JP2017146123A - Silicon quantitative analysis method - Google Patents

Silicon quantitative analysis method Download PDF

Info

Publication number
JP2017146123A
JP2017146123A JP2016026192A JP2016026192A JP2017146123A JP 2017146123 A JP2017146123 A JP 2017146123A JP 2016026192 A JP2016026192 A JP 2016026192A JP 2016026192 A JP2016026192 A JP 2016026192A JP 2017146123 A JP2017146123 A JP 2017146123A
Authority
JP
Japan
Prior art keywords
silicon
solution
nitric acid
sample
quantitative analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016026192A
Other languages
Japanese (ja)
Other versions
JP6416807B2 (en
Inventor
英彦 隅
Hidehiko Sumi
英彦 隅
武史 多田
Takeshi Tada
武史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Technology Co Ltd
Original Assignee
Nippon Steel and Sumikin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Technology Co Ltd filed Critical Nippon Steel and Sumikin Technology Co Ltd
Priority to JP2016026192A priority Critical patent/JP6416807B2/en
Publication of JP2017146123A publication Critical patent/JP2017146123A/en
Application granted granted Critical
Publication of JP6416807B2 publication Critical patent/JP6416807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantitative method of silicon in a sample.SOLUTION: A quantitative analysis method of silicon contained in a sample includes: a step (1) of adding a fuming nitric acid to a silicon-containing solution, so as to obtain a nitric acid solution; a step (2) of adding a hydrofluoric acid to the nitric acid solution, so as to generate a silicon tetrafluoride gas; a step (3) of introducing the silicon tetrafluoride gas together with a nitric acid gas into a boric acid solution, so as to collect the silicon; and a step (4) of analyzing the boric acid solution which has collected the silicon, so as to obtain the content of the silicon in the sample.SELECTED DRAWING: Figure 2

Description

本発明は、ケイ素定量分析方法に関する。   The present invention relates to a silicon quantitative analysis method.

鉄に代表される各種工業材料には、主成分元素の他に材料に必要な特性を付与するために目的に応じた元素が添加される。添加する元素とその添加量の組み合わせによって、材料の物性に様々な影響を与える。ケイ素もその一つであり、例えば、耐熱性、電気伝導性などを付与する目的で添加される。材料中のケイ素量を測定することで、新たな材料の設計が可能となり、目的の物性を有した材料を生産するための指標を得ることが可能となる。一方で、高純度金属などを生産する場合には、不純物としてのケイ素量を評価することが必要となる。   In addition to the main component elements, various industrial materials typified by iron contain elements according to the purpose in order to impart necessary properties to the material. Depending on the combination of the element to be added and the amount added, the physical properties of the material are variously affected. Silicon is one of them, and for example, it is added for the purpose of imparting heat resistance, electrical conductivity and the like. By measuring the amount of silicon in the material, a new material can be designed, and an index for producing a material having the desired physical properties can be obtained. On the other hand, when producing a high purity metal etc., it is necessary to evaluate the amount of silicon as an impurity.

このような背景から、各種材料中のケイ素含有量は、シングルppmから%オーダーに渡る広い範囲で、それぞれの目的に応じた方法を用いて定量されている。一般的にケイ素を定量する技術として、二酸化ケイ素重量法(非特許文献1)、モリブドケイ酸青吸光光度法(非特許文献1)、誘導結合プラズマ(ICP)発光分光法(非特許文献2)、および、四フッ化ケイ素気化分離法(非特許文献3,4)などが知られている。また、JIS化されていないケイ素定量方法として、特許文献1,2に示される方法がある。   Against this background, the silicon content in various materials is quantified using a method according to each purpose in a wide range from single ppm to% order. In general, as a technique for quantifying silicon, silicon dioxide gravimetric method (Non-patent document 1), molybdosilicate blue absorptiometric method (Non-patent document 1), inductively coupled plasma (ICP) emission spectroscopy (Non-patent document 2), Further, a silicon tetrafluoride vapor separation method (Non-patent Documents 3 and 4) is known. Moreover, there exists a method shown by patent document 1, 2 as a silicon | silicone determination method which is not JIS-ized.

特開2005−069746号公報Japanese Patent Laying-Open No. 2005-069746 特開2008−128992号公報JP 2008-128992 A

JIS G1212:1997「鉄及び鋼―ケイ素定量方法」JIS G1212: 1997 "Iron and steel-silicon determination method" JIS H1061:2006「銅及び銅合金中のケイ素定量方法」JIS H1061: 2006 "Silicon determination method in copper and copper alloys" JIS H1403:2001「タングステン材料の分析方法」JIS H1403: 2001 "Analytical method of tungsten material" JIS H1404:2001「モリブデン材料の分析方法」JIS H1404: 2001 “Analytical method of molybdenum material”

特許文献1は、塩酸酸性とした溶液にモリブデン酸アンモニウムを添加し、モリブドケイ酸としてMIBKに抽出し、アスコルビン酸などの還元剤により水相に逆抽出することで得られるモリブドケイ酸青の吸光度を吸光光度計で測定することで微量のケイ素の定量を行うものである。しかし、この方法は、溶媒抽出の効率に左右され、また、塩酸酸性としているため、塩酸中で沈殿を生じる試料に用いることは非常に困難である。   In Patent Document 1, ammonium molybdate is added to a solution acidified with hydrochloric acid, extracted into MIBK as molybdosilicate, and the absorbance of molybdosilicate blue obtained by back-extraction into an aqueous phase with a reducing agent such as ascorbic acid is absorbed. A small amount of silicon is quantified by measuring with a photometer. However, since this method depends on the efficiency of solvent extraction and is acidic with hydrochloric acid, it is very difficult to use it for a sample that precipitates in hydrochloric acid.

特許文献2は、第1の酸(具体的には、37%の塩酸3部、69.3%の硝酸2部および脱イオン水5部)により金属成分を酸溶解させた後に、塩基(具体的には水酸化ナトリウム水溶液)を添加し、ケイ酸塩とした後、第2の酸の混合液(塩酸希釈液30部および硝酸5部)を添加してケイ酸イオンを形成させ、その溶液をICP発光分光法により分析する方法である。しかし、この方法は、マトリクス成分からの分離なしでICP発光分光法を用いているため、低濃度域のケイ素の定量を行うことは非常に困難である。   In Patent Document 2, a metal component is acid-dissolved with a first acid (specifically, 3 parts of 37% hydrochloric acid, 2 parts of 69.3% nitric acid and 5 parts of deionized water), and then a base (specifically, In particular, an aqueous solution of sodium hydroxide) is added to form a silicate, and then a second acid mixture (30 parts hydrochloric acid diluted solution and 5 parts nitric acid) is added to form silicate ions. Is analyzed by ICP emission spectroscopy. However, since this method uses ICP emission spectroscopy without separation from the matrix components, it is very difficult to quantify silicon in a low concentration range.

これに対して、非特許文献3,4に開示される四フッ化ケイ素気化分離法は、マトリクス成分からケイ素を分離するため高感度なケイ素の定量方法として知られている。マトリクス成分からケイ素を分離することで、定容容量の減少によるケイ素の濃縮、分光干渉の減少効果などが得られ感度が向上する。   On the other hand, the silicon tetrafluoride vapor separation method disclosed in Non-Patent Documents 3 and 4 is known as a highly sensitive silicon quantification method for separating silicon from matrix components. By separating the silicon from the matrix component, the silicon concentration due to the reduction of the constant volume, the effect of reducing the spectral interference, etc. are obtained, and the sensitivity is improved.

従来の四フッ化ケイ素気化分離法は、高濃度の硫酸酸性溶液にフッ化水素酸を添加することで、ケイ素を四フッ化ケイ素として気化分離し、ホウ酸溶液に吸収させた後、モリブドケイ酸青吸光光度法またはホウ酸吸収液をICP発光分光法に適用する方法である。マトリクス成分からケイ素を分離できれば、最終的な分析方法として、モリブドケイ酸青吸光光度法、ICP法のいずれを用いてもよい。しかし、従来の四フッ化ケイ素気化分離法は、高濃度の硫酸酸性溶液中で気化分離を行うため、硫酸に不溶であるか、硫酸塩の沈殿を生じるような多くの試料に対しては適用できない。硫酸酸性溶液中に可溶であるか、沈殿を生じない試料は少ないため、適用範囲が非常に限定されたものとなっている。   In the conventional silicon tetrafluoride vapor separation method, hydrofluoric acid is added to a high-concentration sulfuric acid acidic solution to vaporize and separate silicon as silicon tetrafluoride and absorb it in the boric acid solution. A blue absorptiometry or boric acid absorption solution is applied to ICP emission spectroscopy. As long as silicon can be separated from the matrix component, either the molybdosilicate blue absorptiometry or the ICP method may be used as the final analysis method. However, the conventional vapor separation method of silicon tetrafluoride is applied to many samples that are insoluble in sulfuric acid or cause sulfate precipitation because vaporization separation is performed in a high-concentration sulfuric acid solution. Can not. Since there are few samples which are soluble in sulfuric acid acid solution or do not cause precipitation, the application range is very limited.

本発明は、従来の硫酸を用いた四フッ化ケイ素気化分離法では適用できなかった試料中のケイ素の定量方法を提供することを目的とする。   An object of the present invention is to provide a method for quantifying silicon in a sample that cannot be applied by a conventional silicon tetrafluoride vapor separation method using sulfuric acid.

本発明は、下記のケイ素の定量分析方法を要旨とする。   The gist of the present invention is the following quantitative analysis method for silicon.

(A)試料中に含まれるケイ素を定量分析する方法であって、
(1)ケイ素含有溶液に発煙硝酸を加えて、硝酸酸性溶液を得る工程、
(2)前記硝酸酸性溶液にフッ化水素酸を加えて、四フッ化ケイ素ガスを生じさせる工程、
(3)前記四フッ化ケイ素ガスを、硝酸ガスとともにホウ酸溶液に導入し、ケイ素を捕集する工程、および、
(4)ケイ素を捕集したホウ酸溶液を分析し、前記試料中のケイ素含有量を求める工程を備える、
ケイ素定量分析方法。
(A) A method for quantitatively analyzing silicon contained in a sample,
(1) adding fuming nitric acid to a silicon-containing solution to obtain a nitric acid acidic solution;
(2) adding hydrofluoric acid to the nitric acid acidic solution to generate silicon tetrafluoride gas;
(3) introducing the silicon tetrafluoride gas into a boric acid solution together with nitric acid gas and collecting silicon; and
(4) analyzing the boric acid solution that has collected silicon, and determining the silicon content in the sample;
Silicon quantitative analysis method.

(B)前記(1)の工程において、濃度が70w/w%以上の硝酸を用いる、
上記(A)のケイ素定量分析方法。
(B) In the step (1), nitric acid having a concentration of 70 w / w% or more is used.
The silicon quantitative analysis method of (A) above.

(C)前記(4)の工程において、前記ケイ素を捕集したホウ酸溶液の分析を、誘導結合プラズマ発光分光法、誘導結合プラズマ質量分析法または原子吸光光度分析法により行う、
上記(A)または(B)のケイ素定量分析方法。
(C) In the step (4), analysis of the boric acid solution in which the silicon is collected is performed by inductively coupled plasma emission spectroscopy, inductively coupled plasma mass spectrometry, or atomic absorption spectrophotometry.
The silicon quantitative analysis method of (A) or (B) above.

(D)前記(4)の工程において、前記ケイ素を捕集したホウ酸溶液の分析を、モリブドケイ酸青吸光光度法により行うに際し、前記ケイ素を捕集したホウ酸溶液のpH値を、安定した吸光度が得られる範囲以外の値に調整した後、安定した吸光度が得られる範囲に調整する、
上記(A)〜(C)のいずれかのケイ素定量分析方法。
(D) In the step (4), when the boric acid solution in which the silicon was collected was analyzed by the molybdosilicate blue absorptiometry, the pH value of the boric acid solution in which the silicon was collected was stabilized. After adjusting to a value outside the range where the absorbance is obtained, adjust to a range where stable absorbance is obtained,
The silicon quantitative analysis method according to any one of (A) to (C) above.

(E)前記ケイ素を捕集したホウ酸溶液のpH値を、安定した吸光度が得られる範囲以外の値に調整するに際し、安定した吸光度が得られるpHの範囲以外の範囲で変色する指示薬を用いる、
上記(D)のケイ素定量分析方法。
(E) When adjusting the pH value of the boric acid solution in which silicon is collected to a value other than the range in which stable absorbance is obtained, an indicator that changes color in a range other than the pH range in which stable absorbance is obtained is used. ,
The silicon quantitative analysis method of (D) above.

(F)前記(1)の工程が、酸によって固体を溶解して得たケイ素含有溶液を用いる、
上記(A)〜(E)のいずれかのケイ素定量分析方法。
(F) The step (1) uses a silicon-containing solution obtained by dissolving a solid with an acid.
The silicon quantitative analysis method according to any one of (A) to (E) above.

本発明によれば、従来の硫酸を用いた四フッ化ケイ素気化分離法では定量できなかった固体または液体中のケイ素を、サブppmの精度で定量することができる。本発明は、特に、70w/w%以上の硝酸を含有する溶液中に可溶な金属、合金、化合物などに含まれるケイ素の定量分析に有効である。   According to the present invention, silicon in a solid or liquid that could not be quantified by the conventional silicon tetrafluoride vapor separation method using sulfuric acid can be quantified with sub-ppm accuracy. The present invention is particularly effective for quantitative analysis of silicon contained in metals, alloys, compounds and the like that are soluble in a solution containing 70 w / w% or more of nitric acid.

本実施形態に係るケイ素定量分析方法を実施するための装置例Apparatus example for carrying out the silicon quantitative analysis method according to the present embodiment 試料を溶解する発煙硝酸の濃度と、ケイ素の回収率との関係をプロットした図A plot of the relationship between the concentration of fuming nitric acid that dissolves the sample and the silicon recovery rate

本発明は、試料中に含まれるケイ素を定量分析する方法であって、下記の工程(1)〜(4)を備える。このとき、本発明の実施には、例えば、図1に示す装置が用いられる。
(1)ケイ素含有溶液に発煙硝酸を加えて、硝酸酸性溶液を得る工程、
(2)前記硝酸酸性溶液にフッ化水素酸を加えて、四フッ化ケイ素ガスを生じさせる工程、
(3)前記四フッ化ケイ素ガスを、硝酸ガスとともにホウ酸溶液に導入し、ケイ素を捕集する工程、および、
(4)ケイ素を捕集したホウ酸溶液を分析し、前記試料中のケイ素含有量を求める工程。
The present invention is a method for quantitatively analyzing silicon contained in a sample, comprising the following steps (1) to (4). At this time, for example, the apparatus shown in FIG. 1 is used to implement the present invention.
(1) adding fuming nitric acid to a silicon-containing solution to obtain a nitric acid acidic solution;
(2) adding hydrofluoric acid to the nitric acid acidic solution to generate silicon tetrafluoride gas;
(3) introducing the silicon tetrafluoride gas into a boric acid solution together with nitric acid gas and collecting silicon; and
(4) A step of analyzing a boric acid solution in which silicon is collected and obtaining a silicon content in the sample.

以下、各工程について説明する。
(1)の工程について
まず、ケイ素含有溶液を用意することが必要である。液体試料の場合は、試料と硝酸を混合したもの、または、そのままの溶液を試料溶液とする。試料が固体の場合は、硝酸、塩酸、過酸化水素水などの酸を用いて試料を溶解し、ケイ素含有溶液を得る。このとき、溶解に使用する容器としては、ケイ素の汚染が少ないことが求められる。例えば、PFA(ペルフルオロアルコキシ)などのフッ素樹脂製の容器を使用するのがよい。
続いて、このようにして得たケイ素含有溶液に発煙硝酸を加えて、硝酸酸性溶液を得る。発煙硝酸の濃度は、70w/w%以上の硝酸を用いるのがよい。70w/w%未満では、(3)の工程において捕集されるケイ素の量が少なくなるからである。ケイ素の回収率を90%以上にするためには、発煙硝酸の濃度は、73w/w%以上とすることが好ましい(図2参照)。
Hereinafter, each step will be described.
Step (1) First, it is necessary to prepare a silicon-containing solution. In the case of a liquid sample, the sample solution is a mixture of the sample and nitric acid, or a solution as it is. When the sample is solid, the sample is dissolved using an acid such as nitric acid, hydrochloric acid, or hydrogen peroxide solution to obtain a silicon-containing solution. At this time, the container used for dissolution is required to have little silicon contamination. For example, a fluororesin container such as PFA (perfluoroalkoxy) may be used.
Subsequently, fuming nitric acid is added to the silicon-containing solution thus obtained to obtain a nitric acid acidic solution. The concentration of fuming nitric acid is preferably 70% w / w or more. This is because if the amount is less than 70 w / w%, the amount of silicon collected in the step (3) decreases. In order to achieve a silicon recovery rate of 90% or higher, the concentration of fuming nitric acid is preferably 73 w / w% or higher (see FIG. 2).

(2)の工程(気化分離工程)について
この工程は、前記硝酸酸性溶液にフッ化水素酸を加えて、四フッ化ケイ素ガスを生じさせる工程である。この工程では、例えば、図1に示すように、密閉容器(PFA容器)内に入れた試料溶液(硝酸酸性溶液)中に、フッ化水素酸を導入し、硝酸酸性溶液中に含まれるケイ素を四フッ化ケイ素ガスとして気化し、硝酸酸性溶液から分離する。このとき、密閉容器と吸収管をPTFE(ポリテトラフルオロエチレン)チューブによって連結し、シリンジからピペット等を用いてフッ化水素酸を加えて、直ちにゴム栓をしてN、O、Ar等のガスをパージする。フッ化水素酸の濃度は、1.0〜10.0w/v%とするのがよい。また、窒素ガスの流速は、0.1〜1.0L/min、パージ時間は10〜60minとすることが望ましい。
About Step (2) (Vaporization Separation Step) This step is a step in which hydrofluoric acid is added to the nitric acid acidic solution to generate silicon tetrafluoride gas. In this step, for example, as shown in FIG. 1, hydrofluoric acid is introduced into a sample solution (nitric acid acidic solution) placed in a sealed container (PFA container), and silicon contained in the nitric acid acidic solution is introduced. Vaporizes as silicon tetrafluoride gas and separates from the nitric acid solution. At this time, the sealed container and the absorption tube are connected by a PTFE (polytetrafluoroethylene) tube, hydrofluoric acid is added from a syringe using a pipette, etc., and a rubber stopper is immediately put on, and N 2 , O 2 , Ar, etc. Purge the gas. The concentration of hydrofluoric acid is preferably 1.0 to 10.0 w / v%. The nitrogen gas flow rate is preferably 0.1 to 1.0 L / min, and the purge time is preferably 10 to 60 min.

(3)の工程について
この工程は、前記四フッ化ケイ素ガスを、硝酸ガスとともにホウ酸溶液に導入し、ケイ素を捕集する工程である。すなわち、ケイ素の吸収液としてはホウ酸を使用する。ホウ酸は、モリブドケイ酸青の呈色を妨害するフッ素をマスキングするために使用する。ホウ酸量が増加するほど、ケイ素のバックグラウンドが上昇するため、ホウ酸濃度は可能な限り低濃度である方が望ましい。典型的には、0.1w/v%で10mLとするのがよい。吸収管はPFA製のものを使用する。
Step (3) This step is a step of collecting silicon by introducing the silicon tetrafluoride gas together with nitric acid gas into a boric acid solution. That is, boric acid is used as the silicon absorbing solution. Boric acid is used to mask fluorine that interferes with the coloration of molybdosilicate blue. Since the background of silicon increases as the amount of boric acid increases, the boric acid concentration is preferably as low as possible. Typically, 10 mL is recommended at 0.1 w / v%. An absorption tube made of PFA is used.

(4)の工程について
この工程は、ケイ素を捕集したホウ酸溶液を分析し、前記試料中のケイ素含有量を求める工程である。前記ケイ素を捕集したホウ酸溶液の分析を誘導結合プラズマ発光分光法、誘導結合プラズマ質量分析法または原子吸光光度分析法により行う場合には、前記ケイ素を捕集したホウ酸溶液をそのまま用いることができる。ここで、ICP法では感度が不十分であるため、ケイ素を捕集したホウ酸溶液の分析は、モリブドケイ酸青吸光光度法を用いるのがよいが、この方法では、前記ケイ素を捕集したホウ酸溶液をそのまま用いることができない。
About the process of (4) This process is a process of analyzing the boric acid solution which collected silicon, and calculating | requiring the silicon content in the said sample. When analyzing the boric acid solution containing silicon by inductively coupled plasma emission spectroscopy, inductively coupled plasma mass spectrometry or atomic absorption spectrophotometry, use the boric acid solution containing silicon as it is. Can do. Here, since the sensitivity is insufficient in the ICP method, it is preferable to use the molybdosilicate blue absorptiometry for the analysis of the boric acid solution in which silicon is collected. The acid solution cannot be used as it is.

すなわち、従来の四フッ化ケイ素を気化する分離法は、硫酸中でフッ化水素酸を加えて四フッ化ケイ素ガスを生じさせる方法であり、硫酸には揮発性がないため、吸収液のpHが変動することがない。よって、従来法では、一定量の酸を添加することによって、pH値をモリブドケイ酸青吸光光度法において安定した吸光度が得られる範囲に調整することができる。しかし、本実施形態によれば、四フッ化ケイ素の気化分離を、揮発性を有する発煙硝酸中で行うため、硝酸の気化ガスが窒素ガスによって吸収液に搬送され、吸収液に吸収され、吸収液のpHが強酸性となる。また、窒素ガスの流速は、各々の装置で必ずしも同じではないため、吸収液のpHが強酸性側でバラついた状態となる。   In other words, the conventional separation method for vaporizing silicon tetrafluoride is a method in which hydrofluoric acid is added in sulfuric acid to generate silicon tetrafluoride gas. Since sulfuric acid is not volatile, the pH of the absorbing solution Will not fluctuate. Therefore, in the conventional method, by adding a certain amount of acid, the pH value can be adjusted to a range in which stable absorbance can be obtained in the molybdosilicate blue absorptiometry. However, according to the present embodiment, the vaporization separation of silicon tetrafluoride is performed in fuming nitric acid having volatility. Therefore, the vaporized gas of nitric acid is transported to the absorption liquid by the nitrogen gas, absorbed into the absorption liquid, and absorbed. The pH of the liquid becomes strongly acidic. Moreover, since the flow rate of nitrogen gas is not necessarily the same in each apparatus, the pH of the absorbing solution varies on the strongly acidic side.

ここで、モリブドケイ酸青吸光光度法において、安定した吸光度が得られるpH値は、0.6〜0.9という極限られた範囲に過ぎない。強酸性側でバラついた状態にある吸収液のpHをこの範囲に調整するには、pHメーターを用いる方法、指示薬を用いる方法などが挙げられるが、pHメーターを用いる方法は、煩雑な操作によるケイ素の汚染、電極表面に溶液が付着することによるケイ素の損失などの問題を招く可能性がある。このため、この調整は、指示薬を用いておこなうのがよい。   Here, in the molybdosilicate blue absorptiometry, the pH value at which stable absorbance is obtained is only a limited range of 0.6 to 0.9. In order to adjust the pH of the absorbing solution in a state of dispersion on the strongly acidic side to this range, there are a method using a pH meter, a method using an indicator, etc., but the method using a pH meter is a complicated operation. There is a possibility of causing problems such as silicon contamination and silicon loss due to the solution adhering to the electrode surface. For this reason, this adjustment is preferably performed using an indicator.

しかし、指示薬の変色範囲が、モリブドケイ酸青吸光光度法において安定した吸光度が得られるpHの範囲(0.6〜0.9)にある場合には、モリブドケイ酸青の発色を妨害するので、吸光光度法によって正確な測定ができなくなる。このため、安定した吸光度が得られるpHの範囲以外の範囲で変色する指示薬を用いるのが重要である。このような指示薬を用いて、一旦、安定した吸光度が得られる範囲以外の特定のpH値に調整しておけば、一定量の酸またはアルカリを添加して、pH値をモリブドケイ酸青吸光光度法において安定した吸光度が得られる範囲に調整することができるからである。   However, when the discoloration range of the indicator is in the pH range (0.6 to 0.9) at which stable absorbance is obtained in the molybdosilicate blue absorptiometry, the color development of molybdosilicate blue is disturbed. The photometric method makes accurate measurements impossible. For this reason, it is important to use an indicator that changes color in a range other than the pH range where stable absorbance can be obtained. Using such an indicator, once the pH is adjusted to a specific pH value outside the range where stable absorbance is obtained, a certain amount of acid or alkali is added, and the pH value is determined by the molybdosilicate blue absorptiometry. This is because it can be adjusted within a range where stable absorbance can be obtained.

特に、モリブドケイ酸青吸光光度法において安定した吸光度が得られる範囲よりも高いpH値で変色する指示薬を用いて、強酸性側でバラついた状態にある吸収液にアルカリを添加して、一旦、安定した吸光度が得られる範囲よりも高いpH値に調整し、その後、一定量の酸を添加してpH値を安定した吸光度が得られる範囲に調整するのがよい。   In particular, using an indicator that changes color at a pH value higher than the range where stable absorbance can be obtained in the molybdosilicate blue absorptiometry, alkali is added to the absorbing solution that is in a state of variation on the strongly acidic side, It is preferable to adjust to a pH value higher than the range where stable absorbance can be obtained, and then adjust the pH value to a range where stable absorbance can be obtained by adding a certain amount of acid.

指示薬としては、4−ニトロフェノールを用いるのがよい。4−ニトロフェノールは、pH5.4を変色点としており、pH5.4以上で黄色、pH5.4以下で無色を呈する。また、アルカリとしては、高純度アンモニア水、酸としては塩酸(1+1)を使用するのがよい。以下に、より具体的なpH調整法について記述する。   As the indicator, 4-nitrophenol is preferably used. 4-Nitrophenol has a color change point of pH 5.4, and exhibits yellow at pH 5.4 or higher and colorless at pH 5.4 or lower. Further, it is preferable to use high-purity ammonia water as the alkali and hydrochloric acid (1 + 1) as the acid. Hereinafter, a more specific pH adjustment method will be described.

PTFEビーカーに四フッ化ケイ素気化分離後の吸収液を移す。そして、pH調整用の4−ニトロフェノールを2〜3滴滴下する。高純度アンモニア水を5mL加え、4−ニトロフェノールの蛍光黄色を発色させる。その後、塩酸(1+1)を4−ニトロフェノールの鮮やかな蛍光黄色が消失するまで加える。消失した点で、各々の吸収液のpHは、均一に整った状態となる。発色に適したpH範囲であるpH0.6〜0.9の範囲(特に0.7付近)に調整するために塩酸(1+1)を1mL添加する。   The absorption liquid after silicon tetrafluoride vaporization separation is transferred to a PTFE beaker. And 2-3 drops of 4-nitrophenol for pH adjustment are dripped. Add 5 mL of high-purity ammonia water to develop the fluorescent yellow color of 4-nitrophenol. Thereafter, hydrochloric acid (1 + 1) is added until the bright fluorescent yellow color of 4-nitrophenol disappears. At the point of disappearance, the pH of each absorbing solution is in a uniform state. 1 mL of hydrochloric acid (1 + 1) is added to adjust the pH range from 0.6 to 0.9 (particularly around 0.7), which is a pH range suitable for color development.

前記吸収液に10w/v%モリブデン酸アンモニウムを1.5mL添加することで、モリブドケイ酸黄の発色を得る。モリブドケイ酸黄錯体を安定化させるために5分以上静置する。10w/v%シュウ酸を2mL添加し、直ちに1−アミノー2−ナフトールー4−スルホン酸の還元剤を添加し、呈色する。還元剤の調製法は、非特許文献2に準ずる。溶液を25mLのメスフラスコにて定容する。   A color of molybdosilicate yellow is obtained by adding 1.5 mL of 10 w / v% ammonium molybdate to the absorbent. Leave for 5 minutes or more to stabilize the molybdosilicate yellow complex. Add 2 mL of 10 w / v% oxalic acid, immediately add a reducing agent of 1-amino-2-naphthol-4-sulfonic acid, and color. The method for preparing the reducing agent conforms to Non-Patent Document 2. The solution is made up to volume in a 25 mL volumetric flask.

得られた溶液の吸光度を測定する。モリブドケイ酸青錯体を安定化させるため、呈色後30分以上経過してから測定を行う。セルは、石英セルを使用する。測定波長は、815nmの固定波長を測定する。対照液としては、純水を使用する。試料と同様に処理して得られた検量線試料との吸光度の比較により、ケイ素量の定量分析を行う。   The absorbance of the obtained solution is measured. In order to stabilize the molybdosilicate blue complex, measurement is performed after 30 minutes or more have passed since coloring. The cell uses a quartz cell. The measurement wavelength is a fixed wavelength of 815 nm. Pure water is used as a control solution. The amount of silicon is quantitatively analyzed by comparing the absorbance with a calibration curve sample obtained by processing in the same manner as the sample.

本実施形態に係る方法による定量下限値は、空試験の10回測定の標準偏差の10倍と定義して算出した。すなわち、空試験の標準偏差σは、0.0086μgであるので、定量下限値(空試験の10σ)は0.086μgである。   The lower limit of quantification by the method according to the present embodiment was calculated by defining as 10 times the standard deviation of 10 measurements of the blank test. That is, since the standard deviation σ of the blank test is 0.0086 μg, the lower limit of quantification (10σ of the blank test) is 0.086 μg.

以下に実施例を説明するが、本発明は、以下の実施例に限定されるものではない。   Examples will be described below, but the present invention is not limited to the following examples.

[試料]
標準試料としては、硫酸中で沈殿を生じる銅と亜鉛を主成分とする黄銅および硫酸に不溶な純鉄を選択した。これらの標準試料の組成をそれぞれ表1および表2に示す。黄銅試料については、シングルおよびサブppmレベルのケイ素定量性を評価するために、フルウチ化学社製の純銅「CUM−26015A Cu 4N」を用いて固体希釈を行ったものを試料として評価を行った。純鉄試料については、残部は鉄である。
[sample]
As the standard sample, copper and zinc containing copper and zinc, which cause precipitation in sulfuric acid, and pure iron insoluble in sulfuric acid were selected. The compositions of these standard samples are shown in Table 1 and Table 2, respectively. About the brass sample, in order to evaluate the silicon quantitative property of a single and a sub ppm level, it evaluated by using as a sample what diluted solid using the pure copper "CUM-26015A Cu 4N" by Furuuchi Chemical Co., Ltd. For pure iron samples, the balance is iron.

[試料溶解]
黄銅の標準試料0.0114g、純銅0.9732gをPFA容器に秤量し、硝酸5mLで溶解した。また、純鉄の標準試料、約0.2gをPFA容器に秤量し、硝酸5mLで溶解した。
[Sample dissolution]
0.0114 g of brass standard sample and 0.9732 g of pure copper were weighed in a PFA container and dissolved in 5 mL of nitric acid. Moreover, about 0.2 g of a standard sample of pure iron was weighed in a PFA container and dissolved in 5 mL of nitric acid.

[気化分離]
前記溶液に発煙硝酸25mLを加えた。気化分離は、以下の条件で行った。
吸収液:0.1w/v%ホウ酸,10mL,
フッ化水素酸:6w/v%,0.5mL,
窒素ガス流速:0.5L/min,窒素ガスパージ時間:30min
[Vaporization separation]
To the solution was added 25 mL of fuming nitric acid. The vaporization separation was performed under the following conditions.
Absorbent: 0.1 w / v% boric acid, 10 mL,
Hydrofluoric acid: 6 w / v%, 0.5 mL,
Nitrogen gas flow rate: 0.5 L / min, nitrogen gas purge time: 30 min

[pH調整]
気化分離後の吸収液をPTFEビーカーに移し、pH調整用の4−ニトロフェノールを2〜3滴滴下した。高純度アンモニア水を5mL加えて、4−ニトロフェノールの鮮やかな蛍光黄色を発色させた後、塩酸(1+1)を溶液の色が無色になるまで添加した。
[PH adjustment]
The absorbent after vaporization and separation was transferred to a PTFE beaker, and 2-3 drops of 4-nitrophenol for pH adjustment were dropped. After adding 5 mL of high-purity ammonia water to develop a bright fluorescent yellow color of 4-nitrophenol, hydrochloric acid (1 + 1) was added until the color of the solution became colorless.

[呈色]
塩酸(1+1)を1.0mL、次に、10w/v%モリブデン酸アンモニウムを1.5mL添加した。添加後は、5分間静置した。10w/v%シュウ酸を2mL添加し、直ちに還元剤を0.5mL添加した。溶液を25mLのメスフラスコにて定容した。
[Coloration]
1.0 mL of hydrochloric acid (1 + 1) was added, followed by 1.5 mL of 10 w / v% ammonium molybdate. After the addition, the mixture was allowed to stand for 5 minutes. 2 mL of 10 w / v% oxalic acid was added, and 0.5 mL of reducing agent was immediately added. The solution was made up to volume in a 25 mL volumetric flask.

[分析]
得られた溶液を30分以上静置させてから吸光度を測定した。セルには、幅2cmの石英セルを使用し、815nmの波長を測定した。対照液としては、純水を使用した。検量線は、硝酸5mLと発煙硝酸25mLを混合した溶液の中に、市販のケイ素標準溶液をケイ素の濃度が段階的になるように任意の量で添加し、試料と同様に気化分離・pH調整・呈色操作を行い得られたものを使用した。検量線試料との吸光度の比較により、ケイ素量の定量分析を行った。
[analysis]
The resulting solution was allowed to stand for 30 minutes or more, and then the absorbance was measured. A quartz cell with a width of 2 cm was used as the cell, and a wavelength of 815 nm was measured. Pure water was used as a control solution. For the calibration curve, a commercially available silicon standard solution is added in an arbitrary amount so that the concentration of silicon becomes stepwise in a solution in which 5 mL of nitric acid and 25 mL of fuming nitric acid are mixed. -What was obtained by performing coloration operation was used. The silicon content was quantitatively analyzed by comparing the absorbance with the calibration curve sample.

表3および表4に、それぞれ黄銅および純鉄における、ケイ素の認証値と実測値との比較を示す。   Tables 3 and 4 show comparisons between the certified silicon values and the actual measured values for brass and pure iron, respectively.

表3および表4に示すように、本発明方法による定量分析をして得た定量値は、認証値と一致する結果となった。すなわち、シングルおよびサブppmオーダーでの高感度なケイ素の定量分析に有効である。   As shown in Tables 3 and 4, the quantitative values obtained by quantitative analysis by the method of the present invention were the same as the certified values. That is, it is effective for quantitative analysis of silicon with high sensitivity on the order of single and sub ppm.

気化分離後の四フッ化ケイ素を含有するホウ酸吸収液を、ICP発光分光法、ICP質量分析法を用いて測定することで、ケイ素の定量を行った。   The boric acid absorption liquid containing silicon tetrafluoride after vaporization and separation was measured using ICP emission spectroscopy and ICP mass spectrometry, whereby silicon was quantified.

[試料]
実施例1において使用した標準試料と同様の物を使用した。ICP発光分光法では黄銅試料、ICP質量分析法では純鉄試料を使用した。
[sample]
The same standard sample used in Example 1 was used. Brass samples were used for ICP emission spectroscopy, and pure iron samples were used for ICP mass spectrometry.

[試料溶解]
黄銅、純鉄の標準試料0.1gをそれぞれPFA容器に秤量し、硝酸5mLで溶解した。
[Sample dissolution]
Each standard sample of brass and pure iron (0.1 g) was weighed into a PFA container and dissolved in 5 mL of nitric acid.

[気化分離]
実施例1と同様の操作を行った。
[Vaporization separation]
The same operation as in Example 1 was performed.

[定容]
ICP発光分析法では、20mLに定容した。
ICP質量分析法では、100mLに定容した。
[Constant volume]
In ICP emission analysis, the volume was adjusted to 20 mL.
In ICP mass spectrometry, the volume was adjusted to 100 mL.

[分析]
10mLのホウ酸水溶液の中に市販のケイ素標準溶液をケイ素の濃度が段階的になるように任意の量で添加し、20mLあるいは100mLに定容したものを検量線溶液とした。検量線試料と標準試料で得られたカウントの比較により、ケイ素量の定量分析を行った。
表5にケイ素の認証値と実測値との比較を示す。
[analysis]
A commercially available silicon standard solution was added in an arbitrary amount in a 10 mL boric acid aqueous solution so that the concentration of silicon was stepwise, and a volume adjusted to 20 mL or 100 mL was used as a calibration curve solution. The silicon content was quantitatively analyzed by comparing the counts obtained with the calibration curve sample and the standard sample.
Table 5 shows a comparison between the certified silicon value and the actual measurement value.

表5に示すように、気化分離後の吸収液をICP発光分析法、ICP質量分析法により処理して得られたケイ素の定量値は、認証値と一致する結果となった。本発明は、ケイ素の定量法として、吸光光度法の他に、ICP発光分光法およびICP質量分析法を用いることも可能である。   As shown in Table 5, the quantitative value of silicon obtained by treating the absorption liquid after vaporization separation by ICP emission spectrometry and ICP mass spectrometry was the same as the certified value. In the present invention, ICP emission spectroscopy and ICP mass spectrometry can be used in addition to absorptiometry as a method for quantitative determination of silicon.

[試料]
標準試料としては、硫酸中で硫酸亜鉛の沈殿を生じる亜鉛を主成分とするものを選択した。この標準試料の組成を表6に示す。試料の残部は亜鉛である。
[sample]
As a standard sample, one containing zinc as a main component which causes precipitation of zinc sulfate in sulfuric acid was selected. The composition of this standard sample is shown in Table 6. The balance of the sample is zinc.

[試料溶解]
試料約0.1gをPFA容器に秤量し、硝酸5mLで溶解した。
[Sample dissolution]
About 0.1 g of the sample was weighed in a PFA container and dissolved with 5 mL of nitric acid.

[気化分離]、[pH調整]、[呈色]、[分析]
実施例1と同様の操作を行った。その結果を表7に示す。
[Vaporization separation], [pH adjustment], [Coloration], [Analysis]
The same operation as in Example 1 was performed. The results are shown in Table 7.

表7に示すように、本発明方法による定量分析をして得た定量値は、認証値と一致する結果となった。すなわち、本発明は、亜鉛を主成分とする試料、溶融亜鉛めっき鋼板、溶融亜鉛−5wt%アルミニウム合金めっき鋼板、溶融亜鉛−55wt%アルミニウム合金めっき鋼板、溶融アルミニウムめっき鋼板などに含まれるケイ素の定量分析も適用可能である。   As shown in Table 7, the quantitative value obtained by the quantitative analysis by the method of the present invention was the same as the certified value. That is, the present invention relates to determination of silicon contained in a sample containing zinc as a main component, a hot dip galvanized steel sheet, a hot dip zinc-5 wt% aluminum alloy plated steel sheet, a hot dip zinc-55 wt% aluminum alloy plated steel sheet, a hot dip aluminum plated steel sheet, and the like. Analysis is also applicable.

本発明によれば、従来の硫酸を用いた四フッ化ケイ素気化分離法では定量できなかった固体または液体中のケイ素を、サブppmの精度で定量することができる。本発明は、特に、70w/w%以上の硝酸を含有する溶液中に可溶な金属、合金、化合物などに含まれるケイ素の定量分析に有効である。
According to the present invention, silicon in a solid or liquid that could not be quantified by the conventional silicon tetrafluoride vapor separation method using sulfuric acid can be quantified with sub-ppm accuracy. The present invention is particularly effective for quantitative analysis of silicon contained in metals, alloys, compounds and the like that are soluble in a solution containing 70 w / w% or more of nitric acid.

Claims (6)

試料中に含まれるケイ素を定量分析する方法であって、
(1)ケイ素含有溶液に発煙硝酸を加えて、硝酸酸性溶液を得る工程、
(2)前記硝酸酸性溶液にフッ化水素酸を加えて、四フッ化ケイ素ガスを生じさせる工程、
(3)前記四フッ化ケイ素ガスを、硝酸ガスとともにホウ酸溶液に導入し、ケイ素を捕集する工程、および、
(4)ケイ素を捕集したホウ酸溶液を分析し、前記試料中のケイ素含有量を求める工程を備える、ケイ素定量分析方法。
A method for quantitatively analyzing silicon contained in a sample,
(1) adding fuming nitric acid to a silicon-containing solution to obtain a nitric acid acidic solution;
(2) adding hydrofluoric acid to the nitric acid acidic solution to generate silicon tetrafluoride gas;
(3) introducing the silicon tetrafluoride gas into a boric acid solution together with nitric acid gas and collecting silicon; and
(4) A method for quantitatively analyzing silicon, comprising a step of analyzing a boric acid solution in which silicon is collected to determine a silicon content in the sample.
前記(1)の工程において、濃度が70w/w%以上の硝酸を用いる、
請求項1に記載のケイ素定量分析方法。
In the step (1), nitric acid having a concentration of 70 w / w% or more is used.
The silicon quantitative analysis method according to claim 1.
前記(4)の工程において、前記ケイ素を捕集したホウ酸溶液の分析を、誘導結合プラズマ発光分光法、誘導結合プラズマ質量分析法または原子吸光光度分析法により行う、
請求項1または2に記載のケイ素定量分析方法。
In the step (4), analysis of the boric acid solution in which the silicon is collected is performed by inductively coupled plasma emission spectroscopy, inductively coupled plasma mass spectrometry, or atomic absorption spectrophotometry.
The method for quantitative analysis of silicon according to claim 1 or 2.
前記(4)の工程において、前記ケイ素を捕集したホウ酸溶液の分析を、モリブドケイ酸青吸光光度法により行うに際し、前記ケイ素を捕集したホウ酸溶液のpH値を、安定した吸光度が得られる範囲以外の値に調整した後、安定した吸光度が得られる範囲に調整する、
請求項1から3までのいずれかに記載のケイ素定量分析方法。
In the step (4), when analyzing the boric acid solution collecting the silicon by the molybdosilicate blue absorptiometry, the pH value of the boric acid solution collecting the silicon is obtained as a stable absorbance. After adjusting to a value outside the range that can be obtained, adjust to a range where stable absorbance is obtained,
The silicon quantitative analysis method according to any one of claims 1 to 3.
前記ケイ素を捕集したホウ酸溶液のpH値を、安定した吸光度が得られる範囲以外の値に調整するに際し、安定した吸光度が得られるpHの範囲以外の範囲で変色する指示薬を用いる、
請求項4に記載のケイ素定量分析方法。
When adjusting the pH value of the boric acid solution that has collected silicon to a value other than the range in which stable absorbance is obtained, an indicator that changes color in a range other than the pH range in which stable absorbance is obtained is used.
The silicon quantitative analysis method according to claim 4.
前記(1)の工程が、酸によって固体を溶解して得たケイ素含有溶液を用いる、
請求項1から5までのいずれかに記載のケイ素定量分析方法。
The step (1) uses a silicon-containing solution obtained by dissolving a solid with an acid.
The silicon quantitative analysis method according to any one of claims 1 to 5.
JP2016026192A 2016-02-15 2016-02-15 Silicon quantitative analysis method Active JP6416807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026192A JP6416807B2 (en) 2016-02-15 2016-02-15 Silicon quantitative analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026192A JP6416807B2 (en) 2016-02-15 2016-02-15 Silicon quantitative analysis method

Publications (2)

Publication Number Publication Date
JP2017146123A true JP2017146123A (en) 2017-08-24
JP6416807B2 JP6416807B2 (en) 2018-10-31

Family

ID=59682869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026192A Active JP6416807B2 (en) 2016-02-15 2016-02-15 Silicon quantitative analysis method

Country Status (1)

Country Link
JP (1) JP6416807B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116274A1 (en) 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and device for isolating and analyzing target substance in solution
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method
CN114166828A (en) * 2021-11-17 2022-03-11 酒泉钢铁(集团)有限责任公司 Experimental method for detecting sulfur element in industrial hydrofluoric acid
CN114689569A (en) * 2022-04-02 2022-07-01 北京科技大学 Method for testing silicon-aluminum ratio of molecular sieve
LU501067A1 (en) * 2021-01-29 2022-08-08 Zhengzhou Res Inst Mechanical Eng Co Ltd Method for rapidly determining silicon content in alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166157A (en) * 1984-09-08 1986-04-04 Nippon Telegr & Teleph Corp <Ntt> Quantitative analysis of silicon
US20040092029A1 (en) * 2002-10-09 2004-05-13 Jones Mark L. Method of preparing a silicon sample for analysis
JP2005069746A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Back extraction method of silicomolybdic acid and silicon quantifying method using silicomolybdic acid (blue) absorptiometric method
JP2011236084A (en) * 2010-05-11 2011-11-24 Shin Etsu Handotai Co Ltd Method for evaluating impurities of silicon single crystal
WO2013084948A1 (en) * 2011-12-06 2013-06-13 株式会社住化分析センター Container, vapor phase cracking method, vapor phase cracking device, analysis method, and analysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166157A (en) * 1984-09-08 1986-04-04 Nippon Telegr & Teleph Corp <Ntt> Quantitative analysis of silicon
US20040092029A1 (en) * 2002-10-09 2004-05-13 Jones Mark L. Method of preparing a silicon sample for analysis
JP2005069746A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Back extraction method of silicomolybdic acid and silicon quantifying method using silicomolybdic acid (blue) absorptiometric method
JP2011236084A (en) * 2010-05-11 2011-11-24 Shin Etsu Handotai Co Ltd Method for evaluating impurities of silicon single crystal
WO2013084948A1 (en) * 2011-12-06 2013-06-13 株式会社住化分析センター Container, vapor phase cracking method, vapor phase cracking device, analysis method, and analysis device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116274A1 (en) 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and device for isolating and analyzing target substance in solution
JP2020091128A (en) * 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and apparatus for separating or analyzing target component in solution
KR20210031757A (en) 2018-12-03 2021-03-22 미쓰이금속광업주식회사 Method and apparatus for separating or analyzing a desired component in a solution
CN112740031A (en) * 2018-12-03 2021-04-30 三井金属矿业株式会社 Method and device for separating or analyzing target components in a solution
KR102281553B1 (en) 2018-12-03 2021-07-26 미쓰이금속광업주식회사 Method and apparatus for isolating or analyzing a target component in a solution
EP3839501A4 (en) * 2018-12-03 2021-10-27 Mitsui Mining & Smelting Co., Ltd. Method and device for isolating and analyzing target substance in solution
US11215592B2 (en) 2018-12-03 2022-01-04 Mitsui Mining & Smelting Co., Ltd. Method and device for isolating and analyzing target substance in solution
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method
LU501067A1 (en) * 2021-01-29 2022-08-08 Zhengzhou Res Inst Mechanical Eng Co Ltd Method for rapidly determining silicon content in alloy
CN114166828A (en) * 2021-11-17 2022-03-11 酒泉钢铁(集团)有限责任公司 Experimental method for detecting sulfur element in industrial hydrofluoric acid
CN114689569A (en) * 2022-04-02 2022-07-01 北京科技大学 Method for testing silicon-aluminum ratio of molecular sieve

Also Published As

Publication number Publication date
JP6416807B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6416807B2 (en) Silicon quantitative analysis method
Tuzen et al. Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry
Barros et al. Aerosol dilution as a simple strategy for analysis of complex samples by ICP-MS
Ferreira et al. A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water
De Muynck et al. Development of a new method for Pb isotopic analysis of archaeological artefacts using single-collector ICP-dynamic reaction cell-MS
Kaveh et al. Improvement of the capabilities of solid sampling ETV-ICP-OES by coupling ETV to a nebulisation/pre-evaporation system
Lee et al. Determination of mercury in urine by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry
Sakanupongkul et al. Speciation of mercury in water and freshwater fish samples by a two-step solidified floating organic drop microextraction with electrothermal atomic absorption spectrometry
Manjusha et al. Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)
Petrov et al. Comparison between hydride generation and nebulization for sample introduction in the determination of lead in plants and water samples by inductively coupled plasma mass spectrometry, using external calibration and isotope dilution
JP2006208125A (en) Isotope ratio analysis method using plasma ion source mass spectroscope
Elwaer et al. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS)
Baghban et al. Cloud point extraction of trace amounts of copper and its determination by flow injection flame atomic absorption spectrometry
Eggenkamp et al. A simple distillation method to extract bromine from natural water and salt samples for isotope analysis by multi‐collector inductively coupled plasma mass spectrometry
JP2006329687A (en) Analytical method for trace element in metal sample
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
Han et al. Determination of ultra-trace cobalt in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction using 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline as the chelating agent
JP4186214B2 (en) Determination of silicon by silicomolybdic acid back extraction and silicomolybdic acid (blue) absorptiometry
CN101149316B (en) Gold base alloy chemical composition analytical method
Neri et al. Noteworthy Method for Direct Determination of Sb III and Total Inorganic Antimony in Natural Waters
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
Dittert et al. Dispersive liquid–liquid microextraction using ammonium O, O-diethyl dithiophosphate (DDTP) as chelating agent and graphite furnace atomic absorption spectrometry for the determination of silver in biological samples
Grotti et al. Electrothermal atomic absorption spectrometric determination of ultratrace amounts of tellurium using a palladium-coated L'vov platform after separation and concentration by hydride generation and liquid anion exchange
Dadfarnia et al. Selective cloud point extraction and preconcentration of trace amounts of cadmium prior to flame atomic absorption spectrometric determination
Petri et al. Suitability of semi-quantitative inductive coupled plasma-mass spectrometry for multi-elemental screening in water contamination warning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6416807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250