JP2017147306A - Non-contact power receiving coil device and non-contact power receiving core - Google Patents

Non-contact power receiving coil device and non-contact power receiving core Download PDF

Info

Publication number
JP2017147306A
JP2017147306A JP2016027277A JP2016027277A JP2017147306A JP 2017147306 A JP2017147306 A JP 2017147306A JP 2016027277 A JP2016027277 A JP 2016027277A JP 2016027277 A JP2016027277 A JP 2016027277A JP 2017147306 A JP2017147306 A JP 2017147306A
Authority
JP
Japan
Prior art keywords
peripheral wall
wall portion
core
outer peripheral
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016027277A
Other languages
Japanese (ja)
Inventor
茂幸 前田
Shigeyuki Maeda
茂幸 前田
仁志 岩谷
Hitoshi Iwatani
仁志 岩谷
貞樹 佐藤
Sadaki Sato
貞樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016027277A priority Critical patent/JP2017147306A/en
Priority to CN201710076098.2A priority patent/CN107086116A/en
Publication of JP2017147306A publication Critical patent/JP2017147306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power receiving coil device which can reduce a leak magnetic flux which is produced in reception of a power.SOLUTION: A non-contact power receiving coil device comprises: a core made of a magnetic material, into which a magnetic flux formed on a power supply side flows; and a conducting wire in which an induced current is produced by the magnetic flux. The core has: an inner peripheral wall part extending around a center hole of the core along the conducting wire, and disposed on an inner peripheral side of the conducting wire; an outer peripheral wall part disposed on an outer peripheral side of the conducting wire; and a connection wall part connecting the inner peripheral wall part and the outer peripheral wall part. The conducting wire is disposed in a groove portion surrounded by the inner peripheral wall part, the outer peripheral wall part and the connection wall part.SELECTED DRAWING: Figure 1

Description

本発明は、給電側から非接触方式で電力を受け取る非接触受電用コイル装置及びこれに用いられる非接触受電用コアに関する。   The present invention relates to a non-contact power receiving coil device that receives power from a power feeding side in a non-contact manner and a non-contact power receiving core used therefor.

近年、電磁誘導などの非接触方式で、給電側から受電側へ電力を送る充電方式を採用する電子機器が増加している。たとえば、二次電池を有する電子機器の充電方式として、非接触方式を採用することにより、例えば端子を接続する接触方式を採用する場合のように接続端子を設ける必要がないため、防水性等の観点で有利となる。   In recent years, there has been an increase in electronic devices that employ a charging method in which electric power is transmitted from a power feeding side to a power receiving side by a non-contact method such as electromagnetic induction. For example, by adopting a non-contact method as a charging method of an electronic device having a secondary battery, it is not necessary to provide a connection terminal as in the case of adopting a contact method for connecting terminals, for example, waterproofness etc. This is advantageous from the viewpoint.

無接点電磁誘導式充電機構のように非接触方式の電送を行う場合において、受電側の装置には、給電側で形成された磁束が流入するコアを、誘導電流を生じるコイルと伴に用いる技術が提案されている(特許文献1等参照)。このようなコアとコイルとを有する非接触受電用コイル装置を用いることで、電力の伝送効率を向上させる技術が提案されている。   When non-contact type power transmission is performed like a non-contact electromagnetic induction charging mechanism, a technology that uses a core into which a magnetic flux formed on the power feeding side flows in a device on the power receiving side together with a coil that generates an induced current Has been proposed (see Patent Document 1). There has been proposed a technique for improving the power transmission efficiency by using such a non-contact power receiving coil device having a core and a coil.

特開2009−123943号公報JP 2009-123943 A

しかしながら、従来の非接触受電用コイル装置では、給電側と受電側のコアとの間に形成される磁束の広がりが広く、特に、給電側と受電側のコアの距離が遠くなると漏れ磁束が多くなり、伝送効率の低下等の問題を生じるおそれがあった。   However, in the conventional non-contact power receiving coil device, the spread of the magnetic flux formed between the power feeding side and the power receiving side core is wide. In particular, when the distance between the power feeding side and the power receiving side core is increased, the leakage magnetic flux increases. This may cause problems such as a decrease in transmission efficiency.

本発明は、このような課題に鑑みてなされ、その目的は、受電時に生じる漏れ磁束を抑制できる非接触受電用コイル装置を提供することである。   This invention is made | formed in view of such a subject, The objective is to provide the coil apparatus for non-contact electric power reception which can suppress the leakage magnetic flux which arises at the time of electric power reception.

本発明に係る非接触受電用コイル装置は、
磁性体からなり給電側で形成された磁束が流入するコアと、前記磁束により誘導電流を生じる導線と、を有する非接触受電用コイル装置であって、
前記コアは、いずれも前記コアの中央穴の周りを前記導線に沿って延びており、前記導線の内周側に配置される内周壁部と、前記導線の外周側に配置される外周壁部と、前記内周壁部と前記外周壁部とを接続する接続壁部と、を有し、
前記導線は、前記内周壁部、前記外周壁部及び前記接続壁部で囲まれる溝部に配置されていることを特徴とする。
A non-contact power receiving coil device according to the present invention includes:
A non-contact power receiving coil device having a core made of a magnetic material into which a magnetic flux formed on a power feeding side flows, and a conductive wire that generates an induced current by the magnetic flux,
Each of the cores extends around the central hole of the core along the conductive wire, and an inner peripheral wall portion disposed on the inner peripheral side of the conductive wire and an outer peripheral wall portion disposed on the outer peripheral side of the conductive wire. And a connecting wall portion connecting the inner peripheral wall portion and the outer peripheral wall portion,
The conducting wire is arranged in a groove portion surrounded by the inner peripheral wall portion, the outer peripheral wall portion, and the connection wall portion.

本発明に係る非接触受電用コイル装置は、コアが内周壁部と外周壁部と接続壁部を有しており、導線がこれらの壁部で囲まれる溝部に配置されているため、給電側と受電側の間に形成される磁束の広がりを抑制し、漏れ磁束を抑制することができる。すなわち、このような非接触受電用コイル装置は、給電側と受電側のコア間の距離を、給電側から受電側への磁束の流入部分と、受電側から給電側への磁束の流入部分との両方で小さくすることができるので、漏れ磁束を抑制することが可能である。また、磁束の広がりを抑制したことにより、給電側と受電側の距離を広げても、電力の伝送効率を高く保つことが可能である。   In the non-contact power receiving coil device according to the present invention, the core has an inner peripheral wall portion, an outer peripheral wall portion, and a connecting wall portion, and the conducting wire is disposed in a groove portion surrounded by these wall portions, And the spread of magnetic flux formed between the power receiving side and the leakage magnetic flux can be suppressed. That is, in such a non-contact power receiving coil device, the distance between the core on the power feeding side and the power receiving side is set such that the inflow portion of the magnetic flux from the power feeding side to the power receiving side, and the inflow portion of the magnetic flux from the power receiving side to the power feeding side. Therefore, it is possible to reduce the leakage magnetic flux. Further, by suppressing the spread of the magnetic flux, it is possible to keep the power transmission efficiency high even if the distance between the power feeding side and the power receiving side is widened.

また、例えば、前記溝部は、前記中央穴の径方向に沿う断面においてU字状であってもよく、前記内周壁部と前記外周壁部とは、前記溝部の深さ方向の長さが等しくてもよい。   In addition, for example, the groove portion may be U-shaped in a cross section along the radial direction of the central hole, and the inner peripheral wall portion and the outer peripheral wall portion have the same length in the depth direction of the groove portion. May be.

コア及びコアに形成される溝部の形状をU字状とすることにより、漏れ磁束をより好適に抑制することが可能である。   By making the core and the groove formed in the core U-shaped, it is possible to more suitably suppress the leakage magnetic flux.

例えば、前記コアは、互いに別体である複数の分割コアを組み合わせて構成されていてもよい。   For example, the core may be configured by combining a plurality of divided cores that are separate from each other.

このようなコアは、一体の連続するコアに比べて、耐衝撃性の点で有利である。   Such a core is advantageous in terms of impact resistance compared to an integral continuous core.

また、前記複数の分割コアには、互いに形状の等しい第1コアと第2コアとが含まれていてもよい。   Further, the plurality of divided cores may include a first core and a second core having the same shape.

形状の等しい第1コアと第2コアとを組み合わせてコアを構成することにより、非接触受電用コイル装置に含まれる部品の種類を低減し、製造を容易にできるとともにコストを低減できる。   By configuring the core by combining the first core and the second core having the same shape, the types of components included in the non-contact power receiving coil device can be reduced, and the manufacturing can be facilitated and the cost can be reduced.

また、例えば、前記コアは、前記中央穴の周りを270度以上350度未満の範囲で、前記導線を前記溝部に収容していてもよい。   Further, for example, the core may house the conductive wire in the groove part in a range of 270 degrees or more and less than 350 degrees around the central hole.

コアは、中央穴の周りを完全に囲む環状(円環、楕円環、角リング状)である必要はなく、円弧状、Cリング状、L字状のような中央穴の周りを囲む形状であれば、どのような形状であってもよい。ただし、中央穴の周りを270度以上の範囲で、その溝部に導線を収容していることにより、導線に生じる誘導電流を増加させることができる。また、中央穴の周りを350度未満の範囲で、その溝部に導線を収容していることにより、コアを小さくして小型化、軽量化できるとともに、溝部の外部へ導線を容易に引き出すことが可能である。   The core does not have to be an annular shape (circular ring, elliptical ring, or square ring shape) that completely surrounds the central hole, but has a shape that surrounds the central hole, such as an arc shape, a C ring shape, or an L shape. Any shape can be used. However, the induction current generated in the conducting wire can be increased by accommodating the conducting wire in the groove portion in the range of 270 degrees or more around the central hole. In addition, since the conductor is accommodated in the groove around the central hole in a range of less than 350 degrees, the core can be reduced in size and weight, and the conductor can be easily pulled out of the groove. Is possible.

また、例えば、前記外周壁部及び前記内周壁部のうち少なくとも一方には、前記導線を前記溝部から外部へ引き出す切り欠きが形成されていてもよい。   Further, for example, at least one of the outer peripheral wall portion and the inner peripheral wall portion may be formed with a notch for drawing the lead wire from the groove portion to the outside.

コアに切り欠きを形成することにより、導線の配線のために、コアの外部に溝の深さ方向のスペースを確保する必要がないため、このような非接触受電用コイルは、搭載対象の装置の小型化に資する。   By forming a notch in the core, it is not necessary to secure a space in the depth direction of the groove outside the core for the wiring of the conductor, so such a non-contact power receiving coil is a device to be mounted. Contributes to downsizing.

また、例えば、前記接続壁部の前記溝部の幅方向の長さは、前記内周壁部及び前記外周壁部の前記溝部の深さ方向の長さより長くてもよい。   Further, for example, the length of the connecting wall portion in the width direction of the groove portion may be longer than the length of the inner peripheral wall portion and the outer peripheral wall portion in the depth direction of the groove portion.

このような非接触受電用コイルは薄型であり、搭載対象の装置の薄型化に資する。   Such a non-contact power receiving coil is thin, which contributes to thinning of a device to be mounted.

また、本発明に係るコアは、磁性体からなり給電側で形成された磁束が流入する非接触受電用コアであって、
いずれも中央穴の周りに延びており、内周側に配置される内周壁部と、外周側に配置される外周壁部と、前記内周壁部と前記外周壁部とを接続する接続壁部と、を有し、
前記内周壁部、前記外周壁部及び前記接続壁部で囲まれるリング状又は円弧状の溝部が形成されていることを特徴とする。
The core according to the present invention is a non-contact power receiving core into which a magnetic flux made of a magnetic material and formed on the power feeding side flows,
All extend around the central hole, and the inner peripheral wall portion disposed on the inner peripheral side, the outer peripheral wall portion disposed on the outer peripheral side, and the connection wall portion connecting the inner peripheral wall portion and the outer peripheral wall portion. And having
A ring-shaped or arc-shaped groove portion surrounded by the inner peripheral wall portion, the outer peripheral wall portion, and the connection wall portion is formed.

このような非接触受電用コアは、上記の非接触受電用コイル装置に好適に用いられる。   Such a non-contact power receiving core is suitably used for the above-described non-contact power receiving coil device.

図1は、本発明の一実施形態に係る非接触受電用コイル装置及びこれに対応する非接触給電用コイル装置を表す断面図である。FIG. 1 is a cross-sectional view showing a non-contact power receiving coil device and a non-contact power feeding coil device corresponding to the non-contact power receiving coil device according to an embodiment of the present invention. 図2は、図1に示す非接触受電用コイル装置の平面図である。FIG. 2 is a plan view of the non-contact power receiving coil device shown in FIG. 図3は、図2に示す非接触受電用コイル装置に含まれるコアの平面図である。FIG. 3 is a plan view of a core included in the non-contact power receiving coil device shown in FIG. 図4は、変形例に係る非接触受電用コイルに含まれる分割コアの斜視図である。FIG. 4 is a perspective view of a split core included in a non-contact power receiving coil according to a modification. 図5は、図4に示す分割コアの使用状態を表す概念図である。FIG. 5 is a conceptual diagram showing a usage state of the split core shown in FIG. 図6は、非接触受電用コイル装置に対応する非接触給電用コイル装置の変形例を表す断面図である。FIG. 6 is a cross-sectional view illustrating a modification of the non-contact power feeding coil device corresponding to the non-contact power receiving coil device.

以下、図面に基づき、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る非接触受電用コイル装置10(以下、コイル装置10という)及びコイル装置10に対応する非接触給電用コイル装置60(以下、給電側コイル装置60という)を表す断面図である。コイル装置10は、コイル装置10を介して受け取った電力を用いて動作する受電側機器50に搭載されており、受電側機器50の筐体51の内部に収容されている。   FIG. 1 shows a non-contact power receiving coil device 10 (hereinafter referred to as a coil device 10) and a non-contact power supply coil device 60 (hereinafter referred to as a power supply side coil device 60) corresponding to the coil device 10 according to an embodiment of the present invention. FIG. The coil device 10 is mounted on a power receiving side device 50 that operates using the power received via the coil device 10, and is housed in a housing 51 of the power receiving side device 50.

コイル装置10が搭載される受電側機器50としては、携帯電話、スマートフォン及びタブレットのような携帯型移動端末や、電子時計のようないわゆるウェアラブル端末その他の電子機器が挙げられるが、特に限定されない。なお、本実施形態では、受電側機器50として、いわゆるスマートウォッチと呼ばれる通信機能を有する電子時計を例に説明を行う。受電側機器50の筐体51には、コイル装置10の他に、コイル装置10を介して受け取った電力を蓄えるための二次電池(不図示)や、表示装置(不図示)等が備えられる。   Examples of the power receiving device 50 on which the coil device 10 is mounted include portable mobile terminals such as mobile phones, smartphones, and tablets, so-called wearable terminals such as electronic watches, and other electronic devices. In the present embodiment, the power receiving device 50 will be described using an electronic timepiece having a communication function called a so-called smart watch as an example. The casing 51 of the power receiving device 50 is provided with a secondary battery (not shown) for storing the power received via the coil device 10, a display device (not shown), and the like in addition to the coil device 10. .

コイル装置10は、磁性体からなり給電側(給電側コイル装置60)で形成された磁束が流入するコア20と、給電側で形成された磁束により誘導電流を生じる導線30とを有している。図2は、図1に示すコイル装置10を給電側(Z軸負方向側)から見た平面図である。   The coil device 10 includes a core 20 made of a magnetic material into which a magnetic flux formed on the power feeding side (power feeding side coil device 60) flows, and a conductive wire 30 that generates an induced current by the magnetic flux formed on the power feeding side. . FIG. 2 is a plan view of the coil device 10 shown in FIG. 1 as viewed from the power supply side (Z-axis negative direction side).

図2に示すように、コア20は、Z軸方向から見てコア20の中央に位置する中央穴21の周りを囲む円環状の外形状を有している。コア20のみの平面図である図3及び図1に示すように、コア20は、導線30の内周側に配置される内周壁部22と、導線30の外周側に配置される外周壁部24と、内周壁部22と外周壁部24とを接続する接続壁部26とを有する。   As shown in FIG. 2, the core 20 has an annular outer shape surrounding the central hole 21 located in the center of the core 20 when viewed from the Z-axis direction. As shown in FIGS. 3 and 1, which are plan views of only the core 20, the core 20 includes an inner peripheral wall portion 22 disposed on the inner peripheral side of the conducting wire 30 and an outer peripheral wall portion disposed on the outer peripheral side of the conducting wire 30. 24, and a connecting wall portion 26 that connects the inner peripheral wall portion 22 and the outer peripheral wall portion 24.

図3に示すように、内周壁部22、外周壁部24及び接続壁部26は、いずれもコア20の中央穴21の周りを導線30に沿って延びており、円環状の外形状を有している。ただし、外周壁部24には、他の部分より溝部28の深さ方向(Z軸方向)の高さが低くなっている切り欠き24cが形成されている。   As shown in FIG. 3, the inner peripheral wall portion 22, the outer peripheral wall portion 24, and the connection wall portion 26 all extend around the central hole 21 of the core 20 along the conducting wire 30 and have an annular outer shape. doing. However, the outer peripheral wall portion 24 is formed with a notch 24c in which the height of the groove portion 28 in the depth direction (Z-axis direction) is lower than the other portions.

図1〜図3に示すように、コア20には、内周壁部22と、外周壁部24と、接続壁部26とに3方向(中央穴21の径方向内側、径方向外側、及びZ軸正方向)を囲まれる溝部28が形成されている。図3に示すように、Z軸負方向側から見て溝部28はリング状であり、図2に示すように、導線30は溝部28に配置されている。   As shown in FIGS. 1 to 3, the core 20 has three directions in the inner peripheral wall portion 22, the outer peripheral wall portion 24, and the connection wall portion 26 (the radially inner side of the central hole 21, the radially outer side, and the Z A groove 28 is formed so as to surround the axial positive direction. As shown in FIG. 3, the groove portion 28 has a ring shape when viewed from the Z-axis negative direction side, and the conductor 30 is disposed in the groove portion 28 as shown in FIG. 2.

図1に示すように、溝部28は、中央穴21の径方向に沿う断面においてU字状である。コア20は、筐体51の表面近傍に、溝部28の開口が表面側(Z軸負方向側)を向く姿勢で配置されている。コア20の内周壁部22は、導線30を中央穴21の径方向に挟んで外周壁部24に対向している。   As shown in FIG. 1, the groove 28 is U-shaped in a cross section along the radial direction of the central hole 21. The core 20 is disposed near the surface of the casing 51 in such a posture that the opening of the groove portion 28 faces the surface side (Z-axis negative direction side). The inner peripheral wall portion 22 of the core 20 faces the outer peripheral wall portion 24 with the conducting wire 30 sandwiched in the radial direction of the central hole 21.

図1に示すように内周壁部22における溝部28の深さ方向(Z軸方向)の長さL1は、外周壁部24における溝部28の深さ方向(Z軸方向)の長さL2と等しくなっている。また、内周壁部22と外周壁部24のZ軸正方向端部を接続する接続壁部26における溝部28の幅方向の長さL3は、内周壁部22及び外周壁部24における溝部28の深さ方向の長さL1、L2より長くなっている。   As shown in FIG. 1, the length L1 in the depth direction (Z-axis direction) of the groove portion 28 in the inner peripheral wall portion 22 is equal to the length L2 in the depth direction (Z-axis direction) of the groove portion 28 in the outer peripheral wall portion 24. It has become. The length L3 in the width direction of the groove portion 28 in the connecting wall portion 26 that connects the Z-axis positive direction end portions of the inner peripheral wall portion 22 and the outer peripheral wall portion 24 is the width of the groove portion 28 in the inner peripheral wall portion 22 and the outer peripheral wall portion 24. It is longer than the lengths L1 and L2 in the depth direction.

図2に示すように、溝部28に配置されている導線30は、中央穴21の周りを周回するリング状のコイル(受電側コイル)を構成している。溝部28に配置されている導線30は、外周壁部24に形成された切り欠き24cを介して溝部28の外部へ引き出されている。導線30の巻数は特に限定されず、受電側機器50の回路等に応じて適宜決定される。   As shown in FIG. 2, the conducting wire 30 disposed in the groove portion 28 constitutes a ring-shaped coil (power-receiving side coil) that circulates around the central hole 21. The conducting wire 30 disposed in the groove portion 28 is drawn to the outside of the groove portion 28 through a notch 24 c formed in the outer peripheral wall portion 24. The number of turns of the conducting wire 30 is not particularly limited, and is appropriately determined according to the circuit of the power receiving side device 50 and the like.

コア20は磁性体からなり、フェライトや金属等の材料を用いて形成される。コア20は、例えばフェライトや金属などの磁性粉を結合する炭素や樹脂等の材料を含んでいてもよい。また、コア20は、焼結体で構成されていてもよく、磁性シートで構成されていてもよく、焼結体と磁性シートを接合して構成されていてもよい。   The core 20 is made of a magnetic material and is formed using a material such as ferrite or metal. The core 20 may include a material such as carbon or resin that binds magnetic powder such as ferrite or metal. Moreover, the core 20 may be comprised with the sintered compact, may be comprised with the magnetic sheet, and may be comprised by joining a sintered compact and a magnetic sheet.

導線30としては、Cu等を含む導電性の芯材の外周を樹脂等の絶縁被膜で被覆した被覆電線を用いることができるが、磁束の変化により誘導電流を生じる電線であれば特に限定されない。また、導線30の芯材は、単線であってもよく、撚線であってもよい。   The conductive wire 30 may be a covered electric wire in which the outer periphery of a conductive core material containing Cu or the like is covered with an insulating coating such as a resin, but is not particularly limited as long as it is an electric wire that generates an induced current due to a change in magnetic flux. Moreover, the core material of the conducting wire 30 may be a single wire or a stranded wire.

図1に示す給電側コイル装置60は、給電側機器90の筐体91の内部に収容されている。給電側機器90としては、例えば受電側機器50に備えられる二次電池を充電するための充電器が挙げられるが、受電側機器50に対して給電を行うものであれば特に限定されない。   A power supply side coil device 60 shown in FIG. 1 is housed inside a housing 91 of a power supply side device 90. Examples of the power supply side device 90 include a charger for charging a secondary battery provided in the power reception side device 50, but are not particularly limited as long as power is supplied to the power reception side device 50.

給電側コイル装置60は、給電側コア70と給電側コイル80とを有している。給電側コア70は、受電側のコア20と同様に、Z軸正方向から見て給電側コア70の中央に位置する給電側中央穴71の周りを囲む円環状の外形状を有している。給電側コア70には、受電側のコア20の溝部28に対向するように、Z軸正方向側から見てリング状である給電側コア溝部78が形成されており、給電側コア溝部78には、給電側コイル80が配置されている。   The power supply side coil device 60 includes a power supply side core 70 and a power supply side coil 80. The power supply side core 70 has an annular outer shape surrounding the power supply side central hole 71 located at the center of the power supply side core 70 when viewed from the positive Z-axis direction, like the power receiving side core 20. . The power supply side core 70 is formed with a power supply side core groove portion 78 that is ring-shaped when viewed from the Z-axis positive direction side so as to face the groove portion 28 of the core 20 on the power reception side. Is provided with a power supply side coil 80.

給電側コア70は、給電側コイル80の内周側に配置される給電側内周壁部72と、給電側コイル80の外周側に配置される給電側外周壁部74と、給電側内周壁部72と給電側外周壁部74とを接続する給電側接続壁部76とを有している。給電側コイル80には、給電側機器90に備えられる図示しない二次電池又は給電側機器90を介して接続される交流電源から、電力が供給される。   The power supply side core 70 includes a power supply side inner peripheral wall portion 72 disposed on the inner peripheral side of the power supply side coil 80, a power supply side outer peripheral wall portion 74 disposed on the outer peripheral side of the power supply side coil 80, and a power supply side inner peripheral wall portion. 72 and a power supply side connection wall 76 connecting the power supply side outer peripheral wall 74. Power is supplied to the power supply side coil 80 from a secondary battery (not shown) provided in the power supply side device 90 or an AC power source connected via the power supply side device 90.

給電側コア70の外径及び給電側中央穴71の径は、受電側のコア20の外径及び中央穴21の径と略等しい。給電側コア70も、コイル装置10のコア20と同様に磁性体からなり、フェライトや金属等の材料を用いて形成される。給電側コイル80も、導線30によるコイルと同様に、給電側中央穴71の周りを周回するように巻回された被覆電線等により構成される。   The outer diameter of the power supply side core 70 and the diameter of the power supply side central hole 71 are substantially equal to the outer diameter of the core 20 on the power reception side and the diameter of the central hole 21. The power supply side core 70 is also made of a magnetic material like the core 20 of the coil device 10 and is formed using a material such as ferrite or metal. The power supply side coil 80 is also configured by a covered electric wire or the like wound around the power supply side central hole 71 in the same manner as the coil formed by the conducting wire 30.

図1に示す給電側機器90から受電側機器50への給電及び受電は、給電側機器90の表面と、受電側機器50の表面とを接触又は近接させた状態で行われる。すなわち、図1に示すように、導線30が収容される溝部28と、給電側コイル80が収容される給電側コア溝部78とが互いに対向するように配置された状態で、給電及び受電が行われる。この際、コア20における内周壁部22の先端である内壁先端22aは、給電側コア70の給電側内周壁部72に対向しており、コア20における外周壁部24の先端である外壁先端24aは、給電側コア70の給電側外周壁部74に対向している。   The power supply and power reception from the power supply side device 90 to the power reception side device 50 shown in FIG. 1 are performed in a state where the surface of the power supply side device 90 and the surface of the power reception side device 50 are in contact with or close to each other. That is, as shown in FIG. 1, power feeding and power reception are performed in a state where the groove portion 28 in which the conducting wire 30 is accommodated and the power feeding side core groove portion 78 in which the power feeding side coil 80 is accommodated are opposed to each other. Is called. At this time, the inner wall tip 22 a that is the tip of the inner peripheral wall portion 22 in the core 20 faces the power feeding side inner peripheral wall portion 72 of the power feeding side core 70, and the outer wall tip 24 a that is the tip of the outer peripheral wall portion 24 in the core 20. Faces the power supply side outer peripheral wall 74 of the power supply side core 70.

図1に示す状態で、給電側コイル80に所定の周波数の交流電流を流すことにより、給電側コイル装置60で磁束が形成される。給電側コイル装置60で形成された磁束は、給電側コア70に対向して配置されるコア20に流入し、さらに、コア20から給電側コア70に流入することにより、コア20と給電側コア70とを通る磁束のループが形成される。   In the state shown in FIG. 1, a magnetic flux is formed in the power supply side coil device 60 by passing an alternating current of a predetermined frequency through the power supply side coil 80. The magnetic flux formed by the power supply side coil device 60 flows into the core 20 disposed opposite to the power supply side core 70, and further flows from the core 20 into the power supply side core 70, whereby the core 20 and the power supply side core A flux loop through 70 is formed.

コア20の溝部28に配置された導線30は、導線30の周辺に配置されたコア20等における磁束の変動により、誘導電流を生じる。導線30で生じた誘導電流は、受電側機器50に備えられる二次電池等に蓄えられたのち、受電側機器50の動作に使用される。このようにして、給電側コイル装置60から受電側のコイル装置10への非接触給電及び非接触受電が行われる。   The conducting wire 30 disposed in the groove portion 28 of the core 20 generates an induced current due to a change in magnetic flux in the core 20 and the like disposed around the conducting wire 30. The induced current generated in the conductive wire 30 is stored in a secondary battery or the like provided in the power receiving side device 50 and then used for the operation of the power receiving side device 50. In this manner, non-contact power feeding and non-contact power reception from the power feeding side coil device 60 to the power receiving side coil device 10 are performed.

以上のようなコイル装置10では、誘導電流を生じる導線30が、給電側コイル装置60に対向する以外の3方向、すなわち中央穴21の径方向内側、径方向外側、及び給電側コイル装置60とは反対側の3方向を、内周壁部22、外周壁部24及び接続壁部26に囲まれた溝部28に配置されている。したがって、コア20における内壁先端22a及び外壁先端24aと給電側コア70との距離が、いずれも近くなる。これにより、コイル装置10は、給電側と受電側の間に形成される磁束の広がりを抑制し、漏れ磁束を抑制することができる。   In the coil device 10 as described above, the conducting wire 30 that generates the induced current has three directions other than facing the feeding-side coil device 60, that is, the radially inner side, the radially outer side of the central hole 21, and the feeding-side coil device 60. Are arranged in the groove portion 28 surrounded by the inner peripheral wall portion 22, the outer peripheral wall portion 24 and the connection wall portion 26 in the opposite three directions. Therefore, the distances between the inner wall tip 22a and the outer wall tip 24a in the core 20 and the power supply side core 70 are all reduced. Thereby, the coil apparatus 10 can suppress the spread of the magnetic flux formed between the power feeding side and the power receiving side, and can suppress the leakage magnetic flux.

また、図1に示すようなU字状の断面形状を有する溝部28に導線30を配置することにより、コア20の周辺のXY方向に磁束が広がることを防止し、コア20と給電側コア70とが対向する位置に磁束を集中させることができる。したがって、コイル装置10は、漏れ磁束を抑制して伝送効率を高めることができるとともに、許容される伝送効率を達成可能な伝送距離を延長することが可能である。   Further, by arranging the conductive wire 30 in the groove portion 28 having a U-shaped cross section as shown in FIG. 1, the magnetic flux is prevented from spreading in the XY directions around the core 20, and the core 20 and the power supply side core 70. The magnetic flux can be concentrated at a position where and are opposed to each other. Therefore, the coil device 10 can suppress the leakage magnetic flux and increase the transmission efficiency, and can extend the transmission distance that can achieve the allowable transmission efficiency.

また、コイル装置10において、導線30に対して内周側に位置する内周壁部22と、外周側に位置する外周壁部24とは、溝部28の深さ方向の長さが等しい。このようなコイル装置10では、内壁先端22aと外壁先端24aの高さを揃えることにより、給電側から受電側への磁束の流入部分と、受電側から給電側への磁束の流入部分の両方で、給電側と受電側のコア20、70の間の距離が小さくなる。したがって、コイル装置10は、漏れ磁束を抑制し、許容される伝送効率を達成可能な伝送距離(給電側コイル装置60と受電側コイル装置10との最短距離)を延長することが可能である。   In the coil device 10, the inner circumferential wall portion 22 located on the inner circumferential side with respect to the conducting wire 30 and the outer circumferential wall portion 24 located on the outer circumferential side have the same length in the depth direction of the groove portion 28. In such a coil device 10, by aligning the heights of the inner wall tip 22a and the outer wall tip 24a, both the inflow portion of the magnetic flux from the power feeding side to the power receiving side and the inflow portion of the magnetic flux from the power receiving side to the power feeding side. The distance between the cores 20 and 70 on the power feeding side and the power receiving side is reduced. Therefore, the coil device 10 can suppress the leakage magnetic flux and extend the transmission distance (the shortest distance between the power feeding side coil device 60 and the power receiving side coil device 10) that can achieve an acceptable transmission efficiency.

また、コイル装置10において、コア20の接続壁部26における溝部28の幅方向の長さL3は、内周壁部22及び外周壁部24における溝部28の深さ方向の長さL1、L2より長くなっている。これにより、導線30を収容する溝部28の容積を確保しつつ、コイル装置10を薄型化することができる。   In the coil device 10, the length L3 in the width direction of the groove portion 28 in the connection wall portion 26 of the core 20 is longer than the lengths L1 and L2 in the depth direction of the groove portion 28 in the inner peripheral wall portion 22 and the outer peripheral wall portion 24. It has become. As a result, the coil device 10 can be thinned while securing the volume of the groove 28 that accommodates the conducting wire 30.

なお、コア20における内周壁部22、外周壁部24及び接続壁部26の厚みは特に限定されないが、例えば、内周壁部22と外周壁部24と接続壁部26は、おなじ厚みとすることができる。   In addition, although the thickness of the inner peripheral wall part 22, the outer peripheral wall part 24, and the connection wall part 26 in the core 20 is not specifically limited, For example, the inner peripheral wall part 22, the outer peripheral wall part 24, and the connection wall part 26 shall be the same thickness. Can do.

また、図2又は図3に示すように、コイル装置10の外周壁部24に、導線30を溝部28から外部へ引き出す切り欠き24cが形成されていることにより、図1に示す内壁先端22a及び外壁先端24aを筐体51に接触または近接させることができる。このようなコイル装置10は、給電・受電時におけるコア20と給電側コア70との距離を短縮し、漏れ磁束を抑制することができる。また、このようなコア20の切り欠き24cは、受電側機器50の小型化に資する。なお、コア20の切り欠きは、内周壁部22に設けられていてもよく、内周壁部22と外周壁部24の両方に設けられていてもよい。   Further, as shown in FIG. 2 or FIG. 3, the outer wall 24 of the coil device 10 is formed with a notch 24c for leading the lead wire 30 out of the groove 28 to the outside, so that the inner wall tip 22a shown in FIG. The outer wall tip 24a can be brought into contact with or close to the housing 51. Such a coil device 10 can shorten the distance between the core 20 and the power supply side core 70 at the time of power supply and power reception, and can suppress leakage magnetic flux. Further, the notch 24 c of the core 20 contributes to downsizing of the power receiving side device 50. In addition, the notch of the core 20 may be provided in the inner peripheral wall part 22, or may be provided in both the inner peripheral wall part 22 and the outer peripheral wall part 24.

以上、実施形態を挙げて本発明のコイル装置を説明したが、本発明に係るコイル装置は実施形態に限定されず、他の多くの変形例が本発明の技術範囲に含まれることは言うまでもない。たとえば、コイル装置10において、コア20はZ軸方向から見て円環状であるが、コアは楕円環、角リング状のような他の環状形状であってもよく、Cリング状のように、一部が繋がっていない環状であってもよい。また、コイル装置10のコアは、円弧状、L字状のように、中央穴の一部のみを囲む形状であってもよい。   The coil device according to the present invention has been described with reference to the embodiment. However, the coil device according to the present invention is not limited to the embodiment, and it goes without saying that many other modifications are included in the technical scope of the present invention. . For example, in the coil device 10, the core 20 has an annular shape as viewed from the Z-axis direction, but the core may have another annular shape such as an elliptical ring shape or a square ring shape, A ring that is not partially connected may be used. Further, the core of the coil device 10 may have a shape surrounding only a part of the central hole, such as an arc shape or an L shape.

図4は、変形例に係るコイル装置(受電側コイル装置)に含まれる分割コア120aを表す斜視図である。分割コア120aは円弧状であり、分割コア120aには、外形状と同様に円弧状に延びる溝部128が形成されている。溝部128には、誘導電流を生じる導線が配置される。   FIG. 4 is a perspective view showing a split core 120a included in a coil device (a power receiving side coil device) according to a modification. The split core 120a has an arc shape, and a groove portion 128 extending in an arc shape is formed in the split core 120a in the same manner as the outer shape. In the groove portion 128, a conducting wire that generates an induced current is disposed.

分割コア120aは、導線の内周側に配置される内周壁部122と、導線の外周側に配置される外周壁部124と、内周壁部122と外周壁部124とを接続する接続壁部126とを有している。溝部128は、内周壁部122と外周壁部124と接続壁部126とによって囲まれている。溝部128は、図1に示す溝部28と同様に、中央穴121(分割コア120aにおいては、円弧の中心と共通の中心を有する穴)の径方向に沿う断面においてU字状である。   The split core 120a includes an inner peripheral wall portion 122 disposed on the inner peripheral side of the conductive wire, an outer peripheral wall portion 124 disposed on the outer peripheral side of the conductive wire, and a connection wall portion that connects the inner peripheral wall portion 122 and the outer peripheral wall portion 124. 126. The groove portion 128 is surrounded by the inner peripheral wall portion 122, the outer peripheral wall portion 124, and the connection wall portion 126. The groove part 128 is U-shaped in the cross section along the radial direction of the center hole 121 (in the split core 120a, a hole having a common center with the arc center), like the groove part 28 shown in FIG.

図5は、変形例に係るコイル装置のコアを表す概念図である。変形例に係るコイル装置のコアは、互いに別体である複数(図5に示す例では3つ)の分割コア120aを組み合わせてなる。なお、3つの分割コア120aは同じ形状を有しており、図5に示すコアには、同じ形状を有する2以上(図5に示す例では3)の分割コア120aが含まれる。   FIG. 5 is a conceptual diagram illustrating a core of a coil device according to a modification. The core of the coil device according to the modification is formed by combining a plurality of (three in the example shown in FIG. 5) split cores 120a that are separate from each other. The three divided cores 120a have the same shape, and the core shown in FIG. 5 includes two or more (three in the example shown in FIG. 5) divided cores 120a having the same shape.

図5に示すコアは、Cリング状の外形状を有しているのに対して、溝部128に配置される導線は図2に示す導線30と同様に円環状であるため、導線の一部は、溝部128の外に配置されている。分割コア120aを組み合わせてなるコアは、導線の一部を溝部128に収容していれば足りるが、このようなコアは、中央穴121の周りを270度以上350度未満の範囲で、導線を溝部128に収容していることが好ましい。導線が溝部128に収容されている範囲を示す角度Θを、270度以上とすることで、導線に生じる誘導電流を効果的に増加させることができる。また、導線が溝部128に収容されている範囲を示す角度Θを、350度未満とすることにより、コアを小さくして小型化、軽量化できるとともに、溝部128の外部へ導線を容易に引き出すことが可能である。   The core shown in FIG. 5 has a C-ring-like outer shape, whereas the conducting wire arranged in the groove 128 is annular like the conducting wire 30 shown in FIG. Is disposed outside the groove 128. The core formed by combining the split cores 120a is sufficient if a part of the conducting wire is accommodated in the groove portion 128, but such a core does not conduct the conducting wire around the central hole 121 in a range of 270 degrees or more and less than 350 degrees. It is preferable to be accommodated in the groove 128. By setting the angle Θ indicating the range in which the conducting wire is accommodated in the groove 128 to 270 degrees or more, the induced current generated in the conducting wire can be effectively increased. In addition, by setting the angle Θ indicating the range in which the conducting wire is accommodated in the groove portion 128 to be less than 350 degrees, the core can be reduced in size and weight, and the conducting wire can be easily pulled out of the groove portion 128. Is possible.

図4及び図5に示すような変形例に係る分割コア120aを有するコイル装置も、コイル装置10と同様の効果を奏する。また、複数の分割コア120aを組み合わせてなるコアは、外部からの衝撃を受けてもワレやカケ等を発生し難く、耐衝撃性の点で有利である。また、組み合わせる分割コア120aの数を増減させることにより、コイル装置の特性を容易に調整することができる。   The coil device having the split core 120a according to the modification shown in FIGS. 4 and 5 also has the same effect as the coil device 10. In addition, a core formed by combining a plurality of split cores 120a is advantageous in terms of impact resistance because it hardly generates cracks or chips even when subjected to external impacts. Moreover, the characteristic of a coil apparatus can be easily adjusted by increasing / decreasing the number of the division | segmentation cores 120a combined.

上述した受電側のコア20に対応して用いられる給電側コア70の形状は、図1に示すようなリング状に限定されず、例えば、図6に示すような給電側コア170であってもよい。図6に示すように、給電側コア170は、受電側のコア20の外径に略等しい外径を有する円盤状の外形状を有しており、中央部に形成される円筒状の中央凸部172と、給電側コア170の外周部分を構成するリング状の外周凸部174とを有している。   The shape of the power feeding side core 70 used corresponding to the power receiving side core 20 described above is not limited to the ring shape as shown in FIG. 1. For example, the power feeding side core 170 as shown in FIG. Good. As shown in FIG. 6, the power feeding side core 170 has a disk-like outer shape having an outer diameter substantially equal to the outer diameter of the power receiving side core 20, and has a cylindrical central protrusion formed in the central portion. Part 172 and a ring-shaped outer peripheral convex part 174 constituting the outer peripheral part of the power feeding side core 170.

給電側コア170には、中央凸部172と外周凸部174との間に形成されており、Z軸正方向へ向かって開口するリング状の給電側コア溝部178が形成されている。給電側コア溝部178には、給電側コイル80が配置されている。受給電の際、内壁先端22aは、給電側コア170の中央凸部172に対向し、外壁先端24aは、給電側コア170の外周凸部174に対向するように配置される。コイル装置10は、図6に示すような給電側コア170を有する給電装置コイル装置との組み合わせであっても、効率的な受給電を行うことができる。   The power feeding side core 170 is formed between the central convex portion 172 and the outer peripheral convex portion 174, and is formed with a ring-shaped power feeding side core groove portion 178 that opens toward the positive direction of the Z axis. A power supply side coil 80 is disposed in the power supply side core groove 178. At the time of power supply / reception, the inner wall tip 22 a is disposed to face the central convex portion 172 of the power feeding side core 170, and the outer wall tip 24 a is disposed to face the outer peripheral convex portion 174 of the power feeding side core 170. Even when the coil device 10 is a combination with a power feeding device coil device having a power feeding side core 170 as shown in FIG.

10…コイル装置
20…コア
21、121…中央穴
22、122…内周壁部
22a…内壁先端
24、124…外周壁部
24a…外壁先端
24c…切り欠き
26、126…接続壁部
28、128…溝部
30…導線
120a…分割コア
50…受電側機器
80…給電側コイル
60…給電側コイル装置
DESCRIPTION OF SYMBOLS 10 ... Coil apparatus 20 ... Core 21, 121 ... Center hole 22, 122 ... Inner peripheral wall part 22a ... Inner wall front end 24, 124 ... Outer peripheral wall part 24a ... Outer wall front end 24c ... Notch 26, 126 ... Connection wall part 28, 128 ... Groove 30 ... Conductor 120a ... Divided core 50 ... Power receiving side device 80 ... Power feeding side coil 60 ... Power feeding side coil device

Claims (9)

磁性体からなり給電側で形成された磁束が流入するコアと、前記磁束により誘導電流を生じる導線と、を有する非接触受電用コイル装置であって、
前記コアは、いずれも前記コアの中央穴の周りを前記導線に沿って延びており、前記導線の内周側に配置される内周壁部と、前記導線の外周側に配置される外周壁部と、前記内周壁部と前記外周壁部とを接続する接続壁部と、を有し、
前記導線は、前記内周壁部、前記外周壁部及び前記接続壁部で囲まれる溝部に配置されていることを特徴とする非接触受電用コイル装置。
A non-contact power receiving coil device having a core made of a magnetic material into which a magnetic flux formed on a power feeding side flows, and a conductive wire that generates an induced current by the magnetic flux,
Each of the cores extends around the central hole of the core along the conductive wire, and an inner peripheral wall portion disposed on the inner peripheral side of the conductive wire and an outer peripheral wall portion disposed on the outer peripheral side of the conductive wire. And a connecting wall portion connecting the inner peripheral wall portion and the outer peripheral wall portion,
The said conducting wire is arrange | positioned at the groove part enclosed by the said inner peripheral wall part, the said outer peripheral wall part, and the said connection wall part, The coil apparatus for non-contact electric power receptions characterized by the above-mentioned.
前記溝部は、前記中央穴の径方向に沿う断面においてU字状であることを特徴とする請求項1に記載の非接触受電用コイル装置。   The non-contact power receiving coil device according to claim 1, wherein the groove is U-shaped in a cross section along the radial direction of the central hole. 前記内周壁部と前記外周壁部とは、前記溝部の深さ方向の長さが等しいことを特徴とする請求項1又は請求項2に記載の非接触受電用コイル装置。   The non-contact power receiving coil device according to claim 1 or 2, wherein the inner peripheral wall portion and the outer peripheral wall portion have the same length in the depth direction of the groove portion. 前記コアは、互いに別体である複数の分割コアを組み合わせてなることを特徴とする請求項1から請求項3までのいずれかに記載の非接触受電用コイル装置。   The non-contact power receiving coil device according to any one of claims 1 to 3, wherein the core is formed by combining a plurality of divided cores that are separate from each other. 前記複数の分割コアには、同じ形状を有する2以上の前記分割コアが含まれることを特徴とする請求項4に記載の非接触受電用コイル装置。   The non-contact power receiving coil device according to claim 4, wherein the plurality of split cores include two or more split cores having the same shape. 前記コアは、前記中央穴の周りを270度以上350度未満の範囲で、前記導線を前記溝部に収容していることを特徴とする請求項1から請求項5までのいずれかに記載の非接触受電用コイル装置。   The non-core according to any one of claims 1 to 5, wherein the core accommodates the conductive wire in the groove portion within a range of 270 degrees or more and less than 350 degrees around the central hole. Coil device for contact power reception. 前記外周壁部及び前記内周壁部のうち少なくとも一方には、前記導線を前記溝部から外部へ引き出す切り欠きが形成されていることを特徴とする請求項1から請求項6までのいずれかに記載の非接触受電用コイル装置。   The notch which pulls out the said conducting wire from the said groove part to the exterior is formed in at least one among the said outer peripheral wall part and the said inner peripheral wall part, The Claim 1 characterized by the above-mentioned. Non-contact power receiving coil device. 前記接続壁部の前記溝部の幅方向の長さは、前記内周壁部及び前記外周壁部の前記溝部の深さ方向の長さより長いことを特徴とする請求項1から請求項7までのいずれかに記載の非接触受電用コイル装置。   The length in the width direction of the groove portion of the connecting wall portion is longer than the length in the depth direction of the groove portion of the inner peripheral wall portion and the outer peripheral wall portion. A non-contact power receiving coil device according to claim 1. 磁性体からなり給電側で形成された磁束が流入する非接触受電用コアであって、
いずれも中央穴の周りに延びており、内周側に配置される内周壁部と、外周側に配置される外周壁部と、前記内周壁部と前記外周壁部とを接続する接続壁部と、を有し、
前記内周壁部、前記外周壁部及び前記接続壁部で囲まれるリング状又は円弧状の溝部が形成されていることを特徴とする非接触受電用コア。
A non-contact power receiving core made of a magnetic material into which a magnetic flux formed on the power feeding side flows,
All extend around the central hole, and the inner peripheral wall portion disposed on the inner peripheral side, the outer peripheral wall portion disposed on the outer peripheral side, and the connection wall portion connecting the inner peripheral wall portion and the outer peripheral wall portion. And having
A ring-shaped or arc-shaped groove portion surrounded by the inner peripheral wall portion, the outer peripheral wall portion and the connection wall portion is formed.
JP2016027277A 2016-02-16 2016-02-16 Non-contact power receiving coil device and non-contact power receiving core Pending JP2017147306A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016027277A JP2017147306A (en) 2016-02-16 2016-02-16 Non-contact power receiving coil device and non-contact power receiving core
CN201710076098.2A CN107086116A (en) 2016-02-16 2017-02-13 Coil device for non-contact power reception and magnetic core for non-contact power reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027277A JP2017147306A (en) 2016-02-16 2016-02-16 Non-contact power receiving coil device and non-contact power receiving core

Publications (1)

Publication Number Publication Date
JP2017147306A true JP2017147306A (en) 2017-08-24

Family

ID=59614808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027277A Pending JP2017147306A (en) 2016-02-16 2016-02-16 Non-contact power receiving coil device and non-contact power receiving core

Country Status (2)

Country Link
JP (1) JP2017147306A (en)
CN (1) CN107086116A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216479B (en) * 2020-08-21 2021-09-21 北京交通大学 Method for reducing magnetic core loss generated by coil lead wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298121A (en) * 1996-04-30 1997-11-18 Yaskawa Electric Corp Non-contact transmission device provided with power and signal transmission mechanism
US8350655B2 (en) * 2003-02-26 2013-01-08 Analogic Corporation Shielded power coupling device
US7197113B1 (en) * 2005-12-01 2007-03-27 General Electric Company Contactless power transfer system
CN202444334U (en) * 2012-03-05 2012-09-19 朱斯忠 Automated guided vehicle (AGV) radio energy coupler
CN203536170U (en) * 2013-09-22 2014-04-09 绵阳市维奇电子技术有限公司 Magnetic core for magnetic coupling of mobile phone wireless charger

Also Published As

Publication number Publication date
CN107086116A (en) 2017-08-22

Similar Documents

Publication Publication Date Title
KR101896631B1 (en) Non-contact Charging Module and Non-contact Charging Instrument
JP5118394B2 (en) Non-contact power transmission equipment
KR101198880B1 (en) Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same
JP4900528B1 (en) Non-contact charging module and non-contact charging device using the same
WO2012101731A1 (en) Contactless charging module and receiving-side and transmission-side contactless charger using same
JP6017700B2 (en) Inductive energy transfer coil structure
JP4835794B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP4835787B1 (en) Non-contact charging module and non-contact charging device
WO2013035281A1 (en) Non-contact charging module, electronic apparatus, and non-contact charging apparatus
JP2012010533A (en) Power transmission system, and power supply device and portable apparatus therefor
JP2012156482A (en) Reception side non-contact charging module and reception side non-contact charging apparatus
US20140056462A1 (en) Electro-acoustic transducer
JP4835800B1 (en) Non-contact charging module and non-contact charging device
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
JP2017147306A (en) Non-contact power receiving coil device and non-contact power receiving core
JP2012114222A (en) Coil module and coil unit including the same
JP5938559B2 (en) Non-contact charging module and non-contact charging device using the same
JP4900524B1 (en) Non-contact charging module and non-contact charging device
JP4900523B1 (en) Receiving side non-contact charging module, portable terminal using the same, transmitting non-contact charging module, and non-contact charger using the same
JP5358699B2 (en) Mobile device
US20170149268A1 (en) Communication device
JP2018029452A (en) Wearable device and non-contact power transmission/reception device
JP4983992B1 (en) Transmission-side non-contact charging module and transmission-side non-contact charging device using the same
JP5457478B2 (en) Mobile device
JP2012209997A (en) Non-contact charging module and non-contact charger