)との比率欄から分かるように,図1(A)のように環帯状磁性板10に分散させた導線コイルユニット20のつくる漏洩磁場は,水平面及び垂直面共に図8の5段コイルのつくる漏洩磁場の0.02以下(1/50以下)であり,図3のように環帯状磁性板10に連続的に巻き付けた導線コイル25のつくる漏洩磁場に比して十分に小さくできることを示している。   The average value field of the leakage magnetic field of the coil dispersion (upper and lower two columns) in Table 1 is a conducting coil that is distributed and attached in the direction of the annular axis of each ring-shaped magnetic plate 10 as shown in FIG. The change of the average value in the horizontal plane of the leakage magnetic field of the evaluation object area | region R when the shaking current I1 of the same direction is applied to the unit 20 is shown, respectively. As can be seen from the ratio column with the 5-stage coil (continuous) in Table 1, the leakage magnetic field produced by the conductive coil unit 20 dispersed in the ring-shaped magnetic plate 10 as shown in FIG. 8 is 0.02 or less (1/50 or less) of the leakage magnetic field produced by the five-stage coil of FIG. 8, and compared with the leakage magnetic field produced by the conductive coil 25 continuously wound around the ring-shaped magnetic plate 10 as shown in FIG. It can be made small enough.

本実験により,環帯状磁性板10の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付けてシェイキング電流I1を流すことにより,環帯状磁性板10のシェイキングに伴う漏洩磁場(シェイキングノイズ)を大きく低減できることを確認できた。磁性体回路の環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,磁性体回路の断面の重心に対して点対称で流れる逆向き電流によって巻き付け部からのシェイキングノイズを効率的に打ち消すことができると共に,平行に隣接させて引き出した引き出し部22a,22bを流れる逆向き電流によって巻き付け部以外からのシェイキングノイズも効率的に打ち消すことができたからと考えられる。   According to this experiment, the conducting coil unit 20 is wound around a plurality of portions dispersed in the direction of the annular axis of the annular magnetic plate 10 in a direction substantially perpendicular to the annular axis, and a shaking current I1 is caused to flow, whereby the shaking of the annular magnetic plate 10 is performed. It was confirmed that the leakage magnetic field (shaking noise) associated with the can be greatly reduced. The conducting coil unit 20 wound substantially perpendicularly to the annular axis of the magnetic circuit effectively cancels the shaking noise from the winding part by a reverse current that flows symmetrically with respect to the center of gravity of the cross section of the magnetic circuit. This is considered to be because the shaking current from other than the winding portion can be effectively canceled by the reverse current flowing through the lead portions 22a and 22b drawn adjacently in parallel.

この実験結果から,図1のシェイキング式開放型磁気シールド構造によれば,磁性体内側の磁束を均等に揺らして磁気特性を効率的に向上させつつ,磁気シールドルーム内への漏洩磁場を十分小さく抑えることができ,遮蔽性能を確実且つ大幅に向上させることができる。また,磁気シールド空間1の大きさが変わると距離減衰効果によって漏洩磁場は低下するので,通常の医療施設や研究施設の磁気シールドルームに適用した場合の漏洩磁場は極めて小さくなると考えられる。設計条件及び要求性能に応じて導線コイルユニット20の巻き付け部位(取り付けピッチ),巻き付け回数(ターン数),印加するシェイキング電流の電流値及び向きを適切に設定することにより,外乱磁場変動を1nT以下に制御した磁気シールドルームを実現することができる。   From this experimental result, according to the shaking type open-type magnetic shield structure of FIG. 1, the magnetic field inside the magnetic material is evenly swayed to improve the magnetic characteristics efficiently, and the leakage magnetic field into the magnetic shield room is made sufficiently small. The shielding performance can be surely and greatly improved. Further, if the size of the magnetic shield space 1 is changed, the leakage magnetic field is reduced due to the distance attenuation effect. Therefore, it is considered that the leakage magnetic field when applied to a magnetic shield room of a normal medical facility or research facility is extremely small. By appropriately setting the winding part (mounting pitch), the number of windings (number of turns), the current value and direction of the applied shaking current according to the design conditions and required performance, the disturbance magnetic field fluctuation is 1 nT or less. A magnetically shielded room can be realized.

[実験例5]
上述したように,図1のように環帯状磁性板10の各段に環状軸と実質上直角向きに導線コイルユニット20を巻き付けてシェイキング電流I1を流すことにより,シェイキングノイズを十分小さく抑えることができるが,環帯状磁性板10の隣接する段毎に漏洩するシェイキングノイズを逆向きとすれば,隣接する段毎の漏洩磁場を互いに打ち消すことで磁気シールド空間1へのシェイキングノイズの漏洩を更に低減することが期待できる。このことを確認するため,図10(A)に示すように,環帯状磁性板10の各段に導線コイルユニット20を同じ右巻き又は左巻きとなるように巻き付けたうえで,コイル駆動装置30a,30bにより環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2(周波数200Hz)を印加し,磁気シールド空間1の漏洩磁場を数値シミュレーションにより求める実験を行った。本実験の結果を,上述した実験例4の結果と共に表1に合わせて示す。
[Experimental Example 5]
As described above, as shown in FIG. 1, the conducting coil unit 20 is wound around each stage of the ring-shaped magnetic plate 10 in a direction substantially perpendicular to the annular shaft, and the shaking current I1 is caused to flow, so that the shaking noise can be suppressed sufficiently small. However, if the shaking noise leaking at each adjacent stage of the ring-shaped magnetic plate 10 is reversed, the leakage of the shaking noise to the magnetic shield space 1 is further reduced by canceling out the leakage magnetic fields at the adjacent stages. You can expect to. In order to confirm this, as shown in FIG. 10 (A), the conductor coil unit 20 is wound around each stage of the ring-shaped magnetic plate 10 so as to be the same right-handed or left-handed, and then the coil driving device 30a, An experiment was performed to apply the shaking currents I1 and I2 (frequency 200 Hz) in opposite directions to the adjacent stages of the ring-shaped magnetic plate 10 by 30b, and to obtain the leakage magnetic field in the magnetic shield space 1 by numerical simulation. The results of this experiment are shown in Table 1 together with the results of Experimental Example 4 described above.

表1のコイル分散(上下2欄のうち下側欄)の漏洩磁場の平均値欄は,図10(A)のように環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2を印加したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。表1の5段コイル(連続)との比率欄から分かるように,図10(A)の漏洩磁場は,水平面及び垂直面共に図8の5段コイルのつくる漏洩磁場の0.05以下(1/200以下)であり,図1(A)のように環帯状磁性板10の各段に同じ向きのシェイキング電流I1を印加した場合に比して漏洩磁場(シェイキングノイズ)を1/4程度に小さくできることを示している。   The average value field of the leakage magnetic field of the coil dispersion (the lower column among the upper and lower columns) in Table 1 is the shaking current I1, which is reversed for each adjacent stage of the ring-shaped magnetic plate 10 as shown in FIG. The average value in the horizontal plane and the change in the average value in the vertical plane of the leakage magnetic field in the evaluation target region R when I2 is applied are shown. As can be seen from the ratio column with the five-stage coil (continuous) in Table 1, the leakage magnetic field in FIG. 10 (A) is 0.05 or less of the leakage magnetic field produced by the five-stage coil in FIG. As shown in FIG. 1A, the leakage magnetic field (shaking noise) is reduced to about 1/4 compared to the case where the shaking current I1 in the same direction is applied to each stage of the ring-shaped magnetic plate 10 as shown in FIG. It shows that it can be made smaller.

また,図10(B)に示すように,環帯状磁性板10の隣接する段毎に導線コイルユニット20を逆の右巻き又は左巻きとなるように巻き付けたうえで,コイル駆動装置30により環帯状磁性板10の各段に同じ向きのシェイキング電流を印加し,磁気シールド空間1の漏洩磁場を数値シミュレーションにより求める実験を行った。本実験の結果も,上述した表1のコイル分散(上下2欄のうち下側欄)と同様であった。これらの実験結果から,磁気シールド空間1を囲む環帯状磁性板10の各段に印加するシェイキング電流I1の向き又は環帯状磁性板10の各段に巻き付ける導線コイルユニット20の巻き付け向きを逆向きとすることにより,隣接する段毎の漏洩磁場を互いに打ち消すことで磁気シールド空間1へのシェイキングノイズの漏洩を低減できることを確認できた。   Further, as shown in FIG. 10B, the conductive coil unit 20 is wound around the adjacent stages of the ring-shaped magnetic plate 10 so as to be reversed right-handed or left-handed, and then the coil driving device 30 forms the ring-band-shaped. An experiment was performed in which a shaking current in the same direction was applied to each stage of the magnetic plate 10 and the leakage magnetic field in the magnetic shield space 1 was obtained by numerical simulation. The result of this experiment was also the same as the coil dispersion in Table 1 described above (the lower column of the upper and lower columns). From these experimental results, the direction of the shaking current I1 applied to each stage of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 or the winding direction of the lead coil unit 20 wound around each stage of the ring-shaped magnetic plate 10 is reversed. By doing so, it was confirmed that the leakage of shaking noise to the magnetic shield space 1 can be reduced by canceling out the leakage magnetic fields of adjacent stages.

こうして本発明の目的である「シェイキングノイズの漏洩を小さく抑えることができる低漏洩シェイキング式開放型磁気シールド構造」の提供を達成できる。   Thus, it is possible to achieve the “low leakage shaking type open magnetic shield structure capable of suppressing the leakage of shaking noise”, which is an object of the present invention.

図1の開放型磁気シールド構造5zは主にXY平面の一方向又は二方向の外乱磁場の遮蔽を目的としているが,外乱磁場の方向が決まっていない磁気シールド対象空間1において三方向の外乱磁場を遮蔽対象とする場合は,図1の構造を基本ユニットとして,図12(A)〜(C)のような複数ユニットを組み合わせた開放型磁気シールド構造とすることができる。図12は,医療施設や研究施設に設置される各辺外寸2550mmを基本サイズとした立方体形状の開放型磁気シールドルームの一例を示す。   The open magnetic shield structure 5z in FIG. 1 is mainly intended for shielding a disturbance magnetic field in one or two directions in the XY plane, but in a magnetic shield target space 1 in which the direction of the disturbance magnetic field is not determined, the three-way disturbance magnetic field is shown. Can be an open type magnetic shield structure in which a plurality of units as shown in FIGS. 12A to 12C are combined with the structure of FIG. 1 as a basic unit. FIG. 12 shows an example of a cube-shaped open magnetic shield room having a basic size of 2550 mm each outside dimension installed in a medical facility or research facility.

図12(A)は,磁気シールド対象空間1を貫く第1方向軸Az(Z軸)と所定間隔dzで交差する複数段の平行な平面Pz上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた図1と同様の開放型磁気シールド構造5zを示す。また,図12(B)は磁気シールド対象空間1を貫く第2方向軸Ax(X軸)と所定間隔dxで交差する複数段の平行な平面Px上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5xを示し,図12(C)は磁気シールド対象空間1を貫く第3方向軸Ay(Y軸)と所定間隔dyで交差する複数段の平行な平面Py上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5yを示す。磁気シールド対象空間1の周囲に3つの開放型磁気シールド構造5z,5x,5yを入れ子状に配置し,或いは開放型磁気シールド構造5z,5x,5yのうち何れか2つを選択して入れ子状に配置して一体化することにより,三方向の外乱磁場を遮蔽する磁気シールドルームとすることできる。   FIG. 12A shows that the target space 1 is surrounded by a predetermined band width W on a plurality of parallel planes Pz intersecting the first direction axis Az (Z axis) penetrating the magnetic shield target space 1 at a predetermined interval dz. An open type magnetic shield structure 5z similar to that shown in FIG. 1 provided with an annular magnetic plate 10 is shown. FIG. 12B shows the target space 1 with a predetermined band width W on a plurality of parallel planes Px intersecting the second direction axis Ax (X axis) penetrating the magnetic shield target space 1 at a predetermined interval dx. An open type magnetic shield structure 5x provided with a ring-shaped magnetic plate 10 so as to surround is shown. FIG. 12C shows a plurality of crossing with a third direction axis Ay (Y axis) penetrating the magnetic shield target space 1 at a predetermined interval dy. An open type magnetic shield structure 5y is shown in which a ring-shaped magnetic plate 10 is provided so as to surround the target space 1 with a predetermined band width W on each of the parallel planes Py. Three open type magnetic shield structures 5z, 5x, 5y are arranged in a nested manner around the magnetic shield target space 1, or any two of the open type magnetic shield structures 5z, 5x, 5y are selected and nested. It is possible to provide a magnetic shield room that shields disturbance magnetic fields in three directions by arranging and integrating them.

図12(A)〜(C)の環帯状磁性板10は,それぞれコバルト系アモルファス(厚さ23μm×20枚積層,幅50mm)の帯板を井桁状に組んで構成し,例えば所定間隔dz=200mmで12段配置して開放型磁気シールド構造5z,5x,5yとすることができる。開放型磁気シールド構造5z,5xには,同じ帯状磁性板(コバルト系アモルファス)10で構成された扉枠14a,14b,14c,14dで囲まれた開口が設けられ,その開口にPCパーマロイ板(厚さ1mm×2枚積層)の2層(内側,外側)構造の扉12が取り付けられている。   12 (A) to 12 (C), each of the annular belt-shaped magnetic plates 10 is formed by arranging strips of cobalt-based amorphous (thickness 23 μm × 20 layers, width 50 mm) in a cross-beam shape, for example, a predetermined interval dz = The open magnetic shield structures 5z, 5x, and 5y can be formed by arranging 12 stages at 200 mm. Open-type magnetic shield structures 5z and 5x are provided with openings surrounded by door frames 14a, 14b, 14c and 14d made of the same strip-shaped magnetic plate (cobalt-based amorphous) 10, and PC permalloy plates ( A door 12 having a two-layer structure (inner side and outer side) having a thickness of 1 mm × two layers is attached.

開放型磁気シールド構造5z,5x,5yの各段の環帯状磁性板10には,図1,図10,図11の場合と同様にそれぞれ環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付け,その両端22a,22bを平行に隣接させて引き出してコイル駆動装置30と接続し,コイル駆動装置30により各導線コイルユニット20に所定周波数のシェイキング電流を印加して磁気シールド構造5z,5x,5yを磁気シェイキングする。導線コイルユニット20の巻き付け部位(取り付けピッチ),巻き付け回数(ターン数),導線コイルユニット20に印加するシェイキング電流の電流値及び向きは,設計条件や要求性能(求められる磁場環境)に応じて適宜決定することができる。   As in the case of FIGS. 1, 10 and 11, the annular magnetic plate 10 at each stage of the open type magnetic shield structure 5z, 5x, 5y has an annular shaft and substantially a plurality of portions dispersed in the annular axial direction. The conductive wire coil unit 20 is wound in a direction perpendicular to the upper side, and both ends 22a and 22b thereof are drawn out in parallel and connected to the coil driving device 30. The coil driving device 30 applies a shaking current of a predetermined frequency to each conductive wire coil unit 20. Then, the magnetic shielding structures 5z, 5x and 5y are magnetically shaken. The winding part (mounting pitch), the number of windings (number of turns), and the current value and direction of the shaking current applied to the conductive coil unit 20 are appropriately determined according to design conditions and required performance (required magnetic field environment). Can be determined.

[実験例6]
図13(A)は,開口のない開放型磁気シールド構造5yの各段の環帯状磁性板(磁性体回路)10に導線コイルユニット20を所定相互間隔(取り付けピッチ)Tで取り付ける方法の一例を示す。図13(A)において,導線コイルユニット20の巻き付け部位の相互間隔Tにより環帯状磁性板10の内部に誘起される磁束密度の変化を確認するため,導線コイルユニット20の巻き付け部位の相互間隔Tを(a)150mm(一辺の巻き付け部位15箇所),(b)300mm(一辺の巻き付け部位8箇所),(c)525mm(一辺の巻き付け部位5箇所),(d)1050mm(一辺の巻き付け部位3箇所)に切り替えながら,環帯状磁性板10の内部に誘導される磁束密度の分布を数値シミュレーションにより求める実験を行った。
[Experimental Example 6]
FIG. 13A shows an example of a method of attaching the conductive wire coil unit 20 to the annular belt-like magnetic plate (magnetic circuit) 10 in each stage of the open type magnetic shield structure 5y without opening at a predetermined mutual interval (attachment pitch) T. Show. In FIG. 13A, in order to confirm the change in the magnetic flux density induced in the ring-shaped magnetic plate 10 due to the mutual interval T between the winding portions of the conductive coil unit 20, the mutual interval T between the winding portions of the conductive coil unit 20 is confirmed. (A) 150 mm (15 winding parts on one side), (b) 300 mm (8 winding parts on one side), (c) 525 mm (5 winding parts on one side), (d) 1050 mm (3 winding parts on one side) An experiment was conducted to obtain the distribution of the magnetic flux density induced inside the ring-shaped magnetic plate 10 by numerical simulation.

本実験では,相互間隔Tに拘わらず各巻き付け部位に環状軸と実質上直角向きに導線コイルユニット20を8ターン巻き付け(巻き付け回数=8T),図1(C)及び(D)に示すように,各巻き付け部位に幅52mm×高さ5mmの8個の閉回路を2mmピッチで形成した。また,相互間隔Tに拘わらず環帯状磁性板10の内部に誘起される磁束密度が揃えるため,環帯状磁性板(磁性体回路)10の1辺当たりのシェイキング電流(励磁電流)が12ATとなるように,(a)相互間隔T=150mmのときはシェイキング電流I1の電流値を0.1A,(b)300mmのときは0.1875A,(c)525mmのときは0.3A,(d)1050mmのときは0.5Aに設定した。本実験の結果を表2に示す。   In this experiment, regardless of the mutual interval T, the winding coil unit 20 is wound around each winding part in a direction substantially perpendicular to the annular shaft (turning number = 8T), as shown in FIGS. 1C and 1D. , 8 closed circuits each having a width of 52 mm and a height of 5 mm were formed at a pitch of 2 mm at each winding part. Further, since the magnetic flux density induced in the ring-shaped magnetic plate 10 is uniform regardless of the mutual interval T, the shaking current (excitation current) per side of the ring-shaped magnetic plate (magnetic circuit) 10 becomes 12AT. (A) When the mutual interval T = 150 mm, the current value of the shaking current I1 is 0.1 A, (b) 0.1875 A when 300 mm, (c) 0.3 A when 525 mm, (d) When it was 1050 mm, it set to 0.5A. The results of this experiment are shown in Table 2.

表2の磁束密度の欄は,図13(A)の環帯状磁性板(磁性体回路)10において,相互間隔Tを切り替えながら導線コイルユニット20にシェイキング電流を印加したときに,コーナー部を除く磁性体内部に誘起される磁束密度の最大値,最小値,及び最小値を示している。表2から分かるように,導線コイルユニット20の巻き付け部位の相互間隔Tが大きいほど誘起される磁束密度のバラツキ(平均値に対する(最大値−最小値)の割合)も大きくなるが,相互間隔Tが525mm以下であれば磁束密度のバラツキは6%程度以下であり,環帯状磁性板10の内側を均等に揺らして磁気シェイキング効果を得るという観点からは問題ないといえる。それに対して相互間隔Tが1050mmの場合は,磁束密度のバラツキが30%を超えており,環帯状磁性板10の内側を均等に揺らすことが難しくなっている。   The column of magnetic flux density in Table 2 excludes the corner portion when the shaking current is applied to the conductive coil unit 20 while switching the mutual interval T in the ring-shaped magnetic plate (magnetic circuit) 10 of FIG. The maximum value, minimum value, and minimum value of the magnetic flux density induced inside the magnetic material are shown. As can be seen from Table 2, the variation in the induced magnetic flux density (ratio of (maximum value−minimum value) to the average value) increases as the mutual interval T between the winding portions of the conductor coil unit 20 increases. Is 525 mm or less, the variation in magnetic flux density is about 6% or less, and it can be said that there is no problem from the viewpoint of obtaining a magnetic shaking effect by uniformly shaking the inner side of the ring-shaped magnetic plate 10. On the other hand, when the mutual interval T is 1050 mm, the variation in the magnetic flux density exceeds 30%, and it is difficult to evenly shake the inside of the ring-shaped magnetic plate 10.

本実験により,環帯状磁性板10の各段の導線コイルユニット20の巻き付け部位の相互間隔Tは,環帯状磁性板10の内部に誘起されるシェイキング磁場が均等となる範囲,例えば磁束密度のバラツキが6%以下となるように設定することが望ましいことが確認できた。従って,図13(A)に示すように,例えば525mmの相互間隔Tで導線コイルユニット20を巻き付けた環帯状磁性板10を,第3方向軸Ay(Y軸)と所定間隔dyで交差する複数段の平行な平面Py上にそれぞれ配置することにより,開口のない開放型磁気シールド構造5yを構築することができる。開口のある開放型磁気シールド構造5z及び5xの環帯状磁性板10も同様に構成することができる。   According to this experiment, the mutual interval T between the winding portions of the conductor coil unit 20 at each stage of the ring-shaped magnetic plate 10 is within a range where the shaking magnetic field induced inside the ring-shaped magnetic plate 10 is uniform, for example, variation in magnetic flux density. It was confirmed that it was desirable to set the value to be 6% or less. Accordingly, as shown in FIG. 13A, for example, a plurality of ring-shaped magnetic plates 10 around which the conductive wire coil units 20 are wound at a mutual interval T of 525 mm intersect with the third direction axis Ay (Y axis) at a predetermined interval dy. By disposing each on the parallel planes Py of the steps, an open magnetic shield structure 5y without an opening can be constructed. The open-type magnetic shield structures 5z and 5x having an opening can be similarly configured.

図13(B)は,開口のある開放型磁気シールド構造5zの環帯状磁性板10に導線コイルユニット20を所定相互間隔(取り付けピッチ)Tで取り付ける方法の一例を示す。図示例は,環帯状磁性板10の各辺のうち扉12のある辺のみに導線コイルユニット20を取り付けているが,他の3辺についても同様に所定相互間隔Tで導線コイルユニット20が取り付けられる。開口のある開放型磁気シールド構造5xの環帯状磁性板10も同様に構成することができる。   FIG. 13B shows an example of a method of attaching the conductor coil unit 20 to the ring-shaped magnetic plate 10 of the open magnetic shield structure 5z having an opening at a predetermined mutual interval (attachment pitch) T. In the illustrated example, the conductor coil unit 20 is attached only to the side where the door 12 is located among the sides of the ring-shaped magnetic plate 10, but the conductor coil unit 20 is similarly attached to the other three sides at a predetermined mutual interval T. It is done. The ring-shaped magnetic plate 10 of the open type magnetic shield structure 5x having an opening can be similarly configured.

図13(A)及び(B)の環帯状磁性板10に取り付けた各導線コイルユニット20の両端22a,22bを平行に隣接させて引き出し,例えば図1(A),図10(A),又は図10(B)のようにコイル駆動装置30と接続し,コイル駆動装置30により各導線コイルユニット20の引き出し部22a,22bにシェイキング電流I1を並列に印加する。或いは,図11(A)のように各導線コイルユニット20の引き出し部22a,22bを結合導線26によって直列に結線し,コイル駆動装置30によってシェイキング電流I1を直列に印加すると共に,結合導線26と隣接させて平行に配置したループ導線27に逆向きの電流(−I1)を流す。   13A and 13B, the both ends 22a and 22b of each conductor coil unit 20 attached to the annular belt-like magnetic plate 10 are pulled out in parallel and adjacent, for example, FIG. 1A, FIG. As shown in FIG. 10B, the coil driving device 30 is connected, and the coil driving device 30 applies a shaking current I1 in parallel to the lead portions 22a and 22b of each conductor coil unit 20. Alternatively, as shown in FIG. 11A, the lead-out portions 22a and 22b of the respective conductive wire coil units 20 are connected in series by the combined conductive wire 26, and the shaking current I1 is applied in series by the coil driving device 30, and the combined conductive wire 26 and A reverse current (-I1) is passed through the loop conductor 27 arranged adjacent and parallel.

1…磁気シールド対象空間 2…帯状磁性板
3…シールド簾体 5…開放型磁気シールド構造
8…磁気センサ 9…端縁(重ね合わせ部)
10…環帯状磁性板 12…扉
14…扉枠
20…導線コイルユニット 21…巻き付け部
22a,22b…引き出し部 23a,23b…入出力ループ導線
24a,24b…入出力ライン 25…導線コイル
26…結合導線 27…ループ導線
30…コイル駆動装置
40…磁気シールド部材 41…基材
42a,42b…磁性薄帯 43…導線コイル(シェイキングコイル)
44…入力端子 45…出力端子
Ax,Ay,Az…軸 d…間隔
I…電流 L…電流担体(コイル)
M…外乱磁場 O…中心点
Px,Py,Pz…平面 R…評価対象域
T…ピッチ W…環帯状磁性板の帯幅
DESCRIPTION OF SYMBOLS 1 ... Magnetic shield object space 2 ... Strip | belt-shaped magnetic board 3 ... Shield housing 5 ... Open type magnetic shield structure 8 ... Magnetic sensor 9 ... Edge (overlapping part)
DESCRIPTION OF SYMBOLS 10 ... Ring-shaped magnetic plate 12 ... Door 14 ... Door frame 20 ... Conductor coil unit 21 ... Winding part 22a, 22b ... Lead-out part 23a, 23b ... Input / output loop conductor 24a, 24b ... Input / output line 25 ... Conductor coil 26 ... coupling | bonding Conductor 27 ... Loop conductor 30 ... Coil driving device 40 ... Magnetic shield member 41 ... Base materials 42a, 42b ... Magnetic ribbon 43 ... Conductor coil (shaking coil)
44 ... input terminal 45 ... output terminal Ax, Ay, Az ... axis d ... interval I ... current L ... current carrier (coil)
M ... disturbance magnetic field O ... center point Px, Py, Pz ... plane R ... evaluation target area T ... pitch W ... band width of ring-shaped magnetic plate

Claims (9)

磁気シールド対象空間を貫く第1方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた環帯状磁性板,前記環帯状磁性板の各段の環状軸方向に分散した複数部位にそれぞれ当該環状軸と実質上直角向きに巻き付けて取り付け且つその両端を平行に隣接させて引き出した導線コイルユニット,及び前記各導線コイルユニットの引き出し部に所定周波数のシェイキング電流を印加するコイル駆動装置を備え,前記各導線コイルユニットの発生磁場により環帯状磁性板を磁気シェイキングしてなる低漏洩シェイキング式開放型磁気シールド構造。 A ring-shaped magnetic plate provided on a plurality of parallel planes intersecting the first direction axis passing through the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width, and each step of the ring-shaped magnetic plate A plurality of portions distributed in the direction of the annular axis and wound around the annular shaft in a substantially right angle direction, attached to the lead coil unit with the both ends thereof being adjacent to each other in parallel, and a predetermined frequency at the lead portion of each of the lead coil units. A low-leakage shaking type open magnetic shield structure comprising a coil driving device for applying the above-described shaking current and magnetically shaking an annular belt-shaped magnetic plate with a magnetic field generated by each of the conductive wire coil units. 請求項1の構造において,前記各導線コイルユニットの引き出し部を相互に撚りながら引き出してなる低漏洩シェイキング式開放型磁気シールド構造。 2. A low-leakage shaking type open-type magnetic shield structure according to claim 1, wherein the lead-out portions of the conductor coil units are pulled out while being twisted with each other. 請求項1又は2の構造において,前記各導線コイルユニットを環帯状磁性板の各段に同じ右巻き又は左巻きとなるように巻き付け,前記コイル駆動装置により環帯状磁性板の隣接する段毎に逆向きのシェイキング電流を印加してなる低漏洩シェイキング式開放型磁気シールド構造。 3. The structure according to claim 1, wherein each of the conductor coil units is wound around each step of the ring-shaped magnetic plate so as to be wound in the same right-handed or left-hand direction, and is reversed every adjacent step of the ring-shaped magnetic plate by the coil driving device. A low-leakage shaking type open magnetic shield structure that applies a shaking current in the direction. 請求項1又は2の構造において,前記各導線コイルユニットを環帯状磁性板の隣接する段毎に逆の右巻き又は左巻きとなるように巻き付け,前記コイル駆動装置により環帯状磁性板の各段に同じ向きのシェイキング電流を印加してなる低漏洩シェイキング式開放型磁気シールド構造。 3. The structure according to claim 1 or 2, wherein each conductor coil unit is wound so as to be reversed right-handed or left-handed for each adjacent step of the ring-shaped magnetic plate, and is wound on each step of the ring-shaped magnetic plate by the coil driving device. A low-leakage shaking type open magnetic shield structure that applies a shaking current in the same direction. 請求項1から4の何れかの構造において,前記環帯状磁性板の各段の複数の導線コイルユニットを並列にコイル駆動装置と接続する隣接平行配置の入出力ループ導線を設け,当該入出力ループ導線の漏洩磁場を逆向きの入出力電流により打ち消してなる低漏洩シェイキング式開放型磁気シールド構造。 5. The structure according to claim 1, wherein a plurality of conductor coil units at each stage of the ring-shaped magnetic plate are provided in parallel with input / output loop conductors arranged in parallel to connect to a coil driving device. A low-leakage shaking type open magnetic shield structure in which the leakage magnetic field of the conductor is canceled by the input / output current in the reverse direction. 請求項1から4の何れかの構造において,前記環帯状磁性板の各段の複数の導線コイルユニットを環状軸方向に順次直列に接続する結合導線,及び当該結合導線と隣接平行配置で逆向きの電流を流すループ導線を設け,当該結合導線及びループ導線を介して各導線コイルユニットをコイル駆動装置に直列接続し,当該結合導線及びループ導線の漏洩磁場を逆向きの電流により打ち消してなる低漏洩シェイキング式開放型磁気シールド構造。 5. The structure according to claim 1, wherein a plurality of conductor coil units at each stage of the ring-shaped magnetic plate are connected in series in the annular axial direction, and oppositely arranged in parallel with the joint conductor. Is formed by connecting a series of coil units to the coil driving device via the coupling conductor and the loop conductor, and canceling the leakage magnetic field of the coupling conductor and the loop conductor by a reverse current. Leaky shaking type open magnetic shield structure. 請求項1から6の何れかの構造において,前記環帯状磁性板の各段の導線コイルユニット巻き付け部位の相互間隔を,当該環帯状磁性板の内部に誘起されるシェイキング磁場が均等となるように設定してなる低漏洩シェイキング式開放型磁気シールド構造。 7. The structure according to claim 1, wherein a mutual spacing of the winding coil unit winding portions of each step of the ring-shaped magnetic plate is made uniform so that a shaking magnetic field induced inside the ring-shaped magnetic plate is uniform. Low leakage shaking type open magnetic shield structure. 請求項1から7の何れかの構造において,前記磁気シールド対象空間を貫く第2方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた第2環帯状磁性板の群,及び前記第2環帯状磁性板の各段の環状軸方向に分散した複数部位にそれぞれ当該環状軸と実質上直角向きに巻き付けて取り付け且つその両端を平行に隣接させて引き出した第2導線コイルユニットを設け,前記対象空間の周囲に環帯状磁性板群と第2環帯状磁性板群とを入れ子状に配置し,前記コイル駆動装置により各導線コイルユニットに所定周波数のシェイキング電流を印加して各環帯状磁性板群を磁気シェイキングしてなる低漏洩シェイキング式開放型磁気シールド構造。 8. The structure according to claim 1, wherein each space is provided on a plurality of parallel planes intersecting with a second direction axis passing through the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width. A group of second annular belt-like magnetic plates and a plurality of portions distributed in the annular axial direction of each stage of the second annular belt-like magnetic plate are attached by being wound substantially perpendicularly to the annular shaft, and both ends thereof are adjacent in parallel. A second conducting wire coil unit is provided, and an annular belt-like magnetic plate group and a second annular belt-like magnetic plate group are arranged in a nested manner around the target space, and each conducting coil unit is predetermined by the coil driving device. A low-leakage shaking type open-type magnetic shield structure obtained by magnetically shaking each band-shaped magnetic plate group by applying a frequency-shaking current. 請求項8の構造において,前記磁気シールド対象空間を貫く第3方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた第3環帯状磁性板の群,及び前記第3環帯状磁性板の各段の環状軸方向に分散した複数部位にそれぞれ当該環状軸と実質上直角向きに巻き付けて取り付け且つその両端を平行に隣接させて引き出した第3導線コイルユニットを設け,前記対象空間の周囲に環帯状磁性板群と第2環帯状磁性板群と第3環帯状磁性板群とを入れ子状に配置し,前記コイル駆動装置により各導線コイルユニットに所定周波数のシェイキング電流を印加して各環帯状磁性板群を磁気シェイキングしてなる低漏洩シェイキング式開放型磁気シールド構造。 9. The structure according to claim 8, wherein a third annular belt-like magnet is provided on each of a plurality of parallel planes intersecting with a third direction axis passing through the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width. A group of plates and a plurality of portions of the third ring-shaped magnetic plate dispersed in the direction of the annular axis are attached by being wound substantially perpendicularly to the annular axis, and drawn out with their both ends adjacent to each other in parallel. A three-conductor coil unit is provided, and an annular belt-like magnetic plate group, a second annular belt-like magnetic plate group, and a third annular belt-like magnetic plate group are arranged in a nested manner around the target space, and each conductor coil is arranged by the coil driving device. A low-leakage shaking type open-type magnetic shield structure obtained by applying a shaking current of a predetermined frequency to the unit to magnetically shake each ring-shaped magnetic plate group.
JP2016030232A 2016-02-19 2016-02-19 Low leakage shaking type open magnetic shield structure Expired - Fee Related JP6628407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016030232A JP6628407B2 (en) 2016-02-19 2016-02-19 Low leakage shaking type open magnetic shield structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030232A JP6628407B2 (en) 2016-02-19 2016-02-19 Low leakage shaking type open magnetic shield structure

Publications (2)

Publication Number Publication Date
JP2017147412A true JP2017147412A (en) 2017-08-24
JP6628407B2 JP6628407B2 (en) 2020-01-08

Family

ID=59683228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030232A Expired - Fee Related JP6628407B2 (en) 2016-02-19 2016-02-19 Low leakage shaking type open magnetic shield structure

Country Status (1)

Country Link
JP (1) JP6628407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211324A1 (en) 2017-07-31 2019-01-31 Yazaki Corporation Vehicle lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166000A (en) * 1986-01-17 1987-07-22 三菱電機株式会社 Shielding for electromagnetic appication equipment
JPH03161998A (en) * 1989-11-21 1991-07-11 Kosuke Harada Plane coil
JP2002232182A (en) * 2001-02-02 2002-08-16 Mti:Kk Magnetic shielding room of internal active magnetically shielded system
JP2004179550A (en) * 2002-11-28 2004-06-24 Sangaku Renkei Kiko Kyushu:Kk Split type cylindrical magnetic shield apparatus
JP2007311457A (en) * 2006-05-17 2007-11-29 Nippon Steel Corp Structure and method for magnetic shield
JP2011082444A (en) * 2009-10-09 2011-04-21 Kajima Corp Structure and system for composite magnetic shield
JP2014086647A (en) * 2012-10-26 2014-05-12 Kajima Corp Open-type magnetic shield structure with conductor circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166000A (en) * 1986-01-17 1987-07-22 三菱電機株式会社 Shielding for electromagnetic appication equipment
JPH03161998A (en) * 1989-11-21 1991-07-11 Kosuke Harada Plane coil
JP2002232182A (en) * 2001-02-02 2002-08-16 Mti:Kk Magnetic shielding room of internal active magnetically shielded system
JP2004179550A (en) * 2002-11-28 2004-06-24 Sangaku Renkei Kiko Kyushu:Kk Split type cylindrical magnetic shield apparatus
JP2007311457A (en) * 2006-05-17 2007-11-29 Nippon Steel Corp Structure and method for magnetic shield
JP2011082444A (en) * 2009-10-09 2011-04-21 Kajima Corp Structure and system for composite magnetic shield
JP2014086647A (en) * 2012-10-26 2014-05-12 Kajima Corp Open-type magnetic shield structure with conductor circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高橋理恵,外2名: ""付加コイルによる分離型磁気シールドのシェイキング磁界漏洩低減法"", JOURNAL OF THE MAGNETICS SOCIETY OF JAPAN, vol. 第32巻,第3号, JPN6019037460, May 2008 (2008-05-01), pages 434 - 438, ISSN: 0004123634 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211324A1 (en) 2017-07-31 2019-01-31 Yazaki Corporation Vehicle lighting device

Also Published As

Publication number Publication date
JP6628407B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP4347847B2 (en) Open type magnetic shield structure and magnetic body frame thereof
JP5695241B2 (en) Gradient magnetic field coil and nuclear magnetic resonance imaging apparatus
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
JP2016018882A (en) Magnetic circuit component
JP2011082444A (en) Structure and system for composite magnetic shield
CN104678334B (en) A kind of gradient coil assembly, gradient coil and magnetic resonance imaging system
JP5930400B2 (en) Open magnetic shield structure with conductor circuit
JP2017147412A (en) Low leakage shaking open type magnetic shield structure
JP2010142586A (en) Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
JP6599258B2 (en) Shaking type open magnetic shield structure
JP2017135353A (en) Shaking open type magnetic shield structure
JP2015008383A (en) Magnetic field antenna
JP2011082228A (en) Open type magnetic shielding structure and belt-like laminate magnetic plate for magnetic shielding
JP7165505B2 (en) Active magnetic shield system and magnetocardiography system using it
US10790078B2 (en) Apparatus and method for magnetic field compression
US7394255B2 (en) Single-sided magnetic resonance magnet assembly
JP5592193B2 (en) Method of constructing a composite magnetic shield for disturbance magnetic fields
JP5199426B2 (en) Gradient magnetic field coil apparatus, nuclear magnetic resonance imaging apparatus, and coil pattern design method
JP4254921B2 (en) Magnetic shield room for magnetic resonance imaging equipment
JP2018026466A (en) Shield structure of transformer
JP3400059B2 (en) Superconducting magnetic shield
JPH03141619A (en) Magnet for generating magnetic field uniform in wide region
JP2017020882A (en) Three-dimensional magnetic field electromagnet device
Sasada et al. Experimental study on opening compensation for magnetic shields by current superposition
CN110975964A (en) Design method and application of magnetic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6628407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees