JP2017145288A - WATER-SOLUBLE COMPOSITE OF FULLERENE AND γ-CYCLODEXTRIN AND METHOD FOR PRODUCING THE SAME - Google Patents

WATER-SOLUBLE COMPOSITE OF FULLERENE AND γ-CYCLODEXTRIN AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2017145288A
JP2017145288A JP2016026584A JP2016026584A JP2017145288A JP 2017145288 A JP2017145288 A JP 2017145288A JP 2016026584 A JP2016026584 A JP 2016026584A JP 2016026584 A JP2016026584 A JP 2016026584A JP 2017145288 A JP2017145288 A JP 2017145288A
Authority
JP
Japan
Prior art keywords
fullerene
cyclodextrin
complex
composite
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016026584A
Other languages
Japanese (ja)
Other versions
JP6744106B2 (en
Inventor
門田 隆二
Ryuji Kadota
隆二 門田
健三 塙
Kenzo Hanawa
健三 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016026584A priority Critical patent/JP6744106B2/en
Publication of JP2017145288A publication Critical patent/JP2017145288A/en
Application granted granted Critical
Publication of JP6744106B2 publication Critical patent/JP6744106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-soluble fullerene composite having both an antimicrobial action and an antioxidation action.SOLUTION: There are provided: a composite composed of fullerene and a γ-cyclodextrin, wherein the molar ratio of fullerene and a γ-cyclodextrin is 1:4; an aqueous solution of the composite; and an antimicrobial composition comprising the composite. The composite can be produced by pulverizing and mixing fullerene and a γ-cyclodextrin with a planetary ball mill using pulverization balls having a diameter of 2 to 5 mm.SELECTED DRAWING: None

Description

本発明は、フラーレンの水溶性複合体に関する。さらに詳しく言えば、フラーレンとγ−シクロデキストリンとの水溶性複合体、その複合体の水溶液、それらの製造方法及び前記複合体を用いた抗菌剤組成物に関する。   The present invention relates to a water-soluble complex of fullerenes. More specifically, the present invention relates to a water-soluble complex of fullerene and γ-cyclodextrin, an aqueous solution of the complex, a production method thereof, and an antibacterial agent composition using the complex.

フラーレンは疎水性であるため、有機溶媒に溶解して用いられてきたが、フラーレンを官能基化することによって、またはフラーレンを包接することによって、水への溶解度を上げる研究が行われている。このような水溶性のフラーレン類は、例えば、サニタリー分野、消臭等の用途で用いられている。   Since fullerene is hydrophobic, it has been used by being dissolved in an organic solvent. However, studies have been made to increase solubility in water by functionalizing fullerene or by inclusion of fullerene. Such water-soluble fullerenes are used in applications such as sanitary fields and deodorization.

前記フラーレンを包接する物質として、γ−シクロデキストリン、ポリビニルピロリドンまたは水溶性カリックスアレーンなどが用いられてきた。例えば、特開平8−3201号公報(特許文献1)には、水溶性フラーレン包接化合物を製造するための簡単、かつ迅速な方法を開発することを目的として、フラーレン(C60)と、γ−シクロヘキサン及びカリクス−[8]−アレンから選択されたホスト格子との包接化合物の製造方法であって、C60とホスト格子とを含む固体混合物をメカノケミカル活性化することにより包接化合物を形成することを含む製造方法が開示されている。 As a substance for inclusion of the fullerene, γ-cyclodextrin, polyvinylpyrrolidone, water-soluble calixarene and the like have been used. For example, JP-A-8-3201 (Patent Document 1) discloses fullerene (C 60 ), γ for the purpose of developing a simple and rapid method for producing a water-soluble fullerene inclusion compound. A method for producing an inclusion compound with a host lattice selected from cyclohexane and calix- [8] -allene, wherein the inclusion compound is obtained by mechanochemical activation of a solid mixture containing C 60 and the host lattice. A manufacturing method including forming is disclosed.

また、WO2006/109774号公報(特許文献2)には、フラーレンとγ−シクロデキストリンの複合体を含み、生体が紫外線を照射されることによって発生する活性酸素量を抑制する化粧料を、効率的に、かつ安定して得ることを目的として、フラーレンとフラーレンの質量の3倍以上8倍未満の質量のγ−シクロデキストリンとを乳鉢中で粉砕混合後、得られた固体混合物に溶剤を加え、混合液に超音波振動を与えて、フラーレンとγ−シクロデキストリンの複合体を得る方法が開示されている。特許文献2の方法で得られる複合体は、後述の比較例1に記載の通り、フラーレンとγ−シクロデキストリンのモル比が1:2の複合体であって、これまでフラーレンとγ−シクロデキストリンのモル比が1:4の複合体に関する報告はない。   WO 2006/109774 (Patent Document 2) is an efficient cosmetic that contains a complex of fullerene and γ-cyclodextrin and suppresses the amount of active oxygen generated when a living body is irradiated with ultraviolet rays. In addition, for the purpose of obtaining it stably, after pulverizing and mixing fullerene and γ-cyclodextrin having a mass of 3 to 8 times the mass of fullerene in a mortar, a solvent is added to the obtained solid mixture, A method for obtaining a complex of fullerene and γ-cyclodextrin by applying ultrasonic vibration to the mixed solution is disclosed. The complex obtained by the method of Patent Document 2 is a complex having a molar ratio of fullerene and γ-cyclodextrin of 1: 2 as described in Comparative Example 1 described later. There are no reports on complexes with a 1: 4 molar ratio.

特開平8−3201号公報JP-A-8-3201 WO2006/109774号公報WO 2006/109774

特許文献2は活性酸素量を抑制する複合体を提供するものであるが、一般に、活性酸素量を抑制すると抗菌作用は得にくくなる。本発明では、抗菌作用と抗酸化作用を兼ね備えた水溶性のフラーレン複合体を提供することを目的としている。   Patent Document 2 provides a complex that suppresses the amount of active oxygen, but generally, when the amount of active oxygen is suppressed, it is difficult to obtain an antibacterial action. An object of the present invention is to provide a water-soluble fullerene complex having both an antibacterial action and an antioxidant action.

本発明者らは、遊星ボールミルでフラーレン及びγ−シクロデキストリンを乾式で粉砕混合することにより、フラーレンとγ−シクロデキストリンとのモル比が1:4の水溶性複合体が得られること、及びその複合体の水溶液が抗菌作用と抗酸化作用を有することを見出し、本発明を完成した。   The present inventors obtained a water-soluble complex having a molar ratio of fullerene and γ-cyclodextrin of 1: 4 by dry-pulverizing and mixing fullerene and γ-cyclodextrin with a planetary ball mill, and It discovered that the aqueous solution of a composite had an antibacterial action and an antioxidant action, and completed this invention.

本発明は、以下の[1]〜[5]の複合体、その水溶液及び抗菌剤組成物、並びに[6]〜[12]の複合体の製造方法に関する。
[1] フラーレンとγ−シクロデキストリンとからなる複合体であって、モル比でフラーレン:γ−シクロデキストリン=1:4であることを特徴とする複合体。
[2] フラーレンが、C60またはC70である前項1に記載の複合体。
[3] フラーレンが、C60とC70との両方を含む前項1に記載の複合体。
[4] 前項1〜3のいずれかに記載の複合体を含む水溶液。
[5] 前項1〜3のいずれかに記載の複合体を含む抗菌剤組成物。
[6] 遊星ボールミルでフラーレン及びγ−シクロデキストリンを乾式で粉砕混合する工程を有することを特徴とする、モル比でフラーレン:γ−シクロデキストリン=1:4であるフラーレンとγ−シクロデキストリンとからなる複合体の製造方法。
[7] フラーレンが、C60またはC70である前項6に記載の複合体の製造方法。
[8] 前記粉砕混合に直径2〜5mmの粉砕用ボールを用いる前項6に記載の複合体の製造方法。
[9] 前記遊星ボールミルに投入するフラーレンとγ−シクロデキストリンとのモル比がフラーレン:γ−シクロデキストリン=1:3〜8である前項6または7に記載の複合体の製造方法。
[10] 前記遊星ボールミルに投入するフラーレンに対するγ−シクロデキストリンのモル比が4以下である前項9に記載の複合体の製造方法。
[11] さらに、前記複合体を精製する工程を有する前項6〜10のいずれかに記載の複合体の製造方法。
[12] 前記精製が、前記粉砕混合で得た粉砕混合粉と水とを混合し、該混合物から不溶成分を除去し、溶解成分を取得することにより行われる前項11に記載の複合体の製造方法。
The present invention relates to the following complexes [1] to [5], aqueous solutions and antibacterial compositions thereof, and methods for producing the complexes [6] to [12].
[1] A complex comprising fullerene and γ-cyclodextrin, wherein the molar ratio is fullerene: γ-cyclodextrin = 1: 4.
[2] fullerene, the complex according to item 1 is a C 60 or C 70.
[3] fullerene, the complex according to item 1, including both the C 60 and C 70.
[4] An aqueous solution containing the complex according to any one of items 1 to 3.
[5] An antibacterial agent composition comprising the complex according to any one of items 1 to 3.
[6] From a fullerene and a γ-cyclodextrin in a molar ratio of fullerene: γ-cyclodextrin = 1: 4, characterized by comprising a step of grinding and mixing fullerene and γ-cyclodextrin in a dry manner in a planetary ball mill A method for producing a composite.
[7] fullerene method of producing a composite body according to item 6 is C 60 or C 70.
[8] The method for producing a composite according to item 6, wherein a grinding ball having a diameter of 2 to 5 mm is used for the grinding and mixing.
[9] The method for producing a complex according to item 6 or 7, wherein the molar ratio of fullerene and γ-cyclodextrin introduced into the planetary ball mill is fullerene: γ-cyclodextrin = 1: 3-8.
[10] The method for producing a complex as described in 9 above, wherein the molar ratio of γ-cyclodextrin to fullerene charged into the planetary ball mill is 4 or less.
[11] The method for producing a complex according to any one of items 6 to 10, further comprising a step of purifying the complex.
[12] Production of complex according to item 11 above, wherein the purification is performed by mixing the pulverized mixed powder obtained by the pulverization and mixing with water, removing insoluble components from the mixture, and obtaining dissolved components. Method.

本発明による、フラーレンに対するγ−シクロデキストリンのモル比が1:4の水溶性複合体を用いることにより、抗菌作用と抗酸化作用とを兼ね備えた組成物を得ることができる。   By using a water-soluble complex having a molar ratio of γ-cyclodextrin to fullerene of 1: 4 according to the present invention, a composition having both an antibacterial action and an antioxidant action can be obtained.

遊星ボールミルで乾式粉砕処理に供するフラーレンを一定量として、投入するγ−シクロデキストリン量(モル比)を変えた時、得られた本発明の複合体の収率の変化を示すグラフである。It is a graph which shows the change of the yield of the obtained composite_body | complex obtained when changing the amount (mol ratio) of (gamma) -cyclodextrin thrown in by making the fullerene used for a dry grinding process with a planetary ball mill into a fixed quantity. 本発明の製造方法による、乾式粉砕混合で遊星ボールミルに投入したフラーレン量を一定として、横軸は該粉砕混合で投入したフラーレンに対する投入したγ-シクロデキストリンのモル比、縦軸は得られた複合体含有溶液中に存在するフラーレンC60に対するγ-シクロデキストリン(複合体及び遊離のγ-シクロデキストリンの合計量)のモル比を示す。According to the production method of the present invention, the amount of fullerene charged into the planetary ball mill by dry pulverization and mixing was constant, the horizontal axis represents the molar ratio of γ-cyclodextrin charged to the fullerene charged by the pulverization and mixing, and the vertical axis represents the obtained composite The molar ratio of γ-cyclodextrin (total amount of complex and free γ-cyclodextrin) to fullerene C 60 present in the body-containing solution is shown.

[複合体]
本発明の複合体は、フラーレンとγ−シクロデキストリンとからなる複合体であって、モル比でフラーレン:γ−シクロデキストリン=1:4である。
前記複合体中のフラーレンは、特に限定されず、例えば、C60やC70、さらに高次のフラーレン、あるいはそれらの混合物が挙げられる。フラーレンの中でもC60及びC70が比較的入手しやすく好ましい。
[Complex]
The complex of the present invention is a complex composed of fullerene and γ-cyclodextrin, and the molar ratio is fullerene: γ-cyclodextrin = 1: 4.
The fullerene in the composite is not particularly limited, and examples thereof include C 60 and C 70 , higher order fullerenes, and mixtures thereof. Among fullerenes, C 60 and C 70 are preferable because they are relatively easily available.

[複合体の製造方法]
本発明の複合体は、遊星ボールミルでフラーレン及びγ−シクロデキストリンを乾式で粉砕混合することにより得られる。前記粉砕混合の際、高い収率を得るために直径2〜5mmの粉砕用ボールを用いることが好ましい。
[Production method of composite]
The composite of the present invention can be obtained by grinding and mixing fullerene and γ-cyclodextrin in a dry manner in a planetary ball mill. In the pulverization and mixing, a pulverization ball having a diameter of 2 to 5 mm is preferably used in order to obtain a high yield.

図1は、遊星ボールミルで粉砕処理に供するフラーレンを一定量として、投入するγ−シクロデキストリン量(モル比)を変えた時、得られた本発明の複合体の収率の変化をプロットしたものである。ここで収率は、[得られた複合体中のフラーレン(モル)]/[投入フラーレン(モル)]で定義する。なお、得られた複合体のフラーレン:γ-シクロデキストリンのモル比が1:4であることは、図2に示す結果(後述する。)及び元素分析法及び1H−NMRと13C−NMR測定によるγ−シクロデキストリンのケミカルシフトによって確認された。
図1から複合体の収率はγ−シクロデキストリン量を増やしていくと向上し、4以上ではほぼ変化がなくなっているのがわかる。複合体を安定した高い収率で得るためには、原料として前記遊星ボールミルに投入するフラーレンとγ−シクロデキストリンとのモル比(フラーレン:γ−シクロデキストリン)は、1:3〜8が好ましく、1:3〜5がより好ましく、1:4がさらに好ましい。
FIG. 1 is a plot of changes in the yield of the complex of the present invention obtained when the amount of γ-cyclodextrin to be introduced (molar ratio) is changed with a fixed amount of fullerene to be pulverized by a planetary ball mill. It is. Here, the yield is defined as [fullerene (mol) in the obtained complex] / [input fullerene (mol)]. In addition, the molar ratio of fullerene: γ-cyclodextrin in the obtained complex is 1: 4. The results shown in FIG. 2 (described later), elemental analysis, 1 H-NMR and 13 C-NMR This was confirmed by chemical shift of γ-cyclodextrin by measurement.
From FIG. 1, it can be seen that the yield of the complex improves as the amount of γ-cyclodextrin is increased, and that the change is almost eliminated at 4 or more. In order to obtain a complex in a stable and high yield, the molar ratio of fullerene and γ-cyclodextrin charged to the planetary ball mill as a raw material (fullerene: γ-cyclodextrin) is preferably 1: 3 to 8, 1: 3-5 is more preferable, and 1: 4 is more preferable.

前記粉砕混合処理は乾式で行うため、原料のフラーレンとγ−シクロデキストリンは水分や溶剤成分をできるだけ含まないことが好ましい。水分子は、γ−シクロデキストリンに配位し、フラーレンとγ−シクロデキストリンとの複合体形成を阻害すると考えられる。水以外の溶剤成分についても同様である。   Since the pulverization and mixing treatment is performed in a dry manner, it is preferable that the raw material fullerene and γ-cyclodextrin contain as little water and solvent components as possible. It is considered that the water molecule coordinates to γ-cyclodextrin and inhibits complex formation between fullerene and γ-cyclodextrin. The same applies to solvent components other than water.

[粉砕混合]
本発明では、粉砕混合処理装置として、高い収率を得やすいように、より大きなエネルギーを加えることができる装置を用いる。このような装置としては、公転/自転運動の組み合わせ運動をする遊星ボールミルが挙げられ、好ましくは、公転加速度方向とは方向性が異なる自転加速度が生じる傾斜型遊星ボールミルが挙げられる。
このような遊星ボールミルでは、1バッチ当たりに投入するフラーレンとγ−シクロデキストリンの合計量を20g〜1kgとすることができる装置もあり、生産設備、生産効率上好ましい。
[Crushing and mixing]
In the present invention, an apparatus capable of applying a larger energy is used as the pulverization and mixing treatment apparatus so as to easily obtain a high yield. Examples of such a device include a planetary ball mill that performs a combined revolving / spinning motion, and preferably a tilted planetary ball mill that generates a rotational acceleration having a directionality different from the direction of the revolving acceleration.
In such a planetary ball mill, there is also an apparatus that can make the total amount of fullerene and γ-cyclodextrin charged per batch 20 g to 1 kg, which is preferable in terms of production equipment and production efficiency.

また、このような遊星ボールミルで用いる粉砕用ボールの大きさは、一般に遊星ボールミルで用いられるボールよりもその直径が大きいもの(1mm以上)がメカノケミカル反応で加えるエネルギーが大きくなるので好ましい。ただし、ある程度小さなボールの方が粉砕効率が良い。そのため、直径2〜5mmがより好ましい。   In addition, the size of the grinding balls used in such a planetary ball mill is generally larger than that of the ball used in the planetary ball mill (1 mm or more) because the energy applied by the mechanochemical reaction is increased. However, the smaller the ball, the better the grinding efficiency. Therefore, a diameter of 2 to 5 mm is more preferable.

本発明で用いる粉砕用ボールの材質は、例えば、ジルコニア製ボール、ステンレス鋼製ボール、アルミナ製ボール及びメノウ製ボール等を挙げることができる。粉砕用ボールは、質量が大きいほどメカノケミカル反応で加えるエネルギーが大きくなるので、ボールの密度は高いものが好ましい。前記ボールの材質の中で密度の大きいものとして、例えば金属製のボールが挙げられる。ただし、金属不純物を避けたい場合は、セラミック製のボールを用いることが好ましい。セラミック製ボールの中でも、最も密度が大きい部類に入るジルコニア製のボール(密度6.5g/cm3程度)が好ましい。 Examples of the material for the grinding balls used in the present invention include zirconia balls, stainless steel balls, alumina balls, and agate balls. The larger the mass of the ball for pulverization, the greater the energy applied by the mechanochemical reaction. Therefore, it is preferable that the ball has a high density. An example of a material having a high density among the ball materials is a metal ball. However, when it is desired to avoid metal impurities, it is preferable to use ceramic balls. Among the ceramic balls, zirconia balls (density of about 6.5 g / cm 3 ) that fall into the category with the highest density are preferable.

さらに、本発明で用いる粉砕用ボールの表面形態は、その面粗さ(Ra)が0.01〜10μmであるものが好ましい。この範囲であると、粉砕時に粉砕される材料が逃げる場所がなくなるのでより大きなエネルギーを加えることができる。Raが上記範囲の場合は、メカノケミカルの反応が起こる確率が高く、高い収率が得やすい。   Furthermore, the surface form of the ball for grinding used in the present invention is preferably that having a surface roughness (Ra) of 0.01 to 10 μm. Within this range, there is no place for the material to be pulverized to escape during pulverization, so that greater energy can be applied. When Ra is in the above range, there is a high probability that a mechanochemical reaction occurs and a high yield is easily obtained.

遊星ボールに投入するフラーレンとγ−シクロデキストリンの合計量は、その比が上記の範囲を満たしていれば特に制限されないが、粉砕混合処理に用いる装置の処理能力に合わせて適宜調整することができる。好ましくは、遊星ボールミルのポットの体積で3〜7割のボールを入れ、その空隙の3〜6割に粉砕される材料を入れ、残りを空間にすることで、安定して高収率で複合体を得られ、さらに好ましくは、ボールの体積と、材料の体積と残りの空間との体積比を1:1:1に近くする。   The total amount of fullerene and γ-cyclodextrin introduced into the planetary ball is not particularly limited as long as the ratio satisfies the above range, but can be appropriately adjusted according to the processing capability of the apparatus used for the pulverization and mixing process. . Preferably, 30 to 70% of the ball of the planetary ball mill pot is placed, and the material to be crushed is placed in 30 to 60% of the gap, and the rest is made into a space, so that the composite can be stably produced in a high yield. A body is obtained, more preferably the volume ratio of the ball volume to the material volume to the remaining space is close to 1: 1: 1.

なお、遊星ボールミルに投入する原料の形態は特に限定されないが、粉砕混合処理時間を短くするために、顕微鏡観察による平均粒径が5〜15μmの(造粒)粒子になっているフラーレンが好ましく、また、顕微鏡観察による平均粒径が30〜300μmの粉末であるγ−シクロデキストリンが好ましい。これらの粒径が前記範囲の場合は、あらかじめ両者をよく混ぜたものをミルに投入すると、複合体の合成が容易になり粉砕時間を短くすることができる。フラーレンとγ−シクロデキストリンとを遊星ボールミルに一緒に投入して粉砕混合処理を開始しても良いが、一方の原料の粒径が前述の範囲より大きい場合は、当該原料を先に投入して粉砕を開始し、前記粒径範囲になった後に、他方の原料を後から加える方法が好ましい。   In addition, although the form of the raw material thrown into a planetary ball mill is not specifically limited, in order to shorten the pulverization and mixing treatment time, fullerene which is a (granulated) particle having an average particle diameter of 5 to 15 μm by microscopic observation is preferable. Further, γ-cyclodextrin which is a powder having an average particle diameter of 30 to 300 μm by microscopic observation is preferable. When these particle sizes are in the above range, if a mixture in which both are well mixed is put in the mill in advance, the composite can be easily synthesized and the pulverization time can be shortened. Fullerene and γ-cyclodextrin may be charged together in a planetary ball mill to start pulverization and mixing treatment. However, if the particle size of one raw material is larger than the above range, the raw material is first input. A method in which the other raw material is added later after the pulverization is started and the particle size is within the above range is preferable.

遊星ボールミルの運転条件としては、回転速度300〜1100rpmが好ましく、粉砕処理時間5分〜1時間が好ましく、粉砕混合処理中の温度0〜50℃が好ましい。これらの範囲であれば、比較的高い収率を得やすい。また粉砕は、何回かに分けて行っても良い。運転の際、粉砕混合処理は大気の雰囲気で構わないが、前述の通り水分が入らないような装置や運転方法を用いることが好ましい。   As operation conditions of the planetary ball mill, a rotational speed of 300 to 1100 rpm is preferable, a pulverization time of 5 minutes to 1 hour is preferable, and a temperature of 0 to 50 ° C. during the pulverization and mixing process is preferable. If it is these ranges, it will be easy to obtain a comparatively high yield. The pulverization may be performed in several times. During operation, the pulverization and mixing treatment may be performed in an air atmosphere, but it is preferable to use an apparatus and an operation method that do not allow moisture to enter as described above.

[複合体の精製]
前記粉砕混合で得た本発明の複合体を精製してもよい。精製方法としては、例えば、前記粉砕混合で得た粉砕混合粉と水とを混合し、混合物(以下、「粉砕混合粉溶液」とも言うことがある。)から不溶成分を除去し、溶解成分を取得する方法が挙げられる。
より具体的には、得られた粉砕混合粉の質量に対して2〜100倍質量の水(用いる水は、pHが7近辺である純水が好ましい。)を、粉砕混合粉に加え、撹拌して粉砕混合粉溶液を得る。粉砕混合粉に含まれる本発明の複合体は、容易に水に溶け分散するので、超音波振動を用いた強力な撹拌処理を用いなくてもよい。なお、この段階までに必ずしもボールを粉砕混合粉から分離する必要はない。
[Purification of complex]
You may refine | purify the composite_body | complex of this invention obtained by the said grinding | pulverization mixing. As a purification method, for example, the pulverized mixed powder obtained by the pulverization and mixing is mixed with water, insoluble components are removed from the mixture (hereinafter also referred to as “pulverized mixed powder solution”), and the dissolved components are removed. The acquisition method is mentioned.
More specifically, 2 to 100 times as much water as the mass of the obtained pulverized mixed powder (pure water whose pH is preferably around 7 is preferable) is added to the pulverized mixed powder and stirred. Thus, a pulverized mixed powder solution is obtained. Since the composite of the present invention contained in the pulverized mixed powder is easily dissolved and dispersed in water, it is not necessary to use a powerful stirring process using ultrasonic vibration. Note that it is not always necessary to separate the balls from the pulverized mixed powder by this stage.

次に前記粉砕混合粉溶液から、分離処理により、不溶成分を除去し、溶解成分を取得する。
前記分離処理としては、例えば、遠心分離、ろ過分離、またはそれらを組み合わせた方法を挙げることができる。前記遠心分離の条件は適宜設定することができるが、例えば1200〜30000rpmとすることができる。ここで、不溶成分は、前記遠心分離での沈殿物または前記ろ過分離でのろ過残渣として除去される。また、溶解成分は、前記遠心分離での上清または前記ろ過分離でのろ液として取得される。
Next, an insoluble component is removed from the pulverized mixed powder solution by a separation process to obtain a dissolved component.
Examples of the separation treatment include centrifugation, filtration separation, or a combination of them. The centrifugation conditions can be set as appropriate, and can be set to 1200 to 30000 rpm, for example. Here, the insoluble component is removed as a precipitate in the centrifugal separation or a filtration residue in the filtration separation. Moreover, a melt | dissolution component is acquired as a supernatant liquid in the said centrifugation, or a filtrate in the said filtration separation.

前記不溶成分としては、未反応のフラーレンやボールが挙げられる。
前記溶解成分としては、本発明の複合体及び未反応のγ−シクロデキストリンが挙げられる。ここで、未反応のγ−シクロデキストリンを減らすには、前記遊星ボールミルに投入するフラーレンに対するγ−シクロデキストリンのモル比を、4以下にすることが好ましく、収率をある程度確保するために3〜4にすることがより好ましい。
Examples of the insoluble component include unreacted fullerene and balls.
Examples of the dissolving component include the complex of the present invention and unreacted γ-cyclodextrin. Here, in order to reduce unreacted γ-cyclodextrin, the molar ratio of γ-cyclodextrin to fullerene to be charged into the planetary ball mill is preferably 4 or less, and 3 to ensure a certain yield. 4 is more preferable.

なお、前記分離処理として遠心分離やろ過分離を用いた場合、前記溶解成分は、該溶解成分が溶解する溶液(以下、この溶液を「複合体含有溶液」と言うことがある。)として取得される。   When centrifugation or filtration separation is used as the separation treatment, the dissolved component is obtained as a solution in which the dissolved component dissolves (hereinafter, this solution may be referred to as “complex-containing solution”). The

次に得られた複合体含有溶液を乾燥させて、本発明の複合体の紛体を得てもよい。乾燥の条件は、適宜設定することができるが、特に乾燥時の温度は、60℃以下で行うことが好ましく、乾燥する装置は、真空乾燥機、エバポレータなどを用いることが好ましい。前記複合体の粉体は、大気中常温で安定であるので保管において特に注意する点はないが、吸水性が多少あるので密閉して保管することが好ましい。   Next, the obtained complex-containing solution may be dried to obtain a powder of the complex of the present invention. The drying conditions can be set as appropriate. In particular, the drying temperature is preferably 60 ° C. or lower, and the drying apparatus is preferably a vacuum dryer, an evaporator, or the like. The powder of the composite is stable at normal temperature in the atmosphere, so there is no particular concern in storage. However, since the composite has some water absorption, it is preferably stored sealed.

[複合体の構造]
図2は、前述の複合体の製造方法において、粉砕混合で投入したフラーレン量を一定として、横軸は該粉砕混合で投入したフラーレンに対する投入したγ−シクロデキストリンのモル比を、縦軸は得られた複合体含有溶液中のフラーレンに対するγ−シクロデキストリンのモル比をプロットしたものである。
[Complex structure]
FIG. 2 shows the above-described method for producing a composite, in which the amount of fullerene charged by pulverization and mixing is constant, the horizontal axis indicates the molar ratio of γ-cyclodextrin charged to the fullerene charged by pulverization and mixing, and the vertical axis indicates the molar ratio. It is what plotted the molar ratio of (gamma) -cyclodextrin with respect to fullerene in the obtained complex containing solution.

投入したγ−シクロデキストリンが少ない図2の左側のモル比4以下となる領域では、フラーレンが余剰となり未反応のフラーレンが生じるが、これは水に溶けず複合体含有溶液からは取り除かれるので、複合体含有溶液中には反応したフラーレンとγ−シクロデキストリンとの複合体が残る。このため、縦軸は反応して複合体となったフラーレンとγ−シクロデキストリンのモル比を表す。   In the region where the molar ratio is 4 or less on the left side of FIG. 2 with a small amount of γ-cyclodextrin input, fullerene is excessive and unreacted fullerene is generated, but this is not dissolved in water and is removed from the complex-containing solution. The complex of the reacted fullerene and γ-cyclodextrin remains in the complex-containing solution. For this reason, the vertical axis represents the molar ratio of fullerene and γ-cyclodextrin that have reacted to form a complex.

一方、投入したγ-シクロデキストリンが多くなる図2の右側のモル比4以上の領域では、未反応のγ−シクロデキストリンが生じ、これも複合体含有溶液中に残るため、縦軸のγ−シクロデキストリンのモル比が上昇する。
ここから、従来は2モルのγ−シクロデキストリンがフラーレンを包接している構造を取っているものが知られていたが、本発明の複合体は、モル比でフラーレン:γ−シクロデキストリン=1:4であることがわかる。
なお、複合体がフラーレンの包接体構造を含んだ構造を有していることは、NMRの1H−NMRと13C−NMRからγ−シクロデキストリンのケミカルシフトが見られる結果からも確認できる。
On the other hand, in the region having a molar ratio of 4 or more on the right side of FIG. 2 where more γ-cyclodextrin is added, unreacted γ-cyclodextrin is formed and remains in the complex-containing solution. The molar ratio of cyclodextrin increases.
From here, it has been known that 2 mol of γ-cyclodextrin has a structure in which fullerene is included, but the complex of the present invention has fullerene: γ-cyclodextrin = 1 in molar ratio. : It turns out that it is 4.
In addition, it can also confirm from the result from which the chemical shift of (gamma) -cyclodextrin is seen from NMR < 1 > H-NMR and < 13 > C-NMR that a composite_body | complex has the structure containing the fullerene inclusion body structure. .

[複合体を含む水溶液]
本発明の複合体は親水性を有しているので、容易に高濃度の水溶液とすることができる。例えば、本発明の複合体を含む水溶液は、前記複合体の紛体を所望の濃度で溶解して得てもよく、前記複合体含有溶液をそのまま、あるいは濃縮または希釈して、所望の濃度の水溶液を得てもよい。このような複合体を含む水溶液は、フラーレンの濃度換算で1〜100g/Lの低濃度から高濃度まで所望の処方に合わせて設定できる。
[Aqueous solution containing complex]
Since the composite of the present invention has hydrophilicity, it can be easily made into a high concentration aqueous solution. For example, the aqueous solution containing the complex of the present invention may be obtained by dissolving the powder of the complex at a desired concentration, and the complex-containing solution as it is, or concentrated or diluted to obtain an aqueous solution having a desired concentration. You may get The aqueous solution containing such a complex can be set according to a desired formulation from a low concentration of 1 to 100 g / L to a high concentration in terms of fullerene concentration.

[用途]
本発明の複合体は、抗酸化作用と、光照射下で抗菌作用とを有する。また、本発明の複合体は水溶性なので、容易にその水溶液を得ることができる。そのため、抗酸化剤組成物や抗菌剤組成物等を容易に得ることができる。
例えば、本発明の複合体は種々の組成物に混ぜて使ったり、物品の表面にコーティングして使ったりすることができる。前記組成物としては、例えば、水溶性の抗菌性塗料、水溶性防腐剤、防汚塗料、医療用粘着製品、殺菌フィルム及び消臭性繊維等が挙げられ、前記物品としては、不織布、建築用外装建材、殺菌フィルム、消臭性繊維及び装身具等が挙げられる。
[Usage]
The complex of the present invention has an antioxidant action and an antibacterial action under light irradiation. Moreover, since the composite_body | complex of this invention is water-soluble, the aqueous solution can be obtained easily. Therefore, an antioxidant composition, an antibacterial composition, etc. can be obtained easily.
For example, the composite of the present invention can be used by mixing with various compositions or by coating the surface of an article. Examples of the composition include water-soluble antibacterial paints, water-soluble antiseptics, antifouling paints, medical pressure-sensitive adhesive products, sterilizing films, and deodorant fibers, and the articles include nonwoven fabrics and architectural products. Examples include exterior building materials, sterilizing films, deodorant fibers, and jewelry.

なお、一般に酸化チタン光触媒は紫外線を必要とするので室内照明下での抗菌作用は期待できないのに対して、本発明の複合体は、可視光下で抗菌作用を有するので室内で使う抗菌材として使うことができる。その他酸化チタン光触媒の代替として、例えば、殺菌剤、防汚剤、消臭剤、環境浄化剤等に用いることができる。   In general, titanium oxide photocatalysts require ultraviolet rays, so antibacterial action under indoor lighting cannot be expected. On the other hand, the composite of the present invention has antibacterial action under visible light. Can be used. In addition, as an alternative to the titanium oxide photocatalyst, for example, it can be used as a bactericidal agent, antifouling agent, deodorant, environmental purification agent and the like.

以下、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited only to a following example.

実験例1:
フラーレン(フロンティアカーボン社製 nanom(登録商標)mix、モル比でC60:C70=1:4の混合物、平均粒径30μmの粉末)220mgとγ−シクロデキストリン(東京化成製)1.61g、すなわち、モル比でフラーレン:γ−シクロデキストリン=1:4の比率となる組成の原料を、遊星ボールミル(フリッチュ・ジャパン株式会社製プレミアムラインP−7)のミル容器に投入した。
遊星ボールミルの回転数700rpm、処理時間30分で粉砕混合処理を大気雰囲気で実施した。使用した粉砕用ボールは、株式会社ニッカトー製でその直径は5mm、総質量60gとした。室温で処理を開始したが終了時のミル容器は40℃以上になっていた。
得られた粉砕混合粉をビーカーに移し、水20mlを加え、軽く撹拌処理をして溶液化処理を施した。溶液化処理を施した溶液を遠心分離して溶液分を取り出した。得られた溶液を、エバポレータで乾燥処理を施して、複合体1.58gを得た。
収率(得られた複合体中のフラーレン量(モル))/(投入フラーレン量(モル))は67%であった。得られた複合体を元素分析法(HORIBA製EMIA−920V,LECO製TC−600、LECO製CHNS932)から炭素、水素、窒素、酸素の各々の量を測定し、この酸素と水素量からフラーレンとγ-シクロデキストリン量の比率を求めると、フラーレンと反応しているγ−シクロデキストリンの量の比率は1:4(モル比)であることがわかった。また得られた複合体は、NMRの1H−NMRと13C−NMR測定を行い、γ−シクロデキストリンのケミカルシフトによってフラーレンとγ−シクロデキストリンの複合体の生成と生成比率を確認した。
得られた複合体を再度水に溶かして1質量%の水溶性フラーレン高濃度水溶液を得た。肉眼での水の色は褐色であり固形分は観察されなかった。
本実施例の実験条件と結果を後述の実施例・比較例の実験条件と結果と共にまとめて表1に示した。
Experimental example 1:
Fullerene (nanom (registered trademark) mix manufactured by Frontier Carbon Co., Ltd., a mixture of C 60 : C 70 = 1: 4 in a molar ratio, powder having an average particle size of 30 μm) 220 mg and 1.61 g of γ-cyclodextrin (manufactured by Tokyo Chemical Industry), That is, a raw material having a composition with a molar ratio of fullerene: γ-cyclodextrin = 1: 4 was charged into a mill container of a planetary ball mill (French Japan Co., Ltd. Premium Line P-7).
The pulverization and mixing treatment was carried out in an air atmosphere with a planetary ball mill rotating at 700 rpm and a treatment time of 30 minutes. The grinding balls used were manufactured by Nikkato Co., Ltd., and had a diameter of 5 mm and a total mass of 60 g. Although the treatment was started at room temperature, the mill container at the end was 40 ° C. or higher.
The obtained pulverized mixed powder was transferred to a beaker, 20 ml of water was added, and the mixture was lightly stirred and subjected to a solution treatment. The solution-treated solution was centrifuged to remove the solution. The obtained solution was dried with an evaporator to obtain 1.58 g of a composite.
The yield (amount of fullerene in the obtained complex (mole)) / (amount of fullerene input (mole)) was 67%. The obtained composite was measured for elemental analysis (EMIA-920V from HORIBA, TC-600 from LECO, CHNS932 from LECO), and the amounts of carbon, hydrogen, nitrogen and oxygen were measured. When the ratio of the amount of γ-cyclodextrin was determined, the ratio of the amount of γ-cyclodextrin reacting with fullerene was found to be 1: 4 (molar ratio). Further, the obtained complex was subjected to NMR 1H-NMR and 13C-NMR measurement, and the production and production ratio of the complex of fullerene and γ-cyclodextrin were confirmed by chemical shift of γ-cyclodextrin.
The obtained composite was dissolved again in water to obtain a 1% by mass aqueous high-concentration fullerene aqueous solution. The water color with the naked eye was brown and no solids were observed.
The experimental conditions and results of this example are shown together with the experimental conditions and results of examples and comparative examples described later in Table 1.

実施例2:
用いるγ−シクロデキストリン量を1.21g、として、すなわち、原料組成をモル比でフラーレン:γ−シクロデキストリン=1:3として実施例1と同様に実施した。
Example 2:
The amount of γ-cyclodextrin used was 1.21 g, that is, the raw material composition was molar ratio of fullerene: γ-cyclodextrin = 1: 3.

実施例3:
用いるγ−シクロデキストリン2.20gとして、すなわち、原料組成をモル比でフラーレン:γ−シクロデキストリン=1:5として実施例1と同様に実施した。
Example 3:
The same procedure as in Example 1 was performed with 2.20 g of γ-cyclodextrin used, that is, with the raw material composition being a fullerene: γ-cyclodextrin = 1: 5 in molar ratio.

実施例4:
遊星ボールミルの粉砕用ボールの直径を2mmに変えた以外は、実施例1と同様に実施した。
Example 4:
The same procedure as in Example 1 was performed except that the diameter of the ball for grinding of the planetary ball mill was changed to 2 mm.

実施例5:
用いたフラーレンをC60に変えた以外は、実施例1と同様に実施した。
Example 5:
Except that the fullerene was used was changed to C 60 was prepared in the same manner as in Example 1.

実施例6:
用いたフラーレンをC70に変えた以外は、実施例1と同様に実施した。
Example 6:
Except that the fullerene was used was changed to C 70 was prepared in the same manner as in Example 1.

実施例7:
遊星ボールミルの回転数を500rpmに変えた以外は、実施例1と同様に実施をした。
Example 7:
The same operation as in Example 1 was performed except that the rotation speed of the planetary ball mill was changed to 500 rpm.

実施例8:
遊星ボールミルの粉砕用ボールの直径を1mmに変えたこと以外は実施例1と同様に実施した。
Example 8:
The same operation as in Example 1 was performed except that the diameter of the ball for grinding of the planetary ball mill was changed to 1 mm.

比較例1:
遊星ボールミルでの粉砕混合を乳鉢での粉砕混合に変えた以外は、実施例1と同様に実施した。表1に示した通り、乳鉢を用いる特許文献2に記載の方法ではフラーレン:γ−シクロデキストリン=1:4となる複合体は得られないことがわかる。
Comparative Example 1:
The same procedure as in Example 1 was performed except that the pulverization and mixing in the planetary ball mill was changed to the pulverization and mixing in the mortar. As shown in Table 1, it can be seen that the composite of fullerene: γ-cyclodextrin = 1: 4 cannot be obtained by the method described in Patent Document 2 using a mortar.

比較例2〜3:
湿式粉砕混合処理、すなわちミル容器に原材料を投入する際に、フラーレンとγ−シクロデキストリン以外に比較例2では蒸留水10mlを、比較例3ではエタノール10mlを添加したこと以外は実施例1と同様に実施した。
Comparative Examples 2-3:
Similar to Example 1 except that 10 ml of distilled water was added in Comparative Example 3 and 10 ml of ethanol was added in Comparative Example 3 in addition to fullerene and γ-cyclodextrin when the raw materials were charged into the wet pulverization and mixing process. Implemented.

比較例4:
遊星ボールミルを振動ボールミルに変えた以外は、実施例1と同様に処理した。
Comparative Example 4:
The treatment was performed in the same manner as in Example 1 except that the planetary ball mill was changed to a vibrating ball mill.

Figure 2017145288
Figure 2017145288

[抗酸化作用及び抗菌作用の評価試験]
試料として、モル比でフラーレン:γ−シクロデキストリン=1:4の複合体(フラーレン種の異なる実施例1,5,6で作成の3種)、モル比でフラーレン:γ−シクロデキストリン=1:2の複合体(比較例1で作成)、及びこれら複合体に不純物として含まれやすいγ−シクロデキストリンをそれぞれ用い、抗酸化作用及び抗菌作用の評価試験を以下のようにして実施した。
[Evaluation test of antioxidant and antibacterial effects]
As a sample, a complex of fullerene: γ-cyclodextrin = 1: 4 in molar ratio (three types prepared in Examples 1, 5, and 6 having different fullerene species), and fullerene: γ-cyclodextrin in molar ratio = 1: Using the composites of 2 (prepared in Comparative Example 1) and γ-cyclodextrins that are likely to be contained as impurities in these composites, the antioxidant and antibacterial action evaluation tests were carried out as follows.

抗酸化効果:
前記試料の抗酸化作用の評価試験は、市販の抗酸化能測定キット(日本老化制御研究所製 PAO)を用いて、定法に従い実施した。
その結果、用いたいずれの複合体も、Cu還元力100mol/L以上を示し、抗酸化効果を有すると判断された。ただし、γ−シクロデキストリンのCu還元力は0mol/Lであった。
Antioxidant effect:
The evaluation test of the antioxidant effect of the sample was carried out according to a conventional method using a commercially available antioxidant capacity measurement kit (PAO manufactured by Japan Aging Control Laboratory).
As a result, any of the complexes used exhibited a Cu reducing power of 100 mol / L or more, and were judged to have an antioxidant effect. However, the Cu reducing power of γ-cyclodextrin was 0 mol / L.

抗菌効果:
1)得られた試料0.25gを80%エタノールで滅菌して、これを無菌的にNutrient Broth(以下「NB」と記すことがある。)100mlを加えて0.25質量%のフラーレン-γ-CD複合体添加NBを作製した。このフラーレン-γ-CD複合体を添加したNB20mlに菌液(大腸菌)を加えて一次培養(37℃9hr)した。培養時には、光照射(パナソニック製蛍光灯30W、二本)を行った。
2)前記培養後の液を20μl取り、1980μlの生理食塩水を加えて希釈した。さらに同様に希釈を3回繰り返し、希釈倍率が102、104、106の3水準の希釈サンプルを用意した。
3)前記希釈サンプルを100μl取り、2mlのNBアガーと混合し、グルコース寒天培地上に重層して、二次培養(37℃24hr)した。この培養は遮光下で行った。
4)二次培養後コロニーカウンターでコロニーを計測した(コロニー数×希釈倍率をL1とする)。
5)上記複合体を添加しないで1)〜4)まで実施した(コロニー数×希釈倍率をL0とする)。
6)前記4)、5)で得られた結果L1とL0を用いて、下記式により抗菌作用を算出し、表2にまとめた。
抗菌作用(%)=100−(L1/L0)×100
Antibacterial effect:
1) 0.25 g of the obtained sample was sterilized with 80% ethanol, and 100 ml of Nutrient Broth (hereinafter sometimes referred to as “NB”) was added aseptically to add 0.25% by mass of fullerene-γ. -NB with CD complex added was prepared. Bacterial fluid (E. coli) was added to 20 ml of NB to which this fullerene-γ-CD complex was added, followed by primary culture (37 ° C., 9 hours). During the culture, light irradiation (Panasonic fluorescent lamp 30W, two) was performed.
2) 20 μl of the cultured solution was taken and diluted by adding 1980 μl of physiological saline. Further, the dilution was repeated three times in the same manner to prepare three-level diluted samples with dilution ratios of 10 2 , 10 4 and 10 6 .
3) 100 μl of the diluted sample was taken, mixed with 2 ml of NB agar, layered on a glucose agar medium, and subcultured (37 ° C., 24 hr). This culture was performed in the dark.
4) After secondary culture, colonies were counted with a colony counter (the number of colonies × dilution rate is L1).
5) It carried out to 1) to 4) without adding the above complex (the number of colonies × dilution rate is L0).
6) Using the results L1 and L0 obtained in 4) and 5) above, the antibacterial action was calculated by the following formula and summarized in Table 2.
Antibacterial action (%) = 100− (L1 / L0) × 100

Figure 2017145288
Figure 2017145288

表2からわかる通り、本発明の複合体は抗菌作用を有する。さらに、フラーレン種がC60とC70との混合物であると相乗効果が得られる。これは、C60には紫外光域に主な光吸収帯があり、C70には可視光域に主な光吸収帯があるので、両者が混合されると広い波長範囲のエネルギーが利用できるためと推定される。このような効果は、従来のフラーレンとγ−シクロデキストリンの複合体(両者のモル比が1:2)やγ−シクロデキストリンでは得られない効果である。
以上の評価試験から、本発明の複合体は、抗酸化作用を有しているにもかかわらず、抗菌作用も有していることが確認できた。
As can be seen from Table 2, the complex of the present invention has an antibacterial action. Further, the fullerene species synergistic effects are obtained as a mixture of C 60 and C 70. This has a primary light absorption band in the ultraviolet region to the C 60, the C 70 because the visible light region has a primary light absorption band, the energy in a wide wavelength range when both are mixed can be used It is estimated that. Such an effect is an effect that cannot be obtained with a conventional complex of fullerene and γ-cyclodextrin (molar ratio of both is 1: 2) or γ-cyclodextrin.
From the above evaluation tests, it was confirmed that the complex of the present invention also has an antibacterial action despite having an antioxidant action.

Claims (12)

フラーレンとγ−シクロデキストリンとからなる複合体であって、モル比でフラーレン:γ−シクロデキストリン=1:4であることを特徴とする複合体。   A complex comprising fullerene and γ-cyclodextrin, wherein the molar ratio is fullerene: γ-cyclodextrin = 1: 4. フラーレンが、C60またはC70である請求項1に記載の複合体。 The composite according to claim 1, wherein the fullerene is C 60 or C 70 . フラーレンが、C60とC70との両方を含む請求項1に記載の複合体。 The composite according to claim 1, wherein the fullerene contains both C 60 and C 70 . 請求項1〜3のいずれかに記載の複合体を含む水溶液。   The aqueous solution containing the composite_body | complex in any one of Claims 1-3. 請求項1〜3のいずれかに記載の複合体を含む抗菌剤組成物。   The antibacterial agent composition containing the composite_body | complex in any one of Claims 1-3. 遊星ボールミルでフラーレン及びγ−シクロデキストリンを乾式で粉砕混合する工程を有することを特徴とする、モル比でフラーレン:γ−シクロデキストリン=1:4であるフラーレンとγ−シクロデキストリンとからなる複合体の製造方法。   A composite comprising fullerene and γ-cyclodextrin in a molar ratio of fullerene: γ-cyclodextrin = 1: 4, characterized by having a step of dry-pulverizing fullerene and γ-cyclodextrin in a planetary ball mill Manufacturing method. フラーレンが、C60またはC70である請求項6に記載の複合体の製造方法。 The method for producing a composite according to claim 6, wherein the fullerene is C 60 or C 70 . 前記粉砕混合に直径2〜5mmの粉砕用ボールを用いる請求項6に記載の複合体の製造方法。   The method for producing a composite according to claim 6, wherein a grinding ball having a diameter of 2 to 5 mm is used for the grinding and mixing. 前記遊星ボールミルに投入するフラーレンとγ−シクロデキストリンとのモル比がフラーレン:γ−シクロデキストリン=1:3〜8である請求項6または7に記載の複合体の製造方法。   The method for producing a complex according to claim 6 or 7, wherein the molar ratio of fullerene and γ-cyclodextrin introduced into the planetary ball mill is fullerene: γ-cyclodextrin = 1: 3-8. 前記遊星ボールミルに投入するフラーレンに対するγ−シクロデキストリンのモル比が4以下である請求項9に記載の複合体の製造方法。   The method for producing a complex according to claim 9, wherein the molar ratio of γ-cyclodextrin to fullerene charged into the planetary ball mill is 4 or less. さらに、前記複合体を精製する工程を有する請求項6〜10のいずれかに記載の複合体の製造方法。   Furthermore, the manufacturing method of the composite_body | complex in any one of Claims 6-10 which has the process of refine | purifying the said composite_body | complex. 前記精製が、前記粉砕混合で得た粉砕混合粉と水とを混合し、該混合物から不溶成分を除去し、溶解成分を取得することにより行われる請求項11に記載の複合体の製造方法。   The method for producing a composite according to claim 11, wherein the purification is performed by mixing the pulverized mixed powder obtained by the pulverization and mixing with water, removing insoluble components from the mixture, and obtaining dissolved components.
JP2016026584A 2016-02-16 2016-02-16 Water-soluble complex of fullerene and γ-cyclodextrin and method for producing the same Active JP6744106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026584A JP6744106B2 (en) 2016-02-16 2016-02-16 Water-soluble complex of fullerene and γ-cyclodextrin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026584A JP6744106B2 (en) 2016-02-16 2016-02-16 Water-soluble complex of fullerene and γ-cyclodextrin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017145288A true JP2017145288A (en) 2017-08-24
JP6744106B2 JP6744106B2 (en) 2020-08-19

Family

ID=59681993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026584A Active JP6744106B2 (en) 2016-02-16 2016-02-16 Water-soluble complex of fullerene and γ-cyclodextrin and method for producing the same

Country Status (1)

Country Link
JP (1) JP6744106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075659A (en) * 2017-12-21 2019-07-01 주식회사 엘지화학 Manufacturing method of separator, separator manufactured therefrom and electrichemical device containing the same
JPWO2019009325A1 (en) * 2017-07-06 2019-12-12 昭和電工株式会社 Sizing agent and method for producing the same, and fiber and fiber tow
CN111547706A (en) * 2020-05-11 2020-08-18 赤峰福纳康生物技术有限公司 Method for removing fullerene solvent residue
WO2021144936A1 (en) * 2020-01-16 2021-07-22 潤児 横田 Composition containing fullerene clathrated with organic compound, and cosmetic and external-use composition containing same
CN115177539A (en) * 2022-08-05 2022-10-14 赤峰福纳康生物技术有限公司 Preparation method of water-soluble fullerene nano solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019009325A1 (en) * 2017-07-06 2019-12-12 昭和電工株式会社 Sizing agent and method for producing the same, and fiber and fiber tow
KR20190075659A (en) * 2017-12-21 2019-07-01 주식회사 엘지화학 Manufacturing method of separator, separator manufactured therefrom and electrichemical device containing the same
KR102413378B1 (en) * 2017-12-21 2022-06-24 주식회사 엘지에너지솔루션 Manufacturing method of separator, separator manufactured therefrom and electrichemical device containing the same
WO2021144936A1 (en) * 2020-01-16 2021-07-22 潤児 横田 Composition containing fullerene clathrated with organic compound, and cosmetic and external-use composition containing same
CN111547706A (en) * 2020-05-11 2020-08-18 赤峰福纳康生物技术有限公司 Method for removing fullerene solvent residue
CN111547706B (en) * 2020-05-11 2022-12-06 赤峰福纳康生物技术有限公司 Method for removing fullerene solvent residue
CN115177539A (en) * 2022-08-05 2022-10-14 赤峰福纳康生物技术有限公司 Preparation method of water-soluble fullerene nano solution
CN115177539B (en) * 2022-08-05 2024-06-07 赤峰福纳康生物技术有限公司 Preparation method of water-soluble fullerene nano solution

Also Published As

Publication number Publication date
JP6744106B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6744106B2 (en) Water-soluble complex of fullerene and γ-cyclodextrin and method for producing the same
Matharu et al. Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres
Zhou et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties
Bhattacharya et al. Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications
Miao et al. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H 2 O 2
Mishra et al. Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants
Wang et al. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli
Perelshtein et al. A one‐step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles
Nagvenkar et al. A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent
Costescu et al. Fabrication, Characterization, and Antimicrobial Activity, Evaluation of Low Silver Concentrations in Silver‐Doped Hydroxyapatite Nanoparticles
Haidari et al. The interplay between size and valence state on the antibacterial activity of sub-10 nm silver nanoparticles
Chang et al. Synthesis and antimicrobial activity of gold/silver–tellurium nanostructures
Zhao et al. PEGylated molybdenum dichalcogenide (PEG-MoS 2) nanosheets with enhanced peroxidase-like activity for the colorimetric detection of H 2 O 2
Shivananda et al. RETRACTED ARTICLE: Biosynthesis of colloidal silver nanoparticles: Their characterization and potential antibacterial activity
Kim et al. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens
CN103734188A (en) Preparation method and applications of zinc oxide-graphene oxide composite nanomaterial
Ramteke et al. Synthesis and broad spectrum antibacterial activity of magnetite ferrofluid
Karami et al. Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light
Ain et al. Antibacterial potential of biomaterial derived nanoparticles for drug delivery application
JP2012526777A (en) Biocide Nanostructured Composition and Method for Obtaining Nanostructured Biocide Composition
Sohrabnezhad et al. Matrix effect of montmorillonite and MCM-41 matrices on the antibacterial activity of Ag2CO3 nanoparticles
Xu et al. A green electrolysis of silver-decorated MoS 2 nanocomposite with an enhanced antibacterial effect and low cytotoxicity
Mohapatra et al. Biosynthesized Ag–ZnO nanohybrids exhibit strong antibacterial activity by inducing oxidative stress
Megha et al. Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications
Wang et al. A novel antibacterial and fluorescent coating composed of polydopamine and carbon dots on the surface of orthodontic brackets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250