JP2017146201A - Monitoring device and monitoring method - Google Patents

Monitoring device and monitoring method Download PDF

Info

Publication number
JP2017146201A
JP2017146201A JP2016028152A JP2016028152A JP2017146201A JP 2017146201 A JP2017146201 A JP 2017146201A JP 2016028152 A JP2016028152 A JP 2016028152A JP 2016028152 A JP2016028152 A JP 2016028152A JP 2017146201 A JP2017146201 A JP 2017146201A
Authority
JP
Japan
Prior art keywords
composite material
monitoring
strain
wavelength
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016028152A
Other languages
Japanese (ja)
Other versions
JP6754585B2 (en
Inventor
山口 正直
Masanao Yamaguchi
正直 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2016028152A priority Critical patent/JP6754585B2/en
Publication of JP2017146201A publication Critical patent/JP2017146201A/en
Application granted granted Critical
Publication of JP6754585B2 publication Critical patent/JP6754585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a monitoring device and a monitoring method which, in order to early detect an indication of breakage due to separation of a composite material component, monitor vibration as a precursor of the separation.SOLUTION: A monitoring device for monitoring an indication of breakage due to separation of a composite material component made of a fiber-reinforced resin material includes strain detection means for detecting strain due to the separation. The strain detection means includes: an optical fiber-type strain sensor for detecting the strain of the composite material component; a wavelength conversion unit for converting reflection light from a sensor part of the strain sensor into a wavelength; and a calculation unit for calculating the amount of change in the wavelength.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂材料からなる複合材料部品に対して、剥離に起因する破壊の予兆を監視するモニタリング装置及びモニタリング方法に関する。   The present invention relates to a monitoring apparatus and a monitoring method for monitoring a sign of breakage due to peeling of a composite material part made of a fiber reinforced resin material.

近年、複合材料部品は軽量かつ高強度であることから、航空機、自動車、鉄道車両、船舶、風力発電ブレード、土木、建築等の構造体に利用されている。   In recent years, since composite material parts are lightweight and have high strength, they are used in structures such as aircraft, automobiles, railway vehicles, ships, wind power generation blades, civil engineering, and architecture.

しかし、複合材料は積層して用いられることが多いため、金属等の等方性材料と比較して層間強度が低い。そのため、例えば過度な外部負荷を受けたときに層間剥離が発生し、これが起点となって致命的な破壊が進行することがある。したがって、複合材料の使用に当たっては層間剥離に注意する必要がある。特に長期にわたる使用では繰返し荷重により樹脂が徐々に劣化し、複合材料の保持する強度が低下するため、層間剥離が発生しやすい。   However, since composite materials are often used by being laminated, interlayer strength is low as compared with isotropic materials such as metals. For this reason, for example, delamination may occur when an excessive external load is applied, and this may be a starting point, and fatal destruction may proceed. Therefore, it is necessary to pay attention to delamination when using the composite material. In particular, when used over a long period of time, the resin gradually deteriorates due to repeated loading, and the strength held by the composite material is reduced, so that delamination tends to occur.

このような層間剥離は、複合材料部品の強度の著しい低下につながるために、早期に発見することが望ましいが、層間剥離は外部からの目視によって確認し難い。   Since such delamination leads to a significant decrease in the strength of the composite material part, it is desirable to detect it early, but delamination is difficult to visually confirm from the outside.

そこで、従来は、超音波探傷装置等の非破壊検査装置を使用し、複合材料部品の健全性を定期検査により確認してきた(例えば、特許文献1)。   Therefore, conventionally, a nondestructive inspection device such as an ultrasonic flaw detector has been used, and the soundness of the composite material component has been confirmed by periodic inspection (for example, Patent Document 1).

特開2005−98921号公報JP-A-2005-98921

金属製部品の場合は、疲労による亀裂の進展はゆっくりとしたものであり、通常の定期検査で発見されてからでも遅くはない。しかし、複合材料部品の場合は層間剥離に起因した亀裂が一気に進展することがあり、定期検査では間に合わないことも考えられる。特に複合材料部品を移動体に使用する場合、定期検査前に複合材料部品に破壊が発生すると、大事故につながりかねないため、複合材料部品に対して、剥離による破壊の予兆をモニタリングすることが求められてきた。   In the case of metal parts, the progress of cracks due to fatigue is slow and not slow even after they are discovered by regular periodic inspection. However, in the case of composite material parts, cracks due to delamination may develop all at once, and it is considered that the periodic inspection may not be in time. Especially when composite material parts are used for mobile objects, if a composite material part breaks before periodic inspection, it can lead to a major accident. It has been sought.

本発明は、かかる点に鑑みてなされたものであり、複合材料部品の剥離による破壊の予兆を早期に発見すべく、その剥離の前兆の振動を監視するモニタリング装置及びモニタリング方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a monitoring device and a monitoring method for monitoring the vibration of the precursor of peeling in order to detect early signs of fracture due to peeling of the composite material part. Objective.

上記目的を達成するために、本発明の一態様に係るモニタリング装置は、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング装置であって、前記剥離による歪を検出する歪検出手段を備えたモニタリング装置を特徴としている。   In order to achieve the above object, a monitoring device according to an aspect of the present invention is a monitoring device that monitors a sign of fracture caused by peeling of a composite material part made of a fiber reinforced resin material, and the strain caused by the peeling is detected. It is characterized by a monitoring device provided with a strain detecting means for detecting.

また、上記目的を達成するために、本発明の一態様に係るモニタリング方法は、モニタリング装置を用いて、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング方法であって、前記剥離による歪を検出するモニタリング装置が、本発明の一態様に係るモニタリング装置であるモニタリング方法を特徴としている。   In order to achieve the above object, a monitoring method according to an aspect of the present invention is a monitoring method for monitoring a sign of fracture caused by peeling of a composite material part made of a fiber reinforced resin material using a monitoring device. And the monitoring method which detects the distortion by the said peeling is the monitoring method which is the monitoring apparatus which concerns on 1 aspect of this invention.

また、上記目的を達成するために、本発明の一態様に係るモニタリング方法は、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング方法であって、前記破壊の予兆による歪を検出したときに前記破壊を予兆するモニタリング方法を特徴としている。   In order to achieve the above object, a monitoring method according to one aspect of the present invention is a monitoring method for monitoring a sign of destruction caused by peeling of a composite material part made of a fiber reinforced resin material, It is characterized by a monitoring method that predicts the destruction when a distortion due to the sign is detected.

本発明の一態様に係るモニタリング装置及びモニタリング方法によれば、複合材料部品の剥離による破壊の予兆を早期に発見することができる。   According to the monitoring device and the monitoring method according to one aspect of the present invention, it is possible to detect a sign of failure due to peeling of a composite material component at an early stage.

本発明の一態様に係るモニタリング装置を示す概略図である。It is the schematic which shows the monitoring apparatus which concerns on 1 aspect of this invention. 荷重印加前の波長(λ)と信号強度(I)との関係を示すグラフ図である。It is a graph which shows the relationship between the wavelength ((lambda)) before load application, and signal strength (I). 荷重印加時の波長(λ)と信号強度(I)との関係を示すグラフ図である。It is a graph which shows the relationship between the wavelength (lambda) at the time of load application, and signal intensity (I). 正常時(剥離発生前)における試験片の厚み方向の歪による波長を示すグラフ図である。It is a graph which shows the wavelength by the distortion of the thickness direction of the test piece at the time of normal (before peeling generation | occurrence | production). 剥離発生直前における試験片の厚み方向の歪による波長を示すグラフ図である。It is a graph which shows the wavelength by the distortion of the thickness direction of the test piece just before peeling generation | occurrence | production. 剥離発生後における試験片の厚み方向の歪による波長を示すグラフ図である。It is a graph which shows the wavelength by the distortion of the thickness direction of the test piece after peeling generate | occur | produces.

<<概要>>
本発明の一態様に係るモニタリング装置は、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング装置であって、前記剥離による歪を検出する歪検出手段を備えている。
<< Overview >>
A monitoring device according to an aspect of the present invention is a monitoring device that monitors a sign of fracture caused by peeling of a composite material part made of a fiber reinforced resin material, and includes a strain detection unit that detects strain due to the peeling. Yes.

本発明の一態様に係るモニタリング装置は、複合材料部品の剥離を直接的に監視するのではなく、複合材料部品の剥離が生じる予兆を監視し、その監視結果に基づいて、本来は外部から目視によって確認することのできない複合材料部品の剥離による破壊の予兆をモニタリングすることができる。   The monitoring apparatus according to one aspect of the present invention does not directly monitor the peeling of the composite material part, but monitors the signs that the peeling of the composite material part occurs, and based on the monitoring result, the monitoring device is originally visually observed from the outside. It is possible to monitor for signs of fracture due to peeling of the composite material parts that cannot be confirmed by.

また、前記歪検出手段は、前記複合材料部品の歪を検出する光ファイバー式の歪センサーと、前記歪センサーのセンサー部からの反射光を波長に変換する波長変換部と、前記波長の変化量を演算する演算部とを備える。
これにより、複合材料部品の破壊の予兆を示す波長変化量を検出することができ、モニタリングの精度が向上する。
Further, the strain detection means includes an optical fiber type strain sensor that detects strain of the composite material part, a wavelength conversion unit that converts reflected light from the sensor unit of the strain sensor into a wavelength, and a change amount of the wavelength. A calculation unit for calculating.
As a result, it is possible to detect the amount of change in wavelength that indicates a sign of destruction of the composite material part, and the accuracy of monitoring is improved.

また、前記演算部は前記破壊の予兆を示す波長変化量を閾値とし、前記閾値を下回った場合に異常を知らせる警報手段を備える。
これにより、剥離が生じる予兆を人に知らせることができ、例えば、鉄道車両等の移動体に使用する場合の事故を未然に防止することができる。
Further, the calculation unit includes a warning means for notifying abnormality when the wavelength change amount indicating the sign of destruction is set as a threshold value and the threshold value is below the threshold value.
Thereby, it is possible to notify a person of a sign of occurrence of peeling, and for example, it is possible to prevent an accident when used for a moving body such as a railway vehicle.

また、本発明の一態様に係るモニタリング方法は、モニタリング装置を用いて、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング方法であって、前記剥離による歪を検出するモニタリング装置が、本発明の一態様に係るモニタリング装置である。   Further, the monitoring method according to one aspect of the present invention is a monitoring method for monitoring a symptom of breakage caused by peeling of a composite material part made of a fiber reinforced resin material using a monitoring device, wherein the distortion due to the peeling is detected. The monitoring apparatus to detect is the monitoring apparatus which concerns on 1 aspect of this invention.

本発明の一態様に係るモニタリング方法は、複合材料部品の剥離を直接的に監視するのではなく、複合材料部品の剥離が生じる予兆を監視することで、本来は外部から目視によって確認することのできない複合材料部品の剥離による破壊の予兆をモニタリングする。   The monitoring method according to one aspect of the present invention does not directly monitor the separation of the composite material part, but rather monitors the sign that the composite material part is peeled off. Monitor for signs of failure due to debonding of composite parts that cannot be done.

<実施形態>
(モニタリング装置の全体構成)
図1は、本発明の一態様に係るモニタリング装置を示す概略図である。ここでは、移動体の構造体の一例である鉄道車両台車用板バネに複合材料部品を適用した場合を例にとって説明する。1は鉄道車両台車用板バネ、2は光ファイバー式のFBG(Fiber Bragg Grating) センサー、3は波長変換装置、4はケーブル、5は警報装置、6は鉄道車両、7は鉄道車両台車を示す。
<Embodiment>
(Overall configuration of monitoring device)
FIG. 1 is a schematic diagram illustrating a monitoring device according to an aspect of the present invention. Here, a case where a composite material part is applied to a leaf spring for a railway vehicle bogie that is an example of a structure of a moving body will be described as an example. 1 is a leaf spring for a railway vehicle carriage, 2 is an optical fiber type FBG (Fiber Bragg Grating) sensor, 3 is a wavelength converter, 4 is a cable, 5 is an alarm device, 6 is a railway vehicle, and 7 is a railway vehicle carriage.

(鉄道車両台車用板バネ)
鉄道車両台車用板バネ1は、繊維強化樹脂材料からなる複合材料部品の一態様である。複合材料部品を構成する繊維強化樹脂材料としては、例えば、エポキシ樹脂、ポリイミド樹脂のような熱硬化性樹脂や、ポリアミド樹脂、ポリエチレン樹脂、ポリスチレン樹脂のような熱可塑性樹脂等の樹脂材料と、炭素繊維、アラミド繊維、ガラス繊維等の強化繊維材料とを複合化して成形された繊維強化樹脂材料(FRP(Fiber Reinforced plastic))が使用可能である。繊維強化樹脂材料(FRP)としては、具体的には、炭素繊維強化樹脂材料(CFRP(Carbon Fiber Reinforced plastic))、ガラス繊維強化樹脂材料(GFRP(Glass Fiber Reinforced plastic))、アラミド繊維強化樹脂材料(AFRP(Aramid Fiber Reinforced Plastic))、ボロン繊維強化樹脂材料(BFRP(Boron Fiber Reinforced Plastic))等があげられる。
(Leaf springs for railcar bogies)
The leaf spring 1 for a railway vehicle bogie is an aspect of a composite material part made of a fiber reinforced resin material. Examples of the fiber reinforced resin material constituting the composite material part include resin materials such as thermosetting resins such as epoxy resins and polyimide resins, thermoplastic resins such as polyamide resins, polyethylene resins, and polystyrene resins, and carbon. A fiber reinforced resin material (FRP (Fiber Reinforced plastic)) formed by compounding a reinforced fiber material such as fiber, aramid fiber or glass fiber can be used. Specific examples of the fiber reinforced resin material (FRP) include carbon fiber reinforced resin material (CFRP (Carbon Fiber Reinforced plastic)), glass fiber reinforced resin material (GFRP (Glass Fiber Reinforced plastic)), and aramid fiber reinforced resin material. (AFRP (Aramid Fiber Reinforced Plastic)), boron fiber reinforced resin material (BFRP (Boron Fiber Reinforced Plastic)), and the like.

鉄道車両台車用板バネ1は、弓状の形状をしており、鉄道車両6を支えるとともに線路からの振動を吸収する。鉄道車両台車用板バネ1としては、例えば、CFRPからなる上面部材と、CFRPからなる下面部材と、上面部材と下面部材との間に配置され且つGFRPからなるコア部材とを備えたハイブリッドタイプを使用することができる。   The leaf spring 1 for a railway vehicle bogie has an arcuate shape, supports the railway vehicle 6 and absorbs vibration from the track. As the rail spring 1 for a railway vehicle bogie, for example, a hybrid type including an upper surface member made of CFRP, a lower surface member made of CFRP, and a core member made of GFRP disposed between the upper surface member and the lower surface member. Can be used.

(光ファイバー式のFBGセンサー)
光ファイバー式のFBGセンサー(以下、単に「FBGセンサー」と称する。)2は、鉄道車両台車用板バネ1の層間及びその付近に設けられている。具体的には、FBGセンサー2は、鉄道車両台車用板バネ1のコア部材と上面部材もしくは下面部材との層間、好ましくは前記層間から5[mm]以内の場所に埋設される。つまり、FBGセンサー2は鉄道車両台車用板バネ1に埋設される。FBGセンサー2は、鉄道車両6の走行中に常時、歪を検出する。
(Optical fiber type FBG sensor)
An optical fiber type FBG sensor (hereinafter simply referred to as “FBG sensor”) 2 is provided between and in the vicinity of a leaf spring 1 for a railway vehicle carriage. Specifically, the FBG sensor 2 is embedded between the core member and the upper surface member or the lower surface member of the leaf spring 1 for a railway vehicle carriage, preferably within a place within 5 [mm] from the interlayer. That is, the FBG sensor 2 is embedded in the leaf spring 1 for a railway vehicle carriage. The FBG sensor 2 always detects distortion while the railway vehicle 6 is traveling.

FBGセンサー2は光ファイバーにセンサー部となるグレーティング(回析格子)を形成し、そのグレーティングから反射される光の波長変化を物理量(歪)の変化として捉えるセンサーである。FBGセンサー2は1本のファイバーに複数のセンサー部(グレーティング)を設け、独立して歪を計測することができる。
FBGセンサー2はセンサー部に荷重が加わると2方向の歪を検出できるようになっており、例えば鉄道車両台車用板バネ1では長手方向の歪、厚み方向の歪をそれぞれ検出することができる。鉄道車両台車用板バネ1に荷重がかかると、鉄道車両台車用板バネ1中に設けたFBGセンサー2に応力が作用して、FBGセンサー2は鉄道車両台車用板バネ1の厚み方向と長手方向の歪を検出することができる。但し、破壊の前兆を把握するために、層間剥離による影響が生じやすい厚み方向の歪を計測する必要がある。
The FBG sensor 2 is a sensor that forms a grating (diffraction grating) serving as a sensor portion on an optical fiber and captures a change in wavelength of light reflected from the grating as a change in physical quantity (distortion). The FBG sensor 2 is provided with a plurality of sensor portions (gratings) on one fiber, and can measure strain independently.
The FBG sensor 2 can detect strain in two directions when a load is applied to the sensor unit. For example, the leaf spring 1 for a railway vehicle bogie can detect strain in the longitudinal direction and strain in the thickness direction. When a load is applied to the railcar bogie leaf spring 1, stress acts on the FBG sensor 2 provided in the railcar bogie leaf spring 1, and the FBG sensor 2 has a thickness direction and a longitudinal direction of the railcar bogie leaf spring 1. Directional distortion can be detected. However, it is necessary to measure the strain in the thickness direction, which is likely to be affected by delamination, in order to grasp the signs of fracture.

以下、1本の光ファイバーに2点のセンサー部(S1,S2)を設けた場合の波長変化量及び歪量について、図面を用いて具体的に説明する。
図2は荷重印加前の波長(λ)と信号強度(I)との関係を示すグラフ図、図3は荷重印加時の波長(λ)と信号強度(I)との関係を示すグラフ図である。λは荷重印加前のセンサー部S1による反射波長を、λ′は荷重印加時のセンサー部S1による反射波長をそれぞれ示す。λは荷重印加前のセンサー部S2による反射波長を、λ′は荷重印加時のセンサー部S2による反射波長をそれぞれ示す。
Hereinafter, the amount of change in wavelength and the amount of distortion when two sensor portions (S1, S2) are provided in one optical fiber will be described in detail with reference to the drawings.
2 is a graph showing the relationship between the wavelength (λ) and the signal intensity (I) before the load is applied, and FIG. 3 is a graph showing the relationship between the wavelength (λ) and the signal intensity (I) when the load is applied. is there. λ 1 indicates the reflection wavelength by the sensor unit S1 before the load is applied, and λ ′ 1 indicates the reflection wavelength by the sensor unit S1 when the load is applied. λ 2 indicates the reflection wavelength by the sensor unit S2 before the load is applied, and λ ′ 2 indicates the reflection wavelength by the sensor unit S2 when the load is applied.

なお、FBGセンサー2は、剥離の検出精度等の点から、鉄道車両台車用板バネ1の剥離発生予測位置から500[mm]以内の場所に埋設することが好ましい。剥離発生予測位置は、予め試験を行うことで把握できる。   Note that the FBG sensor 2 is preferably embedded in a location within 500 mm from the predicted occurrence position of the leaf spring 1 for railcar bogies from the viewpoint of the detection accuracy of the separation. The predicted peeling occurrence position can be grasped by conducting a test in advance.

なお、FBGセンサー2は外径200[μm]以下が好ましく、長さは5[mm]から10[mm]の範囲が好ましい。   The FBG sensor 2 preferably has an outer diameter of 200 [μm] or less, and the length is preferably in the range of 5 [mm] to 10 [mm].

(波長変換装置)
波長変換装置3は、FBGセンサー2からの反射光を波長に変換する装置であり、具体的には波長変換装置3から発信された入射光をセンサー部(グレーティング)へ送り、センサー部からの反射光を波長変換装置3で波長に変換する。
(Wavelength converter)
The wavelength conversion device 3 is a device that converts the reflected light from the FBG sensor 2 into a wavelength. Specifically, the wavelength conversion device 3 sends incident light transmitted from the wavelength conversion device 3 to the sensor unit (grating) and reflects it from the sensor unit. The light is converted into a wavelength by the wavelength converter 3.

(演算部)
本発明の一態様に係るモニタリング装置は、歪特性(波長変化量もしくは歪量)を演算する演算部を備えている。演算部は、例えば、2点のセンサー部(S1,S2)の反射波長から歪特性を演算することができる。演算部としてはアナライザー等を使用できる他、CPU等でプログラムを実行することでも実施できる。
また、後述する実施例において詳述するが、演算部は波長変化量もしくは歪量が閾値を下回ったことを検出できる。この波長変化量もしくは歪量を剥離現象として捉え閾値として設けることにより、破壊の予兆を把握することができるようになる。
(Calculation unit)
A monitoring device according to one embodiment of the present invention includes a calculation unit that calculates distortion characteristics (amount of wavelength change or distortion). For example, the calculation unit can calculate the distortion characteristics from the reflected wavelengths of the two sensor units (S1, S2). As the calculation unit, an analyzer or the like can be used, or the program can be executed by a CPU or the like.
In addition, as will be described in detail in an embodiment described later, the calculation unit can detect that the amount of wavelength change or the amount of distortion has fallen below a threshold value. By grasping this amount of change in wavelength or amount of distortion as a peeling phenomenon and providing it as a threshold value, it becomes possible to grasp a sign of destruction.

ここで、波長変化量(Δλ)及び歪量(ε)は以下の式で示される。式中、Aは装置係数である。Aの数値は、今回利用したFBGセンサー2の場合、0.1935×10−3である。Bは材料係数、より具体的には、複合材料の厚み方向の弾性率である。例えば、厚み方向が炭素繊維複合材料のプリプレグ積層の厚み方向(プリプレグの積層方向と一致する)の場合のBの数値は4.5である。また、厚み方向が炭素繊維複合材料のプリプレグ積層の幅方向(プリプレグの積層方向と繊維方向とに直交する方向と一致する)の場合のBの数値は9.0である。なお、厚み方向がプリプレグ積層の厚み方向と一致する場合のBの数値は、厚み方向には樹脂のみの層と、樹脂が含浸された炭素繊維層とが交互に厚み方向に重なるため、厚み方向がプリプレグの積層の幅方向と一致する場合のBの数値よりも小さくなる。
Here, the wavelength change amount (Δλ) and the distortion amount (ε) are expressed by the following equations. In the formula, A is a device coefficient. The numerical value of A is 0.1935 × 10 −3 in the case of the FBG sensor 2 used this time. B is a material coefficient, more specifically, an elastic modulus in the thickness direction of the composite material. For example, the value of B when the thickness direction is the thickness direction of the prepreg lamination of the carbon fiber composite material (corresponding to the prepreg lamination direction) is 4.5. Further, the numerical value of B when the thickness direction is the width direction of the prepreg lamination of the carbon fiber composite material (corresponding to the direction perpendicular to the lamination direction of the prepreg and the fiber direction) is 9.0. The numerical value of B when the thickness direction coincides with the thickness direction of the prepreg lamination is such that the resin-only layer and the carbon fiber layer impregnated with the resin alternately overlap in the thickness direction in the thickness direction. Becomes smaller than the value of B in the case where it coincides with the width direction of the prepreg lamination.

なお、閾値の設定は、複合材料部品に使用される強化繊維材料や樹脂材料等を含め、複合材料部品の重量・寸法・この部品に負荷される荷重等によって異なるため、複合材料部品の仕様により特定する必要がある。閾値の設定は、事前の破壊実験もしくはシミュレーション等により適宜決定される。   The threshold setting varies depending on the weight of the composite material part, including the reinforcing fiber material and resin material used for the composite material part, the weight of the composite part, and the load applied to this part. Need to be identified. The setting of the threshold is appropriately determined by a prior destructive experiment or simulation.

(警報装置)
警報装置5は、拡声器もしくは警報ランプを備えている。警報装置5は、演算部が波長変化量もしくは歪量の閾値を下回ったことを検出すると、鉄道車両6内の運転士もしくは車掌に異常を知らせる。これにより、事故を未然に防止することが可能となる。
(Alarm device)
The alarm device 5 includes a loudspeaker or an alarm lamp. When the arithmetic unit detects that the wavelength change amount or the distortion amount is below the threshold value, the alarm device 5 notifies the driver or conductor in the railway vehicle 6 of the abnormality. Thereby, it becomes possible to prevent an accident beforehand.

(ケーブル)
ケーブル4は、FBGセンサー2と波長変換装置3とを接続している。通常、FBGセンサー2は鉄道車両6の外側にあり、波長変換装置3は鉄道車両6の内側にあるため、ケーブル4は防水仕様であることが好ましい。ケーブル4は、鉄道車両6の一部に孔(図示せず)を穿け、その孔を通して鉄道車両6の内側にある波長変換装置3と接続される。この孔は鉄道車両6内への雨水や風等の侵入を防ぐためシールされる。
(cable)
The cable 4 connects the FBG sensor 2 and the wavelength conversion device 3. Usually, since the FBG sensor 2 is outside the railway vehicle 6 and the wavelength conversion device 3 is inside the railway vehicle 6, the cable 4 is preferably waterproof. The cable 4 is formed with a hole (not shown) in a part of the railway vehicle 6, and is connected to the wavelength conversion device 3 inside the railway vehicle 6 through the hole. This hole is sealed in order to prevent rainwater and wind from entering the railcar 6.

(鉄道車両台車)
鉄道車両台車7は、走行性能や乗り心地を左右する重要な装置であり、基本的な機能や性能として、乗客や貨物等を乗せた車体を、車体の下から支持しながら軌道上を円滑に走行するという重要な役割がある。鉄道車両台車7は、駆動機構としての電動機、ブレーキ、車輪や車軸、走行安定性のためのまくらバネ(空気バネ)、軸バネ、そして、これらを支持する台車枠から構成されている。鉄道車両台車7は、車体と台車枠の間に枕はり(ボルスタ)がないボルスタレス台車、特に軸はり式台車が好ましい。軸はり式台車は、車両の全荷重を、車体の横はり、枕バネ(空気バネ)、台車枠、軸バネ、軸箱、車軸・車輪、レールの順に受けている。
(Railway vehicle cart)
The railway vehicle bogie 7 is an important device that affects the running performance and ride comfort. As a basic function and performance, the railcar bogie 7 smoothly supports the vehicle body carrying passengers and cargo from the underside of the vehicle body. There is an important role of driving. The railway vehicle bogie 7 includes an electric motor as a drive mechanism, a brake, wheels and axles, a pillow spring (air spring) for running stability, a shaft spring, and a bogie frame that supports them. The railcar bogie 7 is preferably a bolsterless bogie that has no pillow beam (bolster) between the vehicle body and the bogie frame, and in particular an axial beam bogie. The shaft beam type bogie receives the entire load of the vehicle in the order of the horizontal beam of the vehicle body, pillow spring (air spring), bogie frame, shaft spring, axle box, axle / wheel, and rail.

(モニタリング方法)
本発明の一態様に係るモニタリング方法は、本発明の一態様に係るモニタリング装置を用いて、複合材料部品の層間剥離による破壊の予兆を監視する。具体的には、鉄道車両台車用板バネ1の層間にFBGセンサー2を埋め込み、鉄道車両台車用板バネ1の層間剥離による歪を検出する。FBGセンサー2から検出された信号を、波長変換装置3により波長に変換する。演算部は、破壊の予兆判断に用いられる波長変化量を演算する。波長変化量もしくは歪量が閾値を下回ると、警報装置5により鉄道車両6内の運転士もしくは車掌に異常を知らせる。これにより、事故を未然に防止することが可能となる。
(Monitoring method)
The monitoring method according to one aspect of the present invention uses the monitoring device according to one aspect of the present invention to monitor a sign of fracture due to delamination of a composite material part. Specifically, the FBG sensor 2 is embedded between the layers of the leaf spring 1 for the railway vehicle carriage, and the strain due to the delamination of the leaf spring 1 for the railway vehicle carriage is detected. A signal detected from the FBG sensor 2 is converted into a wavelength by the wavelength converter 3. The calculation unit calculates a wavelength change amount used for determining a sign of destruction. When the amount of change in wavelength or the amount of distortion falls below the threshold, the alarm device 5 notifies the driver or conductor in the railway vehicle 6 of the abnormality. Thereby, it becomes possible to prevent an accident beforehand.

このような構成によると、鉄道車両台車用板バネ1の層間剥離による振動を捉え、人に対する報知を行うことができる。鉄道車両台車用板バネ1が繰返し疲労により致命的な破壊が生じる前段階の層間剥離が発生すると、警報装置5により報知が行われることになる。   According to such a configuration, vibrations due to delamination of the railcar bogie leaf springs 1 can be captured to notify a person. When the delamination in the previous stage in which the leaf spring 1 for a railway vehicle carriage 1 is fatally damaged due to repeated fatigue occurs, a warning is issued by the alarm device 5.

運転士は直ちに鉄道車両6を停止させ車両基地に戻り、超音波探傷装置等の非破壊検査装置により詳細に鉄道車両台車用板バネ1の異常の有無が検査され、必要に応じ鉄道車両台車用板バネ1は交換される。
また、鉄道車両6の場合、踏切等での自動車との衝突が考えられる。自動車と衝突した場合、大きな振動を受けるが、FBGセンサー2を利用して波長を解析することにより、鉄道車両台車用板バネ1のダメージの有無(大きさ)をその場で把握することができ、車両整備基地への移動の可否判断が可能となる。
The driver immediately stops the railway vehicle 6 and returns to the vehicle base, and the non-destructive inspection device such as an ultrasonic flaw detector inspects the presence or absence of the abnormality of the leaf spring 1 for the rail vehicle bogie, and if necessary, for the rail car bogie. The leaf spring 1 is replaced.
In the case of the railway vehicle 6, a collision with a car at a railroad crossing or the like can be considered. When it collides with an automobile, it receives large vibrations, but by analyzing the wavelength using the FBG sensor 2, it is possible to grasp the presence or absence (size) of the leaf spring 1 for a railway vehicle carriage on the spot. It becomes possible to determine whether or not to move to the vehicle maintenance base.

(複合材料の破壊特性)
複合材料部品の破壊様式には、様々な破壊モードがあり、複合材料の繊維軸方向に対する引張り破壊、圧縮破壊の他、層間での剥離破壊等がある。複合材料部品は層間強度が低く、鉄道列車、航空機等の移動体ではこの剥離破壊を防ぐことが主要な技術課題となっている。層間剥離の場合、繰返し荷重をかけて複合材料の劣化が進んでくると層間での圧着度が低下していき歪が増大してくる。この歪が許容限度を超えると一気に剥離が進展し亀裂が発生するため、複合材料部品全体の破壊に至る。従って許容限度を超える前の波長変化量もしくは歪量に閾値を設けることにより、破壊の予兆を検出することができる。通常の使用による繰返し荷重により複合材料部品は次第に劣化していくが、この波長変化量もしくは歪量の変化を検出することにより剥離を予兆でき、複合材料部品の交換等により事故の未然防止が可能となる。
(Fracture characteristics of composite materials)
There are various failure modes in the failure mode of the composite material part, and examples include tensile failure and compression failure in the fiber axis direction of the composite material, and peeling failure between layers. Composite material parts have low interlaminar strength, and it is a major technical challenge to prevent this peeling failure in moving bodies such as railway trains and aircraft. In the case of delamination, when the deterioration of the composite material proceeds with repeated loading, the degree of pressure bonding between the layers decreases and the strain increases. If this strain exceeds the allowable limit, delamination progresses and cracks occur at a stretch, leading to the destruction of the entire composite material part. Therefore, by providing a threshold value for the amount of change in wavelength or the amount of distortion before exceeding the allowable limit, a sign of destruction can be detected. Composite material parts gradually deteriorate due to repeated loading due to normal use, but by detecting this change in wavelength or strain, separation can be predicted, and accidents can be prevented by replacing composite material parts. It becomes.

以下、実施例を示して本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to a following example, unless the summary is exceeded.

複合材料部品の歪を試験的に測定した実施例を示す。走行中の鉄道車両で破壊の予兆を検出することは安全上できないため、歪の測定は試験機により行った。   The Example which measured the distortion of the composite material part experimentally is shown. Since it was not possible to detect a sign of destruction with a running railway vehicle, the strain was measured with a testing machine.

〔実施例1〕
炭素繊維プリプレグ(東邦テナックス社製プリプレグ(Q−C1118)、厚み:0.187[mm])を、炭素繊維が長手方向に延びるように(繊維配向角度が0度)20層積層してなる試験片(長さ:300[mm]、幅12.7[mm])を作製し、層間剥離が起こりやすいように予め剥離面の一部に亀裂を入れた。この試験片の厚み方向中央であって左端から40[mm]の箇所にFBGセンサーを埋め込んだ。そして、曲げ試験機を使用して三点曲げ荷重(所謂、GIIc荷重モードである)での歪を検出し、波長変換装置を用いて波長を測定した。
[Example 1]
A test in which 20 layers of carbon fiber prepreg (prepreg (Q-C1118) manufactured by Toho Tenax Co., Ltd., thickness: 0.187 [mm]) are laminated so that the carbon fibers extend in the longitudinal direction (fiber orientation angle is 0 degree). A piece (length: 300 [mm], width 12.7 [mm]) was prepared, and a part of the peeling surface was cracked in advance so that delamination could easily occur. An FBG sensor was embedded at a position of 40 [mm] from the left end in the thickness direction center of the test piece. Then, a strain at a three-point bending load (which is a so-called GIIc load mode) was detected using a bending tester, and the wavelength was measured using a wavelength converter.

歪センサー:1本の光ファイバーに2点のセンサー部(S1、S2)を有するFBGセンサー(長野計器社製、型番:2軸FBGセンサー、外径:140[μm]、センサー部測定長さ:5[mm])。センサー部S2は亀裂近傍、センサー部S1はセンサー部S2から10[mm]離れた箇所にそれぞれ設けた。
波長変換装置:長野計器社製、PF35
荷重モード:GIIc(曲げ試験)
試験(変位)速度:0.1[in/min]
Strain sensor: FBG sensor (manufactured by Nagano Keiki Co., Ltd., model number: 2-axis FBG sensor, outer diameter: 140 [μm], sensor part measurement length: 5 with one optical fiber having two sensor parts (S1, S2) [Mm]). The sensor part S2 was provided near the crack, and the sensor part S1 was provided at a location 10 mm away from the sensor part S2.
Wavelength converter: PF35, manufactured by Nagano Keiki Co., Ltd.
Load mode: GIIc (bending test)
Test (displacement) speed: 0.1 [in / min]

図4〜図6は試験片の積層方向(厚み方向)の歪による波長を示す。図4は正常時(剥離発生前)の波長を示し、図5は剥離発生直前の波長を示し、図6は剥離発生後の波長を示す。図4〜図6において、図面上側の波長は亀裂近傍に設けたセンサー部S2による反射波長、図面下側の波長は亀裂から離れた箇所に設けたセンサー部S1による反射波長を示す。なお、横軸は時間(秒)、縦軸は波長を示す。   4-6 shows the wavelength by the distortion of the lamination direction (thickness direction) of a test piece. FIG. 4 shows the wavelength at normal time (before the occurrence of peeling), FIG. 5 shows the wavelength immediately before the occurrence of peeling, and FIG. 6 shows the wavelength after the occurrence of peeling. 4 to 6, the wavelength on the upper side of the drawing indicates the reflection wavelength by the sensor unit S2 provided near the crack, and the wavelength on the lower side of the drawing indicates the reflection wavelength by the sensor unit S1 provided at a location away from the crack. The horizontal axis represents time (seconds), and the vertical axis represents wavelength.

試験片に三点曲げ荷重を繰り返しかけると、荷重の変化により試験片の層間が引っ張られ、FBGセンサーは試験片の厚み方向の歪を検出する。剥離発生前の正常時(図4参照)では最大荷重時に250[μs(マイクロストレイン)]程度の歪が発生する(厚み方向の弾性率が4.2[GPa]の場合)。この歪量を前記数式により波長変化量(Δλ)に換算すると、下記の表1に示すように、5.42[pm(ピコメートル)](0.00542[nm])となる。   When a three-point bending load is repeatedly applied to the test piece, the interlayer of the test piece is pulled by a change in the load, and the FBG sensor detects a strain in the thickness direction of the test piece. Under normal conditions before peeling (see FIG. 4), a strain of about 250 [μs (microstrain)] occurs at the maximum load (when the elastic modulus in the thickness direction is 4.2 [GPa]). When this distortion amount is converted into a wavelength change amount (Δλ) by the above formula, it is 5.42 [pm (picometer)] (0.00542 [nm]) as shown in Table 1 below.

試験片にかける荷重をさらに増加させていくと、試験片の層間にマイクロクラック等の剥離が発生し歪が増大する。これは、図6の上側の波長(すなわち亀裂近傍に設けたセンサー部S2側の波長)が一気に上昇することからわかる。   When the load applied to the test piece is further increased, peeling such as microcracks occurs between the layers of the test piece and the strain increases. This can be seen from the fact that the wavelength on the upper side of FIG. 6 (that is, the wavelength on the side of the sensor unit S2 provided near the crack) rises all at once.

剥離が発生する直前は、図5のように波長が乱れ(上側の波長)、破壊の予兆が現れる。つまり剥離の発生によりFBGセンサー2付近に応力が伝播しなくなり、正常時(図4参照)に比べて波長変化が少なくなる。そうすると試験片の樹脂材料の劣化により層間における接着力が弱まるため、繰り返し荷重がかかってもFBGセンサー2を変形させる力が弱まる。そのため、最大荷重時の歪量が200[μs]程度まで小さくなり、更に剥離による劣化が進むと150[μs]程度しか示さなくなってくる(厚み方向の弾性率が4.2[GPa]の場合)。この歪量を前記数式により波長変化量(Δλ)に換算すると、下記の表1に示すように、それぞれ4.34[pm](0.00434[nm])、3.26[pm](0.00326[nm])となる。したがって、破壊直前の歪特性(波長変化量もしくは歪量)を検知することにより、破壊の予兆を検知し、事故を未然に防止することができるようになる。波長変化量の閾値を所定値、例えば1[pm]から20[pm]の範囲、好ましくは3.26[pm]から4.34[pm]の範囲に設定し、この値を下回ると破壊の予兆を検知することができる。   Immediately before peeling occurs, the wavelength is disturbed (upper wavelength) as shown in FIG. 5, and a sign of destruction appears. That is, stress does not propagate to the vicinity of the FBG sensor 2 due to the occurrence of peeling, and the wavelength change is smaller than that in the normal state (see FIG. 4). If it does so, since the adhesive force between layers will weaken by deterioration of the resin material of a test piece, the force which deform | transforms the FBG sensor 2 will weaken even if a repeated load is applied. For this reason, the strain amount at the maximum load is reduced to about 200 [μs], and when deterioration due to peeling further proceeds, only about 150 [μs] is shown (in the case where the elastic modulus in the thickness direction is 4.2 [GPa]). ). When this distortion amount is converted into a wavelength change amount (Δλ) by the above mathematical formula, as shown in Table 1 below, it is 4.34 [pm] (0.00434 [nm]), 3.26 [pm] (0 .00326 [nm]). Therefore, by detecting the distortion characteristic (wavelength change amount or distortion amount) immediately before the breakdown, it is possible to detect a sign of the breakdown and prevent an accident in advance. The threshold value of the wavelength change amount is set to a predetermined value, for example, a range of 1 [pm] to 20 [pm], preferably a range of 3.26 [pm] to 4.34 [pm]. A sign can be detected.

下記の表1は、前記数式に従い波長変化量と歪量を換算したものである。
Table 1 below is obtained by converting the amount of wavelength change and the amount of distortion according to the above formula.

<<変形例>>
以上、実施形態に基づいて説明したが、本発明は実施形態に限られない。例えば、以下で説明する変形例と実施形態のいずれかを適宜組み合わせてもよいし、複数の変形例を適宜組み合わせてもよい。
<< Modification >>
As mentioned above, although demonstrated based on embodiment, this invention is not limited to embodiment. For example, any of the modifications described below and any of the embodiments may be appropriately combined, or a plurality of modifications may be appropriately combined.

1.歪センサー
実施形態では、歪センサーとして光ファイバー式のFBGセンサー2を用いたが、歪センサーはこれに限定されるものではない。
また、実施形態のFBGセンサー2では1本の光ファイバーに2点のセンサー部(S1,S2)を設けたが、これに限定されず複数(例えば30点)のセンサー部を設けることもできる。
実施形態では、試験片の厚み方向中央にFBGセンサー2を埋め込んだが、中央に限定されるものではない。但し、FBGセンサー2の位置は厚み方向の中央から5[mm]以内が好ましい。
また、複合材料部品の剥離が生じる位置が分かる場合は、その位置に対して厚み方向に5[mm]以内の場所にFBGセンサーを配置するのが好ましい。複合材料部品が、例えば鉄道車両台車用板バネの場合であってコア部材であるガラス繊維複合材料に対して上面及び下面部材である炭素繊維複合材料を積層した構造を有する場合、コア部材と炭素繊維複合材料との層間で剥離が生じやすく、FBGセンサーはコア部材と炭素繊維複合材料との層間から5[mm]以内に埋設されることが好ましい。
実施形態では、FBGセンサーが検出する複合材料部品の歪のうち、積層方向の歪のみを利用していたが、積層方向の歪を少なくとも利用していればよく、例えば、積層方向の歪と長手方向の歪との比率(歪比率)を利用してもよい。
1. In the embodiment, the optical fiber type FBG sensor 2 is used as the strain sensor, but the strain sensor is not limited to this.
In the FBG sensor 2 of the embodiment, two sensor units (S1, S2) are provided in one optical fiber, but the present invention is not limited to this, and a plurality of sensor units (for example, 30 points) may be provided.
In the embodiment, the FBG sensor 2 is embedded in the center in the thickness direction of the test piece, but is not limited to the center. However, the position of the FBG sensor 2 is preferably within 5 [mm] from the center in the thickness direction.
When the position where the composite material part is peeled is known, it is preferable to place the FBG sensor at a location within 5 mm in the thickness direction with respect to the position. For example, when the composite material part is a leaf spring for a railway vehicle bogie and has a structure in which a carbon fiber composite material that is an upper surface and a lower surface member is laminated on a glass fiber composite material that is a core member, the core member and carbon Peeling is likely to occur between the layers with the fiber composite material, and the FBG sensor is preferably embedded within 5 [mm] from the layer between the core member and the carbon fiber composite material.
In the embodiment, only the strain in the stacking direction among the strains of the composite material parts detected by the FBG sensor is used. However, it is sufficient to use at least the strain in the stacking direction. A ratio (distortion ratio) to the direction distortion may be used.

2.複合材料部品
実施形態では、複合材料部品として鉄道車両台車用板バネ1について説明したが、航空機、自動車、鉄道、船舶のような移動体に使用される構造体や、風力発電ブレードに使用される構造体、土木、建築分野における構造体等にも適用できる。
また、鉄道車両台車用板バネ1は、ガラス繊維複合材料と炭素繊維複合材料とから構成されていたが、どちらか一方の複合材料により構成されてもよいし、アラミド繊維複合材料等の他の複合材料を含んでもよいし、他の複合材料から構成されてもよい。
また、実施形態の複合材料部品は、プリプレグを積層した複合材料により構成されているが、例えば、RTM(レジン・トランスファー・モールディング)成形法により成形した複合材料や、ハンドレイアップ成形法により成形した複合材料等により複合材料部品を構成してもよい。
上述のような複合材料部品を利用する場合、破壊の予兆である剥離が発生する位置を予め試験により把握し、その剥離発生予測位置の近くにFBGセンサーを配することで、モニタリングできる。
2. Composite Material Part In the embodiment, the leaf spring 1 for a railway vehicle bogie is described as a composite material part. However, it is used for a structure used for a moving body such as an aircraft, an automobile, a railway, and a ship, and a wind power generation blade. It can also be applied to structures, civil engineering, and structures in the construction field.
Moreover, although the leaf spring 1 for a railway vehicle bogie is composed of a glass fiber composite material and a carbon fiber composite material, it may be composed of either one of the composite materials or another aramid fiber composite material or the like. The composite material may be included or may be composed of another composite material.
In addition, the composite material part of the embodiment is composed of a composite material in which prepregs are laminated. For example, the composite material part is formed by a composite material formed by an RTM (resin transfer molding) molding method or a hand layup molding method. A composite material part may be constituted by a composite material or the like.
When using the composite material parts as described above, it is possible to monitor by preliminarily grasping a position where peeling, which is a sign of fracture, occurs by a test and arranging an FBG sensor near the predicted peeling occurrence position.

3.警報装置
実施形態では警報装置5を備えているが必須ではなく、他の手段により鉄道車両内の運転士もしくは車掌に異常を知らせることも可能である。
3. Alarm Device Although the alarm device 5 is provided in the embodiment, it is not essential, and it is also possible to notify the driver or conductor in the railway vehicle of the abnormality by other means.

4.試験片
試験片の材質、大きさ等は実施例に限定されず、複合材料部品の用途に応じて適宜変更可能である。
4). Test piece The material, size, and the like of the test piece are not limited to those in the examples, and can be appropriately changed according to the application of the composite material part.

5.実用化
実際の複合材料部品の場合においても長期の使用により剥離が生じる。従って、数1で示したように、印加前後の波長をモニタすることで、破壊の前兆を知ることができる。
航空機、鉄道、船舶のような移動体に使用される構造体の場合、例えば、人が乗っていない状態や荷物が搭載されていない状態を印加前の状態とし、人が乗っている状態や荷物が搭載されている状態を印加時の状態として、波長をモニタすればよい。風力発電ブレードに使用される構造体、土木、建築分野における構造体の場合は、使用初期を印加前の状態として波長をリファレンスとすることで実施できる。
実施形態では三点曲げの試験で説明したが、実用化で使用する場合、印加(負荷)条件は矩形波状でないことも想定できる。このような場合は、印加中の波長を平均化して印加前の波長と比較してもよいし、印加中において所定時間当たりの波長の平均と比較してもよい。
5. Practical use Even in the case of actual composite parts, peeling occurs due to long-term use. Therefore, as shown in Equation 1, by monitoring the wavelengths before and after the application, it is possible to know a sign of destruction.
In the case of a structure used for a moving body such as an aircraft, a railway, or a ship, for example, a state in which no person is on board or a state in which no baggage is mounted is defined as a state before application, and a person is in a state or luggage The wavelength may be monitored by setting the state in which is mounted as the state at the time of application. In the case of a structure used in a wind power generation blade, a structure in the civil engineering field, or a construction field, it can be implemented by using the wavelength as a reference with the initial use as the state before application.
In the embodiment, the three-point bending test has been described, but when used in practical use, it can be assumed that the application (load) condition is not a rectangular wave. In such a case, the wavelength during application may be averaged and compared with the wavelength before application, or may be compared with the average of wavelengths per predetermined time during application.

6.剥離
本実施形態における剥離は、強化繊維材料と樹脂材料との間で生じる場合、強化繊維材料間に存在する樹脂材料内で生じる場合を含む。また、剥離は、複合材料を積層した場合、複合材料間で生じる剥離や、各複合材料内で生じる剥離(強化繊維材料と樹脂材料との間、強化繊維材料間に存在する樹脂材料で生じる剥離である。)を含む。
6). Peeling The peeling in this embodiment includes the case where it occurs between the reinforcing fiber material and the resin material, and the case where it occurs within the resin material existing between the reinforcing fiber materials. In addition, when the composite materials are laminated, the peeling occurs between the composite materials, or the peeling that occurs within each composite material (the peeling that occurs between the reinforcing fiber material and the resin material, or between the reinforcing fiber material and the resin material that exists) Is included).

1 鉄道車両台車用板バネ
2 FBGセンサー
3 波長変換装置
1 Leaf spring for railcar bogie 2 FBG sensor 3 Wavelength converter

Claims (16)

繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング装置であって、
前記剥離による歪を検出する歪検出手段を備えた
モニタリング装置。
A monitoring device for monitoring signs of destruction caused by peeling of composite material parts made of fiber reinforced resin material,
A monitoring device comprising strain detection means for detecting strain due to the peeling.
前記歪検出手段は、前記複合材料部品の歪を検出する光ファイバー式の歪センサーと、
前記歪センサーのセンサー部からの反射光を波長に変換する波長変換部と、
前記波長の変化量を演算する演算部とを備える
請求項1に記載のモニタリング装置。
The strain detection means includes an optical fiber type strain sensor that detects strain of the composite material part,
A wavelength conversion unit that converts the reflected light from the sensor unit of the strain sensor into a wavelength;
The monitoring apparatus according to claim 1, further comprising: a calculation unit that calculates the amount of change in the wavelength.
前記歪センサーは、FBGセンサーである
請求項2に記載のモニタリング装置。
The monitoring device according to claim 2, wherein the strain sensor is an FBG sensor.
前記破壊の予兆を判定する閾値は、前記破壊の予兆を示す波長変化量に基づいて設定される
請求項3に記載のモニタリング装置。
The monitoring apparatus according to claim 3, wherein the threshold value for determining the sign of destruction is set based on a wavelength change amount indicating the sign of destruction.
前記閾値を下回った場合に異常を知らせる警報手段を備える
請求項4に記載のモニタリング装置。
The monitoring device according to claim 4, further comprising alarm means for notifying abnormality when the threshold value is below.
前記閾値は、1[pm]から20[pm]の範囲である
請求項4又は5に記載のモニタリング装置。
The monitoring apparatus according to claim 4 or 5, wherein the threshold value is in a range of 1 [pm] to 20 [pm].
前記閾値は、前記波長変化量を換算して50[マイクロストレイン]から1000[マイクロストレイン]の範囲である
請求項4又は5に記載のモニタリング装置。
The monitoring device according to claim 4 or 5, wherein the threshold value is in a range of 50 [microstrain] to 1000 [microstrain] in terms of the amount of wavelength change.
前記複合材料部品は、繊維強化樹脂材料を積層してなり、
前記FBGセンサーは、前記複合材料部品の積層方向の歪と長手方向の歪を検出し積層方向と長手方向の歪比率の変化をとらえ、異常を知らせる
請求項6又は7に記載のモニタリング装置。
The composite material part is formed by stacking fiber reinforced resin materials,
The monitoring device according to claim 6 or 7, wherein the FBG sensor detects strain in the stacking direction and strain in the longitudinal direction of the composite material component, detects a change in the strain ratio in the stacking direction and the longitudinal direction, and notifies an abnormality.
前記FBGセンサーは、外径200[μm]以下である
請求項6〜8の何れか1項に記載のモニタリング装置。
The monitoring device according to claim 6, wherein the FBG sensor has an outer diameter of 200 [μm] or less.
前記複合材料部品が構造体である請求項1〜9の何れか1項に記載のモニタリング装置。   The monitoring apparatus according to claim 1, wherein the composite material part is a structure. 前記複合材料部品は、移動体に使用される構造体である請求項1〜9の何れか1項に記載のモニタリング装置。   The monitoring apparatus according to claim 1, wherein the composite material part is a structure used for a moving body. 前記複合材料部品は、前記繊維強化樹脂材料からなる複合材料を積層してなる
請求項11に記載のモニタリング装置。
The monitoring device according to claim 11, wherein the composite material component is formed by laminating composite materials made of the fiber reinforced resin material.
前記FBGセンサーは、前記複合材料の層間から5[mm]以内の場所に埋設される
請求項12に記載のモニタリング装置。
The monitoring device according to claim 12, wherein the FBG sensor is embedded at a location within 5 mm from an interlayer of the composite material.
前記FBGセンサーは、前記複合材料部品の剥離発生予測位置から500[mm]以内の場所に埋設される
請求項13に記載のモニタリング装置。
The monitoring apparatus according to claim 13, wherein the FBG sensor is embedded at a location within 500 mm from a predicted occurrence position of peeling of the composite material part.
モニタリング装置を用いて、繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング方法であって、
前記剥離による歪を検出するモニタリング装置が、請求項1〜14の何れか1項に記載のモニタリング装置である
モニタリング方法。
A monitoring method that uses a monitoring device to monitor a sign of fracture caused by peeling of a composite material component made of a fiber reinforced resin material,
The monitoring method which detects the distortion by the said peeling is a monitoring device given in any 1 paragraph of Claims 1-14. Monitoring method.
繊維強化樹脂材料からなる複合材料部品の剥離に起因する破壊の予兆を監視するモニタリング方法であって、
前記破壊の予兆による歪を検出したときに前記破壊を予兆する
モニタリング方法。
A monitoring method for monitoring signs of destruction caused by peeling of composite material parts made of fiber reinforced resin material,
A monitoring method for predicting the destruction when distortion due to the indication of the destruction is detected.
JP2016028152A 2016-02-17 2016-02-17 Monitoring device and monitoring method Active JP6754585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028152A JP6754585B2 (en) 2016-02-17 2016-02-17 Monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028152A JP6754585B2 (en) 2016-02-17 2016-02-17 Monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2017146201A true JP2017146201A (en) 2017-08-24
JP6754585B2 JP6754585B2 (en) 2020-09-16

Family

ID=59683008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028152A Active JP6754585B2 (en) 2016-02-17 2016-02-17 Monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP6754585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490224A (en) * 2018-11-30 2019-03-19 中国民航大学 Concrete pavement slab non-destructive testing device and method based on FBG technology
CN109895806A (en) * 2019-03-21 2019-06-18 北京交通大学 The detection method of the vibration signal of railroad track
KR20200012593A (en) * 2018-07-27 2020-02-05 주식회사 성우하이텍 Collision detection body panel and airbag system using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366066B (en) * 2020-03-31 2022-01-11 中铁五局集团有限公司 Strain monitoring method of variable-section adjustable lining trolley

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208000A (en) * 2004-01-26 2005-08-04 Mitsubishi Electric Corp Rib structure and method for producing it
JP2005321223A (en) * 2004-05-06 2005-11-17 Kawasaki Heavy Ind Ltd Structure and defect sensing device
WO2009028164A1 (en) * 2007-08-27 2009-03-05 The University Of Tokyo Method for detecting crack occurrence position
JP2011057032A (en) * 2009-09-08 2011-03-24 Kawasaki Heavy Ind Ltd Laminated structure body, crack detection method, and crack detection structure
US20130341497A1 (en) * 2012-06-05 2013-12-26 Airbus Operations Gmbh System and method for monitoring a component in production and/or in service
JP2015007441A (en) * 2013-06-25 2015-01-15 株式会社日本自動車部品総合研究所 Method and system for inspecting high-pressure tank, and high-pressure tank
GB2526569A (en) * 2014-05-28 2015-12-02 Bae Systems Plc Improved structural health monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208000A (en) * 2004-01-26 2005-08-04 Mitsubishi Electric Corp Rib structure and method for producing it
JP2005321223A (en) * 2004-05-06 2005-11-17 Kawasaki Heavy Ind Ltd Structure and defect sensing device
WO2009028164A1 (en) * 2007-08-27 2009-03-05 The University Of Tokyo Method for detecting crack occurrence position
JP2011057032A (en) * 2009-09-08 2011-03-24 Kawasaki Heavy Ind Ltd Laminated structure body, crack detection method, and crack detection structure
US20130341497A1 (en) * 2012-06-05 2013-12-26 Airbus Operations Gmbh System and method for monitoring a component in production and/or in service
JP2015007441A (en) * 2013-06-25 2015-01-15 株式会社日本自動車部品総合研究所 Method and system for inspecting high-pressure tank, and high-pressure tank
GB2526569A (en) * 2014-05-28 2015-12-02 Bae Systems Plc Improved structural health monitoring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武田 展雄,越岡 康弘: "航空宇宙機複合材構造の構造ヘルスモニタリング技術の進展", 非破壊検査, vol. 第60巻 第3号, JPN6020004433, 1 March 2011 (2011-03-01), JP, pages 157 - 164, ISSN: 0004209013 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012593A (en) * 2018-07-27 2020-02-05 주식회사 성우하이텍 Collision detection body panel and airbag system using same
KR102578560B1 (en) * 2018-07-27 2023-09-14 주식회사 성우하이텍 Collision detection body panel and airbag system using same
CN109490224A (en) * 2018-11-30 2019-03-19 中国民航大学 Concrete pavement slab non-destructive testing device and method based on FBG technology
CN109490224B (en) * 2018-11-30 2021-03-02 中国民航大学 Concrete pavement slab nondestructive testing device and method based on FBG technology
CN109895806A (en) * 2019-03-21 2019-06-18 北京交通大学 The detection method of the vibration signal of railroad track

Also Published As

Publication number Publication date
JP6754585B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6754585B2 (en) Monitoring device and monitoring method
Murayama et al. Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures
Kim et al. Structural behaviors of a GFRP composite bogie frame for urban subway trains under critical load conditions
JP6744457B2 (en) Wheel shaft, wheel shaft and manufacturing method thereof
Ono et al. Research and applications of AE on advanced composites
Tsutsui et al. Detection of impact damage of stiffened composite panels using embedded small-diameter optical fibers
Herszberg et al. Damage assessment and monitoring of composite ship joints
Chong et al. A review of health and operation monitoring technologies for trains
US20030219191A1 (en) Actuator and sensor system for composite structures
Tam et al. Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications
Kamath et al. Damage studies in composite structures for structural health monitoring using strain sensors
Kim et al. A study on the low-velocity impact response of laminates for composite railway bodyshells
Seo et al. Fatigue design evaluation of railway bogie with full-scale fatigue test
PłAczek et al. Use of piezoelectric foils as tools for structural health monitoring of freight cars during exploitation
Bae et al. Characterization of low-velocity impact-induced damages in carbon/epoxy composite laminates using a poly (vinylidene fluoride–trifluoroethylene) film sensor
Jalalvand et al. A simple and robust approach for visual overload indication-UD thin-ply hybrid composite sensors
Hamdan et al. Structural health monitoring of biocomposites, fibre-reinforced composites, and hybrid composite
Yao et al. Material characterization of a multi-cavity composite structure for the bogie frame of urban maglev train
JP6754584B2 (en) Monitoring device and monitoring method
Kim et al. A study on comparisons of composite and conventional steel bogie frames
JP4561500B2 (en) Wireless strain measurement system
Ning Structural health condition monitoring of carbon-fibre based composite materials using acoustic emission techniques
CN103471840A (en) Box beam vertical moment test mechanism
Karpenko et al. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
Takeda et al. Recent advances in composite fuselage demonstration program for damage and health monitoring in Japan

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150