JP2017146506A - Optical filter and imaging apparatus - Google Patents

Optical filter and imaging apparatus Download PDF

Info

Publication number
JP2017146506A
JP2017146506A JP2016029321A JP2016029321A JP2017146506A JP 2017146506 A JP2017146506 A JP 2017146506A JP 2016029321 A JP2016029321 A JP 2016029321A JP 2016029321 A JP2016029321 A JP 2016029321A JP 2017146506 A JP2017146506 A JP 2017146506A
Authority
JP
Japan
Prior art keywords
absorber
wavelength
optical filter
transition
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016029321A
Other languages
Japanese (ja)
Inventor
さゆり 東田盛
Sayuri Higashidamori
さゆり 東田盛
和彦 塩野
Kazuhiko Shiono
和彦 塩野
保高 弘樹
Hiroki Hodaka
弘樹 保高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2016029321A priority Critical patent/JP2017146506A/en
Publication of JP2017146506A publication Critical patent/JP2017146506A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter including an absorption layer in which temperature dependency of an optical characteristic is suppressed.SOLUTION: The optical filter includes an absorption layer comprising a first absorber and a second absorber having absorption wavelength regions which are at least partially overlap in a wavelength range from 350 to 1200 nm. The first absorber and the second absorber have a first transition wavelength region and a second transition wavelength region, respectively, where transition from a transmission wavelength region to a cutoff wavelength region appears. The first absorber shows a shift toward a shorter wavelength side of a spectral transmittance curve in the first transition wavelength region with elevation of temperature; and the second absorber shows a shift toward a longer wavelength side of a spectral transmittance curve in the second transition wavelength region with elevation of temperature.SELECTED DRAWING: None

Description

本発明は、可視光を透過し、近赤外光を遮断する光学フィルタおよび光学フィルタを用いた撮像装置に関する。   The present invention relates to an optical filter that transmits visible light and blocks near-infrared light, and an imaging device using the optical filter.

固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視光を透過し近赤外光を遮断する光学フィルタが用いられる。該光学フィルタとしては、近赤外吸収色素を含む吸収層と、紫外光および近赤外光を遮断する誘電体多層膜からなる反射層とを備えた近赤外線カットフィルタが知られている(特許文献1〜4参照)。誘電体多層膜は入射角によって分光透過率曲線が変化するため、反射層と吸収層の両方を含む近赤外線カットフィルタは、吸収層の吸収特性により入射角依存性が抑制された分光透過率曲線が得られている。   In an imaging apparatus using a solid-state imaging device, an optical filter that transmits visible light and blocks near-infrared light is used in order to reproduce color tone well and obtain a clear image. As the optical filter, a near-infrared cut filter comprising an absorption layer containing a near-infrared absorbing dye and a reflective layer made of a dielectric multilayer film that blocks ultraviolet light and near-infrared light is known (patent) References 1-4). Since the spectral transmittance curve of a dielectric multilayer film changes depending on the incident angle, the near-infrared cut filter including both the reflective layer and the absorbing layer has a spectral transmittance curve whose dependence on the incident angle is suppressed by the absorption characteristics of the absorbing layer. Is obtained.

特開2013−190553号公報JP 2013-190553 A 特開2014−52482号公報JP 2014-52482 A 国際公開第2014/002864号International Publication No. 2014/002864 韓国登録特許1453469号公報Korean Registered Patent No. 1453469

このような近赤外線カットフィルタは、これまで、周囲の温度変化に対する光学特性、とくに、色再現性を左右する分光透過率曲線の温度依存性について具体的な検討がされていなかった。そのため、温度によって光学特性が大きく変化する近赤外線カットフィルタは、例えば、反射層の入射角依存性に起因する色再現性の劣化が十分に抑制できなくなるおそれがある。
したがって、本発明は、光学特性の温度依存性を抑制した光学フィルタ、および該光学フィルタを用いた撮像装置の提供を目的とする。
Until now, such near-infrared cut filters have not been specifically studied with respect to the optical characteristics with respect to ambient temperature changes, in particular, the temperature dependence of the spectral transmittance curve that affects color reproducibility. For this reason, the near-infrared cut filter whose optical characteristics greatly change depending on the temperature may not sufficiently suppress deterioration in color reproducibility due to, for example, the incident angle dependency of the reflective layer.
Therefore, an object of the present invention is to provide an optical filter in which the temperature dependence of optical characteristics is suppressed, and an imaging device using the optical filter.

本発明の一態様に係る光学フィルタは、波長350〜1200nmに少なくとも部分的に重なり合う吸収波長域を有する第1の吸収体および第2の吸収体を含む吸収層を備え、前記第1の吸収体および前記第2の吸収体はそれぞれ、透過波長域から遮断波長域に遷移する、第1の遷移波長域および第2の遷移波長域を有し、前記第1の吸収体は、温度の上昇とともに前記第1の遷移波長域における分光透過率曲線を短波長側にシフトし、前記第2の吸収体は、温度の上昇とともに前記第2の遷移波長域における分光透過率曲線を長波長側にシフトすることを特徴とする。   The optical filter which concerns on 1 aspect of this invention is equipped with the absorption layer containing the 1st absorber and the 2nd absorber which have the absorption wavelength range which overlaps with wavelength 350-1200 nm at least partially, Said 1st absorber And each of the second absorbers has a first transition wavelength region and a second transition wavelength region that transition from a transmission wavelength region to a cut-off wavelength region, and the first absorber has an increase in temperature. The spectral transmittance curve in the first transition wavelength region is shifted to the short wavelength side, and the second absorber shifts the spectral transmittance curve in the second transition wavelength region to the long wavelength side as the temperature rises. It is characterized by doing.

本発明によれば、光学特性の温度依存性を抑制し、温度変化に対して色再現性の劣化を抑制した光学フィルタ、さらに、該光学フィルタを用いた撮像装置が得られる。   According to the present invention, it is possible to obtain an optical filter that suppresses temperature dependency of optical characteristics, suppresses deterioration of color reproducibility with respect to a temperature change, and an imaging apparatus using the optical filter.

一実施形態の光学フィルタの例を概略的に示す断面図である。It is sectional drawing which shows the example of the optical filter of one Embodiment roughly. 実施例の光学フィルタに用いた反射層の分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of the reflection layer used for the optical filter of the Example. (a)は実施例の光学フィルタについて30℃および100℃で測定した分光透過率曲線、(b)は同光学フィルタについて常温で測定した分光透過率曲線を示す図である。(A) is the spectral transmittance curve measured at 30 degreeC and 100 degreeC about the optical filter of an Example, (b) is a figure which shows the spectral transmittance curve measured at normal temperature about the same optical filter. 一実施例における吸収層の各色素の分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of each pigment | dye of the absorption layer in one Example. 一実施例における吸収層の各色素の分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of each pigment | dye of the absorption layer in one Example. 一実施例における吸収層の各色素の分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of each pigment | dye of the absorption layer in one Example. 一実施例における吸収層の各色素の分光透過率曲線を示す図である。It is a figure which shows the spectral transmittance curve of each pigment | dye of the absorption layer in one Example.

本発明に係る光学フィルタは、波長350〜1200nmに少なくとも部分的に重なり合う吸収波長域を有する第1の吸収体および第2の吸収体を含む吸収層を有する。第1の吸収体および前記第2の吸収体はそれぞれ、透過波長域から遮断波長域に遷移する、第1の遷移波長域および第2の遷移波長域を有する。以下、各実施形態を詳述する。   The optical filter according to the present invention has an absorption layer including a first absorber and a second absorber having an absorption wavelength region that at least partially overlaps a wavelength of 350 to 1200 nm. Each of the first absorber and the second absorber has a first transition wavelength region and a second transition wavelength region that transition from a transmission wavelength region to a cutoff wavelength region. Hereinafter, each embodiment will be described in detail.

(第1の実施形態)
本実施形態の光学フィルタ(以下、第1の実施形態の説明中「本フィルタ」ともいう)は、第1の吸収体および第2の吸収体がいずれも波長540〜790nmに、透過波長域から遮断波長域に遷移する(第1,2の)遷移波長域を有する吸収剤を含んだ近赤外線カットフィルタである。
(First embodiment)
In the optical filter of the present embodiment (hereinafter also referred to as “the present filter” in the description of the first embodiment), both the first absorber and the second absorber have wavelengths from 540 to 790 nm, and from the transmission wavelength range. It is a near-infrared cut filter containing an absorbent having a (first and second) transition wavelength range that transitions to a cutoff wavelength range.

第1,2の吸収体として用いる吸収剤としては、典型的には、色素(近赤外線吸収色素)が挙げられるが、これに限らない。この他に第1,2の吸収体は、近赤外線吸収粒子、例えば、化合物A1/nCuPO(ただし、Aはアルカリ金属、アルカリ土類金属およびNHからなる群から選ばれる1種以上であり、nは1または2である。)の結晶子でもよく、具体的には、KCuPOの結晶子が挙げられる。 A typical example of the absorbent used as the first and second absorbers is a dye (near infrared absorbing dye), but is not limited thereto. In addition, the first and second absorbers are near-infrared absorbing particles, such as compound A 1 / n CuPO 4 (where A is one or more selected from the group consisting of alkali metals, alkaline earth metals, and NH 4). And n is 1 or 2.), and specifically includes a crystallite of KCuPO 4 .

以下、第1,2の吸収体は、(近赤外線吸収)色素として説明する。また、第1の吸収体を構成する色素を第1の色素、該第1の色素における遷移波長域を第1の遷移波長域と称する。そして、第2の吸収体を構成する色素を第2の色素、該第2の色素における遷移波長域を第2の遷移波長域と称する。なお、「(第1,2の)遷移波長域」とは、第1,2の吸収体が、それぞれ、波長540〜790nmにおいて、最小透過率を示す波長から短波長側に最大透過率を示す波長に遷移するまでの波長域と定義する。例えば、これらの色素が染料である場合、ジクロロメタンや、特定の透明樹脂中に溶解した状態で測定した分光透過率曲線において、上記定義に基づき、第1,2の遷移波長域を決めてよい。   Hereinafter, the first and second absorbers will be described as (near infrared absorption) dyes. Moreover, the pigment | dye which comprises a 1st absorber is called 1st pigment | dye, and the transition wavelength range in this 1st pigment | dye is called 1st transition wavelength region. And the pigment | dye which comprises a 2nd absorber is called a 2nd pigment | dye, and the transition wavelength range in this 2nd pigment | dye is called a 2nd transition wavelength range. The “(first and second) transition wavelength region” means that the first and second absorbers exhibit maximum transmittance from the wavelength exhibiting the minimum transmittance to the short wavelength side at wavelengths of 540 to 790 nm, respectively. It is defined as the wavelength range until the transition to the wavelength. For example, when these pigments are dyes, the first and second transition wavelength regions may be determined based on the above definition in a spectral transmittance curve measured in a state dissolved in dichloromethane or a specific transparent resin.

なお、第1,2の吸収体は、波長540〜790nmにおける最小透過率が20%以下であればよく、10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましい。また、第1,2の吸収体は、波長540〜790nmにおける最大透過率が60%以上であればよく、70%以上であれば好ましく、80%以上であればより好ましく、90%以上であればさらに好ましい。さらに、とくにことわりが無い場合、第1,2の遷移波長域は、常温(20℃±15℃の範囲)における分光透過率曲線に基づき定義する。   The first and second absorbers may have a minimum transmittance of 20% or less at a wavelength of 540 to 790 nm, preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. The first and second absorbers may have a maximum transmittance at a wavelength of 540 to 790 nm of 60% or more, preferably 70% or more, more preferably 80% or more, and 90% or more. More preferred. Further, unless otherwise specified, the first and second transition wavelength regions are defined based on a spectral transmittance curve at room temperature (range of 20 ° C. ± 15 ° C.).

ここで、第1の色素は、温度の上昇とともに第1の遷移波長域における分光透過率曲線を短波長側にシフトする特性を示す対象とする。また、第2の色素は、温度の上昇とともに第2の遷移波長域における分光透過率曲線を長波長側にシフトする特性を示す対象とする。以下、温度上昇にしたがった分光透過率曲線の長波長側へのシフトを「正シフト」、短波長側へのシフトを「負シフト」ともいう。   Here, let the 1st pigment | dye be the object which shows the characteristic which shifts the spectral transmittance curve in a 1st transition wavelength area to the short wavelength side with a raise in temperature. The second dye is a target that exhibits the characteristic of shifting the spectral transmittance curve in the second transition wavelength region to the longer wavelength side as the temperature rises. Hereinafter, the shift to the long wavelength side of the spectral transmittance curve according to the temperature rise is also referred to as “positive shift”, and the shift to the short wavelength side is also referred to as “negative shift”.

第1,2の色素を含む吸収層は1層でも2層以上でもよく、吸収層は、少なくとも厚さ方向に、第1の色素と第2の色素の両方が含まれる構成であればよい。2層以上有する場合、各層は同じ構成でも異なる構成でもよい。吸収層が2層の場合、一方が第1の色素を含む樹脂からなる層、他方が第2の色素を含む樹脂からなる層の組合せでもよい。また、吸収層には、第1,2の色素以外の吸収体(以下、第3の吸収体という)が含まれてもよい。第3の吸収体は、第1,2の色素が(第1,2の)遷移波長域を有する上記特定の波長域に遷移波長域を有さない吸収体、この場合、例えば紫外線吸収色素が挙げられる。第1の色素、第2の色素および第3の吸収体は、吸収層にそれぞれ2種以上含まれてもよい。さらに、吸収層は、それ自体が例えば、近赤外線吸収ガラス基板や近赤外線吸収樹脂基板のように、基板を含んでもよい。   The absorption layer containing the first and second dyes may be one layer or two or more layers, and the absorption layer only needs to include at least the first dye and the second dye in the thickness direction. When two or more layers are provided, each layer may have the same configuration or a different configuration. When the absorption layer has two layers, a combination of a layer made of a resin containing the first dye and a layer made of a resin containing the second dye may be used. Further, the absorbing layer may include an absorber other than the first and second dyes (hereinafter referred to as a third absorber). The third absorber is an absorber in which the first and second pigments do not have a transition wavelength region in the specific wavelength region in which the (first and second) transition wavelength regions are present. Can be mentioned. Two or more types of the first dye, the second dye, and the third absorber may be included in the absorption layer. Furthermore, the absorption layer itself may include a substrate, such as a near-infrared absorbing glass substrate or a near-infrared absorbing resin substrate.

本フィルタは、さらに反射層を有してもよい。反射層は、1以上の誘電体多層膜を有する。誘電体多層膜は、全て誘電体膜から構成されるものに限らず、一部に誘電体以外の材料(例えば、金属膜)が含まれてもよい。反射層が2以上の誘電体多層膜を有する場合、通常、反射帯の異なる複数の誘電体多層膜で構成される。例えば、一方が、近赤外域(700〜1150nm)のうち短波長側の光を反射する近赤外反射層であり、他方が、近赤外域のうち長波長側および近紫外域の両領域の光を反射する近赤外・近紫外反射層となる構成が挙げられる。   The filter may further include a reflective layer. The reflective layer has one or more dielectric multilayer films. The dielectric multilayer film is not limited to being composed of a dielectric film, but may include a material other than a dielectric (for example, a metal film) in part. When the reflective layer has two or more dielectric multilayer films, the reflective layer is usually composed of a plurality of dielectric multilayer films having different reflection bands. For example, one is a near-infrared reflective layer that reflects light on the short wavelength side in the near-infrared region (700 to 1150 nm), and the other is both the long-wavelength side and near-ultraviolet regions in the near-infrared region. The structure used as the near-infrared / near-ultraviolet reflective layer which reflects light is mentioned.

本フィルタは、さらに透明基板を有してもよい。本フィルタが、透明基板と吸収層と反射層を有する場合、吸収層と反射層は透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は限定されない。   The filter may further have a transparent substrate. When this filter has a transparent substrate, an absorption layer, and a reflection layer, the absorption layer and the reflection layer may be provided on the same main surface of the transparent substrate, or may be provided on different main surfaces. When the absorption layer and the reflection layer are provided on the same main surface, the stacking order is not limited.

本フィルタは、また、可視光の透過率損失を抑制する反射防止層等の、他の機能層を有してもよい。とくに、本フィルタの吸収層が、空気と接しないように、吸収層上に反射防止層を設けると、光利用効率が高められる点で好ましい。反射防止層は、吸収層の主表面に加え、側面全体も覆う構成としてもよく、この場合、吸収層の防湿効果を高められる。   The filter may also have other functional layers such as an antireflection layer that suppresses visible light transmittance loss. In particular, it is preferable to provide an antireflection layer on the absorption layer so that the absorption layer of the present filter does not come into contact with air, in that the light utilization efficiency can be improved. The antireflection layer may be configured to cover the entire side surface in addition to the main surface of the absorption layer. In this case, the moisture-proof effect of the absorption layer can be enhanced.

次に、図1により、本フィルタの構成例を示す。図1(a)は、吸収層11のみからなる光学フィルタであり、図1(b)は、吸収層11の一方の主面上に反射層12を備えた光学フィルタ20である。なお、「吸収層11の一方の主面上に、反射層12等の他の層を備える」とは、吸収層11に接触して他の層が備わる場合に限らず、吸収層11と他の層との間に、別の機能層(空間も含む)が備わる場合も含むものとし、以下の構成も同様である。ここで、光学フィルタ10、20における吸収層11は、透明基板の機能を併せ持ってもよい。   Next, FIG. 1 shows a configuration example of this filter. 1A is an optical filter including only the absorption layer 11, and FIG. 1B is an optical filter 20 including the reflective layer 12 on one main surface of the absorption layer 11. The phrase “having another layer such as the reflective layer 12 on one main surface of the absorption layer 11” is not limited to the case where another layer is provided in contact with the absorption layer 11, and the absorption layer 11 and the other The case where another functional layer (including a space) is provided between these layers is also included, and the following configurations are also the same. Here, the absorption layer 11 in the optical filters 10 and 20 may have the function of a transparent substrate.

図1(c)は、透明基板13の一方の主面上に吸収層11、他方の主面上に反射層12を備えた光学フィルタ30である。図1(d)は、透明基板13の一方の主面上に吸収層11と反射防止層14を順に備え、他方の主面上に反射層12を備えた光学フィルタ40である。次に、本フィルタの吸収層、反射層、透明基板および反射防止層について詳述する。   FIG. 1C shows an optical filter 30 having an absorption layer 11 on one main surface of the transparent substrate 13 and a reflection layer 12 on the other main surface. FIG. 1 (d) shows an optical filter 40 that includes an absorption layer 11 and an antireflection layer 14 in this order on one main surface of the transparent substrate 13, and a reflection layer 12 on the other main surface. Next, the absorption layer, the reflective layer, the transparent substrate and the antireflection layer of this filter will be described in detail.

<吸収層>
吸収層は、第1の色素(以下、「色素A1」と記す)と、第2の色素(以下、「色素A2」と記す)と、透明樹脂Bとを含有し、典型的には、透明樹脂B中に色素A1と色素A2が所定の重量比で均一に溶解または分散した層である。吸収層は、色素A1と色素A2以外の色素、すなわち第3の色素(以下、「色素A3」と記す)を含有してもよい。
<Absorption layer>
The absorption layer contains a first dye (hereinafter referred to as “Dye A1”), a second dye (hereinafter referred to as “Dye A2”), and a transparent resin B, and is typically transparent. This is a layer in which the dye A1 and the dye A2 are uniformly dissolved or dispersed in the resin B at a predetermined weight ratio. The absorption layer may contain a dye other than the dye A1 and the dye A2, that is, a third dye (hereinafter referred to as “dye A3”).

色素A1は、吸収層において、波長540〜790nmに第1の遷移波長域を有し、かつこの第1の遷移波長域における分光透過率曲線を負シフトする色素である。色素A2は、吸収層において、波長540〜790nmに第2の遷移波長域を有し、かつこの第2の遷移波長域における分光透過率曲線を正シフトする色素である。なお、色素A1と色素A2を含む吸収層の「遷移波長域」は、吸収層の透過波長域から遮断波長域に遷移する波長域を有し、具体的に、波長540〜790nmにおいて、最小透過率を示す波長から短波長側に最大透過率を示す波長に遷移するまでの波長域と定義する。   The dye A1 is a dye that has a first transition wavelength region at a wavelength of 540 to 790 nm in the absorption layer and negatively shifts the spectral transmittance curve in the first transition wavelength region. The dye A2 is a dye that has a second transition wavelength region at a wavelength of 540 to 790 nm in the absorption layer and positively shifts the spectral transmittance curve in the second transition wavelength region. The “transition wavelength range” of the absorption layer containing the dye A1 and the dye A2 has a wavelength range that transitions from the transmission wavelength range of the absorption layer to the cut-off wavelength range. Specifically, at the wavelength of 540 to 790 nm, the minimum transmission It is defined as a wavelength region from the wavelength indicating the rate to the wavelength indicating the maximum transmittance on the short wavelength side.

色素A1,A2はそれぞれ、上記要件を満たせば特にその種類は限定されない。すなわち、色素が負シフトする挙動を示すか、正シフトする挙動を示すかは、色素の種類や添加量、さらに色素が分散または溶解する透明樹脂Bの種類に依存する。したがって、色素A1,A2は、それらを分散または溶解する透明樹脂Bに応じ、例えば、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物等から適宜選択し、添加量を調整した上で組み合わせるとよい。   The types of the pigments A1 and A2 are not particularly limited as long as the above requirements are satisfied. That is, whether the dye exhibits a negative shift behavior or a positive shift behavior depends on the type and addition amount of the dye and the type of the transparent resin B in which the dye is dispersed or dissolved. Accordingly, the dyes A1 and A2 are selected from, for example, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, and the like, depending on the transparent resin B that disperses or dissolves them. It is good to select suitably and to combine after adjusting the addition amount.

透明樹脂Bが、例えば、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂または環状オレフィン樹脂中であって、色素A1として使用される負シフトする挙動を示す色素としては、例えば、スクアリリウム骨格の左右にベンゼン環が結合し、さらにベンゼン環の4位に窒素原子が結合した構造を有するスクアリリウム化合物が挙げられる。より具体的には、式(A1−11)〜(A1−14)に示すスクアリリウム系化合物(その共鳴構造体を含む)が挙げられる。なお、本明細書において、とくにことわらない限り、式(A1−11)で表される化合物を化合物(A1−11)と記し、他の式で表される化合物も同様に記す。   The transparent resin B is, for example, in a polyimide resin, a polyester resin, an acrylic resin, or a cyclic olefin resin, and the dye exhibiting a negative shifting behavior used as the dye A1 includes, for example, benzene rings on the left and right sides of the squarylium skeleton. Examples thereof include a squarylium compound having a structure in which a nitrogen atom is bonded to the 4-position of the benzene ring. More specifically, squarylium compounds (including their resonance structures) represented by formulas (A1-11) to (A1-14) can be given. In this specification, unless otherwise specified, a compound represented by the formula (A1-11) is referred to as a compound (A1-11), and a compound represented by another formula is also described in the same manner.

Figure 2017146506
Figure 2017146506

式(A1−11)〜(A1−14)中の記号は以下のとおりである。
24およびR26は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1〜6のアルキル基もしくはアルコキシ基、炭素数1〜10のアシルオキシ基、または−NR2728(R27およびR28は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、−C(=O)−R29(R29は、水素原子、置換基を有していてもよい炭素数1〜20のアルキル基もしくは炭素数6〜11のアリール基または、置換基を有していてもよく、炭素原子間に酸素原子を有していてもよい炭素数7〜18のアルアリール基)、−NHR30、または−SO−R30(R30は、それぞれ1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1〜25の炭化水素基)を示す。)を示す。
Symbols in the formulas (A1-11) to (A1-14) are as follows.
R 24 and R 26 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl or alkoxy group having 1 to 6 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, or —NR 27 R 28 (R 27 And R 28 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, —C (═O) —R 29 (R 29 is a hydrogen atom, or a carbon number optionally having a substituent). An alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 11 carbon atoms, or an aryl group having 7 to 18 carbon atoms which may have a substituent and may have an oxygen atom between carbon atoms), -NHR 30 or -SO 2 -R 30 (R 30, are each one or more hydrogen atoms are halogen atom, a hydroxyl group, a carboxyl group, may be substituted by a sulfo group or a cyano group, between carbon atoms Unsaturated bond, an oxygen atom, a.) For a hydrocarbon group) saturated or may 1 to 25 carbon atoms which contain an unsaturated ring structure shown.

およびXはそれぞれ式(1x)または(2x)で示される基であり、YおよびYはそれぞれ式(1y)〜(5y)から選ばれるいずれかで示される基である。XおよびXが、それぞれ下記式(2x)で示される基の場合、XおよびXはベンゼン環に直接結合していてもよい。 X 1 and X 2 are each a group represented by the formula (1x) or (2x), and Y 1 and Y 2 are each a group represented by any one selected from the formulas (1y) to (5y). When X 1 and X 2 are groups represented by the following formula (2x), X 1 and X 2 may be directly bonded to the benzene ring.

Figure 2017146506
Figure 2017146506

式(1x)中、4個のZは、それぞれ独立して水素原子、水酸基、炭素数1〜6のアルキル基もしくはアルコキシ基、または−NR3839(R38およびR39は、それぞれ独立して、水素原子または炭素数1〜20のアルキル基を示す)を示す。R31〜R36はそれぞれ独立して水素原子、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を、R37は炭素数1〜6のアルキル基または炭素数6〜10のアリール基を示す。 In the formula (1x), four Z's are each independently a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxy group having 1 to 6 carbon atoms, or -NR 38 R 39 (R 38 and R 39 are each independently Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). R 31 to R 36 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 37 is an alkyl group having 1 to 6 carbon atoms or an alkyl group having 6 to 10 carbon atoms. An aryl group is shown.

21およびR22は、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1〜6のアルキル基もしくはアリル基、または炭素数6〜11のアリール基もしくはアルアリール基を示す。
23およびR25は、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1〜6のアルキル基もしくはアルコキシ基を示す。
Qは、水素原子が炭素数1〜6のアルキル基、炭素数6〜10のアリール基または置換基を有していてもよい炭素数1〜10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。
R 21 and R 22 each independently represent a hydrogen atom, an optionally substituted alkyl group or allyl group having 1 to 6 carbon atoms, or an aryl group or aryl group having 6 to 11 carbon atoms. .
R 23 and R 25 each independently represent a hydrogen atom, a halogen atom, or an alkyl group or alkoxy group having 1 to 6 carbon atoms.
Q is an alkylene group in which a hydrogen atom is substituted with an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an acyloxy group having 1 to 10 carbon atoms which may have a substituent, Or an alkyleneoxy group is shown.

化合物(A1−11)、(A1−12)、(A1−13)および(A1−14)として、例えば、以下のものが挙げられる。   Examples of the compounds (A1-11), (A1-12), (A1-13) and (A1-14) include the following.

Figure 2017146506
Figure 2017146506

Figure 2017146506
Figure 2017146506

また、透明樹脂Bが、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂または環状オレフィン樹脂中であって、色素A2として正シフトする挙動を示す色素としては、例えば、式(A2−11)〜(A2−13)に示すシアニン系化合物や、FDR−004、FDR−005(以上、山田化学工業(株)製 商品名)等のフタロシアニン系化合物等が挙げられる。   Moreover, as the pigment | dye which transparent resin B is in a polyimide resin, a polyester resin, an acrylic resin, or a cyclic olefin resin and shows the behavior which carries out the positive shift as pigment | dye A2, formula (A2-11)-(A2-13), for example ) And phthalocyanine compounds such as FDR-004 and FDR-005 (trade name, manufactured by Yamada Chemical Co., Ltd.).

Figure 2017146506
Figure 2017146506

式(A2−11)〜(A2−13)中の記号は以下のとおりである。
〜R12はそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜15のアルキル基、または炭素数5〜20のアリール基を示す。
とRは互いに連結して5員環、6員環、または7員環を形成していてもよい。その場合、炭素環に結合する水素は炭素数1〜20のアルキル基または炭素数6〜30のアリール基で置換されていてもよい。
は一価のアニオンを示し、nはXの個数を示し、0または1である。
Symbols in formulas (A2-11) to (A2-13) are as follows.
R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms.
R 1 and R 2 may be connected to each other to form a 5-membered ring, a 6-membered ring, or a 7-membered ring. In that case, hydrogen bonded to the carbocycle may be substituted with an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms.
X represents a monovalent anion, n represents the number of X , and is 0 or 1.

nが0の場合、Aは式(a1)〜(a6)のいずれかで示されるアニオン性基を示す。
nが1の場合、Aはハロゲン原子、または、−X−A(Xは単結合、エーテル結合(−O−)、スルホニル結合(−SO−)、エステル結合(−C(=O)−O−、−O−C(=O)−)またはウレイド結合(−NH−C(=O)−NH−)であり、Aは炭素数1〜20のアルキル基または炭素数6〜30のアリール基である。)を示す。
When n is 0, A1 represents an anionic group represented by any one of formulas (a1) to (a6).
When n is 1, A 1 is a halogen atom or,, -X-A 2 (X is a single bond, an ether bond (-O-), a sulfonyl bond (-SO 2 -), an ester bond (-C (= O ) —O—, —O—C (═O) —) or a ureido bond (—NH—C (═O) —NH—), and A 2 is an alkyl group having 1 to 20 carbon atoms or 6 to 6 carbon atoms. 30 aryl groups).

Figure 2017146506
式(a1)〜(a6)中、R101〜R114はそれぞれ独立に水素原子、炭素数5〜20のアリール基、または、置換基を有してもよい炭素数1〜10のアルキル基を示す。
Figure 2017146506
In formulas (a1) to (a6), R 101 to R 114 each independently represent a hydrogen atom, an aryl group having 5 to 20 carbon atoms, or an alkyl group having 1 to 10 carbon atoms that may have a substituent. Show.

なお、XのXとしては、I、PF、ClO 、式(X1)、(X2)で示されるアニオン等が挙げられる。

Figure 2017146506
Examples of X in X include I, PF 6 , ClO 4 , anions represented by formulas (X1) and (X2), and the like.
Figure 2017146506

化合物(A2−11)の具体例としては、式(A2−11a)で示される化合物等、また化合物(A2−13)の具体例としては式(A2−13a)、式(A2−13b)でそれぞれ示される化合物等が挙げられる。   Specific examples of the compound (A2-11) include compounds represented by the formula (A2-11a) and the like, and specific examples of the compound (A2-13) include formulas (A2-13a) and (A2-13b) Examples thereof include compounds shown respectively.

Figure 2017146506
Figure 2017146506

なお、透明樹脂Bは、上述した樹脂の他、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリアミドイミド樹脂、およびポリオレフィン樹脂等が使用できる。また、透明樹脂Bは、1種を単独で使用してもよく、2種以上を混合して使用してもよい。   In addition to the above-mentioned resins, the transparent resin B is an epoxy resin, an ene / thiol resin, a polycarbonate resin, a polyether resin, a polyarylate resin, a polysulfone resin, a polyethersulfone resin, a polyparaphenylene resin, a polyarylene ether phosphate. Fin oxide resin, polyamideimide resin, polyolefin resin, and the like can be used. Moreover, the transparent resin B may be used individually by 1 type, and 2 or more types may be mixed and used for it.

表1は、各色素を各種透明樹脂100質量部に対して所定の質量部を分散または溶解させて形成した吸収層について、温度30℃および100℃における分光透過率曲線を測定し、各温度の遷移波長域において、透過率20%となる波長、λT30℃−20%およびλT100℃−20%を求め、シフト量を算出した結果である。
シフト量(nm)=λT100℃−20%−λT30℃−20%
なお、このように、第1の色素、第2の色素の透過率が20%となる波長を指標とした理由は、とくに温度変化によって色素に由来して、透過率が20%となる波長の変動が大きいためであって、透過率が20%となる波長の温度依存性を抑制することで、分光透過率曲線の温度依存性を効果的に抑制できるからである。
Table 1 shows the spectral transmittance curves at temperatures of 30 ° C. and 100 ° C. for the absorption layer formed by dispersing or dissolving a predetermined amount of each pigment in 100 parts by mass of various transparent resins. This is the result of calculating the shift amount by obtaining the wavelength at which the transmittance is 20%, λ T30 ° C.-20%, and λ T100 ° C.-20% in the transition wavelength region.
Shift amount (nm) = λ T100 ° C.−20% −λ T30 ° C.−20%
The reason why the wavelength at which the transmittance of the first dye and the second dye is 20% is used as an index is that the wavelength at which the transmittance is 20% is derived from the dye due to temperature change. This is because the fluctuation is large, and the temperature dependency of the spectral transmittance curve can be effectively suppressed by suppressing the temperature dependency of the wavelength at which the transmittance is 20%.

使用した色素は、式(A1−11a)および(A1−14a)に示すスクアリリウム系化合物、式(A2−11a)、(A2−13a)および(A2−13b)に示すシアニン系化合物、FDR−004およびFDR−005(以上、山田化学工業(株)製 商品名)のフタロシアニン系化合物である。また、透明樹脂には、ポリイミド樹脂(三菱ガス化学(株)製、商品名 ネオプリム(登録商標)C3G30)、ポリエステル樹脂(大阪ガスケミカル(株)製、商品名 B−OKP2)、アクリル樹脂(三菱レイヨン(株)製、商品名 BR−50)、および環状オレフィン樹脂(JSR(株)製、商品名 ARTON(登録商標))を用いた。なお、分光透過率曲線の測定には、オーシャンオプティクス社製のHR2000高分解能小型ファイバ光学分光器を用いた。   The dyes used were squarylium compounds represented by formulas (A1-11a) and (A1-14a), cyanine compounds represented by formulas (A2-11a), (A2-13a) and (A2-13b), and FDR-004. And phthalocyanine compounds of FDR-005 (trade name, manufactured by Yamada Chemical Co., Ltd.). Transparent resins include polyimide resin (Mitsubishi Gas Chemical Co., Ltd., trade name Neoprim (registered trademark) C3G30), polyester resin (Osaka Gas Chemical Co., Ltd., trade name B-OKP2), acrylic resin (Mitsubishi). Rayon Co., Ltd., trade name BR-50), and cyclic olefin resin (JSR, trade name, ARTON (registered trademark)) were used. For the measurement of the spectral transmittance curve, an HR2000 high-resolution small fiber optical spectrometer manufactured by Ocean Optics was used.

Figure 2017146506
Figure 2017146506

表1から明らかなように、式(A1−11a)および(A1−14a)に示すスクアリリウム系化合物は、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂および環状オレフィン樹脂のすべてで、その(第1の)遷移波長域における分光透過率曲線で負シフト、すなわち、色素A1としての挙動を示した。一方、式(A2−11a)、(A2−13a)および(A2−13b)に示すシアニン系化合物は、ポリイミド樹脂、ポリエステル樹脂およびアクリル樹脂中でその(第2の)遷移波長域における分光透過率曲線で正シフト、すなわち、色素A2としての挙動を示した。また、フタロシアニン系化合物は、FDR−004がポリイミド樹脂および環状オレフィン樹脂で正シフトの挙動を示し、FDR−005がポリイミド樹脂、ポリエステル樹脂、アクリル樹脂および環状オレフィン樹脂のすべてで正シフト、すなわち、色素A2としての挙動を示した。   As is clear from Table 1, the squarylium compounds represented by the formulas (A1-11a) and (A1-14a) are polyimide resin, polyester resin, acrylic resin, and cyclic olefin resin, and their (first) transition. The spectral transmittance curve in the wavelength region showed a negative shift, that is, the behavior as the dye A1. On the other hand, the cyanine compounds represented by the formulas (A2-11a), (A2-13a), and (A2-13b) are spectral transmittances in the (second) transition wavelength region in polyimide resins, polyester resins, and acrylic resins. The curve showed a positive shift, that is, behavior as dye A2. The phthalocyanine-based compound has a positive shift behavior when FDR-004 is polyimide resin and cyclic olefin resin, and FDR-005 is positive shift when polyimide resin, polyester resin, acrylic resin, and cyclic olefin resin are used. The behavior as A2 was shown.

第1,2の色素を含む吸収層は、第1の遷移波長域と第2の遷移波長域が、50nm以上の帯域で重なり合うとよい。このような重なり帯域があることで、吸収層における分光透過率曲線の温度依存性が低減され、安定した色再現性が得られやすい。すなわち、50nm以上の重なり帯域があることで、負シフトと正シフトによる相殺の効果が顕著となり、温度変化が生じても、吸収層における分光透過率曲線のシフト量が小さくなる効果が得られる。第1,2の遷移波長域の重なり帯域は、80nm以上が好ましく、100nm以上がより好ましく、150nm以上がさらに好ましい。   In the absorption layer containing the first and second dyes, the first transition wavelength region and the second transition wavelength region may overlap in a band of 50 nm or more. By having such an overlapping band, the temperature dependence of the spectral transmittance curve in the absorption layer is reduced, and stable color reproducibility is easily obtained. That is, when there is an overlapping band of 50 nm or more, the effect of cancellation by the negative shift and the positive shift becomes remarkable, and the effect of reducing the shift amount of the spectral transmittance curve in the absorption layer can be obtained even if the temperature changes. The overlapping band of the first and second transition wavelength regions is preferably 80 nm or more, more preferably 100 nm or more, and further preferably 150 nm or more.

そして、この重なり帯域には、色素A1の透過率が20%となる波長、および色素A2の透過率が20%となる波長のいずれか一方が含まれているとよく、両方が含まれていると好ましい。また、重なり帯域には、色素A1の透過率が15〜40%となる波長、および色素A2の透過率が15〜40%となる波長のいずれか一方が含まれているとより好ましく、両方が含まれているとさらに好ましい。さらに、この重なり帯域には、色素A1と色素A2を含む吸収層の透過率が20%となる波長が含まれていると好ましく、該透過率が15〜40%となる波長が含まれているとより好ましい。なお、上記は、少なくとも常温〜100℃の温度条件においていずれも満足することが好ましい。   The overlapping band preferably includes either one of a wavelength at which the transmittance of the dye A1 is 20% and a wavelength at which the transmittance of the dye A2 is 20%. And preferred. In addition, it is more preferable that the overlapping band includes any one of a wavelength at which the transmittance of the dye A1 is 15 to 40% and a wavelength at which the transmittance of the dye A2 is 15 to 40%. More preferably, it is contained. Further, this overlapping band preferably includes a wavelength at which the transmittance of the absorption layer containing the dye A1 and the dye A2 is 20%, and includes a wavelength at which the transmittance is 15 to 40%. And more preferred. In addition, it is preferable that all of the above are satisfied at least in a temperature condition of room temperature to 100 ° C.

さらに、第1,2の吸収体を含む吸収層は、(i)または(ii)を満たしていることが好ましく、両方を満たしていればより好ましい。かかる条件を満たすように、本実施形態は、各色素および透明樹脂を選択するとともに、各色素の濃度および厚さを調整するとよい。
(i)第1の吸収体は、30℃および100℃で測定される第1の遷移波長域に、それぞれ透過率が20%となる波長λ1T30℃−20%およびλ1T100℃−20%を有し、
第2の吸収体は、30℃および100℃で測定される第2の遷移波長域に、それぞれ透過率が20%となる波長λ2T30℃−20%およびλ2T100℃−20%を有し、
|λ1T30℃−20%−λ1T100℃−20%|≦10nm
|λ2T30℃−20%−λ2T100℃−20%|≦10nm
の関係を満たしている。
(i)において、上記2つの不等式の右辺の(最大)値は、5nmが好ましく、3nmがより好ましく、2nmがさらに好ましい。
Furthermore, the absorption layer containing the first and second absorbers preferably satisfies (i) or (ii), and more preferably satisfies both. In this embodiment, in order to satisfy such conditions, each dye and transparent resin are selected, and the concentration and thickness of each dye may be adjusted.
(I) The first absorber has wavelengths λ1 T30 ° C-20% and λ1 T100 ° C-20% at which the transmittance becomes 20% in the first transition wavelength range measured at 30 ° C and 100 ° C, respectively. Have
The second absorber has wavelengths λ2 T30 ° C-20% and λ2 T100 ° C-20% at which the transmittance is 20% in the second transition wavelength range measured at 30 ° C and 100 ° C, respectively.
| Λ1 T30 ° C.−20% −λ1 T100 ° C.−20% | ≦ 10 nm
| Λ2 T30 ° C.-20% −λ2 T100 ° C.-20% | ≦ 10 nm
Meet the relationship.
In (i), the (maximum) value on the right side of the two inequalities is preferably 5 nm, more preferably 3 nm, and even more preferably 2 nm.

(ii)透過波長域から遮断波長域に遷移する、遷移波長域を有し、
30℃および100℃で測定される上記遷移波長域に、それぞれ透過率が20%となる波長λT30℃−20%およびλT100℃−20%を有し、
波長λT30℃−20%およびλT100℃−20%が次式の関係を満たしている。
|λT30℃−20%−λT100℃−20%|≦5nm
(ii)において、上記不等式の右辺の(最大)値は、3nmが好ましく、1.5nmがより好ましく、1nmがさらに好ましく、実質的に0nmであるととくに好ましい。
なお、吸収層において、吸収率が最大となる波長における透過率は、10%以下であればよく、5%以下が好ましく、3%以下がより好ましい。
また、(i)および(ii)のように、透過率20%となる波長を指標として与えたのは、温度変化によって透過率20%となる波長が、色素に由来して変動しやすいため、該透過率における波長変動を抑制することが、高精度の色再現性のために重要となるからである。
(Ii) having a transition wavelength region that transitions from a transmission wavelength region to a cutoff wavelength region;
In the transition wavelength range measured at 30 ° C. and 100 ° C., the wavelengths λ T30 ° C.-20% and λ T100 ° C.-20% at which the transmittance is 20%, respectively,
The wavelengths [lambda] T30 [deg.] C.-20% and [lambda] T100 [deg.] C.-20% satisfy the following relationship.
| Λ T30 ° C.-20% −λ T100 ° C.-20% | ≦ 5 nm
In (ii), the (maximum) value of the right side of the inequality is preferably 3 nm, more preferably 1.5 nm, still more preferably 1 nm, and particularly preferably substantially 0 nm.
In the absorption layer, the transmittance at the wavelength where the absorption rate is maximum may be 10% or less, preferably 5% or less, and more preferably 3% or less.
In addition, as in (i) and (ii), the wavelength at which the transmittance is 20% is given as an index because the wavelength at which the transmittance is 20% due to a temperature change is likely to vary due to the pigment. This is because suppressing the wavelength fluctuation in the transmittance is important for highly accurate color reproducibility.

<反射層>
反射層は、可視光を透過し、前記吸収層の遮光域以外の波長の光を遮蔽する波長選択特性を有することが好ましい。この場合、反射層の遮光領域は、吸収層の遮光領域を含んでもよい。
<Reflective layer>
The reflective layer preferably has a wavelength selection characteristic that transmits visible light and shields light having a wavelength other than the light shielding region of the absorption layer. In this case, the light shielding region of the reflective layer may include the light shielding region of the absorption layer.

反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。誘電体多層膜は、光の干渉を利用して特定の波長域の光の透過と遮蔽を制御する機能を発現し、その透過・遮蔽特性には入射角依存性がある。一般的には、反射により遮蔽する光の波長は、垂直に入射する光(入射角0°)より、斜めに入射する光の方が短波長になる。   The reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately stacked. The dielectric multilayer film exhibits a function of controlling the transmission and shielding of light in a specific wavelength region by utilizing light interference, and the transmission / shielding characteristics depend on the incident angle. In general, the wavelength of light shielded by reflection is shorter for light incident obliquely than for light incident vertically (incidence angle 0 °).

本実施形態において、反射層を構成する誘電体多層膜は、(iii−1)を満たせばよい。
(iii−1)入射角0°の分光透過率曲線において、波長λ〜1100nmの光の平均透過率が10%以下である(ここで、λは、第1および第2の吸収体の波長540〜790nmにおける最大吸収波長のうちの長波長側の波長である)ことが好ましい。波長λ〜1100nmの光の平均透過率は低いほど好ましく、1%以下がより好ましい。
In the present embodiment, the dielectric multilayer film constituting the reflective layer may satisfy (iii-1).
(Iii-1) In the spectral transmittance curve at an incident angle of 0 °, the average transmittance of light having a wavelength of λ L to 1100 nm is 10% or less (where λ L is the first and second absorbers). It is preferably a wavelength on the long wavelength side of the maximum absorption wavelengths at wavelengths of 540 to 790 nm. The average transmittance of light having a wavelength λ L to 1100 nm is preferably as low as possible, and more preferably 1% or less.

誘電体多層膜はまた、(iii−2)および(iii−3)を満たすことが好ましい。
(iii−2)入射角0°の分光透過率曲線において、波長430〜550nmの光の透過率が90%以上である。波長430〜550nmの光の透過率は、93%以上がより好ましく、95%以上がより一層好ましく、97%以上がさらに好ましい。
(iii−3)入射角0°の各分光透過率曲線において、波長λ〜1100nmの光の平均透過率が1%以下である(ここで、λは、前記吸収層の波長630〜800nmの光の透過率が1%となる最大波長である)。波長λ〜1100nmの光の平均透過率は、0.5%以下がより好ましい。
The dielectric multilayer film preferably also satisfies (iii-2) and (iii-3).
(Iii-2) In the spectral transmittance curve with an incident angle of 0 °, the transmittance of light having a wavelength of 430 to 550 nm is 90% or more. The transmittance of light having a wavelength of 430 to 550 nm is more preferably 93% or more, still more preferably 95% or more, and even more preferably 97% or more.
(Iii-3) In each spectral transmittance curve at an incident angle of 0 °, the average transmittance of light having a wavelength λ b to 1100 nm is 1% or less (where λ b is a wavelength of 630 to 800 nm of the absorption layer) The maximum wavelength at which the transmittance of light becomes 1%). As for the average transmittance | permeability of the light of wavelength (lambda) b- 1100nm, 0.5% or less is more preferable.

反射層を構成する誘電体多層膜は、さらに(iii−4)および(iii−5)を満たすことがより好ましい。
(iii−4)入射角30°の分光透過率曲線において、波長430〜550nmの光の透過率が90%以上である。波長430〜550nmの光の透過率は、93%以上がより好ましく、95%以上がより一層好ましく、97%以上がさらに好ましい。
(iii−5)入射角30°の各分光透過率曲線において、波長λ〜1100nmの光の平均透過率が1%以下である。波長λ〜1100nmの光の透過率は、0.5%以下がより好ましい。
反射層が、(iii−1)を満たせば、近赤外線遮蔽効果が高い近赤外線カットフィルタが得られる。また(iii−2)および(iii−3)を満たせば、波長430〜550nmの光の透過率が高い近赤外線カットフィルタが得られる。さらに、(iii−4)および(iii−5)を満たせば、波長430〜550nmの光の透過率が高く、かつ斜入射特性に優れる近赤外線カットフィルタが得られる。
It is more preferable that the dielectric multilayer film constituting the reflective layer further satisfies (iii-4) and (iii-5).
(Iii-4) In the spectral transmittance curve at an incident angle of 30 °, the transmittance of light having a wavelength of 430 to 550 nm is 90% or more. The transmittance of light having a wavelength of 430 to 550 nm is more preferably 93% or more, still more preferably 95% or more, and even more preferably 97% or more.
(Iii-5) In each spectral transmittance curve at an incident angle of 30 °, the average transmittance of light having a wavelength λ b to 1100 nm is 1% or less. As for the transmittance | permeability of the light of wavelength (lambda) b- 1100nm, 0.5% or less is more preferable.
If the reflective layer satisfies (iii-1), a near-infrared cut filter having a high near-infrared shielding effect can be obtained. Moreover, if (iii-2) and (iii-3) are satisfy | filled, the near-infrared cut off filter with the high transmittance | permeability of the light of wavelength 430-550 nm will be obtained. Furthermore, if (iii-4) and (iii-5) are satisfied, a near-infrared cut filter having high transmittance of light having a wavelength of 430 to 550 nm and excellent oblique incidence characteristics can be obtained.

[透明基板]
透明基板は、波長420〜670nmの可視光で高透過を示す材料であればよく、近赤外光や近紫外光を吸収する材料でもよい。具体的には、例えば、ガラスや水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶等の無機材料や、樹脂等の有機材料が挙げられる。
[Transparent substrate]
The transparent substrate may be a material that exhibits high transmittance with visible light having a wavelength of 420 to 670 nm, and may be a material that absorbs near infrared light or near ultraviolet light. Specific examples include inorganic materials such as birefringent crystals such as glass, quartz, lithium niobate, and sapphire, and organic materials such as resins.

透明基板に使用できるガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。また、第2の実施形態で説明する、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型ガラス等も使用できる。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含むものとする。透明基板に使用できる樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂等が挙げられる。 Examples of the glass that can be used for the transparent substrate include soda lime glass, borosilicate glass, alkali-free glass, and quartz glass. Moreover, the absorption type glass etc. which added CuO etc. to the fluorophosphate glass, phosphate glass, etc. which are demonstrated in 2nd Embodiment can also be used. The “phosphate glass” includes silicic acid phosphate glass in which a part of the glass skeleton is composed of SiO 2 . Examples of resins that can be used for the transparent substrate include polyester resins, polyolefin resins, acrylic resins, urethane resins, vinyl chloride resins, fluororesins, polycarbonate resins, polyvinyl butyral resins, polyvinyl alcohol resins, and polyimide resins.

<反射防止層>
本フィルタは、他の機能層として、可視光の反射損失を低減する反射防止層を備えるとよい。反射防止層は、波長400〜700nmの可視光の反射防止効果を得るため、屈折率の異なる誘電体膜を例えば、3〜9層で、200〜400nm厚となるように積層して実現できる。
<Antireflection layer>
The filter may include an antireflection layer that reduces the reflection loss of visible light as another functional layer. In order to obtain an antireflection effect of visible light having a wavelength of 400 to 700 nm, the antireflection layer can be realized by stacking, for example, 3 to 9 dielectric films having different refractive indexes so as to have a thickness of 200 to 400 nm.

(第2の実施形態)
本実施形態の光学フィルタ(以下、第2の実施形態の説明中「本フィルタ」ともいう)は、吸収層の一部として、吸収型ガラスを用いる。例えば、本フィルタの吸収層は、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型ガラスと、色素A1を、透明樹脂Bに溶解または分散した層(本実施形態で「樹脂層」ともいう。)と、を含んだ構成が挙げられる。
(Second Embodiment)
The optical filter of the present embodiment (hereinafter also referred to as “the present filter” in the description of the second embodiment) uses an absorptive glass as a part of the absorption layer. For example, the absorption layer of this filter is composed of an absorption type glass in which CuO or the like is added to fluorophosphate glass or phosphate glass, and a layer in which the dye A1 is dissolved or dispersed in the transparent resin B (in this embodiment). And also a “resin layer”).

フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型ガラスは、第1の実施形態における色素A2を透明樹脂に溶解または分散させた層と同様の光学特性を示す。すなわち、波長540〜790nmに、第2の遷移波長域を有するとともに、温度の上昇とともに第2の遷移波長域における分光透過率曲線が長波長側にシフト、つまり正シフトする。
したがって、第1の実施形態が、吸収層に第2の吸収体として色素A2を含んでいるのに対し、本実施形態の光学フィルタは、第2の吸収体を含む層として吸収型ガラスを用い、その他の構成は第1の実施形態と同様である。以下、第1の実施形態との相違点を中心に説明する。
Absorption type glass in which CuO or the like is added to fluorophosphate glass, phosphate glass, or the like exhibits optical characteristics similar to those of the layer in which dye A2 in the first embodiment is dissolved or dispersed in a transparent resin. That is, it has a second transition wavelength region at a wavelength of 540 to 790 nm, and the spectral transmittance curve in the second transition wavelength region shifts to the long wavelength side, that is, positively shifts as the temperature rises.
Therefore, while the first embodiment includes the dye A2 as the second absorber in the absorption layer, the optical filter of the present embodiment uses absorption glass as the layer including the second absorber. Other configurations are the same as those of the first embodiment. Hereinafter, a description will be given focusing on differences from the first embodiment.

吸収型ガラスは、CuO等の添加濃度や厚さを調整することで、波長700〜1150nmの光の透過率を調整できる。表2に、CuOを含有するリン酸ガラスおよびCuOを含有するフツリン酸ガラスの(第2の)遷移波長域における分光透過率曲線のシフト量の一例を示す。シフト量は、第1の実施形態で説明した色素を各種透明樹脂に分散または溶解させて形成した吸収層の場合と同様、温度30℃および100℃における各分光透過率曲線を測定し、各吸収型ガラスの(第2の)遷移波長域における分光透過率曲線の透過率20%となる波長λT30℃−20%およびλT100℃−20%を求め、シフト量(λT100℃−20%−λT30℃−20%)(nm)を算出したものである。 Absorption type glass can adjust the transmittance | permeability of light with a wavelength of 700-1150 nm by adjusting the addition density | concentrations and thickness, such as CuO. Table 2 shows an example of the shift amount of the spectral transmittance curve in the (second) transition wavelength region of the phosphate glass containing CuO and the fluorophosphate glass containing CuO. The amount of shift is determined by measuring each spectral transmittance curve at temperatures of 30 ° C. and 100 ° C. as in the case of the absorption layer formed by dispersing or dissolving the dye described in the first embodiment in various transparent resins. The wavelength λ T30 ° C.-20% and λ T 100 ° C.-20% at which the transmittance of the spectral transmittance curve in the (second) transition wavelength region of the mold glass is 20% are determined, and the shift amount (λ T100 ° C.-20% − ( λT30 ° C.−20% ) (nm) is calculated.

Figure 2017146506
Figure 2017146506

表2から明らかなように、吸収型ガラスは、その(第2の)遷移波長域における分光透過率曲線が温度の上昇とともに正シフトする。したがって、(第1の)遷移波長域における分光透過率曲線が温度の上昇とともに負シフトする、色素A1を含有する層と組み合わせることで、分光特性の温度依存性が抑制された光学フィルタを実現できる。   As apparent from Table 2, the absorption-type glass has a positive shift in its spectral transmittance curve in the (second) transition wavelength region as the temperature increases. Therefore, by combining with a layer containing the dye A1 in which the spectral transmittance curve in the (first) transition wavelength region is negatively shifted as the temperature rises, an optical filter in which the temperature dependence of spectral characteristics is suppressed can be realized. .

透明基材がフツリン酸塩系ガラスの場合、具体的にカチオン%表示で、P5+ 20〜45%、Al3+ 1〜25%、R1〜30%(但し、Rは、Li、Na、Kのうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)、Cu2+ 1〜20%、R2+1〜50(但し、R2+は、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+のうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有するとともに、アニオン%表示で、F 10〜65%、O2− 35〜90%を含有していることが好ましい。 When the transparent substrate is a fluorophosphate glass, specifically, P 5+ 20 to 45%, Al 3+ 1 to 25%, R + 1 to 30% (where R + is Li + , It is at least one of Na + and K + , and the value on the left is a total value of the respective content ratios), Cu 2+ 1 to 20%, R 2+ 1 to 50 (provided that R 2+ is At least one of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , and the value on the left is the sum of the respective content ratios), and in terms of anion%, - 10 to 65%, preferably contains the O 2-35 to 90%.

また、透明基材がリン酸塩系ガラスの場合、質量%表示で、P 30〜80%、Al 1〜20%、RO 0.5〜30%、(但し、ROは、LiO、NaO、KOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である。)、CuO 1〜12%、RO 0.5〜40%(但し、ROは、MgO、CaO、SrO、BaO、ZnOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有することが好ましい。 Further, when the transparent substrate is a phosphate type glass, represented by mass%, P 2 O 5 30~80%, Al 2 O 3 1~20%, R 2 O 0.5~30%, ( provided that, R 2 O is at least one of Li 2 O, Na 2 O, and K 2 O, and the values on the left are the total values of the respective content ratios)), CuO 1 to 12%, RO 0.5-40% (however, RO is at least one of MgO, CaO, SrO, BaO, ZnO, and the value on the left is a total value of each content) It is preferable to do.

市販品を例示すると、NF−50E、NF−50EX、NF−50T、NF−50TX(旭硝子(株)製、商品名)等、BG−60、BG−61(以上、ショット社製、商品名)等、CD5000(HOYA(株)製、商品名)等が挙げられる。   Examples of commercially available products include NF-50E, NF-50EX, NF-50T, NF-50TX (made by Asahi Glass Co., Ltd., trade name), BG-60, BG-61 (above, trade name, made by Schott) CD5000 (manufactured by HOYA, trade name) and the like.

上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物は、例えば、Fe、MoO、WO、CeO、Sb、V等の1種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。これらの金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe 0.6〜5質量部、MoO 0.5〜5質量部、WO 1〜6質量部、CeO 2.5〜6質量部、またはFeとSbの2種をFe 0.6〜5質量部+Sb 0.1〜5質量部、もしくはVとCeOの2種をV 0.01〜0.5質量部+CeO 1〜6質量部とするとよい。 The above-described CuO-containing glass may further contain a metal oxide. When the metal oxide contains, for example, one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc., the CuO-containing glass has ultraviolet absorption characteristics. The content of these metal oxides, relative to the CuO-containing glass 100 parts by weight, the Fe 2 O 3, MoO 3, WO 3 and at least one selected from the group consisting of CeO 2, Fe 2 O 3 0.6-5 parts by mass, MoO 3 0.5-5 parts by mass, WO 3 1-6 parts by mass, CeO 2 2.5-6 parts by mass, or Fe 2 O 3 and Sb 2 O 3 Fe 2 O 3 0.6 to 5 parts by + Sb 2 O 3 0.1 to 5 parts by weight, or V 2 O 5 two and CeO 2 V 2 O 5 0.01 to 0.5 parts by + CeO 2 It is good to set it as 1-6 mass parts.

なお、本フィルタにおいても、第1の遷移波長域と第2の遷移波長域が、50nm以上の重なり帯域を有するとよく、重なり帯域は80nm以上が好ましく、100nm以上がより好ましく、150nm以上がさらに好ましい。また、吸収層は、前述した(i)または(ii)を満たしていればよく、両方を満たしていれば好ましい。かかる条件を満たすように、色素および透明樹脂、吸収型ガラスを選択するとともに、色素の濃度、色素を含有する層の厚さ、吸収型ガラスに含有するCuO等の濃度、吸収型ガラスの厚さを調整することが好ましい。   Also in this filter, the first transition wavelength region and the second transition wavelength region may have an overlapping band of 50 nm or more, the overlapping band is preferably 80 nm or more, more preferably 100 nm or more, and further 150 nm or more. preferable. Moreover, the absorption layer should just satisfy | fill (i) or (ii) mentioned above, and if both are satisfy | filled, it is preferable. In order to satisfy these conditions, the dye, transparent resin, and absorption glass are selected, the concentration of the dye, the thickness of the layer containing the dye, the concentration of CuO and the like contained in the absorption glass, and the thickness of the absorption glass. Is preferably adjusted.

このように、本フィルタは、第2の遷移波長域における分光透過率曲線が温度の上昇とともに正シフトする吸収型ガラスと、第1の遷移波長域における分光透過率曲線が温度の上昇とともに負シフトする、色素A1を含有する層を含む吸収層を備える。したがって、このような吸収層は全体として、波長540〜790nmに遷移波長域を有するとともに、その遷移波長域における分光透過率曲線が温度の上昇とともに長波長側または短波長側へシフトする量が、吸収型ガラスのみで構成される吸収層、あるいは第2の色素と吸収型ガラスを含む吸収層、と比べて抑制できる。すなわち、本フィルタは、遷移波長域において、温度依存性が抑制された分光透過率曲線を有する吸収層を備える。
なお、透明樹脂B、色素A1、反射層、反射防止層等の、吸収型ガラス以外は第1の実施形態における構成および好的条件とすればよい。
As described above, this filter has an absorption type glass in which the spectral transmittance curve in the second transition wavelength region is positively shifted with increasing temperature, and the spectral transmittance curve in the first transition wavelength region is negatively shifted with increasing temperature. And an absorption layer including a layer containing the dye A1. Therefore, such an absorption layer as a whole has a transition wavelength region at a wavelength of 540 to 790 nm, and the amount by which the spectral transmittance curve in the transition wavelength region shifts to the long wavelength side or the short wavelength side as the temperature rises, It can suppress compared with the absorption layer comprised only with absorption type glass, or the absorption layer containing a 2nd pigment | dye and absorption type glass. That is, this filter includes an absorption layer having a spectral transmittance curve in which temperature dependency is suppressed in the transition wavelength region.
In addition, what is necessary is just to set it as the structure and favorable conditions in 1st Embodiment other than absorption type glass, such as transparent resin B, pigment | dye A1, a reflection layer, and an antireflection layer.

(その他の実施形態)
以上説明した実施形態は、波長540〜790nmに遷移波長域を有する吸収層を備えた近赤外線カットフィルタの例であるが、これに限定されず、例えば、波長750〜950nmに遷移波長域を有する吸収層を備えた光学フィルタ、波長950〜1200nmに遷移波長域を有する吸収層を備えた光学フィルタや、波長350〜540nmに遷移波長域を有する吸収層を備えた光学フィルタ等にも広く適用可能であり、同様の効果が得られる。また、第1、2の実施形態を含み、第1,2の吸収体の「第1,2の遷移波長域」は、第1の実施形態で説明した波長域として定義できる。
(Other embodiments)
The embodiment described above is an example of a near-infrared cut filter including an absorption layer having a transition wavelength region at a wavelength of 540 to 790 nm, but is not limited thereto, and has, for example, a transition wavelength region at a wavelength of 750 to 950 nm. Widely applicable to optical filters having an absorption layer, optical filters having an absorption layer having a transition wavelength region at a wavelength of 950 to 1200 nm, optical filters having an absorption layer having a transition wavelength region at a wavelength of 350 to 540 nm, etc. The same effect can be obtained. Moreover, including the first and second embodiments, the “first and second transition wavelength regions” of the first and second absorbers can be defined as the wavelength regions described in the first embodiment.

以下、本発明の実施例を記載する。なお、吸収層や反射層等の分光透過率曲線の測定には、いずれもオーシャンオプティクス社製のHR2000高分解能小型ファイバ光学分光器を用いた。
(実施例1)
ポリイミド樹脂溶液(ネオプリム(登録商標)C3G30)にシクロヘキサノン、N−メチルピロリドン、式(A1−11a)のスクアリリウム系化合物を加え、樹脂層を形成するための塗工液を調製した。ポリイミド樹脂100質量部に対して、式(A1−11a)のスクアリリウム系化合物は6.2質量部とした。
この塗工液を、厚さ0.2mmのCuO含有フツリン酸ガラス(旭硝子社製、商品名:NF−50TX)からなる基板上に、スピンコート法により、塗布し、溶媒を加熱乾燥して、厚さ約1.0μmの樹脂層を形成し、光学フィルタを得た。
Examples of the present invention will be described below. Note that an HR2000 high-resolution small fiber optical spectrometer manufactured by Ocean Optics was used for measurement of spectral transmittance curves of the absorption layer and the reflection layer.
Example 1
Cyclohexanone, N-methylpyrrolidone, and a squarylium compound of the formula (A1-11a) were added to a polyimide resin solution (Neoprim (registered trademark) C3G30) to prepare a coating solution for forming a resin layer. The squarylium compound of the formula (A1-11a) was 6.2 parts by mass with respect to 100 parts by mass of the polyimide resin.
This coating solution was applied onto a substrate made of CuO-containing fluorophosphate glass (produced by Asahi Glass Co., Ltd., trade name: NF-50TX) having a thickness of 0.2 mm by spin coating, and the solvent was heated and dried. A resin layer having a thickness of about 1.0 μm was formed to obtain an optical filter.

(実施例2)
実施例1と同様のポリイミド樹脂溶液に、シクロヘキサノン、N−メチルピロリドンおよび式(A1−11a)のスクアリリウム系化合物に加え、さらに式(A2−11a)のシアニン系化合物をポリイミド樹脂100質量部に対して10.3質量部の割合で添加して、吸収層を形成するための塗工液を調製した。
この塗工液を、厚さ0.2mmのガラス(SCHOTT社製、商品名:D263)基板上にスピンコート法により塗布し、溶媒を加熱乾燥して、厚さ約1.0μmの吸収層を形成し、光学フィルタを得た。
(Example 2)
In addition to cyclohexanone, N-methylpyrrolidone and the squarylium compound of the formula (A1-11a), a cyanine compound of the formula (A2-11a) is further added to 100 parts by mass of the polyimide resin in the same polyimide resin solution as in Example 1. Was added at a rate of 10.3 parts by mass to prepare a coating solution for forming an absorption layer.
This coating solution is applied onto a glass substrate having a thickness of 0.2 mm (manufactured by SCHOTT, trade name: D263) by spin coating, and the solvent is heated and dried to form an absorption layer having a thickness of about 1.0 μm. An optical filter was obtained.

(実施例3)
式(A2−11a)のシアニン系化合物に代えて、式(A2−13a)のシアニン系化合物を用いるとともに、その添加量をポリイミド樹脂100質量部に対して4.1質量部の割合とした以外は、実施例2と同様にして光学フィルタを得た。
(実施例4)
式(A2−11a)のシアニン系化合物に代えて、式(A2−13b)のシアニン系化合物を用いるとともに、その添加量をポリイミド樹脂100質量部に対して4.3質量部の割合とした以外は、実施例2と同様にして光学フィルタを得た。
(実施例5)
式(A2−11a)のシアニン系化合物に代えて、フタロシアニン系化合物(FDR−005)を用いるとともに、その添加量をポリイミド樹脂100質量部に対して20.1質量部の割合とした以外は、実施例2と同様にして光学フィルタを得た。
(Example 3)
The cyanine compound of the formula (A2-13a) is used in place of the cyanine compound of the formula (A2-11a), and the addition amount is 4.1 parts by mass with respect to 100 parts by mass of the polyimide resin. Obtained an optical filter in the same manner as in Example 2.
Example 4
The cyanine compound of the formula (A2-13b) is used in place of the cyanine compound of the formula (A2-11a), and the addition amount is 4.3 parts by mass with respect to 100 parts by mass of the polyimide resin. Obtained an optical filter in the same manner as in Example 2.
(Example 5)
Instead of using the phthalocyanine compound (FDR-005) instead of the cyanine compound of the formula (A2-11a), the addition amount was set to a ratio of 20.1 parts by mass with respect to 100 parts by mass of the polyimide resin. An optical filter was obtained in the same manner as in Example 2.

(実施例6)
実施例2と同様のガラス基板に、蒸着法により、TiO膜とSiO膜を交互に積層して、誘電体多層膜48層からなる反射層を形成した。反射層の構成は、誘電体多層膜の積層数、TiO膜の膜厚およびSiO膜の膜厚をパラメータとしてシミュレーションし、入射角0°の各分光透過率曲線において、(iii−1)〜(iii−3)を満たすように、具体的には、本例では、実施例2における吸収層と併せて、波長λ〜1100nmの光の平均透過率が10%以下、波長430〜550nmの光の透過率が90%以上、波長λ〜1100nmの光の平均透過率が1%以下となるように求めた。図2に、上記設計をもとに作製した反射層の分光透過率曲線(入射角0°および30°)を示す。また、本例では(iii−4)および(iii−5)も満たした。
(Example 6)
A TiO 2 film and a SiO 2 film were alternately laminated on the same glass substrate as in Example 2 by vapor deposition to form a reflective layer composed of 48 dielectric multilayer films. The configuration of the reflective layer was simulated by using the number of laminated dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters, and in each spectral transmittance curve at an incident angle of 0 °, (iii-1) Specifically, to satisfy (iii-3), in this example, the average transmittance of light having a wavelength λ L to 1100 nm is 10% or less and a wavelength of 430 to 550 nm in combination with the absorption layer in Example 2. The light transmittance was 90% or more, and the average transmittance of light having a wavelength λ b ˜1100 nm was 1% or less. FIG. 2 shows the spectral transmittance curves (incidence angles of 0 ° and 30 °) of the reflective layer produced based on the above design. In this example, (iii-4) and (iii-5) were also satisfied.

次いで、実施例2と同様に調製した吸収層形成用の塗工液を、反射層を形成した上記ガラス基板の反射層形成面とは反対側の面に、スピンコート法により塗布し、溶媒を加熱乾燥して、厚さ約1.0μmの吸収層を形成した。
この後、吸収層の表面に、蒸着法により、TiO膜とSiO膜を交互に7層積層して反射防止層を形成し、光学フィルタを得た。
図3(a)は、得られた光学フィルタについて30℃および100℃で測定した分光透過率曲線(入射角0°)、図3(b)は、常温で測定した分光透過率曲線(入射角0°および30°)を示す。このように、得られた光学フィルタは、とくに遷移波長域を含む分光透過率曲線において、温度依存性が抑制され、入射角依存性も抑制された安定した光学特性を示した。
Next, the absorbing layer-forming coating solution prepared in the same manner as in Example 2 was applied to the surface opposite to the reflective layer-forming surface of the glass substrate on which the reflective layer was formed by spin coating, and the solvent was added. Heat-dried to form an absorption layer having a thickness of about 1.0 μm.
After that, seven layers of TiO 2 films and SiO 2 films were alternately laminated on the surface of the absorption layer by vapor deposition to form an antireflection layer, thereby obtaining an optical filter.
3A shows a spectral transmittance curve (incident angle 0 °) measured at 30 ° C. and 100 ° C. for the obtained optical filter, and FIG. 3B shows a spectral transmittance curve (incident angle) measured at room temperature. 0 ° and 30 °). Thus, the obtained optical filter exhibited stable optical characteristics in which temperature dependency was suppressed and incident angle dependency was also suppressed, particularly in a spectral transmittance curve including a transition wavelength region.

(実施例7〜9)
吸収層形成用の塗工液として、実施例3〜5と同様にして調製したものを用いた以外は実施例6と同様にして、光学フィルタを得た。
(Examples 7 to 9)
An optical filter was obtained in the same manner as in Example 6 except that the coating liquid for forming the absorbent layer was the same as that prepared in Examples 3 to 5.

得られた光学フィルタについて、温度30℃および100℃における分光透過率曲線(入射角0°)を測定し、その測定結果から、遷移波長域において透過率20%となる波長λT30℃−20%およびλT100℃−20%を求め、シフト量(nm)(=λT100℃−20%−λT30℃−20%)を算出した。結果を、表3に示す。
なお、表3には、実施例1で用いた厚さ0.2mmのCuO含有フツリン酸ガラスによる光学フィルタ(比較例1)のシフト量も記載した。さらに、表3には、ポリイミド樹脂溶液(ネオプリム(登録商標)C3G30)にシクロヘキサノン、N−メチルピロリドンおよび式(A1−11a)のスクアリリウム系化合物のみを添加して調製した塗工液を用いた以外、実施例2と同様にして得た光学フィルタ(比較例2)について、同様にして求めたシフト量も併せ記載した。
With respect to the obtained optical filter, a spectral transmittance curve (incidence angle 0 °) at temperatures of 30 ° C. and 100 ° C. is measured, and from the measurement result, a wavelength λ T30 ° C.- 20% at which the transmittance is 20% in the transition wavelength region. and lambda T100 ° C. sought -20%, was calculated shift amount (nm) (= λ T100 ℃ -20% -λ T30 ℃ -20%). The results are shown in Table 3.
Table 3 also shows the shift amount of the optical filter (Comparative Example 1) using the CuO-containing fluorophosphate glass having a thickness of 0.2 mm used in Example 1. Further, in Table 3, a coating solution prepared by adding only cyclohexanone, N-methylpyrrolidone and a squarylium compound of the formula (A1-11a) to a polyimide resin solution (Neoprim (registered trademark) C3G30) is used. For the optical filter obtained in the same manner as in Example 2 (Comparative Example 2), the shift amount obtained in the same manner is also described.

Figure 2017146506
Figure 2017146506

表3から明らかなように、本発明の実施例にかかる光学フィルタはいずれも、光学特性の温度依存性が小さく、温度変化に対し安定した光学特性を示した。   As is apparent from Table 3, all of the optical filters according to the examples of the present invention have small temperature dependency of the optical characteristics and exhibit stable optical characteristics with respect to temperature changes.

また、図4〜7にそれぞれ実施例2〜5の各吸収層における各色素(2種)の分光透過率曲線(入射角0°、常温)を示す。
図4〜7から明らかなように、いずれも第1,2の遷移波長域の重なり帯域が150nm以上あり、その重なり帯域には各色素の透過率が15〜40%となる波長が含まれていた。
また、実施例1においても、第1,2の遷移波長域の重なり帯域が150nm以上あり、その重なり帯域には樹脂層とCuO含有フツリン酸ガラスの透過率が20%となる波長が含まれていた。
Moreover, the spectral transmittance curve (incident angle 0 degree, normal temperature) of each pigment | dye (2 types) in each absorption layer of Examples 2-5 is shown in FIGS.
As is apparent from FIGS. 4 to 7, the overlapping band of the first and second transition wavelength bands is 150 nm or more, and the overlapping band includes a wavelength at which the transmittance of each dye is 15 to 40%. It was.
Also in Example 1, the overlap band of the first and second transition wavelength regions is 150 nm or more, and the overlap band includes a wavelength at which the transmittance of the resin layer and the CuO-containing fluorophosphate glass is 20%. It was.

本発明の光学フィルタは、温度依存性の小さい光学特性を有するので、かかる特性を要求される用途、環境下で使用される近赤外線カットフィルタ等として有用である。   Since the optical filter of the present invention has optical characteristics with low temperature dependence, it is useful as a near-infrared cut filter used in applications requiring such characteristics or in environments.

11…吸収層、12…反射層、13…透明基板、14…反射防止層。   DESCRIPTION OF SYMBOLS 11 ... Absorbing layer, 12 ... Reflective layer, 13 ... Transparent substrate, 14 ... Antireflection layer.

Claims (15)

波長350〜1200nmに少なくとも部分的に重なり合う吸収波長域を有する第1の吸収体および第2の吸収体を含む吸収層を備え、
前記第1の吸収体および前記第2の吸収体はそれぞれ、透過波長域から遮断波長域に遷移する、第1の遷移波長域および第2の遷移波長域を有し、
前記第1の吸収体は、温度の上昇とともに前記第1の遷移波長域における分光透過率曲線を短波長側にシフトし、前記第2の吸収体は、温度の上昇とともに前記第2の遷移波長域における分光透過率曲線を長波長側にシフトする
ことを特徴とする光学フィルタ。
Comprising an absorption layer comprising a first absorber and a second absorber having an absorption wavelength region at least partially overlapping at a wavelength of 350 to 1200 nm,
Each of the first absorber and the second absorber has a first transition wavelength region and a second transition wavelength region that transition from a transmission wavelength region to a cutoff wavelength region,
The first absorber shifts the spectral transmittance curve in the first transition wavelength region to the short wavelength side with increasing temperature, and the second absorber has the second transition wavelength with increasing temperature. An optical filter characterized in that the spectral transmittance curve in the region is shifted to the longer wavelength side.
波長540〜790nmに前記第1の遷移波長域および前記第2の遷移波長域を有し、かつ、波長λ[nm]を、前記第1の吸収体および前記第2の吸収体の波長540〜790nmにおける最大吸収波長のうちの長波長側の波長とするとき、入射角0°の分光透過率曲線において、波長λ〜1100nmの光の平均透過率が10%以下の誘電体多層膜からなる反射層を有する、請求項1記載の光学フィルタ。 It has the first transition wavelength region and the second transition wavelength region at wavelengths of 540 to 790 nm, and the wavelength λ L [nm] is the wavelength 540 of the first absorber and the second absorber. When a wavelength on the long wavelength side of the maximum absorption wavelength at ˜790 nm is used, from a dielectric multilayer film having an average transmittance of light having a wavelength λ L ˜1100 nm of 10% or less in a spectral transmittance curve at an incident angle of 0 ° The optical filter according to claim 1, further comprising: a reflective layer. 前記第1の遷移波長域と前記第2の遷移波長域は、50nm以上の重なり帯域を有する、請求項1または2記載の光学フィルタ。   The optical filter according to claim 1 or 2, wherein the first transition wavelength region and the second transition wavelength region have an overlapping band of 50 nm or more. 前記第1の吸収体が透過率20%を示す波長と、前記第1の吸収体が透過率20%を示す波長の少なくとも一方が、前記重なり帯域に含まれる、請求項3に記載の光学フィルタ。   The optical filter according to claim 3, wherein at least one of a wavelength at which the first absorber exhibits a transmittance of 20% and a wavelength at which the first absorber exhibits a transmittance of 20% is included in the overlapping band. . 前記第1の吸収体は、30℃および100℃で測定される前記第1の遷移波長域に、それぞれ透過率が20%となる波長λ1T30℃−20%およびλ1T100℃−20%を有し、
前記第2の吸収体は、30℃および100℃で測定される前記第2の遷移波長域に、それぞれ透過率が20%となる波長λ2T30℃−20%およびλ2T100℃−20%を有し、
|λ1T30℃−20%−λ1T100℃−20%|≦10nm
|λ2T30℃−20%−λ2T100℃−20%|≦10nm
の関係を満たしている、請求項1乃至4いずれか1項記載の光学フィルタ。
The first absorber has wavelengths λ1 T30 ° C-20% and λ1 T100 ° C-20% at which the transmittance is 20% in the first transition wavelength range measured at 30 ° C and 100 ° C, respectively. And
The second absorber has wavelengths λ2 T30 ° C-20% and λ2 T100 ° C-20% at which the transmittance is 20% in the second transition wavelength range measured at 30 ° C and 100 ° C, respectively. And
| Λ1 T30 ° C.−20% −λ1 T100 ° C.−20% | ≦ 10 nm
| Λ2 T30 ° C.-20% −λ2 T100 ° C.-20% | ≦ 10 nm
The optical filter according to claim 1, wherein the relationship is satisfied.
前記吸収層は、透過波長域から遮断波長域に遷移する、遷移波長域を有し、
30℃および100℃で測定される前記遷移波長域に、それぞれ透過率が20%となる波長λT30℃−20%およびλT100℃−20%を有し、
|λT30℃−20%−λT100℃−20%|≦5nm
の関係を満たしている、請求項1乃至5いずれか1項記載の光学フィルタ。
The absorption layer has a transition wavelength region that transitions from a transmission wavelength region to a cutoff wavelength region,
In the transition wavelength range measured at 30 ° C. and 100 ° C., the wavelengths λ T30 ° C.-20% and λ T100 ° C.-20% at which the transmittance is 20%, respectively,
| Λ T30 ° C.-20% −λ T100 ° C.-20% | ≦ 5 nm
The optical filter according to claim 1, wherein the relationship is satisfied.
前記第1の吸収体および前記第2の吸収体は、近赤外吸収色素である、請求項1乃至6のいずれか1項に記載の光学フィルタ。   The optical filter according to any one of claims 1 to 6, wherein the first absorber and the second absorber are near-infrared absorbing dyes. 前記吸収層は、前記第1の吸収体を含む第1の吸収層と、前記第2の吸収体を含む第2の吸収層を有する、請求項1乃至7のいずれか1項記載の光学フィルタ。   The optical filter according to claim 1, wherein the absorption layer includes a first absorption layer including the first absorber and a second absorption layer including the second absorber. . 前記吸収層は、前記第1の吸収体と前記第2の吸収体とともに透明樹脂を含む1層によりなる、請求項1乃至7いずれか1項記載の光学フィルタ。   The optical filter according to claim 1, wherein the absorption layer is formed of a single layer containing a transparent resin together with the first absorber and the second absorber. 前記第1の吸収体および前記第2の吸収体はそれぞれ、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物およびジイモニウム系化合物からなる群から選ばれる少なくとも1種である、請求項1乃至9のいずれか1項に記載の光学フィルタ。   Each of the first absorber and the second absorber is at least one selected from the group consisting of a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a dithiol metal complex compound, and a diimonium compound. The optical filter according to claim 1, which is a seed. 前記第1の吸収体は、式(A1−11)で表されるスクアリリウム系化合物であり、前記第2の吸収体は、式(A2−11)または式(A2−13)で表されるシアニン系化合物である、請求項10に記載の光学フィルタ。
Figure 2017146506
The first absorber is a squarylium compound represented by the formula (A1-11), and the second absorber is a cyanine represented by the formula (A2-11) or the formula (A2-13). The optical filter according to claim 10, which is a system compound.
Figure 2017146506
前記吸収層は、近赤外線吸収色素とともに透明樹脂を含む第1の吸収層と、近赤外吸収ガラスを含む第2の吸収層を有する、請求項1乃至6に記載の光学フィルタ。   The optical filter according to claim 1, wherein the absorption layer has a first absorption layer containing a transparent resin together with a near-infrared absorbing dye, and a second absorption layer containing a near-infrared absorption glass. 前記近赤外線吸収色素は、スクアリリウム系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物およびジイモニウム系化合物からなる群から選ばれる少なくとも1種であり、前記近赤外吸収ガラスが、CuOを含有するフツリン酸塩系ガラスまたはリン酸塩系ガラスである、請求項12に記載の光学フィルタ。   The near infrared absorbing dye is at least one selected from the group consisting of squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds and diimonium compounds, and the near infrared absorption The optical filter according to claim 12, wherein the glass is a fluorophosphate-based glass or a phosphate-based glass containing CuO. 前記近赤外線吸収色素は、式(A1−11)で表されるスクアリリウム系化合物である、請求項13に記載の光学フィルタ。
Figure 2017146506
The optical filter according to claim 13, wherein the near-infrared absorbing dye is a squarylium-based compound represented by the formula (A1-11).
Figure 2017146506
請求項1〜14のいずれか1項に記載の光学フィルタを備えた撮像装置。   The imaging device provided with the optical filter of any one of Claims 1-14.
JP2016029321A 2016-02-18 2016-02-18 Optical filter and imaging apparatus Pending JP2017146506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029321A JP2017146506A (en) 2016-02-18 2016-02-18 Optical filter and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029321A JP2017146506A (en) 2016-02-18 2016-02-18 Optical filter and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2017146506A true JP2017146506A (en) 2017-08-24

Family

ID=59683097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029321A Pending JP2017146506A (en) 2016-02-18 2016-02-18 Optical filter and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2017146506A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028139A (en) * 2017-09-08 2019-03-18 삼성전자주식회사 COMPOSITION FOR Near-Infrared Absorbing Film, Near-Infrared Absorbing Film, CAMERA MODULE AND ECTRONIC DEVICE
WO2019066398A3 (en) * 2017-09-28 2019-05-23 주식회사 엘엠에스 Optical product and optical filter including same
JP2019086771A (en) * 2017-11-01 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Optical filter, and camera module, and electronic device comprising the same
WO2019111638A1 (en) * 2017-12-06 2019-06-13 日本板硝子株式会社 Optical filter and imaging device
WO2019111965A1 (en) * 2017-12-07 2019-06-13 日本板硝子株式会社 Optical filter and imaging device
WO2020204025A1 (en) * 2019-04-03 2020-10-08 Agc株式会社 Optical filter and imaging device
WO2022075037A1 (en) * 2020-10-09 2022-04-14 コニカミノルタ株式会社 Near-infrared absorbing composition, near-infrared absorbing film, near-infrared absorbing filter and image sensor for solid-state imaging elements
WO2022230382A1 (en) * 2021-04-27 2022-11-03 Dic株式会社 Colored resin composition, color filter, and display device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491491B1 (en) 2017-09-08 2023-01-20 삼성전자주식회사 COMPOSITION FOR Near-Infrared Absorbing Film, Near-Infrared Absorbing Film, CAMERA MODULE AND ECTRONIC DEVICE
KR20190028139A (en) * 2017-09-08 2019-03-18 삼성전자주식회사 COMPOSITION FOR Near-Infrared Absorbing Film, Near-Infrared Absorbing Film, CAMERA MODULE AND ECTRONIC DEVICE
WO2019066398A3 (en) * 2017-09-28 2019-05-23 주식회사 엘엠에스 Optical product and optical filter including same
US11698480B2 (en) 2017-09-28 2023-07-11 Lms Co., Ltd. Optical product and optical filter including same
JP7158243B2 (en) 2017-11-01 2022-10-21 三星電子株式会社 Optical filter, camera module and electronic device including the same
JP2019086771A (en) * 2017-11-01 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Optical filter, and camera module, and electronic device comprising the same
US11719867B2 (en) 2017-11-01 2023-08-08 Samsung Electronics Co., Ltd. Optical filter, and camera module and electronic device comprising the same
WO2019111638A1 (en) * 2017-12-06 2019-06-13 日本板硝子株式会社 Optical filter and imaging device
JP6538294B1 (en) * 2017-12-06 2019-07-03 日本板硝子株式会社 Optical filter and imaging device
US11550086B2 (en) 2017-12-06 2023-01-10 Nippon Sheet Glass Company, Limited Optical filter and imaging apparatus
US11531149B2 (en) 2017-12-07 2022-12-20 Nippon Sheet Glass Company, Limited Optical filter and imaging apparatus
CN111406227B (en) * 2017-12-07 2022-06-10 日本板硝子株式会社 Optical filter and imaging device
CN111406227A (en) * 2017-12-07 2020-07-10 日本板硝子株式会社 Optical filter and image pickup apparatus
WO2019111965A1 (en) * 2017-12-07 2019-06-13 日本板硝子株式会社 Optical filter and imaging device
WO2020204025A1 (en) * 2019-04-03 2020-10-08 Agc株式会社 Optical filter and imaging device
JP7342944B2 (en) 2019-04-03 2023-09-12 Agc株式会社 Optical filters and imaging devices
WO2022075037A1 (en) * 2020-10-09 2022-04-14 コニカミノルタ株式会社 Near-infrared absorbing composition, near-infrared absorbing film, near-infrared absorbing filter and image sensor for solid-state imaging elements
WO2022230382A1 (en) * 2021-04-27 2022-11-03 Dic株式会社 Colored resin composition, color filter, and display device

Similar Documents

Publication Publication Date Title
JP2017146506A (en) Optical filter and imaging apparatus
JP6168252B2 (en) Near-infrared cut filter and imaging device
JP5849719B2 (en) Light absorber and imaging device using the same
US7215466B2 (en) Optical filter for screening out infrared and ultraviolet light
JP2021140177A (en) Optical filter and imaging apparatus
JP7070555B2 (en) Optical filter and image pickup device
JP7215476B2 (en) optical filter
WO2023008291A1 (en) Optical filter
JP7279718B2 (en) Optical filter and information acquisition device
WO2018123705A1 (en) Ultraviolet ray transmitting filter
WO2022024826A1 (en) Optical filter
JP2017167557A (en) Light absorber and image capturing device using the same
JP2024041789A (en) Optical filters, near-infrared cut filters, and imaging devices
JP7456525B2 (en) Optical filters and imaging devices
WO2023282186A1 (en) Optical filter
WO2022138252A1 (en) Optical filter
WO2022024941A1 (en) Optical filter
WO2019069688A1 (en) Optical filter and imaging device
WO2022085636A1 (en) Optical filter
JP2016042196A (en) Light absorber, and imaging apparatus using the same
WO2022065170A1 (en) Optical filter
WO2023248903A1 (en) Optical filter and imaging device
WO2023282187A1 (en) Optical filter
WO2023282184A1 (en) Optical filter
WO2022024942A1 (en) Optical filter