JP2017144789A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2017144789A
JP2017144789A JP2016026216A JP2016026216A JP2017144789A JP 2017144789 A JP2017144789 A JP 2017144789A JP 2016026216 A JP2016026216 A JP 2016026216A JP 2016026216 A JP2016026216 A JP 2016026216A JP 2017144789 A JP2017144789 A JP 2017144789A
Authority
JP
Japan
Prior art keywords
protrusion
tire
front side
side portion
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016026216A
Other languages
Japanese (ja)
Inventor
博史 名塩
Hiroshi Nashio
博史 名塩
健史 宮本
Kenji Miyamoto
健史 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2016026216A priority Critical patent/JP2017144789A/en
Publication of JP2017144789A publication Critical patent/JP2017144789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve durability of a pneumatic tire by effectively promoting heat radiation through air cooling.SOLUTION: A surface of a tire side part 3 is provided with a plurality of protrusions 11 arranged in the circumferential direction. A thickness htp of the protrusions 11, which is the distance from the surface of the tire side part 3 to a top face 12 of the protrusions 11, is smaller than a width hRp of the protrusions 11, which is the dimension of the top face 12 in the tire circumferential direction. Each of the protrusions 11 has a width hRp of 10 mm or more, and a width hRpn of any of the protrusions 11 satisfies 0.5×hs≤hRp≤1.5×hs for a reference width hs of the protrusions 11.SELECTED DRAWING: Figure 15A

Description

本発明は、空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire.

特許文献1,2には、空冷のための複数の突起がタイヤサイド部に形成されたランフラットタイヤが開示されている。これらの突起は、タイヤの回転に伴うタイヤサイド部表面の空気流の乱流化を意図している。乱流化によって、タイヤサイド部表面近傍における空気流の速度勾配が大きくなり、放熱性向上が向上する。   Patent Documents 1 and 2 disclose a run flat tire in which a plurality of protrusions for air cooling are formed on a tire side portion. These protrusions are intended to make the airflow on the surface of the tire side part turbulent as the tire rotates. The turbulent flow increases the velocity gradient of the air flow in the vicinity of the surface of the tire side portion, improving the heat dissipation.

国際公開第WO2007/032405号International Publication No. WO2007 / 032405 国際公開第WO2008/114668号International Publication No. WO2008 / 114668

特許文献1,2には、タイヤサイド部表面近傍の空気流の乱流化以外の手法による放熱性向上は、教示されていない。   Patent Documents 1 and 2 do not teach improvement of heat dissipation by a method other than turbulent airflow near the tire side surface.

本発明は、空冷による放熱を効果的に促進することで、空気入りタイヤの耐久性を向上することを課題とする。   An object of the present invention is to improve the durability of a pneumatic tire by effectively promoting heat dissipation by air cooling.

本発明者は、タイヤサイド部表面近傍の空気流の速度勾配の最大化について、種々検討した。物体(例えば平板)が流体の流れの中に配置された場合、流体の粘性によって物体表面近傍では流体の速度が急激に低下することが知られている。流体の速度が急変する領域(境界層)の外側に、流体の速度が粘性の影響を受けない領域が形成される。境界層の厚さは物体の前縁から下流側に向けて増大する。物体の前縁付近の境界層は層流であるが(層流境界層)、下流側に向け、遷移領域を経て、乱流となる(乱流境界層)。本発明者は、層流境界層では乱流境界層に比べて流体の速度勾配が大きいため物体から流体への放熱効率が高いことに着目し、本発明を完成した。つまり、本発明者は、層流境界層における高い放熱性を、空気入りタイヤの空冷に適用することを着想した。本発明は、かかる新たな着想に基づく。   The inventor conducted various studies on maximization of the air flow velocity gradient in the vicinity of the tire side surface. When an object (for example, a flat plate) is disposed in a fluid flow, it is known that the fluid velocity abruptly decreases near the object surface due to the viscosity of the fluid. A region where the fluid velocity is not affected by the viscosity is formed outside the region (boundary layer) where the fluid velocity changes suddenly. The thickness of the boundary layer increases from the front edge of the object toward the downstream side. The boundary layer near the front edge of the object is laminar (laminar boundary layer), but becomes turbulent (turbulent boundary layer) through the transition region toward the downstream side. The present inventor has completed the present invention, paying attention to the fact that the heat dissipation efficiency from the object to the fluid is high because the velocity gradient of the fluid is larger in the laminar boundary layer than in the turbulent boundary layer. That is, the present inventor has conceived that high heat dissipation in the laminar boundary layer is applied to air cooling of a pneumatic tire. The present invention is based on such a new idea.

本発明は、前記課題を解決するための手段として、
タイヤサイド部の表面に、周方向に並設される複数の突起を備え、
前記タイヤサイド部の表面から前記突起の頂面までの距離である突起の厚さは、前記頂面のタイヤ周方向の寸法である突起の幅よりも小さく、
前記各突起は、幅が10mm以上であり、任意の突起の幅hRpが前記突起の基準幅hsに対して、0.5×hs≦hRp≦1.5×hsを満足することを特徴とする空気入りタイヤを提供する。
As a means for solving the above problems, the present invention provides:
Provided with a plurality of protrusions arranged in the circumferential direction on the surface of the tire side portion,
The thickness of the protrusion, which is the distance from the surface of the tire side portion to the top surface of the protrusion, is smaller than the width of the protrusion, which is a dimension in the tire circumferential direction of the top surface,
Each protrusion has a width of 10 mm or more, and the width hRp of an arbitrary protrusion satisfies 0.5 × hs ≦ hRp ≦ 1.5 × hs with respect to the reference width hs of the protrusion. Provide pneumatic tires.

この構成により、突起の表面を流動する空気流れが高速の層流境界層となることが予測される範囲に対し、タイヤ周方向に十分な長さの頂面を確保して突起を効果的に冷却できる。また、幅が相違する複数の突起を設けることで、いずれかの突起がタイヤの回転速度の高低に基づく空気流れの違いに適したものとなる。したがって、タイヤの回転速度の違いに拘わらず、いずれかの突起で放熱性を高めることができる。   This configuration effectively secures the top surface with sufficient length in the tire circumferential direction against the range where the air flow flowing on the surface of the projection is expected to be a high-speed laminar boundary layer. Can be cooled. Further, by providing a plurality of protrusions having different widths, any one of the protrusions is suitable for a difference in air flow based on the rotational speed of the tire. Therefore, regardless of the difference in the rotation speed of the tire, heat dissipation can be enhanced by any of the protrusions.

本発明によれば、幅を確保して頂面での空気流れが層流境界層となる範囲を十分なものとすることができる。したがって、突起の頂面での流速を速くして放熱性を高めることが可能となる。また幅にバリエーションを持たせるようにしたので、いずれかの突起でタイヤの回転速度の変化に伴う空気流れの速さの違いに応じた適切な放熱性能を発揮させることができる。   According to the present invention, the width can be secured and the range in which the air flow at the top surface becomes a laminar boundary layer can be made sufficient. Therefore, it is possible to increase the heat dissipation by increasing the flow velocity at the top surface of the protrusion. Further, since the width is varied, it is possible to exert an appropriate heat dissipation performance corresponding to the difference in the air flow speed accompanying the change in the rotation speed of the tire with any of the protrusions.

本発明の第1実施形態に係る空気入りタイヤの子午線断面図。The meridian sectional view of the pneumatic tire concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る空気入りタイヤの部分側面図。The partial side view of the pneumatic tire which concerns on 1st Embodiment of this invention. 図2の部分拡大図。The elements on larger scale of FIG. 突起の模式的な斜視図。The typical perspective view of protrusion. 突起の端面図。The end view of a processus | protrusion. 先端角度を説明するための突起の部分端面図。The partial end elevation of the processus | protrusion for demonstrating a front-end | tip angle. 空気流の経路を説明するための突起の平面図。The top view of the protrusion for demonstrating the path | route of an airflow. 空気流の経路を説明するための突起の端面図。The end view of the processus | protrusion for demonstrating the path | route of an airflow. 突起及び突起間の空気流の経路を説明するための模式図。The schematic diagram for demonstrating the path | route of the airflow between protrusions and protrusions. 境界層を説明するための突起の端面図。The end view of the processus | protrusion for demonstrating a boundary layer. 境界層を説明するための突起の端面図。The end view of the processus | protrusion for demonstrating a boundary layer. 第1実施形態と異なる前辺部の傾斜角度を有する突起を備える空気入りタイヤの部分側面図。The partial side view of a pneumatic tire provided with the processus | protrusion which has the inclination angle of the front side part different from 1st Embodiment. 図12の部分拡大図。The elements on larger scale of FIG. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the processus | protrusion in planar view. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the processus | protrusion in planar view. 平面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of the processus | protrusion in planar view. 突起の配置の代案を示す図。The figure which shows the alternative of arrangement | positioning of a processus | protrusion. 突起の配置の代案を示す図。The figure which shows the alternative of arrangement | positioning of a processus | protrusion. 突起の配置の代案を示す図。The figure which shows the alternative of arrangement | positioning of a processus | protrusion. 突起の配置の代案を示す図。The figure which shows the alternative of arrangement | positioning of a processus | protrusion. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 端面視での突起の形状の代案を示す図。The figure which shows the alternative of the shape of protrusion in an end surface view. 代案の断面形状を示す図。The figure which shows the cross-sectional shape of an alternative. 代案の断面形状を示す図。The figure which shows the cross-sectional shape of an alternative. 縦スリットを設けた突起の斜視図。The perspective view of the processus | protrusion which provided the vertical slit. 横スリットを設けた突起の斜視図。The perspective view of the processus | protrusion which provided the horizontal slit.

以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも一致していない。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In addition, the following description is only illustrations essentially and does not intend restrict | limiting this invention, its application thing, or its use. Moreover, the drawings are schematic, and the ratio of each dimension and the like do not always match those of the actual one.

まず、本発明の実施形態の基本的構成について説明する。
図1は、ゴム製の空気入りタイヤ(以下、タイヤという)1の子午線半断面図を示す。このタイヤ1はサイズ245/40R18のランフラットタイヤである。本発明は、異なるサイズのタイヤにも適用できる。また、本発明は、ランフラットタイヤの範疇に含まれないタイヤにも適用できる。タイヤ1は、回転方向が指定されている。指定された回転方向を図3に矢印RDで示す。
First, the basic configuration of the embodiment of the present invention will be described.
FIG. 1 shows a meridian half sectional view of a rubber pneumatic tire (hereinafter referred to as a tire) 1. This tire 1 is a run-flat tire of size 245 / 40R18. The present invention can also be applied to tires of different sizes. The present invention can also be applied to tires not included in the category of run-flat tires. The rotation direction of the tire 1 is specified. The designated rotation direction is indicated by an arrow RD in FIG.

タイヤ1は、トレッド部2、一対のタイヤサイド部3、及び一対のビード部4を備える。個々のビード部4は、タイヤサイド部3のタイヤ径方向の内側端部(トレッド部2とは反対側の端部)に設けられている。一対のビード部4間には、カーカス5が設けられている。カーカス5と、タイヤ1の最内周面のインナーライナー6との間には、補強ゴム7が配置されている。カーカス5とトレッド部2の踏面との間には、ベルト層8が設けられている。言い換えれば、トレッド部2では、カーカス5のタイヤ径方向外側にベルト層8が設けられている。   The tire 1 includes a tread portion 2, a pair of tire side portions 3, and a pair of bead portions 4. Each bead part 4 is provided at the inner end of the tire side part 3 in the tire radial direction (end opposite to the tread part 2). A carcass 5 is provided between the pair of bead portions 4. A reinforcing rubber 7 is disposed between the carcass 5 and the inner liner 6 on the innermost peripheral surface of the tire 1. A belt layer 8 is provided between the carcass 5 and the tread surface of the tread portion 2. In other words, in the tread portion 2, the belt layer 8 is provided on the outer side in the tire radial direction of the carcass 5.

図2及び図3を参照すると、タイヤサイド部3の表面には、複数の突起がタイヤ周方向に間隔をあけて設けられている。本実施形態では、これらの突起11の形状、寸法、及び姿勢は同じである。図1では、リム(図示せず)の最外周位置P1からトレッド部2のタイヤ径方向の最も外側の位置までの距離(タイヤ高さ)が符号THで示されている。突起11は、リムの最外周位置P1からタイヤ高さTHの0.05倍以上0.7倍以下の範囲に設けることができる。   2 and 3, a plurality of protrusions are provided on the surface of the tire side portion 3 at intervals in the tire circumferential direction. In the present embodiment, the shape, size, and posture of these protrusions 11 are the same. In FIG. 1, the distance (tire height) from the outermost peripheral position P1 of the rim (not shown) to the outermost position in the tire radial direction of the tread portion 2 is indicated by the symbol TH. The protrusion 11 can be provided in a range from 0.05 times to 0.7 times the tire height TH from the outermost peripheral position P1 of the rim.

本明細書では、タイヤ幅方向から見た突起11の形状に関して「平面視」又はそれに類する用号を使用する場合があり、後述する内端面15側から見た突起11の形状に関して「端面視」又はそれに類する用語を使用する場合がある。   In the present specification, “plan view” or a similar symbol may be used for the shape of the protrusion 11 viewed from the tire width direction, and “end view” for the shape of the protrusion 11 viewed from the inner end surface 15 side to be described later. Or, a similar term may be used.

図4及び図5を参照すると、突起11は、本実施形態ではタイヤサイド部3の表面に沿って拡がる平坦面である頂面12を備える。また、突起11は前側面13と後側面14とを備える。前側面13はタイヤ回転方向RDの前方側に位置し、後側面14はタイヤ回転方向RDの後方側(タイヤ回転逆方向)に位置する。さらに、突起11は、タイヤ径方向内側の内端面15と、タイヤ径方向外側の外端面16とを有する。後に詳述するように、本実施形態における前側面13は、タイヤサイド部3の表面及び頂面12に対して傾斜した平坦面である。本実施形態における後側面14、内端面15、及び外端面16は、タイヤサイド部3の表面に対して概ね垂直に延びる平坦面である。   4 and 5, the protrusion 11 includes a top surface 12 that is a flat surface extending along the surface of the tire side portion 3 in the present embodiment. The protrusion 11 includes a front side surface 13 and a rear side surface 14. The front side surface 13 is located on the front side in the tire rotation direction RD, and the rear side surface 14 is located on the rear side (tire rotation reverse direction) in the tire rotation direction RD. Further, the protrusion 11 has an inner end surface 15 on the inner side in the tire radial direction and an outer end surface 16 on the outer side in the tire radial direction. As will be described in detail later, the front side surface 13 in the present embodiment is a flat surface inclined with respect to the surface of the tire side portion 3 and the top surface 12. The rear side surface 14, the inner end surface 15, and the outer end surface 16 in the present embodiment are flat surfaces that extend substantially perpendicular to the surface of the tire side portion 3.

前辺部17は頂面12と前側面13とが互いに交わる部分であり、後辺部18は頂面12と後側面14とが互いに交わる部分である。内辺部19は頂面12と内端面15とが互いに交わる部分であり、外辺部20は頂面12と外端面16とが互いに交わる部分である。前辺部17、後辺部18、内辺部19、及び外辺部20は、本実施形態のように鋭いないしは明瞭なエッジであってもよいが、端面視で、ある程度湾曲あるいは面取りした形状を有していてもよい。本実施形態では、前辺部17、後辺部18、内辺部19、及び外辺部20の平面視での形状は、いずれも直線状である。しかし、これらの平面視での形状は、円弧及び楕円弧を含む曲線状であってもよく、複数の直線から構成された折れ線であってもよく、直線と曲線の組み合わせであってもよい。   The front side portion 17 is a portion where the top surface 12 and the front side surface 13 intersect each other, and the rear side portion 18 is a portion where the top surface 12 and the rear side surface 14 intersect each other. The inner side portion 19 is a portion where the top surface 12 and the inner end surface 15 intersect each other, and the outer side portion 20 is a portion where the top surface 12 and the outer end surface 16 intersect each other. The front side portion 17, the rear side portion 18, the inner side portion 19, and the outer side portion 20 may be sharp or clear edges as in this embodiment, but are curved or chamfered to some extent in an end view. You may have. In the present embodiment, the shapes of the front side portion 17, the rear side portion 18, the inner side portion 19 and the outer side portion 20 in plan view are all linear. However, the shape in plan view may be a curved line including an arc and an elliptical arc, may be a broken line composed of a plurality of straight lines, or may be a combination of straight lines and curved lines.

図3を参照すると、前辺部17(前側面13)は、平面視において、前辺部17を通るタイヤ径方向に延びる直線に対して傾斜している。言い換えれば、前辺部17はタイヤ径方向に対して傾斜している。前辺部17のタイヤ径方向に対する傾斜角度a1は、前辺部17のタイヤ回転方向RDで最前方側の位置を通り、かつタイヤ径方向に延びる基準直線Lsと、前辺部17が延びる方向(本実施形態では直線である前辺部17自体)とがなす角度(平面視で時計回りを正とする)として定義される。   Referring to FIG. 3, the front side portion 17 (front side surface 13) is inclined with respect to a straight line extending in the tire radial direction passing through the front side portion 17 in plan view. In other words, the front side portion 17 is inclined with respect to the tire radial direction. The inclination angle a1 of the front side portion 17 with respect to the tire radial direction is a direction in which the reference straight line Ls that passes through the frontmost position in the tire rotation direction RD of the front side portion 17 and extends in the tire radial direction and the front side portion 17 extends. (In this embodiment, the front side 17 which is a straight line) is defined as an angle (clockwise in a plan view is positive).

但し、前記前辺部17(前側面13)は、平面視において直線状に傾斜しているだけでなく、湾曲していてもよく、要はタイヤ外径方向に向かってタイヤ周方向のいずれか一方に変位していればよい。   However, the front side portion 17 (front side surface 13) is not only linearly inclined in a plan view, but may be curved. In short, it is either in the tire circumferential direction toward the tire outer diameter direction. It only needs to be displaced to one side.

これによれば、前辺部17で分流したタイヤサイド部3の表面側の空気を、前側面13に沿ってタイヤ周方向へと流動させる第1の流れ(従たる空気流)としやすくなり、頂面12に沿う第2の流れ(主たる空気流)を、高速の層流状態とし、層流境界層LBの範囲を拡大することが可能となる。   According to this, it becomes easy to make the air on the surface side of the tire side part 3 diverted at the front side part 17 a first flow (subsequent air flow) that flows in the tire circumferential direction along the front side surface 13. The second flow (main air flow) along the top surface 12 is set to a high-speed laminar flow state, and the range of the laminar boundary layer LB can be expanded.

前記前側面13は、タイヤ外径方向に向かってタイヤ回転逆方向に変位するのが好ましい。   The front side surface 13 is preferably displaced in the tire rotation reverse direction toward the tire outer diameter direction.

これによれば、第2の流れを、タイヤの回転によってタイヤサイド部3の表面を通過する空気に作用する遠心力の方向と合致させることができる。したがって、第2の流れをより一層スムーズなものとすることができる。   According to this, the 2nd flow can be made to correspond with the direction of the centrifugal force which acts on the air which passes the surface of tire side part 3 by rotation of a tire. Therefore, the second flow can be made even smoother.

本実施形態における前辺部17は、平面視で右上がりに延びている。図12及び図13に示すように、突起11は前辺部17が平面視で右下がりに延びる形状であってもよい。本実施形態の後辺部18は、平面視で前辺部17と概ね平行に延びている。また、本実施形態の内辺部19と外辺部20は、平面視で互いに平行に延びている。   The front side portion 17 in the present embodiment extends upward in a plan view. As shown in FIGS. 12 and 13, the protrusion 11 may have a shape in which the front side portion 17 extends downward in a plan view. The rear side portion 18 of the present embodiment extends substantially parallel to the front side portion 17 in plan view. Moreover, the inner side part 19 and the outer side part 20 of this embodiment are mutually extended in parallel with planar view.

図3を参照すると、符号Rはタイヤ半径を示し、符号Rpは突起11のタイヤ径方向の任意の位置のタイヤ回転中心からの距離を示す。また、図3の符号Rpcは突起11の中心pc(例えば平面視での頂面12の図心)のタイヤ回転中心からの距離を示す。さらに、図3の符号hRpは、タイヤ径方向の任意の位置における、突起11のタイヤ周方向の寸法、すなわち突起11の幅を示す。また、図3の符号hRpcは突起の中心pcにおける、突起11の幅を示している。   Referring to FIG. 3, the symbol R represents the tire radius, and the symbol Rp represents the distance from the tire rotation center at an arbitrary position of the protrusion 11 in the tire radial direction. 3 indicates the distance from the tire rotation center of the center pc of the protrusion 11 (for example, the centroid of the top surface 12 in plan view). Further, the symbol hRp in FIG. 3 indicates the size of the protrusion 11 in the tire circumferential direction at an arbitrary position in the tire radial direction, that is, the width of the protrusion 11. Further, the symbol hRpc in FIG. 3 indicates the width of the protrusion 11 at the center pc of the protrusion.

図5を併せて参照すると、本実施形態では、突起11のタイヤ径方向の任意の位置における突起11の厚みtRpは一定である。つまり、突起11の厚みtRpは、突起11のタイヤ径方向で一様である。また、本実施形態では、突起11の厚みtRpは前側面13(前辺部17)から後側面14(後辺部18)まで一定である。つまり、突起11の厚みtRpは突起11のタイヤ周方向でも一様である。   Referring also to FIG. 5, in this embodiment, the thickness tRp of the protrusion 11 at an arbitrary position in the tire radial direction of the protrusion 11 is constant. That is, the thickness tRp of the protrusion 11 is uniform in the tire radial direction of the protrusion 11. In the present embodiment, the thickness tRp of the protrusion 11 is constant from the front side surface 13 (front side portion 17) to the rear side surface 14 (rear side portion 18). That is, the thickness tRp of the protrusion 11 is uniform even in the tire circumferential direction of the protrusion 11.

図5及び図6を参照すると、端面視では、前辺部17において突起11の頂面12と前側面13とがある角度(先端角度a2)をなしている。本実施形態における前側面13は、頂面12と前側面13とが前辺部17に向けて間隔が狭まるテーパ形状となるような傾斜を有している。言い換えれば、前側面13の傾斜は、端面視において、前側面13の下端が前辺部17よりもタイヤ回転方向RDの後方側に位置するように設定されている。前側面13がこのような傾斜を有することで、本実施形態の突起11の先端角度a2は鋭角(45°)である。先端角度a2の具体的な定義は後述する。   Referring to FIGS. 5 and 6, the top surface 12 of the protrusion 11 and the front side surface 13 form an angle (tip angle a <b> 2) at the front side portion 17 in the end surface view. The front side surface 13 in the present embodiment has an inclination such that the top surface 12 and the front side surface 13 have a tapered shape in which the interval is narrowed toward the front side portion 17. In other words, the inclination of the front side surface 13 is set so that the lower end of the front side surface 13 is positioned on the rear side in the tire rotation direction RD with respect to the front side portion 17 in the end view. Since the front side surface 13 has such an inclination, the tip angle a2 of the protrusion 11 of the present embodiment is an acute angle (45 °). A specific definition of the tip angle a2 will be described later.

図7から図9を参照すると、タイヤ1を装着した車両の走行時には、矢印AF0で概念的に示すように、前辺部17側から突起11に流入する空気流がタイヤサイド部3の表面近傍に生じる。図7を参照すると、タイヤサイド部3の表面の特定の位置P2における空気流AF0は、位置P2を通るタイヤ径方向に延びる直線に対して引いた垂線(水平線Lh)に対して、ある角度(流入角度afl)を有する。本発明者が行った解析によると、タイヤサイズ245/40R18、突起11の中心Pcのタイヤ回転中心からの距離Rpcが550mm、車両の走行速度80km/hという条件下では、流入角度aflは12°である。また、走行速度が40〜120km/hの範囲で変化すると、流入角度aflには±1°程度の変化がある。実際の使用時には、走行速度に加え、向かい風、車両の構造等を含む種々の要因による影響があるので、前述の条件下における流入角度aflは12±10°程度とみなせる。   Referring to FIGS. 7 to 9, when the vehicle equipped with the tire 1 travels, the air flow flowing into the protrusion 11 from the front side 17 side is near the surface of the tire side portion 3 as conceptually indicated by the arrow AF <b> 0. To occur. Referring to FIG. 7, the airflow AF0 at a specific position P2 on the surface of the tire side portion 3 is at an angle (horizontal line Lh) with respect to a perpendicular (horizontal line Lh) drawn with respect to a straight line passing through the position P2 and extending in the tire radial direction. Inflow angle afl). According to the analysis performed by the present inventor, the inflow angle afl is 12 ° under the conditions of the tire size 245 / 40R18, the distance Rpc from the center Pc of the protrusion 11 from the tire rotation center, and the vehicle traveling speed 80 km / h. It is. Further, when the traveling speed changes in the range of 40 to 120 km / h, the inflow angle afl has a change of about ± 1 °. In actual use, since there are influences due to various factors including head wind, vehicle structure, etc. in addition to the traveling speed, the inflow angle afl under the above-mentioned conditions can be regarded as about 12 ± 10 °.

引き続き図7から図9を参照すると、空気流AF1は前辺部17から突起11に流入し、この流入時に2つの空気流に分かれる。図7に最も明瞭に示すように、一方の空気流AF1は、前側面13から頂面12に乗り上がり、前辺部17から後辺部18に向けて頂面12に沿って流れる(主たる空気流:第1の流れ)。他方の空気流AF2は、前側面13に沿ってタイヤ径方向外側へ流れる(従たる空気流:第2の流れ)。図12及び図13に示すように前辺部17が平面視で右下がりの場合、空気流AF2は前側面13に沿ってタイヤ径方向内側へ流れる。   Still referring to FIGS. 7 to 9, the air flow AF <b> 1 flows into the protrusion 11 from the front side portion 17, and is divided into two air flows at the time of this inflow. As shown most clearly in FIG. 7, one air flow AF1 rides on the top surface 12 from the front side surface 13 and flows along the top surface 12 from the front side portion 17 toward the rear side portion 18 (main air Flow: first flow). The other air flow AF2 flows outward in the tire radial direction along the front side surface 13 (subsequent air flow: second flow). As shown in FIGS. 12 and 13, when the front side portion 17 is downwardly lowered in plan view, the air flow AF <b> 2 flows along the front side surface 13 inward in the tire radial direction.

図10を併せて参照すると、突起11の頂面12に沿って流れる空気流AF1は層流となっている。つまり、突起11の頂面12近傍には層流境界層LBが形成される。図10において、符号Vaは空気流AF0,空気流AF1のタイヤサイド部3の表面近傍と突起11の頂面12近傍での速度勾配を概念的に示している。層流である空気流AF2は速度勾配が大きいので、突起11の頂面12から空気流AF2へ高効率で放熱がなされる。言い換えれば、突起11の頂面12の空気流AF2が層流となることで、空冷による放熱が効果的に促進される。効果的に空冷することで、温度上昇によるタイヤ構成材料の経時的変化の促進等が抑えられ、タイヤ1の耐久性が向上する。   Referring also to FIG. 10, the airflow AF1 flowing along the top surface 12 of the protrusion 11 is a laminar flow. That is, the laminar boundary layer LB is formed in the vicinity of the top surface 12 of the protrusion 11. In FIG. 10, symbol Va conceptually indicates the velocity gradient in the vicinity of the surface of the tire side portion 3 and the vicinity of the top surface 12 of the protrusion 11 in the airflow AF0 and the airflow AF1. Since the air flow AF2 which is a laminar flow has a large velocity gradient, heat is radiated from the top surface 12 of the protrusion 11 to the air flow AF2 with high efficiency. In other words, the air flow AF2 on the top surface 12 of the protrusion 11 becomes a laminar flow, thereby effectively promoting heat dissipation by air cooling. By effectively air-cooling, promotion of a change with time of the tire constituent material due to a temperature rise is suppressed, and the durability of the tire 1 is improved.

図9において矢印AF3で示すように、頂面12を通過して後辺部18から下流側へ流れる空気流は、頂面12を通過した後、タイヤサイド部3の表面に衝突して方向変換される。その結果、隣接する突起11,11間では、タイヤサイド部3の表面からの放熱が促進される。   As indicated by an arrow AF3 in FIG. 9, the air flow passing through the top surface 12 and flowing downstream from the rear side portion 18 collides with the surface of the tire side portion 3 after passing through the top surface 12 and changes its direction. Is done. As a result, heat radiation from the surface of the tire side portion 3 is promoted between the adjacent protrusions 11 and 11.

以上のように、本実施形態のタイヤ1では、突起11の頂面12の空気流AF1の層流化と、突起11,11間の空気流AF3の衝突の両方によってタイヤ1の放熱性を向上している。   As described above, in the tire 1 of the present embodiment, the heat dissipation of the tire 1 is improved by both laminarization of the airflow AF1 on the top surface 12 of the protrusion 11 and collision of the airflow AF3 between the protrusions 11 and 11. doing.

後に詳述するように、タイヤ回転中心からの距離Rpにおける突起11の幅hRp(図3参照)は、突起11の頂面12の後辺部18まで層流境界層LBとなるように設定することが好ましい。しかし、図11に概念的に示すように、突起11の幅hRpは、突起11の頂面12の後辺部18側で、速度境界層が遷移領域TRや乱流境界層TBとなるような比較的長い寸法にすることも許容される。このような場合でも、突起11の頂面12のうち層流境界層LBが形成される領域では、大きな速度勾配により放熱性向上の利点が得られる。   As will be described in detail later, the width hRp (see FIG. 3) of the protrusion 11 at the distance Rp from the tire rotation center is set so as to be a laminar boundary layer LB up to the rear side portion 18 of the top surface 12 of the protrusion 11. It is preferable. However, as conceptually shown in FIG. 11, the width hRp of the protrusion 11 is such that the velocity boundary layer becomes the transition region TR or the turbulent boundary layer TB on the rear side 18 side of the top surface 12 of the protrusion 11. A relatively long dimension is allowed. Even in such a case, in the region where the laminar boundary layer LB is formed on the top surface 12 of the protrusion 11, the advantage of improving heat dissipation is obtained due to the large velocity gradient.

前述した突起11に流入した空気流AF0が空気流AF1,AF2へと分流されるためには、突起11の厚さhtp、特に前辺部17の部分における厚さhtpが突起11の幅hp(幅hpが一定でない場合は最小幅)よりも小さいことが好ましい。   In order for the air flow AF0 flowing into the protrusion 11 described above to be divided into the air flows AF1 and AF2, the thickness http of the protrusion 11, particularly the thickness http at the front side portion 17 is the width hp ( If the width hp is not constant, it is preferably smaller than the minimum width.

前述のように突起11へ流入する空気流AF0は流入角度aflを有する。空気流AF0が空気流AF1,AF2へと分流されるためには、平面視での突起11の前辺部17の傾斜角度a1を、前辺部17に対する空気流AF0の進入角度が90°とならないように設定する必要がある。言い換えれば、平面視において、空気流AF0に対して突起11の前辺部17を傾ける必要がある。   As described above, the air flow AF0 flowing into the protrusion 11 has the inflow angle afl. In order for the air flow AF0 to be divided into the air flows AF1 and AF2, the inclination angle a1 of the front side portion 17 of the projection 11 in plan view is set to 90 ° and the approach angle of the air flow AF0 with respect to the front side portion 17 is 90 °. It is necessary to set so that it does not become. In other words, it is necessary to incline the front side 17 of the protrusion 11 with respect to the airflow AF0 in plan view.

図3を参照すると、前辺部17が平面視で右上がりである場合、前辺部17は、前辺部17に流入する空気流AF0に対して45°で交差するように設定するのがより好ましい。この場合、上述したように、空気流AF0の流入角度aflは12±10°程度とみなせるので、前辺部17の傾斜角度a1は、前辺部17の傾斜角度a1は以下の式(1)で規定される範囲内に設定することが好ましい。   Referring to FIG. 3, when the front side portion 17 is rising to the right in plan view, the front side portion 17 is set so as to intersect with the air flow AF0 flowing into the front side portion 17 at 45 °. More preferred. In this case, as described above, since the inflow angle afl of the air flow AF0 can be regarded as about 12 ± 10 °, the inclination angle a1 of the front side portion 17 is equal to the following equation (1). It is preferable to set within the range defined by.

Figure 2017144789
Figure 2017144789

図13を参照すると、前辺部17が右下がりである場合、前辺部17の傾斜角度a1は、前辺部17に流入する空気流AF0に対して45°で交差するように設定するのが好ましく、以下の式(2)で規定される範囲内に設定することが好ましい。   Referring to FIG. 13, when the front side portion 17 is descending to the right, the inclination angle a1 of the front side portion 17 is set to intersect with the airflow AF0 flowing into the front side portion 17 at 45 °. Is preferable, and is preferably set within a range defined by the following formula (2).

Figure 2017144789
Figure 2017144789

要するに、前辺部17の傾斜角度は、式(1)又は(2)を満たすように設定することが好ましい。   In short, it is preferable that the inclination angle of the front side portion 17 is set so as to satisfy the formula (1) or (2).

図5及び図6を参照すると、突起11へと流入する空気流AF0が空気流AF1,AF2へと適切に分流されるためには、突起11の先端角度a2は過度に大きく設定しない必要がある。具体的には、先端角度a2は100°以下に設定することが好ましい。より好ましくは、先端角度a2は90°以下であり、鋭角、つまり90°未満に設定されるのがよい。先端角度a2が過度に小さいことは、前辺部17付近における突起11の強度低下の原因となるので好ましくない。そのため、先端角度a2は、特に45°以上65°以下の範囲に設定することが好ましい。   5 and 6, in order for the air flow AF0 flowing into the protrusion 11 to be appropriately diverted into the air flows AF1 and AF2, the tip angle a2 of the protrusion 11 does not need to be set excessively large. . Specifically, the tip angle a2 is preferably set to 100 ° or less. More preferably, the tip angle a2 is 90 ° or less and should be set to an acute angle, that is, less than 90 °. It is not preferable that the tip angle a2 is excessively small because it causes a decrease in the strength of the protrusion 11 in the vicinity of the front side portion 17. Therefore, the tip angle a2 is particularly preferably set in the range of 45 ° to 65 °.

図3を参照すると、タイヤ径方向の任意の位置における突起11の幅hRpが過度に狭いと、頂面12近傍の層流境界層TBによる突起11からの放熱面積が不足し、層流による放熱促進効果が十分に得られない。そのため、突起11の幅hRpは10mm以上に設定することが好ましい。   Referring to FIG. 3, if the width hRp of the protrusion 11 at an arbitrary position in the tire radial direction is excessively narrow, the heat dissipation area from the protrusion 11 due to the laminar boundary layer TB in the vicinity of the top surface 12 is insufficient, and heat dissipation due to the laminar flow. The promotion effect cannot be obtained sufficiently. For this reason, the width hRp of the protrusion 11 is preferably set to 10 mm or more.

引き続き図3を参照すると、タイヤ径方向の任意の位置における突起11の幅hRpは、以下の式(3)を満たすように設定することが好ましい。   Still referring to FIG. 3, the width hRp of the protrusion 11 at an arbitrary position in the tire radial direction is preferably set so as to satisfy the following expression (3).

Figure 2017144789
R:タイヤ半径R
Rp:突起上の任意の位置のタイヤ回転中心からの距離
hRp:タイヤ回転中心からの距離Rpにおける突起の幅
Figure 2017144789
R: tire radius R
Rp: distance from the tire rotation center at an arbitrary position on the protrusion hRp: width of the protrusion at the distance Rp from the tire rotation center

幅hRpが小さすぎると速度勾配が増大する領域を十分に確保できず十分な冷却効果が得られない。式(3)における下限値10は、層流境界層TBが得られる最小寸法に対応している。   If the width hRp is too small, a sufficient area for increasing the speed gradient cannot be secured, and a sufficient cooling effect cannot be obtained. The lower limit value 10 in the equation (3) corresponds to the minimum dimension at which the laminar boundary layer TB is obtained.

幅hRpが大きすぎると突起11上で速度境界層が過度に成長してしまい速度勾配が小さくなり放熱性が悪化する。式(3)における上限値50は、かかる観点から規定されている。以下、上限値を50に設定した理由を説明する。   If the width hRp is too large, the velocity boundary layer grows excessively on the protrusion 11 and the velocity gradient becomes small, so that the heat dissipation is deteriorated. The upper limit value 50 in the expression (3) is defined from this viewpoint. Hereinafter, the reason why the upper limit value is set to 50 will be described.

平板上における速度境界層の発達、すなわち層流境界層LBから乱流境界層TBへの遷移は以下の式(4)で表されることが知られている。   It is known that the development of the velocity boundary layer on the flat plate, that is, the transition from the laminar boundary layer LB to the turbulent boundary layer TB is expressed by the following equation (4).

Figure 2017144789
x:層流境界層から乱流境界層への遷移が生じる平板先端からの距離
U:流入速度
ν:流体の動粘性係数
Figure 2017144789
x: Distance from flat plate tip where transition from laminar boundary layer to turbulent boundary layer occurs U: Inflow velocity ν: Kinematic viscosity coefficient of fluid

主流の乱れの影響や、遷移領域付近では境界層がある程度成長することで速度勾配が低下することを考えると、十分な冷却効果が得られるために必要な突起11の幅hRpの最大値hRp_maxは、式(4)の距離xの1/2程度と考えられる。従って、突起11の最大幅hRp_maxは、以下の式(5)で表される。   Considering the influence of mainstream disturbance and the fact that the boundary layer grows to some extent in the vicinity of the transition region, the maximum gradient hRp_max of the width hRp of the protrusion 11 necessary for obtaining a sufficient cooling effect is This is considered to be about ½ of the distance x in equation (4). Therefore, the maximum width hRp_max of the protrusion 11 is expressed by the following formula (5).

Figure 2017144789
Figure 2017144789

突起11への流体の流入速度Uは、突起11のタイヤ径方向の任意の位置のタイヤ回転中心からの距離Rpとタイヤ角速度の積として表される(U=Rpω)。また、車両速度Vはタイヤ半径Rとタイヤ角速度の積として表される(V=Rω)。従って、以下の式(6)の関係が成立する。   The fluid inflow velocity U to the protrusion 11 is expressed as the product of the distance Rp from the tire rotation center at an arbitrary position in the tire radial direction of the protrusion 11 and the tire angular velocity (U = Rpω). The vehicle speed V is expressed as a product of the tire radius R and the tire angular speed (V = Rω). Therefore, the relationship of the following formula | equation (6) is materialized.

Figure 2017144789
Figure 2017144789

空気の動粘性係数νについて、以下の式(7)が成立する。

Figure 2017144789
The following equation (7) holds for the kinematic viscosity coefficient ν of air.
Figure 2017144789

式(6),(7)を式(5)に代入することで、以下の式(8)が得られる。

Figure 2017144789
By substituting Equations (6) and (7) into Equation (5), the following Equation (8) is obtained.
Figure 2017144789

車両速度Vとして80km/hを想定すると、式(8)よりhRp_maxは以下となる。   Assuming that the vehicle speed V is 80 km / h, hRp_max is as follows from equation (8).

Figure 2017144789
Figure 2017144789

タイヤ1の発熱がより顕著となる高速走行時、具体的には車両速度Vとして160km/hまでを考慮すると、式(8)よりhRp_maxは以下となる。   When driving at high speed where the heat generation of the tire 1 becomes more conspicuous, specifically considering vehicle speed V up to 160 km / h, hRp_max is as follows from equation (8).

Figure 2017144789
Figure 2017144789

このように、高速走行時(車両速度Vとして160km/h以下)であっても、突起11の頂面12の幅方向全体で層流境界層TBが形成されるためには、式(3)の上限値は50mmとなる。   Thus, in order to form the laminar boundary layer TB in the entire width direction of the top surface 12 of the protrusion 11 even when traveling at a high speed (vehicle speed V is 160 km / h or less), the equation (3) The upper limit is 50 mm.

次に、本発明の他の特徴部分について説明する。   Next, other features of the present invention will be described.

図15Aでは、タイヤサイド部3の表面に、幅hRpの異なる3種類の突起11(11a,11b,11c)が配置されている。突起11aの幅hRpが最も短く、突起11b,11cの順で幅広となっている。これらの突起11は、タイヤ回転逆方向(図中時計回り方向)に11a,11b,11c,11bの順で繰り返し配置されている。つまり、中間幅の突起11bの割合が半分を占めている。したがって、放熱効果が期待される走行状態(車両速度Vとして、例えば80km/h)で、頂面12での放熱性を最も高められる値に突起11bの幅hRpを設定しておくのが好ましい。   In FIG. 15A, three types of protrusions 11 (11a, 11b, 11c) having different widths hRp are arranged on the surface of the tire side portion 3. The protrusion 11a has the shortest width hRp, and is wider in the order of the protrusions 11b and 11c. These protrusions 11 are repeatedly arranged in the order of 11a, 11b, 11c, and 11b in the tire rotation reverse direction (clockwise direction in the figure). That is, the ratio of the intermediate width projections 11b accounts for half. Therefore, it is preferable to set the width hRp of the protrusion 11b to a value that maximizes the heat dissipation at the top surface 12 in a traveling state where the heat dissipation effect is expected (vehicle speed V is, for example, 80 km / h).

ここで、幅hRpの異なる3種類の突起11を設けることの意義について説明する。すなわち、タイヤの回転速度の違い等によりタイヤサイド部3を流動する空気の流速が相違し、層流境界層TBの形成長さも変化する。層流境界層TBの形成長さは空気の流速が遅い場合には長くなり、空気の流速が速い場合には短くなる。そこで、突起11の幅hRpを3種類とすることにより、空気の流速の違いに拘わらず、放熱性を高めることができるようにしている。具体的に、空気の流速が遅い場合、幅hRpの長い突起11の頂面12で十分な長さの層流境界層TBを形成させることにより放熱性を高めることができる。また、空気の流速が速い場合、層流境界層TBが短距離で消失して乱流境界層TBとなるので、幅hRpの短い突起11を超えた空気を、隣接する突起11間に導いて、タイヤサイド部3の表面に衝突させることにより放熱性を高めることができる。これにより、タイヤの回転速度の違い等に基づいてタイヤサイド部3の表面での流速が変化しても、いずれかの突起11が放熱性を高めるために有効に機能し、全体として放熱性能を向上させることができる。   Here, the significance of providing three types of protrusions 11 having different widths hRp will be described. That is, the flow velocity of the air flowing through the tire side portion 3 is different due to a difference in the rotation speed of the tire, and the formation length of the laminar boundary layer TB is also changed. The formation length of the laminar boundary layer TB is long when the air flow rate is low, and is short when the air flow rate is high. Therefore, by setting the widths hRp of the protrusions 11 to three types, the heat dissipation can be improved regardless of the difference in the air flow rate. Specifically, when the air flow rate is low, the heat dissipation can be improved by forming a sufficiently long laminar boundary layer TB on the top surface 12 of the projection 11 having a long width hRp. In addition, when the flow velocity of air is high, the laminar boundary layer TB disappears at a short distance and becomes a turbulent boundary layer TB. Therefore, the air exceeding the short protrusion 11 having the short width hRp is guided between the adjacent protrusions 11. The heat dissipation can be improved by causing the tire side portion 3 to collide with the surface. Thereby, even if the flow velocity on the surface of the tire side portion 3 changes based on the difference in the rotational speed of the tire, etc., any one of the protrusions 11 functions effectively to enhance the heat dissipation performance, and the heat dissipation performance as a whole is increased. Can be improved.

図15Bでは、タイヤサイド部3の表面に、前辺部17(前側面13)の傾斜角度a1が異なる3種類の突起11(11a,11b,11c)が配置されている。3種類の突起11の前辺部17はいずれも右上がりである。突起11aの傾斜角度a1−1が53°で最も大きく、突起11bの傾斜角度a1−2が43°、突起11cの傾斜角度a1−3が30°の順で小さくなっている。これら突起11は、タイヤ回転逆方向(図中時計回り方向)に突起11a,11b,11c,11bの順で繰り返し配置されている。つまり、中間の傾斜角度a1−2を有する突起11bの割合が半分を占めている。したがって、放熱効果が期待される走行状態(車両速度Vとして、例えば80km/h)で、頂面12に沿う第1の流れと、前側面13に沿う第2の流れとに適切に分流して放熱性を最も高められる角度に傾斜角度a1−2を設定しておくのが好ましい。   In FIG. 15B, three types of protrusions 11 (11a, 11b, 11c) having different inclination angles a1 of the front side portion 17 (front side surface 13) are arranged on the surface of the tire side portion 3. The front side portions 17 of the three types of protrusions 11 are all raised to the right. The inclination angle a1-1 of the protrusion 11a is the largest at 53 °, the inclination angle a1-2 of the protrusion 11b is 43 °, and the inclination angle a1-3 of the protrusion 11c is 30 ° in this order. These protrusions 11 are repeatedly arranged in the order of the protrusions 11a, 11b, 11c, and 11b in the tire rotation reverse direction (clockwise direction in the figure). That is, the ratio of the protrusions 11b having the intermediate inclination angle a1-2 occupies half. Therefore, in a traveling state where the heat dissipation effect is expected (vehicle speed V is 80 km / h, for example), the first flow along the top surface 12 and the second flow along the front side surface 13 are appropriately divided. It is preferable to set the inclination angle a1-2 to an angle at which heat dissipation is most enhanced.

前記構成によれば、タイヤ1の回転速度が速いときは、突起11aを通過する空気流も速くなり、前辺部17でうまく分流されずに、その殆どが頂面12に沿う第1の流れとなる。一方、傾斜角度a1の大きい突起11cでは、たとえ空気流の速度が速くても前側面13に沿う第2の流れを形成することができるので、頂面12に沿う第1の流れを層流境界層TBとして放熱性を発揮させることが可能である。また、タイヤ1の回転速度が遅いときには、傾斜角度a1の小さい突起11aでも、空気流を頂面12に沿う第1の流れ(層流境界層TB)と、前側面13に沿う第2の流れとに分流することができ、頂面12での放熱を効果的に行うことができる。このように、タイヤ1の回転速度の高低に拘わらず、いずれかの突起11での放熱性を高めることができるので、全体として突起11による放熱性を向上させることが可能となる。   According to the above configuration, when the rotation speed of the tire 1 is high, the air flow passing through the protrusion 11a is also fast, and the first flow along the top surface 12 is mostly not diverted well at the front side portion 17. It becomes. On the other hand, since the projection 11c having a large inclination angle a1 can form the second flow along the front side surface 13 even if the air flow speed is high, the first flow along the top surface 12 is separated from the laminar flow boundary. It is possible to exhibit heat dissipation as the layer TB. Further, when the rotation speed of the tire 1 is slow, even with the protrusion 11 a having a small inclination angle a 1, the first flow along the top surface 12 (laminar flow boundary layer TB) and the second flow along the front side surface 13. Therefore, heat can be radiated from the top surface 12 effectively. As described above, since the heat dissipation performance of any one of the protrusions 11 can be enhanced regardless of the rotational speed of the tire 1, the heat dissipation performance of the protrusions 11 can be improved as a whole.

(他の実施形態)
前記実施形態では、突起11を、幅hRpが相違する3種類で構成したが、突起11は、幅hRpの異なる2種類で構成することもできるし、4種類以上で構成することもできる。幅hRpの異なる2種類の突起11はタイヤ周方向に交互に配置するのが好ましいが、複数個単位ずつそのように配置してもよいし、その個数も自由に設定することができる。幅hRpの異なる3種類以上の突起11の場合であっても同様である。
(Other embodiments)
In the above-described embodiment, the projection 11 is configured with three types having different widths hRp. However, the projection 11 may be configured with two types having different widths hRp, or may be configured with four or more types. The two types of protrusions 11 having different widths hRp are preferably arranged alternately in the tire circumferential direction, but a plurality of units 11 may be arranged in such a manner, and the number of the protrusions 11 can be freely set. The same applies to the case of three or more types of protrusions 11 having different widths hRp.

幅hRpが相違する突起11の種類を増やすことにより、タイヤ1の回転速度の違いに拘わらず、いずれかの突起11で十分な放熱性を発揮させやすくすることができる。   By increasing the types of protrusions 11 having different widths hRp, it is possible to easily exhibit sufficient heat dissipation with any of the protrusions 11 regardless of the difference in the rotation speed of the tire 1.

前辺部17(前側面13)の傾斜角度a1は、各突起11で相違させるのが好ましい。この場合、傾斜角度a1は、基準傾斜角度asに対して、以下を満足するのが好ましい。

Figure 2017144789
The inclination angle a <b> 1 of the front side portion 17 (front side surface 13) is preferably different for each protrusion 11. In this case, it is preferable that the inclination angle a1 satisfies the following with respect to the reference inclination angle as.
Figure 2017144789

ここに、基準傾斜角度asとは、基準となる、ある車両速度(例えば、80km/h)のときのタイヤサイド部3で発生する空気流(このときのタイヤサイド部3の表面での流速が重要)によって突起11で効果的に冷却可能となる値である。as−10°>a1であれば、突起の前側面13の傾斜角度が不十分となり、空気が前側面に沿って流動せずに乗り越えて頂面12へと流動しやすくなる。このため、頂面12での第1の流れが乱され、層流状態とはなりにくく、放熱性が損なわれる。a1>as+10°であれば、突起11が傾斜し過ぎで、頂面12を流動する第1の流れを形成しにくくなり、やはり放熱性が損なわれる。   Here, the reference inclination angle as is a reference, an air flow generated in the tire side portion 3 at a certain vehicle speed (for example, 80 km / h) (the flow velocity on the surface of the tire side portion 3 at this time is a flow rate). This is a value that can be effectively cooled by the protrusion 11. If as−10 °> a1, the inclination angle of the front side surface 13 of the protrusion becomes insufficient, and the air does not flow along the front side surface and easily flows over the top surface 12. For this reason, the 1st flow in the top surface 12 is disturbed, it is hard to become a laminar flow state, and heat dissipation is impaired. If a1> as + 10 °, the protrusion 11 is excessively inclined, and it becomes difficult to form the first flow that flows on the top surface 12, and the heat dissipation is also impaired.

また、前記突起11の前側面13の傾斜角度a1は、タイヤ周方向の基準幅hs及び任意の突起11でのタイヤ周方向の幅hnに対して、次式を満足するのが好ましい。

Figure 2017144789
The inclination angle a1 of the front side surface 13 of the protrusion 11 preferably satisfies the following expression with respect to the reference width hs in the tire circumferential direction and the width hn in the tire circumferential direction at any protrusion 11.
Figure 2017144789

ここで、タイヤ周方向の基準幅hsは、ある車両速度のときにタイヤサイド部3で発生する空気流によって突起11で効果的に冷却可能となる値である。したがって、車両速度が低速である場合を基準とするのであれば、hsは長くなり、逆に高速である場合を基準とするのであれば、hsは短くなる。またαは係数であり、ここではα=20としている。α=20としているのは、基準幅hsに対して採用する突起11の幅hnの割合が0.5〜1.5倍となることが想定されるため、前記式での演算結果を、基準傾斜角度asに対して±10°とするためである。   Here, the reference width hs in the tire circumferential direction is a value that can be effectively cooled by the protrusion 11 by the air flow generated in the tire side portion 3 at a certain vehicle speed. Therefore, if the case where the vehicle speed is low is used as a reference, hs becomes long. If the case where the vehicle speed is high is used as a reference, hs becomes short. Α is a coefficient, and α = 20 here. α = 20 is assumed because the ratio of the width hn of the protrusion 11 to be adopted with respect to the reference width hs is assumed to be 0.5 to 1.5 times. This is to make ± 10 ° with respect to the inclination angle as.

また、突起11の平面視での形状は、以下の通り種々の形態を取ることができる。   Further, the shape of the protrusion 11 in plan view can take various forms as follows.

図14Aの突起11の後辺部18は、傾斜角度の異なる2本の直線により構成された平面視での形状を有する。   The rear side portion 18 of the protrusion 11 in FIG. 14A has a shape in plan view constituted by two straight lines having different inclination angles.

図14B,14Cの突起11は、前辺部17が右上がりに延びるのに対し、後辺部18が右下がりに延びる平面視での形状を有する。特に、図14Cの突起11は、平面視での形状が等脚台形状としている。   14B and 14C has a shape in plan view in which the front side portion 17 extends to the right and the rear side portion 18 extends to the right. In particular, the protrusion 11 in FIG. 14C has an isosceles trapezoidal shape in plan view.

また突起11を幅hRpの相違する2種類以上で構成する場合、タイヤ周方向の基準長さhsに対して、次式を満足するように構成するのが好ましい。

Figure 2017144789
Further, when the protrusion 11 is composed of two or more types having different widths hRp, it is preferable that the protrusion 11 is configured to satisfy the following expression with respect to the reference length hs in the tire circumferential direction.
Figure 2017144789

0.5×hs>hRpでは、突起11の幅が狭くなり過ぎ、空気流れの層流範囲を利用しきれない。hRp>1.5×hsでは、空気流れの層流範囲を超えて頂面12が形成されることになり放熱性の点で好ましくない。   If 0.5 × hs> hRp, the width of the protrusion 11 becomes too narrow, and the laminar flow range of the air flow cannot be used. If hRp> 1.5 × hs, the top surface 12 is formed beyond the laminar flow range of the air flow, which is not preferable in terms of heat dissipation.

前記突起11は、タイヤ回転方向側の前側面13とタイヤサイド部3の頂面12とのなす角度が100°以下であればよく、90°以下であるのが好ましく、90°未満であるのが好適である。   The protrusion 11 only needs to have an angle formed by the front side surface 13 on the tire rotation direction side and the top surface 12 of the tire side portion 3 of 100 ° or less, preferably 90 ° or less, and less than 90 °. Is preferred.

前記角度が100°を超えれば、空気流れが突起11の前側面13でうまく分流されずにそのまま頂面12側へと流動しやすくなる。このため、頂面12での空気の流動状態を層流のままに維持しにくくなり、突起11での放熱性が悪化する恐れがある。前記角度を90°以下、さらには90°未満とすることにより、前辺部17での分流をより一層適切に行い、頂面12に沿う空気流れの層流境界層の範囲を拡大してさらに放熱性を高めることができる。   If the angle exceeds 100 °, the air flow tends to flow toward the top surface 12 as it is without being diverted well on the front side surface 13 of the protrusion 11. For this reason, it becomes difficult to maintain the air flow state on the top surface 12 as a laminar flow, and there is a possibility that the heat dissipation at the protrusion 11 is deteriorated. By making the angle 90 ° or less, and further less than 90 °, the diversion at the front side portion 17 is more appropriately performed, and the range of the laminar boundary layer of the air flow along the top surface 12 is further expanded. Heat dissipation can be improved.

なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。   In addition, this invention is not limited to the structure described in the said embodiment, A various change is possible.

図15Cでは、タイヤサイド部3の表面に、前辺部17の傾斜角度a1が異なる2種類の突起11が交互に配置されている。図15Cでは、2種類の突起11のうちの一方は右上がりの前辺部17を有し、他方の突起11は右下がりの前辺部17を有する。   In FIG. 15C, two types of projections 11 having different inclination angles a1 of the front side portion 17 are alternately arranged on the surface of the tire side portion 3. In FIG. 15C, one of the two types of projections 11 has a front side portion 17 that rises to the right, and the other projection 11 has a front side portion 17 that falls to the right.

図15Dでは、タイヤサイド部3の表面に、タイヤ径方向の位置が異なる2種類の突起11が交互に配置されている。   In FIG. 15D, two types of protrusions 11 having different positions in the tire radial direction are alternately arranged on the surface of the tire side portion 3.

図16Aから図16Cは、突起11の頂面12の端面視での形状の種々の代案を示す。図16Aの突起11は、端面視において翼断面形状の頂面12を有する。図16Bの突起11は、端面視において円弧状の頂面12を有する。図16Cの突起11は、端面視において翼断面形状でも円弧状でもない曲線状の頂面12を有する。   16A to 16C show various alternatives of the shape of the top surface 12 of the protrusion 11 in the end view. The protrusion 11 in FIG. 16A has a top surface 12 having a blade cross-sectional shape in an end view. The protrusion 11 in FIG. 16B has an arcuate top surface 12 in an end view. The protrusion 11 in FIG. 16C has a curved top surface 12 that is neither a blade cross-sectional shape nor an arc shape in the end view.

図17Aから図17Dに示す突起11の前側面13は、端面視で、1個の窪み23を構成している。   The front side surface 13 of the protrusion 11 shown in FIGS. 17A to 17D constitutes a single recess 23 in an end view.

図17Aの突起11の前側面13は、2個の平坦面24a,24bによって構成されている。端面視では、平坦面24aは右下がりで、平坦面24bは右上がりである。これらの平坦面24a,24bによって、端面視で三角形の窪み23が形成されている。   The front side surface 13 of the protrusion 11 in FIG. 17A is constituted by two flat surfaces 24a and 24b. In the end view, the flat surface 24a is lowered to the right and the flat surface 24b is raised to the right. These flat surfaces 24a and 24b form a triangular recess 23 in an end view.

図17Bの突起11の前側面13は、半円状の断面形状を有する曲面により構成されている。この曲面によって、端面視で半円状の窪み23が形成されている。   The front side surface 13 of the protrusion 11 in FIG. 17B is configured by a curved surface having a semicircular cross-sectional shape. By this curved surface, a semicircular recess 23 is formed when viewed from the end.

図17Cの突起11の前側面13は、端面視で右下がりの平坦面25aと、円弧状の断面形状を有する曲面25bにより構成されている。平坦面25aが突起11の頂面12側に位置し、曲面25bがタイヤサイド部3の表面側に位置している。平坦面25aと曲面25bとによって、窪み23が形成されている。   The front side surface 13 of the protrusion 11 in FIG. 17C is configured by a flat surface 25a that is right-downward in an end view and a curved surface 25b having an arcuate cross-sectional shape. The flat surface 25 a is located on the top surface 12 side of the protrusion 11, and the curved surface 25 b is located on the surface side of the tire side portion 3. A recess 23 is formed by the flat surface 25a and the curved surface 25b.

図17Dの突起11の前側面13は、3個の平坦面26a,26b,26cによって構成されている。端面視では、突起11の頂面12側の平坦面26aは右下がりで、タイヤサイド部3の表面側の平坦面26cは右上がりで、中央の平坦面26bはタイヤ径方向に延びている。これらの平坦面26a〜26cによって多角形状の窪み23が形成されている。   The front side surface 13 of the protrusion 11 in FIG. 17D is configured by three flat surfaces 26a, 26b, and 26c. In the end view, the flat surface 26a on the top surface 12 side of the protrusion 11 is lowered to the right, the flat surface 26c on the surface side of the tire side portion 3 is raised to the right, and the central flat surface 26b extends in the tire radial direction. A polygonal recess 23 is formed by these flat surfaces 26a to 26c.

図18A及び図18Bに示す突起11の前側面13は、端面視で、タイヤ径方向に隣接した配置された2個の窪み23A,23Bを構成している。   The front side surface 13 of the protrusion 11 shown in FIGS. 18A and 18B constitutes two depressions 23A and 23B arranged adjacent to each other in the tire radial direction in an end view.

図18Aの突起11の前側面13は、4個の平坦面27a〜27dによって構成されている。端面視では、突起11の頂面12側の平坦面27aは右下がりであり、タイヤサイド部3の表面に向けて、右上がりの平坦面27b、右下がりの平坦面27c、及び右上がりの平坦面27dが順に配置されている。平坦面27a,27bによって突起11の頂面12側に三角形状の断面形状を有する1個の窪み23Aが形成され、この窪み23Aのタイヤサイド部3の表面側に隣接して、同様に三角形状の断面形状を有する1個の窪み23Bが平坦面27c,27dによって形成されている。   The front side surface 13 of the protrusion 11 in FIG. 18A is configured by four flat surfaces 27a to 27d. In the end view, the flat surface 27a on the top surface 12 side of the protrusion 11 is downwardly inclined, and toward the surface of the tire side portion 3, the upwardly inclined flat surface 27b, the downwardly inclined flat surface 27c, and the upwardly flattened surface. The surface 27d is arranged in order. One recess 23A having a triangular cross-sectional shape is formed on the top surface 12 side of the protrusion 11 by the flat surfaces 27a and 27b, and adjacent to the surface side of the tire side portion 3 of the recess 23A, similarly, a triangular shape is formed. One recess 23B having the cross-sectional shape is formed by the flat surfaces 27c and 27d.

図18Bの突起11の前側面13は、半円状の断面形状を有する2個の曲面28a,28bによって構成されている。突起11の頂面12側の曲面28aによって、半円状の断面形状を有する1個の窪み23Aが形成され、この窪み23Aのタイヤサイド部3の表面側に隣接して、同様に半円状の断面形状を有する1個の窪み23Bが曲面28bによって形成されている。   The front side surface 13 of the protrusion 11 in FIG. 18B is composed of two curved surfaces 28a and 28b having a semicircular cross-sectional shape. A single recess 23A having a semicircular cross-sectional shape is formed by the curved surface 28a on the top surface 12 side of the protrusion 11, and adjacent to the surface side of the tire side part 3 of the recess 23A, the recess 23A is also semicircular. One recess 23B having a cross-sectional shape is formed by a curved surface 28b.

突起11の前側面13は、端面視で、タイヤ径方向に隣接した配置された3個以上の窪みを構成してもよい。   The front side surface 13 of the protrusion 11 may constitute three or more depressions arranged adjacent to each other in the tire radial direction in the end view.

図17Aから図18Bに示すような前側面13の窪みの形状、寸法、個数を適切に設定することで、突起11の頂面12に沿って流れる空気流AF1と、突起11の前側面13に沿って流れる空気流AF2の流量比率を調節することができる。   By appropriately setting the shape, size, and number of depressions on the front side surface 13 as shown in FIGS. 17A to 18B, the air flow AF1 flowing along the top surface 12 of the projection 11 and the front side surface 13 of the projection 11 are formed. The flow rate ratio of the air flow AF2 flowing along can be adjusted.

図16Aから図16Cの頂面12の形状のうちのいずれか1個と、図17Aから図18Bの前側面13の形状のいずれかを組み合わせて1個の突起11を構成してもよい。   One protrusion 11 may be configured by combining any one of the shapes of the top surface 12 of FIGS. 16A to 16C and any of the shapes of the front side surface 13 of FIGS. 17A to 18B.

図5、図16Aから図18Bを参照すると、前辺部17において突起11の頂面12と前側面13とがなす角度、すなわち突起11の先端角度a2は、端面視において、頂面12に対応する直線Ltと、前側面13の前辺部17近傍の部分に対応する直線Lfsとがなす角度として定義される。   5 and 16A to 18B, the angle formed by the top surface 12 and the front side surface 13 of the protrusion 11 in the front side portion 17, that is, the tip angle a2 of the protrusion 11 corresponds to the top surface 12 in the end view. Is defined as an angle formed by a straight line Lt and a straight line Lfs corresponding to a portion of the front side surface 13 near the front side portion 17.

直線Ltは、頂面12のうち厚みtRpが最も大きい部分を通り、かつタイヤサイド部3の表面に沿って延びる直線として定義される。図5、図17Aから図18Bを参照すると、頂面12がタイヤサイド部3の表面に沿って延びる平坦面である場合、端面視において頂面12自体を延長して得られる直線が直線Ltである。図16Aから図16Cを参照すると、頂面12が曲面である場合、端面視で頂面12のうち厚みtRpが最も大きい位置P3を通り、かつタイヤサイド部3の表面に沿って延びる直線が直線Ltである。   The straight line Lt is defined as a straight line that passes through the portion of the top surface 12 having the largest thickness tRp and extends along the surface of the tire side portion 3. Referring to FIGS. 5 and 17A to 18B, when the top surface 12 is a flat surface extending along the surface of the tire side portion 3, a straight line obtained by extending the top surface 12 itself in the end view is a straight line Lt. is there. Referring to FIGS. 16A to 16C, when the top surface 12 is a curved surface, a straight line passing through the position P3 having the largest thickness tRp in the top surface 12 and extending along the surface of the tire side portion 3 is a straight line. Lt.

図5、図16Aから図16Cを参照すると、前側面13が単一の平坦面から構成されている場合、端面視で前側面13自体を延長して得られる直線が直線Lfsである。図17Aから図17Dを参照すると、前側面13が単一の窪み23を構成している場合、端面視において前辺部17と窪み23の最も窪んだ位置とを接続する直線が、直線Lfsである。図18A及び図18Bを参照すると、複数(これらの例では2個)の窪み23A,23Bを構成している場合、端面視において、前辺部17と最も頂面12側に位置する窪み23Aの最も窪んだ位置とを接続する直線が、直線Lfsである。   Referring to FIGS. 5 and 16A to 16C, when the front side surface 13 is formed of a single flat surface, a straight line obtained by extending the front side surface 13 itself in an end view is a straight line Lfs. Referring to FIGS. 17A to 17D, when the front side surface 13 forms a single recess 23, the straight line connecting the front side portion 17 and the most recessed position of the recess 23 in the end view is a straight line Lfs. is there. Referring to FIGS. 18A and 18B, when a plurality of (two in these examples) dents 23A and 23B are configured, the front side 17 and the dent 23A located closest to the top surface 12 in the end view are shown. A straight line connecting the most depressed position is a straight line Lfs.

図19Aに示すように、突条31が半円条の断面形状を有し、溝32が突条31に対して相補的な断面形状を有していてもよい。また、図19Bに示すように、突条31と溝32の断面形状が四角形状であってもよい。   As shown in FIG. 19A, the protrusion 31 may have a semicircular cross-sectional shape, and the groove 32 may have a complementary cross-sectional shape with respect to the protrusion 31. Moreover, as shown to FIG. 19B, the cross-sectional shape of the protrusion 31 and the groove | channel 32 may be square shape.

図20を参照すると、頂面12における層流の形成を顕著に阻害しないのであれば、タイヤ径方向に延びる1本の縦スリット33よって、1個の突起11をタイヤ周方向に並べられた2個の互いに独立した部分に分割してもよい。2本以上縦スリット33によって、1個の突起11を3個以上の互いに独立した部分に分割してもよい。   Referring to FIG. 20, if the formation of the laminar flow on the top surface 12 is not significantly inhibited, one projection 11 is arranged in the tire circumferential direction by one longitudinal slit 33 extending in the tire radial direction. You may divide | segment into the mutually independent part. Two or more vertical slits 33 may divide one protrusion 11 into three or more independent portions.

図21を参照すると、頂面12における層流の形成を顕著に阻害しないのであれば、タイヤ周方向に延びる1本の横スリット34によって、1個の突起11をタイヤ径方向に並べられた2個の互いに独立した部分に分割してもよい。2本以上の縦スリット34によって、1個の突起11を3個以上の互いに部分に分割してもよい。   Referring to FIG. 21, if the formation of the laminar flow on the top surface 12 is not significantly inhibited, one projection 11 is arranged in the tire radial direction by one lateral slit 34 extending in the tire circumferential direction. You may divide | segment into the mutually independent part. One projection 11 may be divided into three or more parts by two or more vertical slits 34.

1本以上の縦スリット33と1本以上の横スリット34とを設けることで、1個の突起11を4個以上の複数の部分に分割してもよい。   One protrusion 11 may be divided into four or more parts by providing one or more vertical slits 33 and one or more horizontal slits 34.

縦スリット33及び横スリット34の深さは、図20及び図21に示すように、これらのスリット33,34が頂面12からタイヤサイド部3の表面まで達するように設定してもよいし、これらのスリット33,34がタイヤサイド部3の表面まで達しないように設定してもよい。   The depths of the vertical slit 33 and the horizontal slit 34 may be set so that these slits 33 and 34 reach the surface of the tire side part 3 from the top surface 12 as shown in FIGS. You may set so that these slits 33 and 34 may not reach the surface of the tire side part 3. FIG.

また、前記突起11を形成する位置は、タイヤ1を車両に装着した状態で、外側(車両の側方側)であってもよいし、内側であってもよい。   Further, the position where the protrusion 11 is formed may be on the outside (side of the vehicle) or on the inside in a state where the tire 1 is mounted on the vehicle.

1 タイヤ
2 トレッド部
3 タイヤサイド部
4 ビード部
5 カーカス
6 インナーライナー
7 補強ゴム
8 ベルト層
11 突起
12 頂面
13 前側面
14 後側面
15 内端面
16 外端面
17 前辺部
18 後辺部
19 内辺部
20 外辺部
23,23A,23B 窪み
24a,24b,25a,26a〜26c,27a〜27d 平坦面
25b,28a,28b 曲面
33 縦スリット
34 横スリット
RD 回転方向
P1 リムの最外周位置
P2 タイヤサイド部の表面の特定の点
P3 頂面の厚みが最も大きい位置
Ls 基準直線
Lt,Lfs 直線
Lh 水平線
AF0,AF1,AF2 空気流
Va 空気流の速度
LB 層流境界層
TR 遷移領域
TB 乱流境界層
TA 乱流の領域
DESCRIPTION OF SYMBOLS 1 Tire 2 Tread part 3 Tire side part 4 Bead part 5 Carcass 6 Inner liner 7 Reinforcement rubber 8 Belt layer 11 Protrusion 12 Top surface 13 Front side surface 14 Rear side surface 15 Inner end surface 16 Outer end surface 17 Front side portion 18 Rear side portion 19 Inside Side 20 Outer side 23, 23A, 23B Indentation 24a, 24b, 25a, 26a-26c, 27a-27d Flat surface 25b, 28a, 28b Curved surface 33 Vertical slit 34 Horizontal slit RD Rotation direction P1 Rim outermost position P2 Tire Specific point on the surface of the side part P3 Position where the thickness of the top surface is the maximum Ls Reference line Lt, Lfs Line Lh Horizontal line AF0, AF1, AF2 Air flow Va Air flow velocity LB Laminar boundary layer TR Transition region TB Turbulent boundary Layer TA Turbulence region

Claims (6)

タイヤサイド部の表面に、周方向に並設される複数の突起を備え、
前記タイヤサイド部の表面から前記突起の頂面までの距離である突起の厚さは、前記頂面のタイヤ周方向の寸法である突起の幅よりも小さく、
前記各突起は、幅が10mm以上であり、任意の突起の幅hRpが前記突起の基準幅hsに対して、0.5×hs≦hRp≦1.5×hsを満足することを特徴とする空気入りタイヤ。
Provided with a plurality of protrusions arranged in the circumferential direction on the surface of the tire side portion,
The thickness of the protrusion, which is the distance from the surface of the tire side portion to the top surface of the protrusion, is smaller than the width of the protrusion, which is a dimension in the tire circumferential direction of the top surface,
Each protrusion has a width of 10 mm or more, and the width hRp of an arbitrary protrusion satisfies 0.5 × hs ≦ hRp ≦ 1.5 × hs with respect to the reference width hs of the protrusion. Pneumatic tire.
前記突起は、幅hRpが相違する3種類以上であることを特徴とする請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the protrusion has three or more types having different widths hRp. 前記突起は、タイヤ回転方向側の前側面とタイヤサイド部の頂面とのなす角度が100°以下であることを特徴とする請求項1又は2に記載の空気入りタイヤ。   3. The pneumatic tire according to claim 1, wherein an angle formed between the front side surface on the tire rotation direction side and the top surface of the tire side portion is 100 ° or less. 前記角度は90°未満であることを特徴とする請求項3に記載の空気入りタイヤ。   The pneumatic tire according to claim 3, wherein the angle is less than 90 °. 前記前側面は、タイヤ外径方向に向かってタイヤ周方向のいずれか一方に変位することを特徴とする請求項3又は4に記載の空気入りタイヤ。   The pneumatic tire according to claim 3 or 4, wherein the front side surface is displaced in any one of the tire circumferential directions toward the tire outer diameter direction. 前記前側面は、タイヤ外径方向に向かってタイヤ回転逆方向に変位することを特徴とする請求項5に記載の空気入りタイヤ。   The pneumatic tire according to claim 5, wherein the front side surface is displaced in the tire rotation reverse direction toward the tire outer diameter direction.
JP2016026216A 2016-02-15 2016-02-15 Pneumatic tire Pending JP2017144789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026216A JP2017144789A (en) 2016-02-15 2016-02-15 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026216A JP2017144789A (en) 2016-02-15 2016-02-15 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2017144789A true JP2017144789A (en) 2017-08-24

Family

ID=59682594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026216A Pending JP2017144789A (en) 2016-02-15 2016-02-15 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2017144789A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096879A1 (en) * 2007-02-09 2008-08-14 Bridgestone Corporation Pneumatic tire
JP2014080099A (en) * 2012-10-16 2014-05-08 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2015168301A (en) * 2014-03-05 2015-09-28 横浜ゴム株式会社 pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096879A1 (en) * 2007-02-09 2008-08-14 Bridgestone Corporation Pneumatic tire
JP2014080099A (en) * 2012-10-16 2014-05-08 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2015168301A (en) * 2014-03-05 2015-09-28 横浜ゴム株式会社 pneumatic tire

Similar Documents

Publication Publication Date Title
JP5222736B2 (en) Pneumatic tire
US20150202927A1 (en) Vehicle tire
JP6730042B2 (en) Pneumatic tire
JP6712146B2 (en) Pneumatic tire
JP2017144798A (en) Pneumatic tire
JP2017144791A (en) Pneumatic tire
JP2017144789A (en) Pneumatic tire
JP2017144786A (en) Pneumatic tire
JP6707359B2 (en) Pneumatic tire
JP2017144787A (en) Pneumatic tire
JP6649109B2 (en) Pneumatic tire
JP7094073B2 (en) Pneumatic tires
JP2017144796A (en) Pneumatic tire
JP2017144797A (en) Pneumatic tire
JP2017144792A (en) Pneumatic tire
JP6900381B2 (en) tire
JP6690958B2 (en) Pneumatic tire
JP6060138B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630