JP2017144397A - Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group - Google Patents

Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group Download PDF

Info

Publication number
JP2017144397A
JP2017144397A JP2016029090A JP2016029090A JP2017144397A JP 2017144397 A JP2017144397 A JP 2017144397A JP 2016029090 A JP2016029090 A JP 2016029090A JP 2016029090 A JP2016029090 A JP 2016029090A JP 2017144397 A JP2017144397 A JP 2017144397A
Authority
JP
Japan
Prior art keywords
group
carbon dioxide
catalyst
porous carrier
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016029090A
Other languages
Japanese (ja)
Inventor
健一 新明
Kenichi Shinmyo
健一 新明
アルツゲ ラシカ ダサナヤケ
Aluthge Rasika Dasanayake
アルツゲ ラシカ ダサナヤケ
中嶋 節男
Setsuo Nakajima
節男 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016029090A priority Critical patent/JP2017144397A/en
Publication of JP2017144397A publication Critical patent/JP2017144397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst that enables a compound such as an unsaturated carboxylic acid to be efficiently produced with carbon dioxide as a raw material with long-term stability.SOLUTION: In the catalyst including a transition metal complex supported on a porous support having a communication hole structure, the transition metal complex has the activity of catalyzing reaction of carbon dioxide as a starting material, the porous support has a mode diameter of 0.8 nm or more in a logarithmic differentiation void volume distribution (dV/dlog (D)), and in the porous support, the total of the volumes of voids within a range between the mode diameter -2 nm and the mode diameter +2 nm is 80% or more of the total void volume.SELECTED DRAWING: None

Description

本発明は、二酸化炭素変換用触媒、及びカルボキシル基含有化合物の製造方法に関する。   The present invention relates to a carbon dioxide conversion catalyst and a method for producing a carboxyl group-containing compound.

近年、二酸化炭素(CO)等の温室効果ガスの低減等を目的として、COを化学合成の原料として使用する方法が数多く提案されている。その一つとして、COとアルケンを原料として、アクリル酸等の不飽和カルボン酸を製造することが提案されている。 In recent years, many methods of using CO 2 as a raw material for chemical synthesis have been proposed for the purpose of reducing greenhouse gases such as carbon dioxide (CO 2 ). As one of them, it has been proposed to produce unsaturated carboxylic acids such as acrylic acid using CO 2 and alkene as raw materials.

例えば、ニッケル錯体と塩基とを含む均一系触媒と塩基の存在下でCOとエチレンを反応させてアクリル酸塩を製造する方法が提案されている(非特許文献1)。この方法においては、テトラヒドロフラン(THF)溶媒中で、オレフィン−ニッケル錯体とCOとを反応させてニッケララクトン錯体を形成し、次いでラクトン環の開裂によりアクリレート錯体を得、得られたアクリレート錯体のアクリレート配位子をオレフィン配位子で置換して、アクリレート(アクリル酸ナトリウム)を放出させている。
また、均一系触媒として、トリホスフィン配位子を有するゼロ価モリブデン錯体を用いてCOとエチレンを反応させる方法も報告されている(非特許文献2)。
For example, a method of producing an acrylate by reacting CO 2 and ethylene in the presence of a homogeneous catalyst containing a nickel complex and a base and a base has been proposed (Non-patent Document 1). In this method, an olefin-nickel complex and CO 2 are reacted in a tetrahydrofuran (THF) solvent to form a nickelalactone complex, and then an acrylate complex is obtained by cleavage of the lactone ring. The acrylate ligand is replaced with an olefin ligand to release acrylate (sodium acrylate).
Further, as a homogeneous catalyst, a method of reacting CO 2 with ethylene using a zero-valent molybdenum complex having a tri-phosphine ligand has also been reported (Non-Patent Document 2).

更に、特許文献1には、a)遷移金属−アルケン錯体をCOと反応させてメタララクトンを生じさせ、b)メタララクトンを、アルカリ金属水酸化物又はアルカリ土類金属水酸化物及びアルカリ金属超塩基又はアルカリ土類金属超塩基から選択される塩基と反応させて、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩又はアルカリ土類金属塩と遷移金属錯体との付加体を生じさせ、c)付加体をアルケンと反応させて、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩又はアルカリ土類金属塩を放出し遷移金属−アルケン錯体を再生する、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩又はアルカリ土類金属塩を調製する方法が開示されている。
また、特許文献2には、溶媒中でメタララクトン中間体をハロゲン化物の存在下で反応させることにより、β不飽和カルボン酸またはその塩を製造する方法が開示されている。
Further, in Patent Document 1, a) a transition metal-alkene complex is reacted with CO 2 to produce a metallalactone, and b) a metallalactone is converted into an alkali metal hydroxide or alkaline earth metal hydroxide and an alkali metal superbase. Or an alkali metal salt of an α, β-ethylenically unsaturated carboxylic acid or an adduct of an alkaline earth metal salt and a transition metal complex by reacting with a base selected from alkaline earth metal superbases, and c ) React the transition metal-alkene complex by reacting the adduct with the alkene to release the alkali metal salt or alkaline earth metal salt of the α, β-ethylenically unsaturated carboxylic acid. Methods for preparing alkali metal salts or alkaline earth metal salts of carboxylic acids are disclosed.
Patent Document 2 discloses a method for producing a β-unsaturated carboxylic acid or a salt thereof by reacting a metallalactone intermediate in the presence of a halide in a solvent.

米国特許第8697909号明細書US Pat. No. 8,697,909 国際公開第2014/198469号International Publication No. 2014/198469

Lejkowski, M. L. et al., “The first catalytic synthesis of an acrylate from CO2 and an alkene-A rational approach”, Chem. Eur. J. 18, 14017-14025 (2012)Lejkowski, M. L. et al., “The first catalytic synthesis of an acrylate from CO2 and an alkene-A rational approach”, Chem. Eur. J. 18, 14017-14025 (2012) Hanna et al., “Ancillary Ligand Effects on Carbon Dioxide-Ethylene Coupling at Zerovalent Molybdenum”, Organometallics, 2014, 33, 3425-3432Hanna et al., “Ancillary Ligand Effects on Carbon Dioxide-Ethylene Coupling at Zerovalent Molybdenum”, Organometallics, 2014, 33, 3425-3432

しかし、上記したような従来の方法は、何れについても、COの溶媒(THF)中の溶解度が低く、例えばエチレンとCOの溶解度の比(エチレンの溶解度:COの溶解度)は、10:1〜5:1程度である。従って、原料となるCOガスを十分な量で触媒と接触させることができない。更には、CO及びアルケンは、金属錯体との親和性が低い。このような低溶解度及び低親和性により、従来の方法では、十分な触媒活性が達成されないという問題があった。また、従来の方法では、頻繁な配位子交換反応によって触媒の凝集が起こるため触媒寿命が短く、また、触媒及び生成物が溶媒に可溶であるため生成物の回収が困難である等の問題があった。このため、CO及びアルケンからの不飽和カルボン酸の製造を工業レベルで実施可能にする技術の開発が望まれていた。
本発明は上記事情に鑑みてなされたものであり、COを原料とした不飽和カルボン酸等の化合物の製造を、効率よく、かつ、長期間安定に行うことを可能にする触媒を提供することを目的とする。
However, in any of the conventional methods as described above, the solubility of CO 2 in a solvent (THF) is low. For example, the ratio of the solubility of ethylene and CO 2 (the solubility of ethylene: the solubility of CO 2 ) is 10 : About 1 to 5: 1. Therefore, the CO 2 gas as a raw material cannot be brought into contact with the catalyst in a sufficient amount. Furthermore, CO 2 and alkenes have low affinity with metal complexes. Due to such low solubility and low affinity, the conventional method has a problem that sufficient catalytic activity cannot be achieved. Further, in the conventional method, the catalyst is agglomerated due to frequent ligand exchange reaction, so that the catalyst life is short, and since the catalyst and the product are soluble in the solvent, it is difficult to recover the product. There was a problem. Therefore, the development of techniques that allow carrying out the production of unsaturated carboxylic acids from CO 2 and alkene at an industrial level has been desired.
The present invention has been made in view of the above circumstances, and provides a catalyst that enables efficient and stable long-term production of a compound such as an unsaturated carboxylic acid using CO 2 as a raw material. For the purpose.

本発明者らは、鋭意研究の結果、遷移金属錯体が特定の細孔分布を有する多孔質担体に担持されてなる触媒の存在下で、二酸化炭素(CO)とアルケン等の他の物質とを反応させることにより、前記担体の孔内において高濃度COの反応場を形成して、目的の化合物の合成を効率よく、かつ、長期間安定に行うことが可能になることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の構成を備える。
[1] 遷移金属錯体が、連通孔構造を有する多孔質担体に担持されてなる触媒であって、
前記遷移金属錯体が、二酸化炭素を出発原料とした反応を触媒する活性を有し、
前記多孔質担体は、Log微分細孔容積分布(dV/dlog(D))のモード径が0.8nm以上であり、かつ、モード径±2nmの範囲内にある細孔の容積の合計が、全細孔容積の80%以上であることを特徴とする二酸化炭素変換用触媒。
[2] 前記多孔質担体が、窒素、酸素、リン、及び硫黄からなる群より選ばれる少なくとも1種の元素を含有する官能基を有することを特徴とする[1]に記載の二酸化炭素変換用触媒。
[3]前記多孔質担体が、シリカ、アルミナ、カーボン、ゼオライト、活性炭、粘土焼結体、有機金属構造体からなる群より選択された少なくとも1種であることを特徴とする[1]に記載の二酸化炭素変換用触媒。
[4] 前記多孔質担体が、有機金属構造体であることを特徴とする[3]に記載の二酸化炭素変換用触媒。
[5] 前記有機金属構造体が、ゼオライト型イミダゾレート骨格体であることを特徴とする[4]に記載の二酸化炭素変換用触媒。
[6]前記多孔質担体の、定容法によるガス吸着法で測定した単位重量当たりの二酸化炭素吸着量が20〜400ml/gであることを特徴とする[1]〜[5]のいずれかに記載の二酸化炭素変換用触媒。
[7][1]〜[6]のいずれかに記載の触媒の存在下で、二酸化炭素と他の物質とを反応させることにより、カルボキシル基含有化合物を得ることを特徴とするカルボキシル基含有化合物の製造方法。
[8] 前記他の物質がアルケンであり、前記カルボキシル基含有化合物が不飽和カルボン酸であることを特徴とする[7]に記載のカルボキシル基含有化合物の製造方法。
[9]前記他の物質がエチレンであり、前記カルボキシル基含有化合物が(メタ)アクリル酸であることを特徴とする[7]に記載のカルボキシル基含有化合物の製造方法。
As a result of diligent research, the present inventors have found that carbon dioxide (CO 2 ) and other substances such as alkenes are present in the presence of a catalyst in which a transition metal complex is supported on a porous support having a specific pore distribution. It is found that a reaction field with a high concentration of CO 2 is formed in the pores of the carrier by the reaction, and the synthesis of the target compound can be carried out efficiently and stably for a long period of time. The invention has been completed.
That is, the present invention has the following configuration.
[1] A catalyst in which a transition metal complex is supported on a porous carrier having a communicating pore structure,
The transition metal complex has an activity of catalyzing a reaction using carbon dioxide as a starting material;
The porous carrier has a mode diameter of Log differential pore volume distribution (dV / dlog (D)) of 0.8 nm or more, and the total pore volume within the range of the mode diameter ± 2 nm is A carbon dioxide conversion catalyst characterized by being 80% or more of the total pore volume.
[2] The carbon dioxide conversion according to [1], wherein the porous carrier has a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, phosphorus, and sulfur. catalyst.
[3] The porous support is at least one selected from the group consisting of silica, alumina, carbon, zeolite, activated carbon, a clay sintered body, and an organometallic structure. Catalyst for carbon dioxide conversion.
[4] The carbon dioxide conversion catalyst as described in [3], wherein the porous carrier is an organometallic structure.
[5] The carbon dioxide conversion catalyst according to [4], wherein the organometallic structure is a zeolite type imidazolate skeleton.
[6] Any one of [1] to [5], wherein the porous carrier has a carbon dioxide adsorption amount per unit weight of 20 to 400 ml / g measured by a constant volume gas adsorption method. The catalyst for carbon dioxide conversion described in 1.
[7] A carboxyl group-containing compound obtained by reacting carbon dioxide with another substance in the presence of the catalyst according to any one of [1] to [6] Manufacturing method.
[8] The method for producing a carboxyl group-containing compound according to [7], wherein the other substance is an alkene, and the carboxyl group-containing compound is an unsaturated carboxylic acid.
[9] The method for producing a carboxyl group-containing compound as described in [7], wherein the other substance is ethylene and the carboxyl group-containing compound is (meth) acrylic acid.

本発明の触媒によれば、COを原料とした不飽和カルボン酸等の化合物の製造を、効率よく、かつ、長期間安定に行うことが可能となる。 According to the catalyst of the present invention, it is possible to efficiently and stably produce a compound such as an unsaturated carboxylic acid using CO 2 as a raw material for a long period of time.

以下、本発明を詳細に説明する。
<二酸化炭素変換用触媒>
本発明の触媒は、遷移金属錯体が、連通孔構造を有する多孔質担体に担持されてなる触媒である。
Hereinafter, the present invention will be described in detail.
<Catalyst for carbon dioxide conversion>
The catalyst of the present invention is a catalyst in which a transition metal complex is supported on a porous carrier having a communicating pore structure.

(遷移金属錯体)
前記遷移金属錯体については、所望の化合物を得るために、COと他の原料化合物との反応を触媒できるものであれば特に制限は無く、例えば、上記非特許文献1及び2、並びに特許文献1及び2に記載されているような公知の遷移金属錯体を使用することができる。
一般に、遷移金属錯体は、活性金属として、周期律表の4族に属する元素(好ましくはTi、Zr)、6族に属する元素(好ましくはCr、Mo、W)、7族に属する元素(好ましくはRe)、8族に属する元素(好ましくはFe、Ru)、9族に属する元素(好ましくはCo、Rh)、及び10族に属する元素(好ましくはNi、Pd、Pt)からなる群より選ばれる少なくとも1つの元素を含む。これらのうち、ニッケル、モリブデン、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、レニウム及びタングステンが好ましく、ニッケル、モリブデン、パラジウム、白金、コバルト、鉄、ロジウム、ルテニウムがより好ましく、ニッケル、パラジウムが特に好ましい。
(Transition metal complex)
The transition metal complex is not particularly limited as long as it can catalyze the reaction of CO 2 with other raw material compounds in order to obtain a desired compound. For example, Non-Patent Documents 1 and 2 and Patent Document Known transition metal complexes such as described in 1 and 2 can be used.
In general, transition metal complexes include, as active metals, elements belonging to Group 4 of the periodic table (preferably Ti, Zr), elements belonging to Group 6 (preferably Cr, Mo, W), and elements belonging to Group 7 (preferably Is selected from the group consisting of elements belonging to Group 8 (preferably Fe, Ru), elements belonging to Group 9 (preferably Co, Rh), and elements belonging to Group 10 (preferably Ni, Pd, Pt). At least one element. Of these, nickel, molybdenum, cobalt, iron, rhodium, ruthenium, palladium, platinum, rhenium and tungsten are preferred, nickel, molybdenum, palladium, platinum, cobalt, iron, rhodium and ruthenium are more preferred, and nickel and palladium are particularly preferred. preferable.

遷移金属錯体の配位子は単座又は2座、3座等の多座であってもよいが、出発原料としてのCO及びこれと反応させる化合物のための配位部位を金属上に残すように適切な配位子を選択することが望ましい。例えば、前記活性金属が、ニッケルの場合、2座の配位子を用いることが好ましく、コバルトの場合、3座の配位子を用いることが好ましい。 The ligand of the transition metal complex may be monodentate or multidentate, such as bidentate, tridentate, etc., but leave the coordination site on the metal for CO 2 as the starting material and the compound to be reacted therewith. It is desirable to select an appropriate ligand. For example, when the active metal is nickel, a bidentate ligand is preferably used, and when cobalt is used, a tridentate ligand is preferably used.

配位子は、遷移金属に配位する少なくとも1つのリン原子、窒素原子、酸素原子、及び/又はカルベン基を含んでいてもよい。配位子は、例えばホスフィン、ホスファイト、アミン、及びN−複素環カルベンから選択することができる。配位子は、遷移金属に配位する少なくとも1つのリン原子及び/又はアミン及び/又はカルベン基を含むことが好ましく、遷移金属に配位する少なくとも1つのリン原子及び/又はアミンを含むことがより好ましい。   The ligand may include at least one phosphorus atom, nitrogen atom, oxygen atom, and / or carbene group coordinated to the transition metal. The ligand can be selected from, for example, phosphines, phosphites, amines, and N-heterocyclic carbenes. The ligand preferably comprises at least one phosphorus atom and / or amine and / or carbene group coordinated to the transition metal, and comprises at least one phosphorus atom and / or amine coordinated to the transition metal. More preferred.

配位子が遷移金属に配位する少なくとも1つのリン原子を含む場合、少なくとも1つの基が第二級又は第三級炭素原子を介してリン原子に結合していることが好ましい。より好ましくは、第二級又は第三級炭素原子を介して少なくとも2つの基がリン原子に結合している。第二級又は第三級炭素原子を介してリン原子に結合している適切な基は、例えば、アダマンチル、tert−ブチル、シクロヘキシル、sec−ブチル、イソプロピル、フェニル、トリル、キシリル、メシチル、ナフチル、フルオレニル、又はアントラセニルである。これらのうち電子供与性が高い基が望ましく、具体的には、tert−ブチル、シクロヘキシルが好ましい。   When the ligand contains at least one phosphorus atom coordinated to the transition metal, it is preferred that at least one group is bonded to the phosphorus atom via a secondary or tertiary carbon atom. More preferably, at least two groups are bonded to the phosphorus atom via a secondary or tertiary carbon atom. Suitable groups attached to the phosphorus atom via a secondary or tertiary carbon atom are, for example, adamantyl, tert-butyl, cyclohexyl, sec-butyl, isopropyl, phenyl, tolyl, xylyl, mesityl, naphthyl, Fluorenyl or anthracenyl. Of these, a group having a high electron donating property is desirable, and specifically, tert-butyl and cyclohexyl are preferable.

配位子が遷移金属に配位する少なくとも1つのN−複素環カルベンを含む場合、好ましくは少なくとも1つの基が第三級炭素原子を介してカルベン基の少なくとも1つのα−窒素原子に結合している。第三級炭素原子を介して窒素原子に結合している適切な基は、例えば、アダマンチル又はtert−ブチルであり、tert−ブチルであることが好ましい。   When the ligand comprises at least one N-heterocyclic carbene that coordinates to the transition metal, preferably at least one group is bonded to at least one α-nitrogen atom of the carbene group via a tertiary carbon atom. ing. A suitable group bonded to the nitrogen atom via a tertiary carbon atom is, for example, adamantyl or tert-butyl, preferably tert-butyl.

本発明で使用できる少なくとも1つのリン原子を含む配位子の具体例としては、単座配位子としては、例えば、トリメチルホスフィン等のトリアルキルホスフィン;トリシクロヘキシルホスフィン(PCy3)等のトリシクロアルキルホスフィン;トリフェニルホスフィン、トリ(4−フルオロメチルフェニル)ホスフィン等のトリアリールホスフィン;トリ−2−フラニルホスフィン等のトリヘテロアリールホスフィン;トリフェニルホスフィンオキシド等のホスホラン配位子等が挙げられ、2座配位子としては、ビス(ジフェニルホスフィノ)メタン(dppm)、1,2−ビス(ジフェニルホスフィノ)エタン(dppe)、1,3−ビス(ジフェニルホスフィノ)プロパン(dppp)、1,4−ビス(ジフェニルホスフィノ)ブタン(dppb)、1,5−ビス(ジフェニルホスフィノ)ペンタン(dpppe)、1,6−ビス(ジフェニルホスフィノ)ヘキサン、1,1’−ビス(ジフェニルホスフィノ)フェロセン、1、2−ビス(ジペンタフルオロフェニルホスフィノ)エタン、1、2−ビス(ジシクロヘキシルホスフィノ)エタン、1、3−ビス(ジシクロヘキシルホスフィノ)プロパン、1、4−ビス(ジシクロヘキシルホスフィノ)ブタン、1、2−ビス(ジ−t−ブチルホスフィノ)エタン、1,2−ビス(ジフェニルホスフィノ)ベンゼン、1,2−ビス(ビス(3、5−ジメチルフェニル)ホスフィノ)エタン、1,3−ビス(ビス(3、5−ジメチルフェニル)ホスフィノ)プロパン、1,4−ビス(ビス(3、5−ジメチルフェニル)ホスフィノ)ブタン、1,2−ビス(シクロヘキシルホスフィノ)エタン、1,4−ビス(ビス(3、5−ジ−t−ブチルフェニル)ホスフィノ)ブタン、1,4−ビス(ビス(3、5−ジメトキシフェニル)ホスフィノ)ブタン、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ビス(3、5−ジメチルフェニル)ホスフィノ)−1,1’−ビナフチル、(2S,3S)−(−)−ビス(ジフェニルホスフィノ)ブタン、(S,S)−1、2−ビス[(2−メトキシフェニル)フェニルホスフィノ]エタン((S,S)−DIPAMP)、(R,R)−(−)−2,3−ビス(tert−ブチルメチルホスフィノ)キノキサリン(QuinoxP*)、(R,R)−1,2−ビス(tert−ブチルメチルホスフィノ)ベンゼン(BenzP*)、1,1,1−トリス(ジフェニルホスフィノメチル)エタン、1,1,1−トリス(ビス(3、5−ジメチルフェニル)ホスフィノメチル)エタン、1,1,1−トリス(ジフェニルホスフィノ)メタン、トリス(2−ジフェニルホスフィノエチル)ホスフィン、(オキシジ−2,1−フェニレン)ビス(ジフェニルホスフィン)、4,5−ビス(ジフェニルホスフィノ)−9,9−ジメチルキサンテン、4,5−ビス(ジフェニルホスフィノ)−9,9−ジメチルキサンテン、等が挙げられ、3座配位子としては、ビス(2−ジフェニルホスフィノエチル)フェニルホスフィン、1,1,1−トリス(ジフェニルホスフィノメチル)エタン、等が挙げられ、4座配位子としては、トリス(2−ジフェニルホスフィノエチル)フェニルホスフィン等が挙げられる。なかでも、1,2−ビス(ジフェニルホスフィノ)エタン(dppe)、1、2−ビス(ジシクロヘキシルホスフィノ)エタン、1、2−ビス(ジ−t−ブチルホスフィノ)エタン、BenzPが好ましい。 Specific examples of the ligand containing at least one phosphorus atom that can be used in the present invention include monodentate ligands such as trialkylphosphine such as trimethylphosphine; tricycloalkylphosphine such as tricyclohexylphosphine (PCy3). A triarylphosphine such as triphenylphosphine and tri (4-fluoromethylphenyl) phosphine; a triheteroarylphosphine such as tri-2-furanylphosphine; a phosphorane ligand such as triphenylphosphine oxide; Bidentate ligands include bis (diphenylphosphino) methane (dppm), 1,2-bis (diphenylphosphino) ethane (dppe), 1,3-bis (diphenylphosphino) propane (dppp), 1, 4-bis (diphenylphosphino) buta (Dppb), 1,5-bis (diphenylphosphino) pentane (dpppe), 1,6-bis (diphenylphosphino) hexane, 1,1′-bis (diphenylphosphino) ferrocene, 1,2-bis ( Dipentafluorophenylphosphino) ethane, 1,2-bis (dicyclohexylphosphino) ethane, 1,3-bis (dicyclohexylphosphino) propane, 1,4-bis (dicyclohexylphosphino) butane, 1,2-bis (Di-t-butylphosphino) ethane, 1,2-bis (diphenylphosphino) benzene, 1,2-bis (bis (3,5-dimethylphenyl) phosphino) ethane, 1,3-bis (bis ( 3,5-dimethylphenyl) phosphino) propane, 1,4-bis (bis (3,5-dimethylphenyl) phosphino) Tan, 1,2-bis (cyclohexylphosphino) ethane, 1,4-bis (bis (3,5-di-t-butylphenyl) phosphino) butane, 1,4-bis (bis (3,5-dimethoxy) Phenyl) phosphino) butane, 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl, 2,2′-bis (bis (3,5-dimethylphenyl) phosphino) -1,1′-binaphthyl , (2S, 3S)-(−)-bis (diphenylphosphino) butane, (S, S) -1,2-bis [(2-methoxyphenyl) phenylphosphino] ethane ((S, S) -DIPAMP ), (R, R)-(−)-2,3-bis (tert-butylmethylphosphino) quinoxaline (QuinoxP *), (R, R) -1,2-bis (tert-butylmethylphosphino) Ben Zen (BenzP *), 1,1,1-tris (diphenylphosphinomethyl) ethane, 1,1,1-tris (bis (3,5-dimethylphenyl) phosphinomethyl) ethane, 1,1,1- Tris (diphenylphosphino) methane, tris (2-diphenylphosphinoethyl) phosphine, (oxydi-2,1-phenylene) bis (diphenylphosphine), 4,5-bis (diphenylphosphino) -9,9-dimethyl Xanthene, 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene, and the like. Examples of the tridentate ligand include bis (2-diphenylphosphinoethyl) phenylphosphine, 1,1,1. -Tris (diphenylphosphinomethyl) ethane, etc., and examples of the tetradentate ligand include tris (2-diphenylphosphinoe). Til) phenylphosphine and the like. Of these, 1,2-bis (diphenylphosphino) ethane (dppe), 1,2-bis (dicyclohexylphosphino) ethane, 1,2-bis (di-t-butylphosphino) ethane, and BenzP * are preferable. .

上記の配位子に加えて、遷移金属錯体は、ハロゲン化物、アミン、アミド、酸化物、リン化物、カルボキシラート、アセチルアセトナート、アリールスルホナート又はアルキルスルホナート、水素化物、一酸化炭素、オレフィン、ジエン、シクロオレフィン、ニトリル、芳香族及び複素環式芳香族、エーテル、三フッ化リン、ホスホール、ホスファベンゼン、並びに単座、2座、及び多座ホスフィナイト、ホスホナイト、ホスホラミダイト、及びホスファイト配位子から選択される少なくとも1つのさらなる配位子も有していてもよい。   In addition to the above ligands, transition metal complexes can be halides, amines, amides, oxides, phosphides, carboxylates, acetylacetonates, aryl sulfonates or alkyl sulfonates, hydrides, carbon monoxide, olefins. , Dienes, cycloolefins, nitriles, aromatic and heterocyclic aromatics, ethers, phosphorus trifluoride, phospholes, phosphabenzenes, and monodentate, bidentate, and polydentate phosphinites, phosphonites, phosphoramidites, and phosphite coordination It may also have at least one further ligand selected from the children.

本発明において好適に使用できる遷移金属錯体の具体例としては、下記式(1)で表されるものを挙げることができる。

Figure 2017144397
(式中、Niはニッケル原子を表し、Pはリン原子を表し、R、R、R、Rはそれぞれ独立してアルキル基、シクロアルキル基又はアリール基を表す。) Specific examples of the transition metal complex that can be suitably used in the present invention include those represented by the following formula (1).
Figure 2017144397
(In the formula, Ni represents a nickel atom, P represents a phosphorus atom, and R 1 , R 2 , R 3 , and R 4 each independently represents an alkyl group, a cycloalkyl group, or an aryl group.)

式(1)中のR、R、R及びRとしてのアルキル基、シクロアルキル基及びアリール基の例としては、後述するものが挙げられる。 Examples of the alkyl group, cycloalkyl group and aryl group as R 1 , R 2 , R 3 and R 4 in formula (1) include those described later.

本発明において、「アルキル」という表現は、直鎖及び分岐アルキル基を含む。アルキル基としては、C〜C20アルキル基が好ましく、C〜C12アルキル基がより好ましく、C〜Cアルキル基が更に好ましく、C〜Cアルキル基が特に好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、2−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、2−ペンチル基、2−メチルブチル基、3−メチルブチル基、1,2−ジメチルプロピル基、1,1−ジメチルプロピル基、2,2−ジメチルプロピル基、1−エチルプロピル基、n−ヘキシル基、2−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、1,1−ジメチルブチル基、2,2−ジメチルブチル基、3,3−ジメチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチルブチル基、2−エチルブチル基、1−エチル−2−メチルプロピル基、n−へプチル基、2−ヘプチル基、3−ヘプチル基、2−エチルペンチル基、1−プロピルブチル基、n−オクチル基、2−エチルヘキシル基、2−プロピルヘプチル基、ノニル基、及びデシル基が挙げられる。 In the present invention, the expression “alkyl” includes straight-chain and branched alkyl groups. The alkyl group is preferably a C 1 -C 20 alkyl group, more preferably a C 1 -C 12 alkyl group, more preferably C 1 -C 8 alkyl group, C 1 -C 4 alkyl group is particularly preferred. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, 2-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, n-hexyl group, 2-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethylbutyl group, 2- Tylbutyl group, 1-ethyl-2-methylpropyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, 2-ethylpentyl group, 1-propylbutyl group, n-octyl group, 2-ethylhexyl group , 2-propylheptyl group, nonyl group, and decyl group.

また、「アルキル」という表現は、一般に1〜5個、好ましくは1〜3個の置換基、より好ましくは1個の置換基を有する置換アルキル基を含むものとする。前記置換基の好ましい例としては、アルコキシ基、シクロアルキル基、アリール基、ヘテロアリール基、ヒドロキシル基、ハロゲン、NE基、NE3+基、カルボキシラート、及びスルホナートから選択される。前記置換アルキル基が、パーフルオロアルキル基である場合、その好ましい例はトリフルオロメチルである。E基、E基、及びE基はそれぞれ独立に水素、アルキル基、シクロアルキル基、及びアリール基から選択される。NE基は、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジプロピルアミノ基、N,N−ジイソプロピルアミノ基、N,N−ジ−n−ブチルアミノ基、N,N−ジ−tert−ブチルアミノ基、N,N−ジシクロヘキシルアミノ基、又はN,N−ジフェニルアミノ基であることが好ましい。 In addition, the expression “alkyl” generally includes substituted alkyl groups having 1 to 5, preferably 1 to 3, and more preferably 1 substituent. Preferred examples of the substituent are selected from an alkoxy group, a cycloalkyl group, an aryl group, a heteroaryl group, a hydroxyl group, a halogen, a NE 1 E 2 group, a NE 1 E 2 E 3+ group, a carboxylate, and a sulfonate. The When the substituted alkyl group is a perfluoroalkyl group, a preferred example thereof is trifluoromethyl. The E 1 group, E 2 group, and E 3 group are each independently selected from hydrogen, an alkyl group, a cycloalkyl group, and an aryl group. The NE 1 E 2 group is an N, N-dimethylamino group, an N, N-diethylamino group, an N, N-dipropylamino group, an N, N-diisopropylamino group, or an N, N-di-n-butylamino group. N, N-di-tert-butylamino group, N, N-dicyclohexylamino group, or N, N-diphenylamino group is preferable.

本発明において、「シクロアルキル」という表現は、単環式及び多環式アルキル基、特に単環式、二環式、又は三環式アルキル基を含む。シクロアルキル基としては、C〜C20シクロアルキル基が好ましく、C〜C12シクロアルキル基がより好ましく、C〜Cシクロアルキル基が更に好ましい。シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、及びアダマンチル基が挙げられる。また、「シクロアルキル」という表現は、一般に1〜5個、好ましくは1〜3個の置換基、より好ましくは1個の置換基を有する置換シクロアルキル基を含む。これらは好ましくはアルコキシ基、アリール基、ヘテロアリール基、ヒドロキシル基、ハロゲン、NE基、NE3+基、カルボキシラート、及びスルホナートから選択される。E基、E基、E基、NE基については上述した通りである。 In the present invention, the expression “cycloalkyl” includes monocyclic and polycyclic alkyl groups, especially monocyclic, bicyclic or tricyclic alkyl groups. As the cycloalkyl group, a C 3 to C 20 cycloalkyl group is preferable, a C 4 to C 12 cycloalkyl group is more preferable, and a C 5 to C 8 cycloalkyl group is still more preferable. Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and an adamantyl group. Further, the expression “cycloalkyl” generally includes substituted cycloalkyl groups having 1 to 5, preferably 1 to 3, and more preferably 1 substituent. These are preferably selected from alkoxy groups, aryl groups, heteroaryl groups, hydroxyl groups, halogens, NE 1 E 2 groups, NE 1 E 2 E 3+ groups, carboxylates, and sulfonates. The E 1 group, E 2 group, E 3 group, and NE 1 E 2 group are as described above.

本発明において、「アリール」という表現は、非置換及びまた置換アリール基を含み、C〜C18アリール基であることが好ましく、その具体例としては、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、フルオレニル基、アントラセニル基、フェナントレニル基、及びナフタセニルなどが挙げられ、これらのうち、フェニル基及びナフチル基が好ましい。これらのアリール基は置換されている場合、アルキル基、アルコキシ基、カルボキシラート、トリフルオロメチル基、スルホナート、NE基、アルキレン−NE基、ニトロ基、シアノ基、又はハロゲンから選択される、一般に1〜5個、好ましくは1〜3個の置換基、より好ましくは1個の置換基を有していてもよい。前記置換アリール基がパーフルオロアリール基である場合、その好ましい例はペンタフルオロフェニル基である。 In the present invention, the expression “aryl” includes unsubstituted and also substituted aryl groups, and is preferably a C 6 -C 18 aryl group. Specific examples thereof include a phenyl group, a tolyl group, a xylyl group, a mesityl group. Group, naphthyl group, fluorenyl group, anthracenyl group, phenanthrenyl group, naphthacenyl group and the like, among which phenyl group and naphthyl group are preferable. When these aryl groups are substituted, they can be alkyl groups, alkoxy groups, carboxylates, trifluoromethyl groups, sulfonates, NE 1 E 2 groups, alkylene-NE 1 E 2 groups, nitro groups, cyano groups, or halogens. It may have 1 to 5 substituents, preferably 1 to 3 substituents, more preferably 1 substituent selected. When the substituted aryl group is a perfluoroaryl group, a preferred example thereof is a pentafluorophenyl group.

本発明において、カルボンキシラート及びスルホナートは、好ましくはそれぞれカルボン酸官能基及びスルホン酸官能基の誘導体であり、より具体的には金属カルボキシラート又は金属スルホナート、カルボン酸エステル又はスルホン酸エステル官能基、又はカルボキサミド又はスルホンアミド官能基であることが好ましい。これらの例としては、C〜Cアルカノールとのエステル、例えばメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、及びtert−ブタノールなどとのエステルが挙げられる。 In the present invention, the carbonoxylate and the sulfonate are preferably derivatives of a carboxylic acid functional group and a sulfonic acid functional group, respectively, more specifically, a metal carboxylate or metal sulfonate, a carboxylic acid ester or a sulfonic acid ester functional group, Or it is preferably a carboxamide or sulfonamide functional group. Examples of these are esters of C 1 -C 4 alkanols, such as methanol, ethanol, n- propanol, isopropanol, n- butanol, sec- butanol, and tert- butanol esters and the like.

「アルキル」及び「アリール」という表現に関する上記の説明は、「アルコキシ」及び「アリールオキシ」という表現に同様に適用される。   The above description regarding the expressions “alkyl” and “aryl” applies equally to the expressions “alkoxy” and “aryloxy”.

前記遷移金属錯体の製造方法については、例えば、上記非特許文献1及び2、並びに特許文献1及び2に記載されているような公知の製造方法を採用することができる。   About the manufacturing method of the said transition metal complex, the well-known manufacturing method as described in the said nonpatent literature 1 and 2 and the patent documents 1 and 2 is employable, for example.

(連通孔構造を有する多孔質担体)
本発明で用いる連通孔構造を有する多孔質担体は、Log微分細孔容積分布(dV/dlog(D))のモード径が0.8nm以上であり、かつ、モード径±2nmの範囲内にある細孔の容積の合計が、全細孔容積の80%以上であるという特定の細孔分布を有する。
本発明において、Log微分細孔容積分布(dV/dlog(D))のモード径はガス吸着法により測定する。具体的には、ガス吸着法による測定結果に基づき、試料の細孔径を横軸に、試料中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線を得、この分布曲線においてピーク値(最大頻度)をとる点の細孔径をモード径と称す。
また、細孔容積とは、この測定法によって試料中に侵入した吸着ガスの総量であり、つまり試料中の空隙量に相当し、微分細孔分布曲線を示すグラフにおいて、微分細孔分布曲線の下部の領域の面積に相当する。積分細孔分布曲線は、微分細孔分布曲線の積分値を細孔径に対して表示した分布曲線である。よって、前記「モード径±2nmの範囲内にある細孔の容積の合計」(以下、屡々「モード径細孔の容積率」と称す。)は、当該グラフにおいて、微分細孔分布曲線の下部の領域の面積(全細孔容積に相当)における、モード径±2nmの範囲内にある細孔に相当する箇所が占める面積の割合(%)を意味する。
(Porous carrier having a communication hole structure)
The porous carrier having a communicating pore structure used in the present invention has a log differential pore volume distribution (dV / dlog (D)) with a mode diameter of 0.8 nm or more and a mode diameter within a range of ± 2 nm. The total pore volume has a specific pore distribution that is 80% or more of the total pore volume.
In the present invention, the mode diameter of the Log differential pore volume distribution (dV / dlog (D)) is measured by a gas adsorption method. Specifically, based on the measurement results by the gas adsorption method, a distribution curve is obtained by plotting the pore diameter of the sample on the horizontal axis and the pore volume corresponding to the pore diameter in the sample on the vertical axis. The pore diameter at the point where the peak value (maximum frequency) is taken is called the mode diameter.
The pore volume is the total amount of adsorbed gas that has entered the sample by this measurement method, that is, corresponds to the amount of voids in the sample, and in the graph showing the differential pore distribution curve, This corresponds to the area of the lower region. The integral pore distribution curve is a distribution curve in which the integral value of the differential pore distribution curve is displayed with respect to the pore diameter. Therefore, the “total pore volume within the range of mode diameter ± 2 nm” (hereinafter often referred to as “volume ratio of mode diameter pores”) is the lower part of the differential pore distribution curve in the graph. Means the ratio (%) of the area occupied by the portion corresponding to the pores in the range of the mode diameter ± 2 nm in the area of the region (corresponding to the total pore volume).

前記モード径は、0.8nm以上であれば、特に限定されないが、例えば、8〜30nmが好ましく、10〜20nmがより好ましい。モード径が上記下限値未満では、遷移金属錯体を担持させる際に、遷移金属錯体を担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、CO等の原料が拡散しにくくなり、結果として遷移金属錯体と原料とが十分に接触できなくなるなどして、十分な触媒活性が発揮されないおそれがある。前記モード径が上記上限値超では、担体の比表面積が小さくなりすぎて、遷移金属錯体を担持させる際にその分散性が低下し、目的化合物の製造効率が低下するおそれがある。 Although it will not specifically limit if the said mode diameter is 0.8 nm or more, For example, 8-30 nm is preferable and 10-20 nm is more preferable. If the mode diameter is less than the above lower limit value, it becomes difficult to put the transition metal complex into the support when the transition metal complex is supported. As a result, the surface area of the support cannot be fully utilized, or raw materials such as CO 2 diffuse. As a result, the transition metal complex and the raw material cannot be sufficiently brought into contact with each other, and sufficient catalytic activity may not be exhibited. When the mode diameter exceeds the above upper limit, the specific surface area of the support becomes too small, and when the transition metal complex is supported, the dispersibility is lowered and the production efficiency of the target compound may be lowered.

前記モード径細孔の容積率は、全細孔容積の80%以上であれば、特に限定されないが、例えば、80%以上が好ましく、85%以上がより好ましい。このモード径細孔の容積率が、上記下限未満であると、細孔径分布が不均一となり、遷移金属錯体を担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、CO等の原料が拡散しにくくなり、結果として遷移金属錯体と原料とが十分に接触できなくなるなどして、十分な触媒活性が発揮されないおそれがある。 The volume ratio of the mode diameter pores is not particularly limited as long as it is 80% or more of the total pore volume. For example, 80% or more is preferable, and 85% or more is more preferable. When the volume ratio of the mode diameter pores is less than the above lower limit, the pore diameter distribution becomes non-uniform and it becomes difficult to put the transition metal complex into the inside of the support, and as a result, the surface area of the support cannot be fully utilized, A raw material such as CO 2 becomes difficult to diffuse, and as a result, the transition metal complex and the raw material cannot be sufficiently brought into contact with each other, so that sufficient catalytic activity may not be exhibited.

また、多孔質担体における細孔容積の合計(全細孔容積)は、特に限定されないが、例えば、0.1〜2mL/gが好ましく、0.2〜1.5mL/gがより好ましい。全細孔容積が上記下限値未満では、多孔質担体の比表面積が小さくなりすぎて、遷移金属錯体を担持させる際にその分散性が低下し、触媒性能が低下するおそれがある。全細孔容積が上記上限値超では、細孔直径が小さくなりすぎて、遷移金属錯体を担持させる際に、背に金属錯体を担体内部にまで入れにくくなり、結果として担体の表面積を十分に利用できなかったり、CO等の原料が拡散しにくくなり、結果として遷移金属とCOや他の原料化合物とが十分に接触できなくなるなどして、不飽和カルボン酸等の目的化合物の製造効率が低くなるおそれがある。尚、全細孔容積は、前述のガス吸着法により求めることができる。 The total pore volume (total pore volume) in the porous carrier is not particularly limited, but is preferably 0.1 to 2 mL / g, and more preferably 0.2 to 1.5 mL / g, for example. When the total pore volume is less than the above lower limit, the specific surface area of the porous carrier becomes too small, and when the transition metal complex is supported, its dispersibility is lowered, and the catalyst performance may be lowered. If the total pore volume exceeds the above upper limit, the pore diameter becomes too small, and it becomes difficult to put the metal complex in the back when the transition metal complex is supported, resulting in sufficient surface area of the support. The production efficiency of target compounds such as unsaturated carboxylic acids may not be available or it may be difficult for raw materials such as CO 2 to diffuse and as a result, transition metals and CO 2 or other raw material compounds cannot be sufficiently contacted. May be low. The total pore volume can be determined by the gas adsorption method described above.

本発明において、「連通孔構造を有する」とは、多孔質担体の孔が三次元網目状に形成されている構造を意味し、貫通孔を有することにより二酸化炭素等の気体を透過させる構造であることが好ましい。このような構造は、例えば、走査型電子顕微鏡(SEM)による観察等により確認することができる。   In the present invention, “having a communicating hole structure” means a structure in which the pores of the porous carrier are formed in a three-dimensional network, and a structure that allows a gas such as carbon dioxide to pass through by having a through hole. Preferably there is. Such a structure can be confirmed, for example, by observation with a scanning electron microscope (SEM).

前記多孔質担体は、窒素、酸素及び硫黄からなる群より選ばれる少なくとも1種の元素を含有する官能基を有することが好ましい。窒素含有官能基の例としては、アミノ基、置換アミノ基、アミド基、イミノ基、ニトロ基、シアノ基、イミダゾール残基、ニトリル基、ピリジル基等が挙げられ、これらのうち、アミノ基、置換アミノ基、アミド基イミダゾール残基が好ましい。酸素含有官能基の例としては、水酸基、カルボキシ基、カルボニル基、フェーノール性水酸基、アルコキシ基(メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基,n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等)等が挙げられ、これらのうち、カルボニル基、アルコキシ基が好ましい。硫黄含有官能基としては、硫酸基、チオール基、スルフィド基及びジスルフィド基等が挙げられ、これらのうち、チオール基が好ましい。   The porous carrier preferably has a functional group containing at least one element selected from the group consisting of nitrogen, oxygen and sulfur. Examples of nitrogen-containing functional groups include amino groups, substituted amino groups, amide groups, imino groups, nitro groups, cyano groups, imidazole residues, nitrile groups, pyridyl groups, among these, amino groups, substituted An amino group or an amide group imidazole residue is preferred. Examples of oxygen-containing functional groups include hydroxyl groups, carboxy groups, carbonyl groups, phenolic hydroxyl groups, alkoxy groups (methoxy groups, ethoxy groups, n-propoxy groups, isopropoxy groups, n-butoxy groups, isobutoxy groups, tert-butoxy groups). Group) and the like. Among these, a carbonyl group and an alkoxy group are preferable. Examples of the sulfur-containing functional group include a sulfuric acid group, a thiol group, a sulfide group, and a disulfide group, and among these, a thiol group is preferable.

また、多孔質担体は、二酸化炭素吸着能を有するものであることが好ましい。具体的には、前記多孔質担体の、定容法によるガス吸着法で測定される単位重量当たりの二酸化炭素吸着量が10〜800ml/gであることが好ましく、15〜600ml/gであることがより好ましく、20〜400ml/gであることが更に好ましい。多孔質担体の二酸化炭素吸着量が上記範囲内であることにより、多孔質担体の孔内に高い二酸化炭素濃度の反応系を形成することができ、それにより担持触媒全体として高い活性を発揮することができる。   Further, the porous carrier is preferably one having carbon dioxide adsorption ability. Specifically, the carbon dioxide adsorption amount per unit weight measured by the gas adsorption method by the constant volume method of the porous carrier is preferably 10 to 800 ml / g, and preferably 15 to 600 ml / g. Is more preferable, and it is still more preferable that it is 20-400 ml / g. When the amount of carbon dioxide adsorbed on the porous carrier is within the above range, a reaction system with a high carbon dioxide concentration can be formed in the pores of the porous carrier, thereby exhibiting high activity as a whole supported catalyst. Can do.

前記多孔質担体の耐熱温度が、200℃以上であることが好ましく、300℃以上であることがより好ましく、400℃以上であることが更に好ましい。前記耐熱温度が、この範囲にあることにより、反応中における触媒の劣化を有効に防止することが可能になる。ここで、耐熱温度の次のような方法で測定する。前記多孔質担体について、大気中、加熱温度 100、200、300、400、500、600℃、各温度における加熱時間 18時間の条件で熱劣化テストを行い、次いで多孔質担体についてCu−Kα線による粉末X線回折を行って熱による結晶の破壊状態を観察し、テスト後においてもX線反射強度に変化がなかったときの最高加熱温度を耐熱温度とする。   The heat resistance temperature of the porous carrier is preferably 200 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 400 ° C. or higher. When the heat resistant temperature is within this range, it becomes possible to effectively prevent the catalyst from being deteriorated during the reaction. Here, the heat resistance temperature is measured by the following method. The porous support was subjected to a heat deterioration test in the atmosphere at a heating temperature of 100, 200, 300, 400, 500, 600 ° C. and a heating time at each temperature of 18 hours, and the porous support was then subjected to Cu-Kα radiation. Powder X-ray diffraction is performed to observe the fracture state of the crystal due to heat, and the maximum heating temperature when the X-ray reflection intensity does not change after the test is defined as the heat resistant temperature.

前記多孔質担体の比表面積が、600m/g以上であることが好ましく、800m/g以上であることがより好ましい。比表面積が、この範囲にあることにより、充分な量の前記遷移金属錯体を担持することができる。また、比表面積の上限については特に制限はないが、工業的な生産性及び触媒強度の観点から、2500m/g以下とすることが好ましい。尚、前記の「比表面積」とは、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積である。 The specific surface area of the porous carrier is preferably 600 m 2 / g or more, and more preferably 800 m 2 / g or more. When the specific surface area is in this range, a sufficient amount of the transition metal complex can be supported. Moreover, although there is no restriction | limiting in particular about the upper limit of a specific surface area, it is preferable to set it as 2500 m < 2 > / g or less from a viewpoint of industrial productivity and catalyst strength. The “specific surface area” is a BET specific surface area measured by a BET gas adsorption method using nitrogen as an adsorption gas.

多孔質担体の大きさは、特に限定されないが、粒子径10〜1000μmのものが好ましい。上記下限値未満では、飛散しやすくなり、取り扱いが煩雑になりやすい。上記上限値超では、遷移金属錯体を担持させる際に、遷移金属錯体が担体内部に入りにくくなり、遷移金属錯体の担持量が少なくなって、触媒性能の向上の程度が小さくなるおそれがある。多孔質担体の粒子径は、篩分けにより調節される。
加えて、多孔質担体は、粒子径分布ができるだけ狭いものが好ましい。
尚、多孔質担体は、通常、粒状物として得られるが、必要に応じてバインダー等を用いて、成形してから使用してもよい。かかる成形処理は、担体の調製と同時に行うことにより、担持触媒を所望の形状を有する成形品として得ても良いし、粒状の担持触媒を調整した後に行ってもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。
The size of the porous carrier is not particularly limited, but those having a particle diameter of 10 to 1000 μm are preferable. If it is less than the said lower limit, it will be easy to scatter and handling will become complicated easily. If the amount exceeds the upper limit, when the transition metal complex is supported, the transition metal complex is less likely to enter the support, the amount of the transition metal complex supported is reduced, and the degree of improvement in catalyst performance may be reduced. The particle size of the porous carrier is adjusted by sieving.
In addition, the porous carrier preferably has a narrowest particle size distribution.
In addition, although a porous support | carrier is normally obtained as a granular material, you may use it, after shape | molding using a binder etc. as needed. Such a molding treatment may be performed simultaneously with the preparation of the carrier, whereby the supported catalyst may be obtained as a molded product having a desired shape, or may be performed after adjusting the granular supported catalyst. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.

また、前記多孔質担体の種類に関しては、上記した特定の細孔分布を有する限り特に制限はないが、シリカ、アルミナ、カーボン、ゼオライト、活性炭、粘土焼結体、及び有機金属構造体からなる群より選択された少なくとも1種の多孔性物質を用いることができる。これらのうち、二酸化炭素吸着能の観点から、有機金属構造体(Metal-Organic Framework:MOF)が好ましく、有機金属構造体の1種であるゼオライト型イミダゾレート骨格体(Zeolitic Imidazolate Framework:ZIF)であることがより好ましい。   The type of the porous carrier is not particularly limited as long as it has the specific pore distribution described above, but is a group consisting of silica, alumina, carbon, zeolite, activated carbon, clay sintered body, and organometallic structure. More selected at least one porous material can be used. Among these, from the viewpoint of carbon dioxide adsorption ability, an organometallic structure (Metal-Organic Framework: MOF) is preferable, and a zeolitic imidazolate framework (Zeolitic Imidazolate Framework: ZIF), which is one of the organometallic structures. More preferably.

MOFは、金属イオンと有機架橋配位子(多座配位子)の配位結合・自己集合を経て合成される結晶性の3次元ミクロポーラス材料であり、均一なミクロ孔と高い比表面積を有する。また、MOFの1種であるZIFは、金属として亜鉛(Zn)またはコバルト(Co)を含み、また有機架橋配位子としてイミダゾールを含む、ゼオライト様トポロジーを有する材料である。ZIFを含むMOFは、規則正しい細孔構造を有することにより、該細孔内に気体を高い濃度で取り込むことができる。そのため、MOF上で進行する触媒反応の反応速度を高めることができるため、担持触媒全体として高い活性を発揮することができる。   MOF is a crystalline three-dimensional microporous material synthesized through coordination bonds and self-assembly of metal ions and organic bridging ligands (polydentate ligands). It has uniform micropores and high specific surface area. Have. ZIF, which is a kind of MOF, is a material having a zeolite-like topology that contains zinc (Zn) or cobalt (Co) as a metal and imidazole as an organic bridging ligand. The MOF containing ZIF has a regular pore structure, so that gas can be taken into the pores at a high concentration. Therefore, since the reaction rate of the catalytic reaction that proceeds on the MOF can be increased, the entire supported catalyst can exhibit high activity.

MOFには、複数の金属、金属酸化物、金属クラスタ、または金属酸化物クラスタ構造単位を備えたMOFが知られているが、これらに限定されるものではない。前記金属は、遷移金属およびベリリウムから選択することができる。より具体的な例としては、亜鉛(Zn)、カドミウム(Cd)、水銀(Hg)、およびベリリウム(Be)を挙げることができる。金属構造単位を有機化合物で結合して、多孔質構造を形成することができ、隣接する金属構造単位同士を結合する有機化合物(配位子)として、1,3,5−ベンゼントリベンゾエート(BTB)、1,4−ベンゼンジカルボキシレート(BDC)、シクロブチル1,4−ベンゼンジカルボキシレート(CB BDC)、2−アミノ1,4ベンゼンジカルボキシレート(H2N BDC)、テトラヒドロピレン2,7−ジカルボキシレート(HPDC)、テルフェニルジカルボキシレート(TPDC)、2,6ナフタレンジカルボキシレート(2,6−NDC)、ピレン2,7−ジカルボキシレート(PDC)、ビフェニルジカルボキシレート(BDC)、またはフェニール化合物を有する任意のジカルボキシレートを挙げることができる。   As MOFs, MOFs having a plurality of metals, metal oxides, metal clusters, or metal oxide cluster structural units are known, but are not limited thereto. The metal can be selected from transition metals and beryllium. More specific examples include zinc (Zn), cadmium (Cd), mercury (Hg), and beryllium (Be). A metal structure unit can be bonded with an organic compound to form a porous structure, and 1,3,5-benzenetribenzoate (BTB) is used as an organic compound (ligand) for bonding adjacent metal structure units. ), 1,4-benzenedicarboxylate (BDC), cyclobutyl 1,4-benzenedicarboxylate (CB BDC), 2-amino 1,4 benzenedicarboxylate (H2N BDC), tetrahydropyrene 2,7-di Carboxylate (HPDC), terphenyl dicarboxylate (TPDC), 2,6 naphthalene dicarboxylate (2,6-NDC), pyrene 2,7-dicarboxylate (PDC), biphenyl dicarboxylate (BDC), Or any dicarboxylate with a phenyl compound can be mentioned.

MOFの具体例としては、一般式ZnO(1,3,5−ベンゼントリベンゾエート)で表される構造を含むMOF−177;IRMOF−Iとしても知られる、一般式ZnO(1,4−ベンゼンジカルボキシレート)で表される構造を含むMOF−5;一般式Mg(2,5−ジヒドロキシテレフタル酸)で表される構造を含むMOF−74;一般式Cu(3,3’,5,5’−ビフェニルテトラカルボキシレート)で表される構造を含むMOF−505;一般式ZnO(シクロブチル1,4−ベンゼンジカルボキシレート)で表される構造を含むIRMOF−6、一般式ZnO(2−アミノ1,4ベンゼンジカルボキシレート)で表される構造を含むIRMOF−3;一般式ZnO(テルフェニルジカルボキシレート)またはZnO(テトラヒドロピレン2,7−ジカルボキシレート)で表される構造を含むIRMOF−11;及び一般式ZnO(2,6ナフタレンジカルボキシレート)で表される構造を含むIRMOF−8が挙げられる。 Specific examples of MOF include MOF-177 including a structure represented by the general formula Zn 4 O (1,3,5-benzenetribenzoate) 2 ; general formula Zn 4 O (1 also known as IRMOF-I , 4-benzenedicarboxylate) MOF-5 including a structure represented by 3 ; MOF-74 including a structure represented by general formula Mg 2 (2,5-dihydroxyterephthalic acid); General formula Cu 2 (3 , 3 ', MOF-505 containing a structure represented by 5,5'-biphenyltetracarboxylic carboxylate); a structure represented by the general formula Zn 4 O (cyclobutyl 1,4 benzene dicarboxylate) IRMOF- 6, the general formula Zn 4 O (2-amino-1,4 benzene dicarboxylate) IRMOF-3 contains a structure represented by 3; formula Zn 4 O (terphenyl dicarboxylate Represented by the general formula Zn 4 O (2,6-naphthalene dicarboxylate) 3; rate) 3 or Zn 4 O (tetrahydropyrene 2,7- dicarboxylate) IRMOF-11 comprising a structure represented by 3 IRMOF-8 containing the structure.

ZIFの具体例としては、一般式Zn(ベンズイミダゾレート)(2−ニトロイミダゾレート)で表される構造を含むZIF−68;Zn(シクロベンズイミダゾレート)( 2−ニトロイミダゾレート)で表される構造を含むZIF−69;一般式Zn(ベンズイミダゾレート)で表される構造を含むZIF−7、Co(ベンズイミダゾレート)で表される構造を含むZIF−9;一般式Zn(ベンズイミダゾレート)で表される構造を含むZIF−11;Zn(イミダゾレート−2−カルボキシアルデヒド)で表される構造を含むZIF−90;一般式Zn(4−シアノイミダゾレート)(2−ニトロイミダゾレート)で表されるZIF−82;一般式Zn(イミダゾレート)(2−ニトロイミダゾレート)で表されるZIF−70;一般式Zn(6−メチルベンズイミダゾレート)(2−ニトロイミダゾレート)で表されるZIF−79;及び一般式Zn(6−ブロモベンズイミダゾレート)(2−ニトロイミダゾレート)で表されるZIF−81が挙げられる。 Specific examples of ZIF include ZIF-68 including a structure represented by the general formula Zn (benzimidazolate) (2-nitroimidazolate); Zn (cyclobenzimidazolate) (2-nitroimidazolate) ZIF-69 containing the structural that; formula Zn 2; formula Zn (benzimidazolyl rate) ZIF-9 containing ZIF-7, Co structure represented by (benzimidazolyl rate) 2 having a structure represented by 2 ZIF-11 containing a structure represented by (benzimidazolate); ZIF-90 containing a structure represented by Zn (imidazolate-2-carboxaldehyde) 2 ; Zn (4-cyanoimidazolate) of general formula (2 ZIF-82 represented by -nitroimidazolate); ZIF represented by the general formula Zn (imidazolate) (2-nitroimidazolate) 70; ZIF-79 represented by the general formula Zn (6-methylbenzimidazolate) (2-nitroimidazolate); and represented by the general formula Zn (6-bromobenzimidazolate) (2-nitroimidazolate) ZIF-81.

前記のMOFやZIFに関しては、市販のものを使用してもよく、WO2007/111738号、Nature 453,207−211(8 May 2008)、特開2014−156434号等に記載されている公知の方法で製造しても良い。   As for the MOF and ZIF, commercially available ones may be used, and known methods described in WO2007 / 117117, Nature 453, 207-211 (8 May 2008), JP2014-156434, etc. May be manufactured.

本発明の方法で用いる触媒は、前記遷移金属錯体及び前記多孔質担体以外のその他の成分が配合されたものであってもよい。その他の成分としては、本発明の効果を損なわないものであれば特に限定されるものではない。   The catalyst used in the method of the present invention may contain other components other than the transition metal complex and the porous carrier. Other components are not particularly limited as long as the effects of the present invention are not impaired.

(触媒の調整)
本発明において、前記遷移金属錯体を前記多孔質担体に担持させて触媒(以下、単に「担持触媒」と称す。)を調製する方法は特に限定されるものではないが、これらの成分を何らかの方法により混合し、少なくとも前記遷移金属錯体と前記多孔質担体との複合体を形成することが好ましい。複合体において、前記遷移金属錯体は、前記多孔質担体の表面に固着していてもよく、多孔性構造内に包含されていてもよいが、前記遷移金属錯体の少なくとも一部が前記多孔質担体の多孔性構造内に包含されていることが好ましい。
(Catalyst adjustment)
In the present invention, a method for preparing a catalyst (hereinafter simply referred to as “supported catalyst”) by supporting the transition metal complex on the porous carrier is not particularly limited, but these components may be used in any method. To form a complex of at least the transition metal complex and the porous carrier. In the composite, the transition metal complex may be fixed to the surface of the porous carrier or may be included in a porous structure, but at least a part of the transition metal complex is the porous carrier. It is preferable to be included in the porous structure.

担持触媒を調製する方法としては、公知の方法を採用することができ、例えば、以下の(A)及び(B)の方法が挙げられる。
(A)粒状の遷移金属錯体と多孔質担体とを物理混合した後、加熱する方法。
(B)遷移金属錯体の溶液に多孔質担体を添加し、多孔質担体中に遷移金属錯体を含浸させる方法。
以下、方法(A)及び(B)をそれぞれ説明する。
As a method for preparing the supported catalyst, a known method can be employed, and examples thereof include the following methods (A) and (B).
(A) A method in which a granular transition metal complex and a porous carrier are physically mixed and then heated.
(B) A method in which a porous carrier is added to a solution of a transition metal complex, and the transition metal complex is impregnated in the porous carrier.
Hereinafter, methods (A) and (B) will be described.

(方法(A))
方法(A)では、粒状の遷移金属錯体と多孔質担体とを物理混合した後、加熱を行うことにより、組成物を調製する。遷移金属錯体と多孔質担体とを物理混合する方法は特に限定されるものではなく、乳鉢による混合、ボールミルによる混合等、通常の方法により行うことができる。
加熱処理は、真空条件下又はHe等の不活性ガスの存在下で加熱処理することにより行うことができる。加熱は50〜200℃、好ましくは60〜150℃、より好ましくは80〜120℃、で、24〜150時間行うことが好ましい。
(Method (A))
In the method (A), a particulate transition metal complex and a porous carrier are physically mixed and then heated to prepare a composition. The method of physically mixing the transition metal complex and the porous carrier is not particularly limited, and can be performed by a usual method such as mixing with a mortar or ball mill.
The heat treatment can be performed by heat treatment under vacuum conditions or in the presence of an inert gas such as He. Heating is preferably performed at 50 to 200 ° C., preferably 60 to 150 ° C., more preferably 80 to 120 ° C. for 24 to 150 hours.

(方法(B))
方法(B)では、遷移金属錯体の溶液に多孔質担体を添加し、多孔質担体中に遷移金属錯体を含浸させ、その後、必要に応じて加熱、留去等することにより、組成物を調製する。
(Method (B))
In the method (B), a porous carrier is added to the transition metal complex solution, the transition metal complex is impregnated in the porous carrier, and then the composition is prepared by heating, distilling, etc. as necessary. To do.

溶媒としては遷移金属錯体が良好な溶解性を有する溶媒であれば特に制限はない。例としては、ベンゼン、トルエン及びキシレンなどの芳香族炭化水素、クロロベンゼンなどのハロゲン化芳香族炭化水素、テトラヒドロフラン(THF)などのエーテル、メタノール、エタノール及びイソプロパノールなどのアルコール、ジメチルホルムアミド、ジメチルスルホキシド、及び水が挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。好ましい溶媒は、THFである。   The solvent is not particularly limited as long as the transition metal complex has good solubility. Examples include aromatic hydrocarbons such as benzene, toluene and xylene, halogenated aromatic hydrocarbons such as chlorobenzene, ethers such as tetrahydrofuran (THF), alcohols such as methanol, ethanol and isopropanol, dimethylformamide, dimethyl sulfoxide, and Water is mentioned. These may be used alone or in combination of two or more. A preferred solvent is THF.

多孔質担体の添加後、必要に応じて、混合液の攪拌、加熱、溶媒又は水の留去、得られた生成物の乾燥等(真空乾燥)を行うことができる。加熱温度は25〜100℃が好ましく、25〜80℃がより好ましく、25〜60℃がさらに好ましい。   After the addition of the porous carrier, the mixture can be stirred, heated, the solvent or water is distilled off, and the resulting product is dried (vacuum drying). The heating temperature is preferably 25 to 100 ° C, more preferably 25 to 80 ° C, and further preferably 25 to 60 ° C.

担持触媒中の遷移金属錯体の担持量は、遷移金属錯体の種類等を勘案して決定され、例えば、多孔質担体100質量部に対して2〜40質量部が好ましく、3〜30質量部がより好ましく、5〜20質量部がさらに好ましい。上記下限値未満では、遷移金属錯体の担持量が少なすぎて、活性が低下するおそれがあり、上記上限値超では、過剰の遷移金属錯体が前記多孔質担体の細孔を塞ぐことに起因する触媒活性の低下を招くおそれがある。   The amount of the transition metal complex supported in the supported catalyst is determined in consideration of the type of the transition metal complex and the like. For example, the amount is preferably 2 to 40 parts by weight, and 3 to 30 parts by weight with respect to 100 parts by weight of the porous carrier. More preferred is 5 to 20 parts by mass. If the amount is less than the lower limit, the amount of the transition metal complex supported is too small and the activity may be reduced. If the amount exceeds the upper limit, the excess transition metal complex is caused by blocking the pores of the porous carrier. There is a risk of reducing the catalytic activity.

尚、多孔質担体が粒状である場合、得られた粒状の担持触媒を、必要に応じてバインダー等を用いて、成形してから使用してもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。   When the porous carrier is granular, the obtained granular supported catalyst may be used after being molded using a binder or the like, if necessary. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.

<カルボキシル基含有化合物の製造方法>
前記触媒の存在下で、二酸化炭素と他の物質とを反応させることにより、カルボキシル基含有化合物を得ることができる。例えば、前記他の物質としてエチレンなどのアルケンを用いて、(メタ)アクリル酸などの不飽和カルボン酸を製造することができる。具体的な製造工程、反応条件及び反応生成物の回収方法については、前記非特許文献1及び2並びに特許文献1及び2等に記載されている公知のものを採用することができるが、以下にCOとアルケンとの反応により不飽和カルボン酸を製造する場合を例に取り、一般的な説明する。
<Method for producing carboxyl group-containing compound>
A carboxyl group-containing compound can be obtained by reacting carbon dioxide with another substance in the presence of the catalyst. For example, an unsaturated carboxylic acid such as (meth) acrylic acid can be produced using an alkene such as ethylene as the other substance. As for specific production steps, reaction conditions, and reaction product recovery methods, known ones described in Non-Patent Documents 1 and 2 and Patent Documents 1 and 2, etc. can be employed. A general explanation will be given by taking an example of producing an unsaturated carboxylic acid by reaction of CO 2 with an alkene.

(COとアルケンとの反応)
本発明で使用できるアルケンは、例えば、エチレン、プロピレン、イソブテン、ブタジエン、ピペリレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセンである。これらのうち、エチレンが好ましい。これらは、その種類にもよるが、気体状であっても液体であってもよい。
COは、気体状、液体、又は超臨界状態で使用できる。工業規模で利用できる、COを含むガス混合物を使用することも可能であるが、それらが一酸化炭素を実質的に含まないことが望ましい。
(Reaction between CO 2 and alkene)
Alkenes that can be used in the present invention are, for example, ethylene, propylene, isobutene, butadiene, piperylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene. Of these, ethylene is preferred. These may be gaseous or liquid depending on the type.
CO 2 can be used in a gaseous, liquid, or supercritical state. Although it is possible to use gas mixtures containing CO 2 available on an industrial scale, it is desirable that they are substantially free of carbon monoxide.

CO及びアルケンは、窒素又は希ガスなどの不活性ガスも含んでいてもよい。しかし、前期不活性ガスの含量は反応器中のCO及びアルケンの総量を基準として20体積%未満であることが望ましい。 CO 2 and alkenes may also contain an inert gas such as nitrogen or a noble gas. However, the content of the inert gas is preferably less than 20% by volume based on the total amount of CO 2 and alkene in the reactor.

本反応は、溶媒を用いて行うことが好ましい。即ち、溶媒中に前記担持触媒を存在させ、そこにCO及びアルケンを導入して、担持触媒と接触させることにより反応を行うことが好ましい。溶媒としては、ベンゼン、トルエン及びキシレンなどの芳香族炭化水素、クロロベンゼンなどのハロゲン化芳香族炭化水素、テトラヒドロフラン(THF)などのエーテル、メタノール、エタノール及びイソプロパノールなどのアルコール、ジメチルホルムアミド、ジメチルスルホキシド、及び水が挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。好ましい溶媒は、THFである。 This reaction is preferably performed using a solvent. That is, the reaction is preferably carried out by allowing the supported catalyst to be present in a solvent, introducing CO 2 and alkene into the solvent, and bringing the catalyst into contact with the supported catalyst. Solvents include aromatic hydrocarbons such as benzene, toluene and xylene, halogenated aromatic hydrocarbons such as chlorobenzene, ethers such as tetrahydrofuran (THF), alcohols such as methanol, ethanol and isopropanol, dimethylformamide, dimethyl sulfoxide, and Water is mentioned. These may be used alone or in combination of two or more. A preferred solvent is THF.

反応方式については、回分式で行ってもよく、半回分式で行ってもよく、連続式で行ってもよく、回分式、半回分式及び連続式の組み合わせで行ってもよい。回文式の場合、反応器中の溶媒に、担持触媒、CO及びアルケンを導入し、反応を行う。半回分式の場合、反応器中の溶媒に担持触媒と原料(CO及びアルケン)の何れか一方とを予め仕込んでおき、残りの原料を連続的に反応器に導入することにより反応を行う。連続式の場合、反応器中の溶媒に担持触媒を仕込んでおき、CO及びアルケンを連続的に反応器に導入することにより反応を行う。また、連続式で行う場合、固定床方式、流動床方式、移動床方式、懸濁床方式や、撹拌混合式又はループ式の反応器内に反応原料を供給しながら、反応混合物の液相を抜き出す方式等の各種の方式で実施することができる。撹拌混合式の反応器内で、液相条件下、気体状のCO及びアルケンを使用して回分式又は連続式で実施する場合には、CO及びアルケンを、反応器の気相部及び液相部の何れか一方に供給してもよいし、反応器の気相部及び液相部の両方に供給してもよい。
また、反応装置については、採用する反応形式に応じて、適宜公知の反応装置を使用することができる。
About a reaction system, it may carry out by a batch type, may be carried out by a semibatch type, may be carried out by a continuous type, and may be carried out by the combination of a batch type, a semibatch type, and a continuous type. In the palindromic formula, the reaction is carried out by introducing the supported catalyst, CO 2 and alkene into the solvent in the reactor. In the case of the semi-batch method, the reaction is carried out by previously charging either the supported catalyst or the raw material (CO 2 or alkene) into the solvent in the reactor and continuously introducing the remaining raw material into the reactor. . In the case of the continuous type, the reaction is carried out by charging the supported catalyst in the solvent in the reactor and continuously introducing CO 2 and alkene into the reactor. In the case of continuous operation, the liquid phase of the reaction mixture is supplied while supplying the reaction raw material into a fixed bed method, fluidized bed method, moving bed method, suspension bed method, stirring and mixing type or loop type reactor. It can be carried out by various methods such as an extraction method. When carried out batchwise or continuously using gaseous CO 2 and alkenes under liquid phase conditions in a stirred and mixed reactor, CO 2 and alkenes are taken up in the gas phase part of the reactor and You may supply to any one of a liquid phase part, and you may supply to both the gaseous-phase part and liquid phase part of a reactor.
Moreover, about a reaction apparatus, according to the reaction format to employ | adopt, a well-known reaction apparatus can be used suitably.

反応温度は、50〜200℃が好ましく、より好ましくは80〜150℃である。また、圧力は、通常、絶対圧で1〜10MPa、好ましくは2〜8MPaである。また、反応器に供給するCOとアルケンのモル比(CO/アルケン)は、通常8〜1であり、好ましくは5〜2である。 The reaction temperature is preferably 50 to 200 ° C, more preferably 80 to 150 ° C. Moreover, a pressure is 1-10 Mpa in absolute pressure normally, Preferably it is 2-8 Mpa. The molar ratio of CO 2 and alkene fed to the reactor (CO 2 / alkene) is usually 8-1, preferably 5-2.

尚、得られたアクリル酸等の反応生成物の回収は、蒸留等の公知の方法によって行うことができるが、本発明の方法においては不均一系の触媒を使用するため、触媒の分離が容易であり、よって均一系で反応を行う従来技術と比較して、反応生成物の回収が容易である。   The obtained reaction product such as acrylic acid can be recovered by a known method such as distillation, but since the heterogeneous catalyst is used in the method of the present invention, the catalyst can be easily separated. Therefore, the reaction product can be easily recovered as compared with the conventional technique in which the reaction is performed in a homogeneous system.

[実施例1]
(1)金属錯体触媒((dcpe)Ni(COD))の合成
1、2−ビス(ジシクロヘキシルホスフィノ)エタン(dcpe)(430mg、1.02mmol)のテトラヒドロフラン(THF)溶液を、ニッケルビス1,5−シクロオクタジエン(Ni(COD))(280mg、1,02mmol)のTHF溶液に徐々に滴下した。室温にて3時間撹拌後、THFを真空中にて留去した。これにより、金属錯体触媒((dcpe)Ni(COD))を収量560mg(収率:93%)で得た。
[Example 1]
(1) Synthesis of metal complex catalyst ((dcpe) Ni (COD)) 1,2-bis (dicyclohexylphosphino) ethane (dcpe) (430 mg, 1.02 mmol) in tetrahydrofuran (THF) was mixed with nickel bis-1, The solution was gradually added dropwise to a THF solution of 5-cyclooctadiene (Ni (COD) 2 ) (280 mg, 1,02 mmol). After stirring at room temperature for 3 hours, THF was distilled off in vacuo. Thereby, a metal complex catalyst ((dcpe) Ni (COD)) was obtained in a yield of 560 mg (yield: 93%).

(2)担体の合成(ZIF−68、10.3A)
2−ニトロイミダゾールのDMF溶液(0.2mol/L、10mL)とベンズイミダゾールのN,N−ジメチルホルムアミド(DMF)溶液(0.2mol/L、10mL)を混合した溶液を、Zn(NO・4HOのDMF溶液(0.2mol/L、10mL)に加えた。混合溶液を密封し、100℃で96時間加熱した。沈殿物をろ過し、DMF(5mL)で沈殿物を3回洗浄した。その後、真空にて50℃、24h乾燥した。これにより、担体として使用する(ZIF−68)を収量0.1g(収率:20%)で得た。
(2) Synthesis of carrier (ZIF-68, 10.3A)
A mixed solution of 2-nitroimidazole in DMF (0.2 mol / L, 10 mL) and benzimidazole in N, N-dimethylformamide (DMF) (0.2 mol / L, 10 mL) was mixed with Zn (NO 3 ). 2 · 4H 2 O in DMF (0.2mol / L, 10mL) was added to. The mixed solution was sealed and heated at 100 ° C. for 96 hours. The precipitate was filtered and washed with DMF (5 mL) three times. Then, it dried at 50 degreeC and 24 hours in vacuum. As a result, (ZIF-68) used as a carrier was obtained in a yield of 0.1 g (yield: 20%).

(3)金属錯体触媒の担体への担持
上で得られたZIF−68(50mg)をサンプル瓶にはかりとり、(dcpe)Ni(COD)(0.2mmol/L)のTHF溶液に懸濁させた。室温にて48時間撹拌後、遠心分離(3000rpm、30分)にて、固体物を回収した。固体物をTHFにて2回洗浄し、室温にて50℃、24h乾燥した。これにより、担持触媒を収量62mgで得た。
(3) Loading of metal complex catalyst on carrier ZIF-68 (50 mg) obtained above was weighed into a sample bottle and suspended in a THF solution of (dcpe) Ni (COD) (0.2 mmol / L). It was. After stirring at room temperature for 48 hours, solids were collected by centrifugation (3000 rpm, 30 minutes). The solid was washed twice with THF and dried at room temperature at 50 ° C. for 24 h. As a result, a supported catalyst was obtained in a yield of 62 mg.

(4)触媒反応
上で得られた担持触媒(50mg)ならびに3−フルオロフェノールのナトリウム塩(触媒に対して100等量)を反応管に導入し、THF15mgに懸濁させた。反応管を密閉式反応装置に設置し、エチレン(0.05MPa)、二酸化炭素(0.1MPa)を順次、導入した。その後、80℃で20時間、加熱した。反応終了後、反応溶液にDO(20mL、重水素に置換された水)、ジエチルエーテル40mLを加え、DO層の生成物をH−NMRにて分析した。分析結果から、ターンオーバー数(TON)を求めたところ、7であった。
(4) Catalytic reaction The supported catalyst (50 mg) obtained above and the sodium salt of 3-fluorophenol (100 equivalents relative to the catalyst) were introduced into a reaction tube and suspended in 15 mg of THF. The reaction tube was installed in a closed reaction apparatus, and ethylene (0.05 MPa) and carbon dioxide (0.1 MPa) were sequentially introduced. Then, it heated at 80 degreeC for 20 hours. After completion of the reaction, D 2 O (20 mL, water substituted with deuterium) and 40 mL of diethyl ether were added to the reaction solution, and the product of the D 2 O layer was analyzed by 1 H-NMR. The turnover number (TON) obtained from the analysis result was 7.

[比較例1]
前記担持触媒の代わりに1、2−ビス(ジシクロヘキシルホスフィノ)エタン(dcpe)(29.5mg)を反応管に導入したこと以外は、実施例1の触媒反応と同様の方法にて実験をおこなった。その結果、TONは3であった。
[Comparative Example 1]
The experiment was conducted in the same manner as in the catalytic reaction of Example 1, except that 1,2-bis (dicyclohexylphosphino) ethane (dcpe) (29.5 mg) was introduced into the reaction tube instead of the supported catalyst. It was. As a result, TON was 3.

Claims (9)

遷移金属錯体が、連通孔構造を有する多孔質担体に担持されてなる触媒であって、
前記遷移金属錯体が、二酸化炭素を出発原料とした反応を触媒する活性を有し、
前記多孔質担体は、Log微分細孔容積分布(dV/dlog(D))のモード径が0.8nm以上であり、かつ、モード径±2nmの範囲内にある細孔の容積の合計が、全細孔容積の80%以上であることを特徴とする二酸化炭素変換用触媒。
A catalyst in which a transition metal complex is supported on a porous carrier having a communicating pore structure,
The transition metal complex has an activity of catalyzing a reaction using carbon dioxide as a starting material;
The porous carrier has a mode diameter of Log differential pore volume distribution (dV / dlog (D)) of 0.8 nm or more, and the total pore volume within the range of the mode diameter ± 2 nm is A carbon dioxide conversion catalyst characterized by being 80% or more of the total pore volume.
前記多孔質担体が、窒素、酸素及び硫黄からなる群より選ばれる少なくとも1種の元素を含有する官能基を有することを特徴とする請求項1に記載の二酸化炭素変換用触媒。   The catalyst for carbon dioxide conversion according to claim 1, wherein the porous carrier has a functional group containing at least one element selected from the group consisting of nitrogen, oxygen and sulfur. 前記多孔質担体が、シリカ、アルミナ、カーボン、ゼオライト、活性炭、粘土焼結体、有機金属構造体からなる群より選択された少なくとも1種であることを特徴とする請求項1に記載の二酸化炭素変換用触媒。   2. The carbon dioxide according to claim 1, wherein the porous carrier is at least one selected from the group consisting of silica, alumina, carbon, zeolite, activated carbon, clay sintered body, and organometallic structure. Conversion catalyst. 前記多孔質担体が、有機金属構造体であることを特徴とする請求項3に記載の二酸化炭素変換用触媒。   The catalyst for carbon dioxide conversion according to claim 3, wherein the porous carrier is an organometallic structure. 前記有機金属構造体が、ゼオライト型イミダゾレート骨格体であることを特徴とする請求項4に記載の二酸化炭素変換用触媒。   5. The carbon dioxide conversion catalyst according to claim 4, wherein the organometallic structure is a zeolite type imidazolate skeleton. 前記多孔質担体の、定容法によるガス吸着法で測定した単位重量当たりの二酸化炭素吸着量が20〜400ml/gであることを特徴とする請求項1〜5のいずれかに記載の二酸化炭素変換用触媒。   6. The carbon dioxide according to claim 1, wherein the porous carrier has a carbon dioxide adsorption amount per unit weight of 20 to 400 ml / g measured by a constant volume gas adsorption method. Conversion catalyst. 請求項1〜6のいずれかに記載の二酸化炭素変換用触媒の存在下で、二酸化炭素と他の物質とを反応させることにより、カルボキシル基含有化合物を得ることを特徴とするカルボキシル基含有化合物の製造方法。   A carboxyl group-containing compound is obtained by reacting carbon dioxide with another substance in the presence of the carbon dioxide conversion catalyst according to any one of claims 1 to 6. Production method. 前記他の物質がアルケンであり、前記カルボキシル基含有化合物が不飽和カルボン酸であることを特徴とする請求項7に記載のカルボキシル基含有化合物の製造方法。   The method for producing a carboxyl group-containing compound according to claim 7, wherein the other substance is an alkene and the carboxyl group-containing compound is an unsaturated carboxylic acid. 前記他の物質がエチレンであり、前記カルボキシル基含有化合物が(メタ)アクリル酸であることを特徴とする請求項7に記載のカルボキシル基含有化合物の製造方法。   The method for producing a carboxyl group-containing compound according to claim 7, wherein the other substance is ethylene and the carboxyl group-containing compound is (meth) acrylic acid.
JP2016029090A 2016-02-18 2016-02-18 Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group Pending JP2017144397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029090A JP2017144397A (en) 2016-02-18 2016-02-18 Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029090A JP2017144397A (en) 2016-02-18 2016-02-18 Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group

Publications (1)

Publication Number Publication Date
JP2017144397A true JP2017144397A (en) 2017-08-24

Family

ID=59681813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029090A Pending JP2017144397A (en) 2016-02-18 2016-02-18 Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group

Country Status (1)

Country Link
JP (1) JP2017144397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230820A1 (en) * 2019-05-14 2020-11-19 株式会社Atomis Method for producing metal-organic structure
JPWO2019188507A1 (en) * 2018-03-28 2021-03-18 積水化学工業株式会社 Method for producing α, β-unsaturated carboxylate
WO2024009979A1 (en) * 2022-07-04 2024-01-11 三井金属鉱業株式会社 Metal-organic structure, and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019188507A1 (en) * 2018-03-28 2021-03-18 積水化学工業株式会社 Method for producing α, β-unsaturated carboxylate
WO2020230820A1 (en) * 2019-05-14 2020-11-19 株式会社Atomis Method for producing metal-organic structure
CN113825738A (en) * 2019-05-14 2021-12-21 阿特密斯株式会社 Method for producing metal organic frameworks
EP3971160A4 (en) * 2019-05-14 2023-08-02 Atomis Inc. Method for producing metal-organic structure
WO2024009979A1 (en) * 2022-07-04 2024-01-11 三井金属鉱業株式会社 Metal-organic structure, and method for manufacturing same

Similar Documents

Publication Publication Date Title
i Xamena et al. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF
Cui et al. A stable and porous iridium (III)-porphyrin metal–organic framework: synthesis, structure and catalysis
US8519147B2 (en) Carbene complexes of lithium and/or magnesium metal salts, and uses thereof
Colombo et al. Tuning the adsorption properties of isoreticular pyrazolate-based metal–organic frameworks through ligand modification
Sun et al. Synthesis and characterization of novel nickel (II) complexes bearing N, P ligands and their catalytic activity in ethylene oligomerization
Van Velthoven et al. S, O-Functionalized Metal–organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C–H activation
Huang et al. Pd (diimine) Cl 2 embedded heterometallic compounds with porous structures as efficient heterogeneous catalysts
WO2018103536A1 (en) Reaction method and catalyst for internal olefin isomerization and hydroformylation
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
US9095846B2 (en) Bimetallic catalysts for CO2 hydrogenation and H2 generation from formic acid and/or salts thereof
CN107580593B (en) Process for preparing unsaturated carboxylic acid salts
JP2015503547A (en) Preparation of α, β-ethylenically unsaturated carboxylates by catalytic carboxylation of alkenes
Zhao et al. CO catalytic oxidation by a metal organic framework containing high density of reactive copper sites
KR20170010800A (en) Process for preparing an unsaturated carboxylic acid salt
Cheng et al. Chiral proline-decorated bifunctional Pd@ NH2-UiO-66 catalysts for efficient sequential Suzuki coupling/asymmetric aldol reactions
Shang et al. Efficient heterogeneous hydroformylation over zeolite-encaged isolated rhodium ions
JP2017144397A (en) Catalyst for converting carbon dioxide, and method for producing compound containing carboxyl group
Shang et al. Aerobic activation of alcohols on Zn-promoted atomically-dispersed Ru sites encapsulated within UiO-66 framework for imine synthesis
US9556211B2 (en) Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst each comprising the metal complex compound, and hydrogen production method and hydrogenation method each using the catalyst
US10052621B2 (en) Dehydrogenation of neat formic acid
Matsunaga et al. Hetero Bi-Paddle-Wheel Coordination Networks: A New Synthetic Route to Rh-Containing Metal–Organic Frameworks
CN106800494A (en) A kind of catalyst of liquid phase ethylene oligomerisation and the method for catalysis liquid phase ethylene oligomerization
CN114849787B (en) Aryl bidentate phosphine ligand polymer in-situ encapsulation rhodium-based catalytic material and preparation method and application thereof
CN111068789B (en) For CO2Catalyst for participating in esterification reaction of olefin carbonyl
KR102048140B1 (en) Methanol carbonylation heterogeneous catalyst and production of acetic acid and methyl acetate using the catalyst