JP2017143741A - Method for controlling rice molding device and rice molding device - Google Patents

Method for controlling rice molding device and rice molding device Download PDF

Info

Publication number
JP2017143741A
JP2017143741A JP2016025506A JP2016025506A JP2017143741A JP 2017143741 A JP2017143741 A JP 2017143741A JP 2016025506 A JP2016025506 A JP 2016025506A JP 2016025506 A JP2016025506 A JP 2016025506A JP 2017143741 A JP2017143741 A JP 2017143741A
Authority
JP
Japan
Prior art keywords
cooked rice
molding
rice
pair
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016025506A
Other languages
Japanese (ja)
Other versions
JP6147378B1 (en
Inventor
昭央 小田切
Akihisa Odagiri
昭央 小田切
淳 高谷
Atsushi Takatani
淳 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko KK
Original Assignee
Taiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko KK filed Critical Taiko KK
Priority to JP2016025506A priority Critical patent/JP6147378B1/en
Application granted granted Critical
Publication of JP6147378B1 publication Critical patent/JP6147378B1/en
Publication of JP2017143741A publication Critical patent/JP2017143741A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cereal-Derived Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling a rice molding device capable of easily and optimumly performing various settings not only in a maker side but also in a user side, and the rice molding device.SOLUTION: To a rice molding device practicing: a step where rice is compressed by a feed-out part; a step where the rice compressed by a cutting part is cut to a fixed amount; and a step where the rice cut to a fixed amount by a molding part is molded to a rice molded body with a prescribed shape, corresponding to each step of a series of the rice molding process producing the rice molded body from the rice, with the quality of the rice and the rice amount of the rice molded body as indexes, a plurality control elements deciding the hardness of the rice molded body and/or the shape of the rice molded body are calculated and introduced by a fuzzy inference, and based on each control element introduced by the fuzzy inference, the respective operations of the feed-out part, the cutting part and the molding part are controlled.SELECTED DRAWING: Figure 6

Description

本発明は、米飯成形装置の制御方法及び米飯成形装置に関し、詳しくは、ファジー推論及びニューロ理論を応用して簡単にかつ最適な機械制御の各種設定ができ、使用者の希望に沿った品質の米飯成形体を製造可能にする技術に関するものである。   The present invention relates to a control method for cooked rice forming apparatus and a cooked rice forming apparatus, and more specifically, by applying fuzzy inference and neuro theory, various machine control settings can be easily and optimally performed, and quality in accordance with the user's wishes. The present invention relates to a technology that makes it possible to produce cooked rice products.

米飯成形装置の一例として、例えば、握り寿司用のシャリ玉を量産するための寿司ロボットが知られており、従来の寿司ロボットは、シャリ(すし飯)を棒状に圧縮する圧縮ローラ、棒状のシャリを一定量に切断するカッター、切断されたシャリをシャリ玉に成形する成形ローラ等を備え、これらローラ等の機械制御にかかわる各種設定は、使用者の希望に沿ったシャリ玉が得られるように経験や実験などに基づいて製造者側により行われている。   As an example of the cooked rice forming apparatus, for example, a sushi robot for mass-producing sushi balls for nigiri sushi is known, and a conventional sushi robot has a compression roller for compressing sushi (sushi rice) into a stick shape, and a stick-like shave. It is equipped with a cutter that cuts a certain amount, a forming roller that forms the cut shaver into a sharp ball, etc., and various settings related to machine control of these rollers etc. are experienced so that the sharp ball according to the user's wish can be obtained It is carried out by the manufacturer based on experiments and experiments.

特開2010−81822号公報JP 2010-81822 A 特願2015−178313号Japanese Patent Application No. 2015-178313

上記寿司ロボット等の米飯成形装置における機械制御の設定に際して、例えば、シャリ玉の品質を決定するための様々な要素が検証され、その一つとして、シャリ玉の硬さ、柔らかさの検証がある。シャリ玉の硬さや柔らかさは、シャリ質(シャリの硬さ、粘り、密度、温度など)に依存する部分が多いが、このシャリ質を定量的に判断することは必ずしも容易でないため、使用者の希望に沿ったシャリ玉の硬さとなるような最適な機械制御条件を導き出すのは困難であった。また、シャリ質において、シャリの硬さ、粘り、密度は、米の種類、炊飯時の水量、水温、浸水時間、火加減、寿司酢の種類や量及び炊飯米と寿司酢の合わせ方などで変化するため、常に同条件のシャリ質が得られるとは限らず、また、同じ質のシャリ玉でも使用者の各人における嗜好や体調などの関係により硬さの感じ方がそれぞれ異なるため、使用者にとって満足のいくシャリ玉の硬さを設定することが困難であった。   When setting the machine control in the cooked rice forming apparatus such as the sushi robot, for example, various elements for determining the quality of the shari balls are verified, and one of them is the verification of the hardness and softness of the shari balls. . The hardness and softness of shari balls depend on the quality of the shari (hardness, stickiness, density, temperature, etc.), but it is not always easy to quantitatively judge this shari quality. It was difficult to derive the optimal machine control conditions that would give the sharpness of the ball in line with the desire. In addition, in the quality of shari, the hardness, stickiness, and density of the shari depend on the type of rice, the amount of water at the time of cooking, water temperature, water immersion time, heating and cooling, the type and amount of sushi vinegar, and how to combine cooked rice and sushi vinegar. Because it changes, it is not always possible to obtain the same quality of shari, and even with the same quality, the way you feel hardness varies depending on the taste and physical condition of each user, so use It was difficult to set the hardness of the shari ball that was satisfactory for the person.

また、シャリ玉の品質を決定するための要素として、シャリ玉の形状の検証がある。品質の良い形状のシャリ玉とするには、例えば、シャリ玉の成形工程に時間をかけて成形をゆっくり行うことが考えられるが、成形時間が長くなるとシャリ玉の生産量が減少するため、形状品質と生産性のどちらを優先するかのトレードオフが必要であり、その最適値を導き出そうにもシャリ質や使用者の希望などの不確定要素があるため、使用者の希望に沿った最適な設定とすることは困難であった。   Further, as an element for determining the quality of the sharp ball, there is verification of the shape of the sharp ball. For example, it is conceivable to spend time in the molding process of the ball to slowly mold it, but as the molding time becomes longer, the production of the ball will decrease. There is a trade-off between quality and productivity, and there are uncertainties such as sharpness and user's desire to derive the optimum value. It was difficult to achieve an optimal setting.

以上のことから、製造者側で行った機械制御の設定が使用者側の希望品質と乖離している場合もあり、使用者側に満足な装置を提供できないこともあった。   From the above, the machine control setting performed on the manufacturer side may deviate from the desired quality on the user side, and a satisfactory device may not be provided to the user side.

一方、使用者側でも機械制御の設定が行えるような米飯成形装置の提供が望まれるが、モータなどの動力系の動作時間や移動量、動作速度、動作休止時間などに関する機械制御の各種設定は、使用者側からみれば非常に複雑かつ理解し難く事実上困難であった。
なお、本明細書では、前記シャリ玉が米飯成形体に対応し、前記シャリや前記すし飯が米飯成形体の材料である米飯に対応する。
On the other hand, it is desirable to provide a cooked rice forming device that allows the user to set machine control, but various settings for machine control related to the operating time, movement amount, operating speed, operation pause time, etc. of power systems such as motors are From the user's point of view, it was very complicated and difficult to understand.
In addition, in this specification, the said shari ball respond | corresponds to a cooked rice molded object, and the said shari and the said sushi rice respond | correspond to the cooked rice which is the material of a cooked rice molded object.

本発明は、以上の事情に鑑みてなされたものであり、製造者側に限らず使用者側であっても簡易に且つ最適な機械制御の各種設定を行うことができるような米飯成形装置の制御方法及び米飯成形装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a cooked rice forming apparatus capable of easily and optimally performing various machine control settings not only on the manufacturer side but also on the user side. An object is to provide a control method and a cooked rice forming apparatus.

本発明に係る米飯成形装置の制御方法は、
送出部により米飯を圧縮する工程、切断部により圧縮された米飯を一定量に切断する工程、成形部により一定量に切断された米飯を所定形状の米飯成形体に成形する工程を実行する米飯成形装置に対して、米飯から米飯成形体を製造する一連の米飯成形工程の前記各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、当該ファジー推論で導き出した各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御するものである。
The method for controlling the cooked rice forming apparatus according to the present invention is as follows:
Cooked rice molding that performs the steps of compressing cooked rice by the delivery unit, cutting the cooked rice compressed by the cutting unit into a predetermined amount, and molding the cooked rice cut by the molding unit into a predetermined shape Corresponding to each step of a series of cooked rice molding processes for producing cooked rice molded products from cooked rice, the hardness of the cooked rice molded product with the quality of cooked rice and the amount of cooked rice cooked as an index, and A plurality of control elements that determine the shape of the cooked rice molded body are calculated and derived by fuzzy inference, and based on each control element derived by the fuzzy inference, each of the feeding section, the cutting section, and the forming section It controls the operation.

前記制御方法において、調整用に入力された米飯成形体の品質に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論から出力される各制御要素を補正することが望ましい。   In the control method, it is preferable to correct each control element output from the fuzzy inference by a neural network of an error propagation learning model based on the quality of the cooked rice product input for adjustment.

また、前記ファジー推論は、前記成形部の成形速度に対応するファジールールとして米飯成形体の形状品質を良くする形状優先モード用と米飯成形体の生産量を多くする生産優先モード用との各別に有し、選択された前記優先モードのファジールールを適用して前記成形部の成形速度についての制御要素をファジー推論演算して導き出すようにすることができる。   In addition, the fuzzy inference is performed separately for the shape priority mode for improving the shape quality of the cooked rice product and the production priority mode for increasing the production amount of the cooked rice product as fuzzy rules corresponding to the molding speed of the molding part. The control element for the molding speed of the molding part can be derived by fuzzy inference calculation by applying the selected fuzzy rule of the priority mode.

本発明に係る米飯成形装置は、
貯留した米飯を下流へと搬出する搬出部と、前記搬出部から搬出された米飯を棒状に圧縮しながら下流へと送出する送出部と、前記送出部から送出された棒状の米飯を一定量に切断する切刃が形成される一対のカッター部材を有する切断部と、前記切断部で一定量に切断された米飯を所定形状の米飯成形体に成形する成形部と、前記各部の動作を制御する制御部とを備え、
前記成形部は、周面に前記一対のカッター部材にて切断された米飯を係止する係止片が形成される一対の成形ローラ部材を有し、当該一対の成形ローラ部材が前記一対のカッター部材の下流位置に相対向して正逆回転可能に配置され、前記一対のカッター部材の切刃が当接する際に前記一対の成形ローラ部材を正回転させて前記係止片を下動させながら切断された米飯を受け止める状態と、前記一対のカッター部材の切刃が当接した状態で前記一対の成形ローラ部材を逆回転させて前記係止片を上動させながら前記切刃に米飯を押圧する状態と、前記一対の成形ローラ部材を正回転させながら当該一対の成形ローラ部材の外周面に形成する側部成形面を米飯の側面に当接する状態とに変化可能に構成されており、
前記制御部は、
米飯から米飯成形体を製造する一連の米飯成形工程の各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、また、前記成形部の成形速度に対応するファジールールとして米飯成形体の形状品質を良くする形状優先モード用と米飯成形体の生産量を多くする生産優先モード用との各別に有し、選択された前記優先モードのファジールールを適用して前記成形部の成形速度についての制御要素をファジー推論演算して導き出す構成を有するファジー推論部と、
調整用に入力された米飯成形体の品質に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論部から出力される各制御要素を補正するニューロ部と、
前記ファジー推論部で導き出された各制御要素又は前記ニューロ部で補正された前記各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御するための制御値を演算する演算処理部とを備えるものである。
The cooked rice forming apparatus according to the present invention is
A carry-out unit for carrying out the stored cooked rice downstream, a delivery unit for sending the cooked rice carried out from the carry-out unit to a downstream while compressing the cooked rice into a rod shape, and a fixed amount of stick-shaped cooked rice delivered from the delivery unit A cutting part having a pair of cutter members on which cutting blades to be cut are formed, a forming part for forming cooked rice that has been cut into a predetermined amount by the cutting part into a predetermined shape rice cooked body, and controlling the operation of each part A control unit,
The molding unit has a pair of molding roller members formed with locking pieces for locking the cooked rice cut by the pair of cutter members on a peripheral surface, and the pair of molding roller members is the pair of cutters. While facing the downstream position of the member so as to be able to rotate forward and backward, when the cutting blades of the pair of cutter members come into contact with each other, the pair of forming roller members are rotated forward to move the locking piece downward With the state where the cut cooked rice is received and the cutting blades of the pair of cutter members are in contact, the pair of forming roller members are reversely rotated to press the cooked rice against the cutting blades while moving the locking pieces upward And a state in which the side molding surface formed on the outer peripheral surface of the pair of molding roller members is in contact with the side surface of the cooked rice while rotating the pair of molding roller members in the forward direction.
The controller is
Corresponding to each step of a series of cooked rice molding processes for producing cooked rice products from cooked rice, the hardness of the cooked rice product and / or the cooked rice product using the quality of cooked rice and the cooked rice content of the cooked rice product as indicators. A plurality of control elements for determining the shape of the rice are calculated and derived by fuzzy inference, and as a fuzzy rule corresponding to the forming speed of the forming portion, the shape priority mode for improving the shape quality of the cooked rice product and the cooked rice product A fuzzy structure that is separately provided for the production priority mode for increasing the production volume and that derives the fuzzy inference calculation of the control element for the molding speed of the molding part by applying the fuzzy rule of the selected priority mode. The reasoning department;
A neuro part for correcting each control element output from the fuzzy inference part by a neural network of an error propagation learning model based on the quality of the cooked rice molded body inputted for adjustment;
Based on each control element derived by the fuzzy inference part or each control element corrected by the neuro part, control values for controlling the operations of the sending part, the cutting part and the forming part are set. And an arithmetic processing unit for calculating.

本発明によれば、米飯成形装置の機械制御について、具体的数値ではなく、例えば、使用者又は製造者が感覚的、抽象的に判断した米飯の質や米飯量などの入力をファジー推論にて演算処理して最適値を導き出して適切な機械制御の各種設定を自動的に行うことができる。例えば、米飯成形装置が寿司ロボットであれば、シャリ玉の品質として、もっと硬く、少し硬く、少し柔らかく、もっと柔らかくなどのような、より人間の感覚に近い入力でもって簡易に且つ適切な機械制御の各種設定が可能になり、使用者の希望に沿った品質のシャリ玉を簡単に製造することが可能になる。   According to the present invention, the machine control of the cooked rice molding apparatus is not a specific numerical value, but, for example, inputs such as the quality of cooked rice and the amount of cooked rice sensed and abstracted by the user or manufacturer in fuzzy inference. Various settings for appropriate machine control can be automatically performed by calculating an optimum value through arithmetic processing. For example, if the cooked rice molding machine is a sushi robot, the quality of the shari ball is harder, a little harder, a little softer, softer, etc. Thus, it becomes possible to easily manufacture a splinter ball of quality that meets the user's wishes.

実施形態に係る寿司ロボット(米飯成形装置)の内部構成を示す正面図である。It is a front view which shows the internal structure of the sushi robot (boiled rice formation apparatus) which concerns on embodiment. 寿司ロボットの送出部、切断部、成形部を示す正面断面図である。It is front sectional drawing which shows the sending part, cutting part, and shaping | molding part of a sushi robot. 成形部の成形ローラ部材の構成を示した斜視図である。It is the perspective view which showed the structure of the shaping | molding roller member of a shaping | molding part. 成形部でのシャリ玉(米飯成形体)の成形工程を説明した正面断面図である。It is front sectional drawing explaining the shaping | molding process of the sharp ball (rice-rice molded object) in a shaping | molding part. 同じく成形部でのシャリ玉(米飯成形体)の成形工程を説明した正面断面図である。It is front sectional drawing explaining the shaping | molding process of the sharp ball (rice-rice molded object) in a shaping | molding part similarly. 寿司ロボットの制御部を示したブロック図である。It is the block diagram which showed the control part of the sushi robot. ファジー推論部の構成を示した模式図である。It is the schematic diagram which showed the structure of the fuzzy inference part. ファジー推論における前件部のメンバーシップ関数の図である。It is a figure of the membership function of the antecedent part in fuzzy reasoning. ファジー推論における後件部のメンバーシップ関数の図である。It is a figure of the membership function of the consequent part in fuzzy reasoning. ファジー推論におけるファジールールの表である。It is a table of fuzzy rules in fuzzy inference. 脱ファジー化後の演算結果の一例を示したグラフである。It is the graph which showed an example of the calculation result after defuzzification. 同じく脱ファジー化後の演算結果の一例を示したグラフである。It is the graph which similarly showed an example of the calculation result after defuzzification. ニューロ部の構成を示した模式図である。It is the schematic diagram which showed the structure of the neuro part.

以下に、本発明の実施形態について図面を参照しながら説明する。
本実施形態では、米飯成形体の一例として寿司ロボット1を示す。また、本明細書において、シャリ玉とは米飯成形体のことをいい、シャリ又はすし飯とは、米飯成形体の材料となる米飯のことをいう。
Embodiments of the present invention will be described below with reference to the drawings.
In this embodiment, the sushi robot 1 is shown as an example of the cooked rice molded product. Moreover, in this specification, a sharp rice means a cooked rice molded object, and a sharp rice or sushi rice means the cooked rice used as the material of a cooked rice molded object.

図1に示すように、米飯成形装置である寿司ロボット1は、握り寿司用のシャリ玉11を連続して成形する装置として構成され、具体的には、シャリ玉11の材料となるシャリ10(すし飯)を貯留するとともに下流(装置下方)へと搬出する搬出部2と、搬出部2から搬出されたシャリ10を棒状に圧縮しながら下流へと送出する送出部3と、送出部3から送出された棒状のシャリ10を一定量に切断する切断部4と、切断部4で切断されたシャリ10を所定形状のシャリ玉11に成形する成形部5と、成形部5にて成形されたシャリ玉11を載置する載置部6とを具備してなるものである。   As shown in FIG. 1, the sushi robot 1 which is a cooked rice forming device is configured as a device that continuously forms the shari balls 11 for nigiri sushi. Specifically, the sushi 10 ( The sushi rice) is stored and unloaded to the downstream (below the apparatus), the shaver 10 unloaded from the unloader 2 is compressed into a rod shape, and sent out downstream. A cutting portion 4 that cuts the formed rod-shaped shari 10 into a predetermined amount, a forming portion 5 that forms the shaving 10 cut by the cutting portion 4 into a predetermined shape of the ball 11, and a shaver formed by the forming portion 5 And a mounting portion 6 on which the balls 11 are mounted.

また、寿司ロボット1の前面上方位置には、操作パネル14が設けられており、この操作パネル14にて、シャリ玉11のシャリ量(米飯量)や成形個数、シャリ質(シャリ10の硬さなどの品質)、優先モード(形状優先、生産優先)などを所定の設定ボタンより設定したり、シャリ玉11の硬さ度合いや形状度合いなどを品質調整ボタンより調整したりできる他、電源の入切や運転駆動の開始や停止等の操作が行われる。   In addition, an operation panel 14 is provided at a position above the front of the sushi robot 1. With this operation panel 14, the amount of shari balls 11 (the amount of cooked rice), the number of moldings, and the quality of the shari (the hardness of the shari 10). Etc.), priority mode (shape priority, production priority), etc. can be set with a predetermined setting button, the hardness degree and shape degree of the sharp ball 11 can be adjusted with the quality adjustment button, etc. Operations such as turning off and starting or stopping driving are performed.

搬出部2は、ホッパ20とフィーダ21とを有し、ホッパ20内に投入されたシャリ10をフィーダ21にてほぐしながら下方の送出部3へと搬出する。   The carry-out unit 2 includes a hopper 20 and a feeder 21, and carries out the shaver 10 introduced into the hopper 20 to the lower delivery unit 3 while loosening it with the feeder 21.

図1及び図2を参照して、送出部3は、搬出部2の下方位置に配設されており、大径の一対の上段圧縮ローラ部材30と、小径の一対の下段圧縮ローラ部材31とを上下に有し、上段圧縮ローラ部材30及び下段圧縮ローラ部材31を正回転(対向する方向に内回り)させて搬出部2より搬出されたシャリ10を圧縮しながら棒状に成形して下方へと送出する。   Referring to FIGS. 1 and 2, the delivery unit 3 is disposed below the carry-out unit 2, and includes a large diameter pair of upper compression roller members 30 and a small diameter pair of lower compression roller members 31. The upper compression roller member 30 and the lower compression roller member 31 are rotated forward (inward in the opposite direction) to form the bar 10 while compressing the shaver 10 carried out from the carry-out part 2 and downward. Send it out.

上段圧縮ローラ部材30は、水平回転軸(図2では紙面垂直方向)を中心に相反する方向に正回転(本実施形態では対向する方向に内回り)する一対のローラ状の部材として構成され、所定間隔をもって互いに対向的に配置されている。上段圧縮ローラ部材30の外周面には、所定ピッチで刻設された凹凸部30aが形成されており、凹凸部30aにてシャリ10の圧縮と送出を円滑に行うことができるように構成されている。また、上段圧縮ローラ部材30の前後の両端面には、上段圧縮ローラ部材30の外周面よりも外方へ張り出した外周ツバ部30cが形成されており、これら前後の外周ツバ部30cによってもシャリ10の送出を円滑に行うことができるように構成されている。   The upper compression roller member 30 is configured as a pair of roller-like members that rotate forward (inward in the opposite direction in the present embodiment) in opposite directions around a horizontal rotation axis (vertical direction in FIG. 2). They are arranged opposite to each other with an interval. On the outer peripheral surface of the upper compression roller member 30, there are formed concavo-convex portions 30a engraved at a predetermined pitch, and the concavo-convex portion 30a is configured to smoothly compress and feed the shaver 10. Yes. In addition, outer peripheral flange portions 30c projecting outward from the outer peripheral surface of the upper compression roller member 30 are formed on both front and rear end surfaces of the upper compression roller member 30, and the outer peripheral flange portions 30c are also sharpened by the front and rear outer flange portions 30c. It is comprised so that delivery of 10 can be performed smoothly.

下段圧縮ローラ部材31は、水平回転軸(図2では紙面垂直方向)を中心に相反する方向に正回転(本実施形態では対向する方向に内回り)する一対のローラ状の部材として構成され、上述した上段圧縮ローラ部材30よりも短い間隔をもって互いに対向的に配置されている。このように送出部3は、下流に向けて上段圧縮ローラ部材30から下段圧縮ローラ部材31へとその間隔が狭められており、シャリ10の密度を徐々に均一にすることができるように構成されている。また、下段圧縮ローラ部材31の外周面には、上段圧縮ローラ部材30と同様に所定ピッチで刻設された凹凸部31aが形成されており、凹凸部31aにてシャリ10の圧縮と送出を円滑に行うことができるように構成されている。また、下段圧縮ローラ部材31の前後の両端面には、下段圧縮ローラ部材31の外周面よりも外方へ張り出した外周ツバ部31cが形成されており、これら前後の外周ツバ部31cによってもシャリ10の送出を円滑に行うことができるように構成されている。
なお、上段圧縮ローラ部材30及び下段圧縮ローラ部材31は、駆動モータ等の駆動装置83A(図6参照)を介して所定の動作がなされるように構成されている。
The lower compression roller member 31 is configured as a pair of roller-like members that rotate forward (inward in the opposite direction in the present embodiment) in opposite directions around a horizontal rotation axis (the vertical direction in FIG. 2). The upper compression roller members 30 are opposed to each other with a shorter interval. In this manner, the delivery unit 3 is configured such that the distance between the upper compression roller member 30 and the lower compression roller member 31 is narrowed toward the downstream, so that the density of the shear 10 can be gradually made uniform. ing. In addition, as with the upper compression roller member 30, an uneven portion 31a is formed on the outer peripheral surface of the lower compression roller member 31 at a predetermined pitch, so that the shank 10 can be smoothly compressed and delivered by the uneven portion 31a. It is configured to be able to be done. Further, outer peripheral flange portions 31c projecting outward from the outer peripheral surface of the lower compression roller member 31 are formed on both front and rear end faces of the lower compression roller member 31, and the outer peripheral flange portions 31c are also sharpened by the front and rear outer flange portions 31c. It is comprised so that delivery of 10 can be performed smoothly.
The upper compression roller member 30 and the lower compression roller member 31 are configured to perform a predetermined operation via a drive device 83A (see FIG. 6) such as a drive motor.

切断部4は、送出部3の下方位置に配設されており、相反する方向に水平移動する一対の平面視矩形状のカッター部材40を有し、一対のカッター部材40は、所定間隔をもって互いに対向的に配置されている。カッター部材40の対向する先端部には、上方に向けて凸状に湾曲した切刃41が形成されており、この先端部の下面に一対でシャリ玉11の上部形状となる凹状の上部成形枠42aがカッター部材40のそれぞれに形成されている。切断部4では、カッター部材40が水平移動されることで、切刃41の先端を当接させて棒状のシャリ10を切断する閉止状態P1と、切刃41が反対方向に移動されて切刃41の離間を介して棒状のシャリ10を成形部5へと送る開放状態P2とに切り換えられる(図4及び図5参照)。
なお、カッター部材40は、駆動モータ等の駆動装置84A(図6参照)を介して所定の動作がなされるように構成されている。
The cutting part 4 is disposed at a position below the sending part 3 and has a pair of rectangular cutter members 40 that horizontally move in opposite directions, and the pair of cutter members 40 are mutually spaced apart at a predetermined interval. It is arranged oppositely. A cutting edge 41 that is curved upward and convex is formed at the front end of the cutter member 40 that faces upward, and a concave upper molding frame that forms a pair of upper shapes of the shaving balls 11 on the lower surface of the front end. 42 a is formed on each of the cutter members 40. In the cutting part 4, the cutter member 40 is moved horizontally, whereby the cutting edge 41 is brought into contact with the closed state P1 in which the tip of the cutting edge 41 is brought into contact with the cutting member 4, and the cutting edge 41 is moved in the opposite direction. It is switched to the open state P2 in which the rod-shaped shaver 10 is sent to the molding part 5 through the separation of 41 (see FIGS. 4 and 5).
The cutter member 40 is configured to perform a predetermined operation via a drive device 84A (see FIG. 6) such as a drive motor.

成形部5は、切断部4の下方位置に配設されており、水平回転軸(図2では紙面垂直方向)を中心に相反する方向に正回転(本実施形態では対向する方向に内回り)及び逆回転(本実施形態では対向する方向に外回り)する一対の成形ローラ部材51を有し、一対の成形ローラ部材51は、所定間隔をもって互いに対向的に配置されている。成形ローラ部材51の外周面には、周面より径方向に突設された平板状の係止片53が形成されており、係止片53にて一対のカッター部材40(切刃41)の離間を介して送られた棒状のシャリ10、及び一対のカッター部材40にて切断されたシャリ10が係止可能とされている。また、成形部5では、成形ローラ部材51が正逆回転されることで係止片53を近接させて一対のカッター部材40にて切断されたシャリ10を係止する閉止状態P3と、係止片53を下方に向けてシャリ玉11を排出する開放状態P4とに切り換えられる(図4及び図5参照)。   The molding unit 5 is disposed at a position below the cutting unit 4, and rotates forward (inward in the opposite direction in this embodiment) in a direction opposite to the horizontal rotation axis (in the vertical direction in FIG. 2). It has a pair of forming roller members 51 that rotate in the reverse direction (in this embodiment, outward in the opposite direction), and the pair of forming roller members 51 are arranged to face each other with a predetermined interval. On the outer peripheral surface of the forming roller member 51, a flat plate-like locking piece 53 protruding in the radial direction from the peripheral surface is formed, and the pair of cutter members 40 (cutting blades 41) are formed by the locking piece 53. The bar-shaped shear 10 sent via the separation and the shear 10 cut by the pair of cutter members 40 can be locked. Moreover, in the shaping | molding part 5, when the shaping | molding roller member 51 rotates forward / reversely, the locking piece 53 is made to adjoin and the closed state P3 which latches the shear 10 cut | disconnected by the pair of cutter members 40, and latching It is switched to the open state P4 in which the pieces 53 are directed downward and the sharp balls 11 are discharged (see FIGS. 4 and 5).

図2及び図3に示すように、成形ローラ部材51の外周面であって、係止片53よりも上方、すなわちカッター部材40を臨む側の外周面に、所定ピッチで刻設された凹凸部51bが形成されており、凹凸部51bにてシャリ10の送出を円滑に行うことができるように構成されている(なお、本実施形態では係止片53の下側の外周面にも凹凸部51bが形成されている。)。また、成形ローラ部材51の前後の両端面には、成形ローラ部材51の外周面よりも外方へ張り出した外周ツバ部51cが形成されており、これら前後の外周ツバ部51cによってもシャリ10の送出を円滑に行うことができるように構成されている。   As shown in FIG.2 and FIG.3, the uneven | corrugated | grooved part engraved with the predetermined pitch on the outer peripheral surface of the shaping | molding roller member 51 above the latching piece 53, ie, the outer peripheral surface which faces the cutter member 40. 51b is formed so that the shank 10 can be smoothly delivered by the uneven portion 51b (in this embodiment, the uneven portion is also provided on the outer peripheral surface below the locking piece 53. 51b is formed.). In addition, outer peripheral flange portions 51c projecting outward from the outer peripheral surface of the forming roller member 51 are formed on both front and rear end surfaces of the forming roller member 51, and the front and rear outer peripheral flange portions 51c also form the shank 10. It is comprised so that sending can be performed smoothly.

また、成形ローラ部材51は、少なくとも係止片53の上面、すなわち成形ローラ部材51が閉止状態P3のときの上方側の側面に、一対でシャリ玉11の下部形状となる凹状の下部成形枠53aが一対の成形ローラ部材51のそれぞれに形成されている(なお、本実施形態では係止片53の上下面に下部成形枠53aが形成されている。)。この下部成形枠53aの前後端面には、凸形状部53bが形成されている。これにより、成形ローラ部材51が閉止状態P3のとき、一対の下部成形枠53a及び凸形状部53bによりシャリ玉11の下部形状を綺麗な船形に成形することができる。また、成形ローラ部材51の外周面であって、成形ローラ部材51が閉止状態P3のときの係止片53よりも上方の外周面(凹凸部51bから周方向に隣接して形成される外周面)に、シャリ玉11に当接して側面形状を整える湾曲面としての側部成形面51aが形成されており、成形ローラ部材51の正回転に伴ってシャリ玉11の側面に当接することでシャリ玉11の成形と排出を円滑に行うことができるように構成されている。
なお、成形ローラ部材51は、駆動モータ等の駆動装置85A(図6参照)を介して所定の動作がなされるように構成されている。
The forming roller member 51 has at least the upper surface of the locking piece 53, that is, the upper side surface when the forming roller member 51 is in the closed state P3. Is formed on each of the pair of forming roller members 51 (in this embodiment, the lower forming frame 53a is formed on the upper and lower surfaces of the locking piece 53). Convex-shaped portions 53b are formed on the front and rear end surfaces of the lower molding frame 53a. Thereby, when the forming roller member 51 is in the closed state P3, the lower shape of the sharp ball 11 can be formed into a beautiful ship shape by the pair of lower forming frame 53a and the convex portion 53b. Further, the outer peripheral surface of the forming roller member 51 is an outer peripheral surface that is above the locking piece 53 when the forming roller member 51 is in the closed state P3 (the outer peripheral surface formed adjacent to the concave and convex portion 51b in the circumferential direction). ), A side molding surface 51a is formed as a curved surface that abuts against the shaving balls 11 to adjust the side surface shape, and the shaving balls 11 come into contact with the side surfaces of the shaving balls 11 as the molding roller member 51 rotates forward. It is comprised so that shaping | molding and discharge | emission of the ball | bowl 11 can be performed smoothly.
The forming roller member 51 is configured to perform a predetermined operation via a driving device 85A (see FIG. 6) such as a driving motor.

載置部6は、成形部5の下方位置に配設されており、所定の回転角にて一定方向に間欠的に回転可能な平面視円形状のターンテーブル60を有し、ターンテーブル60は、成形部5より排出されたシャリ玉11が載置されると所定の回転角だけ回転されることで周方向に沿って複数のシャリ玉11が所定間隔を空けて載置可能とされている。
なお、ターンテーブル60は、駆動モータ等の駆動装置86A(図6参照)を介して所定の動作がなされるように構成されている。
The mounting portion 6 is disposed at a position below the molding portion 5 and has a turntable 60 having a circular shape in plan view that can be intermittently rotated in a predetermined direction at a predetermined rotation angle. When the shaving balls 11 discharged from the forming unit 5 are placed, the shaving balls 11 are rotated by a predetermined rotation angle so that a plurality of the shaving balls 11 can be placed at predetermined intervals along the circumferential direction. .
The turntable 60 is configured to perform a predetermined operation via a drive device 86A (see FIG. 6) such as a drive motor.

次に、図4及び図5を参照しながら、寿司ロボット11の動作について、以下に詳述する。
寿司ロボット1が待機状態のときは、切刃41の先端が当接された閉止状態P1で一対のカッター部材40が停止され、切刃41の上面にて送出部3からの棒状のシャリ10が係止されるとともに、係止片53が近接された閉止状態P3で一対の成形ローラ部材51が停止されている(図4(a))。なお、本実施形態では、かかる状態の一対の成形ローラ部材51は、係止片53の先端が当接されて略水平となる状態で停止されている。
Next, the operation of the sushi robot 11 will be described in detail below with reference to FIGS. 4 and 5.
When the sushi robot 1 is in a standby state, the pair of cutter members 40 are stopped in the closed state P1 in which the tip of the cutting blade 41 is in contact, and the bar-shaped shaver 10 from the delivery unit 3 is placed on the upper surface of the cutting blade 41. While being locked, the pair of forming roller members 51 are stopped in the closed state P3 in which the locking pieces 53 are brought close to each other (FIG. 4A). In the present embodiment, the pair of forming roller members 51 in such a state is stopped in a state where the tips of the locking pieces 53 are in contact with each other and become substantially horizontal.

寿司ロボット1の運転(成形)が開始されると、まず、一対のカッター部材40が水平移動されて開放状態P2へと切り換えられ、送出部3の下段圧縮ローラ部材31にて棒状のシャリ10が切刃41の離間を介して一対のカッター部材40の下方へと送られる(図4(b))。    When the operation (molding) of the sushi robot 1 is started, first, the pair of cutter members 40 are horizontally moved to the open state P2, and the bar-shaped shaver 10 is moved by the lower-stage compression roller member 31 of the delivery unit 3. It is sent below the pair of cutter members 40 through the separation of the cutting blade 41 (FIG. 4B).

一定量のシャリ10が一対のカッター部材40の下方へと送られると、再び一対のカッター部材40が水平移動されて閉止状態P1へと切り換えられ、切刃41の先端にてシャリ10が切断されるとともに、これと連動して、一対の成形ローラ部材51が正回転されることで係止片53が下動し僅かに下方に向けられることにより截断されたシャリ10が円滑に受け止められる(図4(c))。   When a certain amount of the shear 10 is sent below the pair of cutter members 40, the pair of cutter members 40 are again horizontally moved to the closed state P1, and the shear 10 is cut at the tip of the cutting blade 41. In conjunction with this, when the pair of forming roller members 51 are rotated forward, the locking piece 53 is moved downward and slightly directed downward so that the sheared shear 10 is smoothly received (see FIG. 4 (c)).

次いで、閉止状態P1で一対のカッター部材40が停止されたままで、一対の成形ローラ部材51が逆回転されることで係止片53が上動し切刃41の下面にシャリ10が押圧されて、シャリ玉11が圧縮成形される(図5(a))。かかる工程において、上部成形枠42aの形状に沿ってシャリ10の上部の形状が整えられるとともに、係止片53の先端、下部成形枠53a及び凸形状部53bの形状に沿ってシャリ10の下面及び下部の形状が整えられることで、所定形状のシャリ玉11が成形される。   Next, while the pair of cutter members 40 are stopped in the closed state P1, the pair of forming roller members 51 are reversely rotated, whereby the locking pieces 53 are moved upward, and the shaver 10 is pressed against the lower surface of the cutting blade 41. Then, the sharp ball 11 is compression-molded (FIG. 5A). In such a process, the shape of the upper portion of the shari 10 is adjusted along the shape of the upper molding frame 42a, and the lower surface of the shari 10 along the shapes of the tip of the locking piece 53, the lower molding frame 53a and the convex portion 53b. By adjusting the shape of the lower part, the shaped ball 11 having a predetermined shape is formed.

そして、上述したシャリ玉11の圧縮成形が終了すると、一対の成形ローラ部材51が正回転されて開放状態P4へと切り換えられることで、シャリ玉11が側部成形面51aに当接して側面形状が整えられながら下方へと排出され(図5(b))、やがて、シャリ玉11の排出が終了すると、再び一対の成形ローラ部材51が逆回転されて閉止状態P3へと切り換えられる(図5(c))。   When the above-described compression molding of the sharp balls 11 is completed, the pair of molding roller members 51 are rotated forward and switched to the open state P4, so that the sharp balls 11 come into contact with the side molding surfaces 51a to form side surfaces. Is discharged downward (FIG. 5 (b)), and when the discharge of the shading balls 11 is finished, the pair of forming roller members 51 are reversely rotated again and switched to the closed state P3 (FIG. 5). (C)).

このようにして、本実施形態の寿司ロボット1は、送出部3、切断部4及び成形部5が協働し、一対のカッター部材40及び一対の成形ローラ部材51が連続して動作されることで、所定のシャリ量で所定の硬さ及び形状を有するシャリ玉11を連続して得ることができる。   In this way, in the sushi robot 1 of the present embodiment, the pair of cutter members 40 and the pair of molding roller members 51 are continuously operated by the cooperation of the delivery unit 3, the cutting unit 4, and the molding unit 5. Thus, it is possible to continuously obtain the sharp balls 11 having a predetermined hardness and shape with a predetermined amount.

また、本実施形態の寿司ロボット1では、例えば、送出部3によるシャリ10の送出量とともに、一対のカッター部材40の切断タイミングや閉止状態P3における一対の成形ローラ部材51の正逆方向の回転量(回転位置)を変更することで、シャリ玉11のシャリ量を容易に変更することができ、形状の異なる別の部材等に交換する必要がなく、利用者の利便性や作業性を改善できる。   Further, in the sushi robot 1 of the present embodiment, for example, together with the delivery amount of the shear 10 by the delivery unit 3, the cutting timing of the pair of cutter members 40 and the rotation amount of the pair of forming roller members 51 in the forward and reverse directions in the closed state P3. By changing the (rotation position), the amount of shaving of the shaving balls 11 can be easily changed, and there is no need to replace with another member having a different shape, thereby improving user convenience and workability. .

特に、成形部5は、一対のカッター部材40の切刃41が当接する際に、一対の成形ローラ部材51を正回転させて、係止片53を下動させながら截断されたシャリ10を受け止めるように動作させることで、一対のカッター部材40による截断時にシャリ10にかかる圧力を低減することができ、続く圧縮成形において、一対のカッター部材40の切刃41が当接した状態で、一対の成形ローラ部材51を逆回転させて、係止片53を上動させながら切刃41にシャリ10を押圧するように動作させることで、例えば、一対の成形ローラ部材51の正逆方向の回転量(回転位置)、回転動作、又は回転速度等を変更するだけで、シャリ玉11の圧縮量(シャリ高さや握り強さ)や圧縮方法(握り方)の調整が容易となり、シャリ玉11の品質をより向上することができる。   Particularly, when the cutting blade 41 of the pair of cutter members 40 abuts, the forming unit 5 rotates the pair of forming roller members 51 in the normal direction and moves the locking piece 53 downward to receive the sheared shear 10. By operating as described above, the pressure applied to the shear 10 at the time of cutting by the pair of cutter members 40 can be reduced. In the subsequent compression molding, the pair of cutter members 40 are in contact with the cutting blades 41 of the pair of cutter members 40. By rotating the forming roller member 51 in the reverse direction so as to press the shaver 10 against the cutting blade 41 while moving the locking piece 53 upward, for example, the amount of rotation of the pair of forming roller members 51 in the forward and reverse directions By simply changing the (rotation position), rotation operation, rotation speed, etc., the amount of compression (shaving height and grip strength) and the compression method (how to grip) of the shaving ball 11 can be easily adjusted. It can be further improved.

次に、寿司ロボット1の制御について説明する。
図6に示すように、この寿司ロボット1は、前記の搬送部2、送出部3、切断部4、成形部5のそれぞれの動作を制御する制御部7を備える。制御部7は、ファジー推論部71と、二ユーロ部72と、演算処理部73、司令部8とを備える。
Next, control of the sushi robot 1 will be described.
As shown in FIG. 6, the sushi robot 1 includes a control unit 7 that controls the operations of the transport unit 2, the sending unit 3, the cutting unit 4, and the molding unit 5. The control unit 7 includes a fuzzy inference unit 71, a two euro unit 72, an arithmetic processing unit 73, and a command unit 8.

図7に示すように、ファジー推論部71は、シャリ10からシャリ玉11を製造する一連の米飯成形工程の各工程に対応して、シャリ質及びシャリ玉11のシャリ量を指標としてシャリ玉11の硬さと形状を決定する複数の制御要素をファジー推論により演算して導き出すものである。ここで、シャリ質とは、シャリ10の硬さ、粘り、密度、温度などであるが、本実施形態では、シャリ10の硬さとする。シャリ量は、送出部3による棒状のシャリ10の送出量と切断部4によるシャリ10の切断タイミングによって設定される。   As shown in FIG. 7, the fuzzy inference unit 71 corresponds to each step of a series of cooked rice forming processes for producing the shari balls 11 from the shari 10 and uses the shari quality and the shari amount of the shari balls 11 as an index. A plurality of control elements that determine the hardness and shape of the robot are calculated and derived by fuzzy inference. Here, the sharpness refers to the hardness, stickiness, density, temperature, and the like of the sharp 10, but in this embodiment, the sharpness is the hardness of the sharp 10. The amount of shaving is set by the amount of feeding of the bar-shaped shaving 10 by the sending section 3 and the cutting timing of the shaving 10 by the cutting section 4.

制御要素として、例えば、シャリ密度、成形角度、成形速度などが挙げられるが、これらに限るものではない。シャリ密度は、主にシャリ玉11の硬さに影響を及ぼす要素であり、切断部4における一対のカッター部材40を閉じた状態のときの送出部3における上段圧縮ローラ部材30及び下段圧縮ローラ部材31の正回転の動作量などによって主に調整される。成形角度は、主にシャリ玉11の形状に影響を及ぼす要素であり、成形部5における成形ローラ部材51の係止片53の上動位置であり、成形ローラ部材51の逆回転の動作量によって調整される。成形速度は、主にシャリ玉11の形状に影響を及ぼす要素であり、成形部5における成形ローラ部材51の側部成形面51aをシャリ玉11に当接させている状態のときの成形ローラ部材51の正回転の動作速度によって調整される。   Examples of the control element include, but are not limited to, a shear density, a forming angle, and a forming speed. The shear density is an element mainly affecting the hardness of the shear ball 11, and the upper compression roller member 30 and the lower compression roller member in the delivery unit 3 when the pair of cutter members 40 in the cutting unit 4 are closed. It is mainly adjusted by the amount of forward rotation 31 or the like. The molding angle is an element that mainly affects the shape of the sharp ball 11, is the upward movement position of the locking piece 53 of the molding roller member 51 in the molding unit 5, and depends on the amount of reverse rotation of the molding roller member 51. Adjusted. The molding speed is an element that mainly affects the shape of the sharp ball 11, and the molding roller member in a state where the side molding surface 51 a of the molding roller member 51 in the molding portion 5 is in contact with the sharp ball 11. It is adjusted by the operation speed of the positive rotation 51.

また、この寿司ロボット1は、例えば、操作パネル14に設けられる優先モードボタンにて、使用者は、この優先モードボタンの押し操作により、シャリ玉11の形状を良くする形状優先モードとするのか、シャリ玉11の生産量を多くする生産優先モードとするのかを使用者が選択することができる。従って、このファジー推論部71は、成形速度については、後述のとおり、形状優先モードと生産優先モードの各別に対応したメンバーシップ関数及びファジールールを有している。   In addition, the sushi robot 1 is, for example, a priority mode button provided on the operation panel 14, and whether the user sets the shape priority mode for improving the shape of the sharp ball 11 by pressing the priority mode button. The user can select whether to set the production priority mode in which the production amount of the shari balls 11 is increased. Therefore, the fuzzy inference unit 71 has a membership function and a fuzzy rule corresponding to each of the shape priority mode and the production priority mode, as will be described later, regarding the molding speed.

ファジー推論部71は、複数の制御要素のそれぞれに対応したファジールールが設定されており、各ファジールールの前件部にはシャリ質及びシャリ玉11のシャリ量が設定され、後件部には制御要素として、例えば、シャリ密度、成形速度、成形角度などが設定される。   In the fuzzy inference unit 71, fuzzy rules corresponding to each of a plurality of control elements are set, and in the antecedent part of each fuzzy rule, the quality of the sharpness and the amount of the sharp ball 11 are set, and in the consequent part As the control element, for example, a shear density, a molding speed, a molding angle, and the like are set.

前件部におけるシャリ質、シャリ玉11のシャリ量のそれぞれのメンバーシップ関数の一例として、例えば、図8(a)(b)に示すように表現される。
図8(a)を参照して、シャリ玉11のシャリ量のメンバーシップ関数は、シャリ量が少ないとする集合では、シャリ量15g以下で適合度(グレード値)を1、シャリ量22g以上で適合度(グレード値)を0とし、シャリ量が多いとする集合では、シャリ量22g以上で適合度(グレード値)を1、シャリ量15gで適合度(グレード値)を0とする。
図8(b)を参照して、シャリ質のメンバーシップ関数は、シャリ質が柔らかいとする集合では、硬さ度合い−2以下で適合度(グレード値)を1、硬さ度合い+2以上で適合度(グレード値)を0とし、シャリ質が硬いとする集合では、硬さ度合い+2以上で適合度(グレード値)を1、硬さ度合い−2以下で適合度(グレード値)を0とする。
As an example of each membership function of the shari quality in the antecedent part and the shaving amount of the shaving ball 11, it is expressed as shown in FIGS. 8 (a) and 8 (b), for example.
Referring to FIG. 8 (a), the membership function of the amount of sharpness of the sharp ball 11 is a set where the amount of sharpness is small, the conformity (grade value) is 1 when the amount of sharpness is 15g or less, and the amount of shearing is 22g or more. In a set in which the degree of conformity (grade value) is 0 and the amount of shear is large, the conformity (grade value) is 1 when the amount of shear is 22 g or more, and the degree of conformity (grade value) is 0 when the amount of shear is 15 g.
Referring to FIG. 8 (b), the membership function of the sharpness is suitable for a set with a softness of the quality, with a degree of conformity (grade value) of 1 or less and a degree of hardness of +2 or more. In a set in which the degree (grade value) is 0 and the sharpness is hard, the conformity (grade value) is 1 when the hardness degree is +2 or more, and the conformity (grade value) is 0 when the hardness degree is -2 or less. .

一方、後件部におけるシャリ密度、成形速度、成形角度のそれぞれのメンバーシップ関数の一例として、例えば、図9(a)(b)(c)(d)に示すように表現される。
図9(a)を参照して、シャリ密度のメンバーシップ関数は、命題を「保持する」→「高くする」→「少し高くする」→「とても高くする」の順に、それぞれの密度レベルとして中心の変数が0、1、2、3と順に大きくなるように作成される。
図9(b)を参照して、形状優先モードのときの成形速度のメンバーシップ関数は、命題を「保持する」→「もう少し遅くする」→「少し遅くする」→「遅くする」の順に、それぞれの速度レベルとして中心の変数が0、−1、−2、−3と順に小さくなるように作成される。
図9(c)を参照して、生産優先モードのときの成形速度のメンバーシップ関数は、命題を「保持する」→「もう少し速くする」→「速くする」の順に、それぞれの速度レベルとして中心の変数が0、+1、+2と順に大きくなるように作成される。
図9(d)を参照して、成形角度のメンバーシップ関数は、命題を「保持する」→「少し高くする」→「高くする」の順に、それぞれの角度レベルとして中心の変数が0、+1、+2と順に大きくなるように作成される。
On the other hand, examples of membership functions of the shear density, the forming speed, and the forming angle in the consequent part are expressed as shown in FIGS. 9A, 9B, 9C, and 9D, for example.
Referring to FIG. 9A, the membership function of the shari density is centered as the density level in the order of “hold” → “higher” → “higher” → “very high”. Are created in such a manner that 0, 1, 2, and 3 increase in order.
Referring to FIG. 9 (b), the membership function of the forming speed in the shape priority mode is as follows: the propositions are "hold", "slightly slow", "slightly slow", and "slow". Each speed level is created so that the central variable decreases in order of 0, -1, -2, -3.
Referring to FIG. 9 (c), the molding speed membership function in the production priority mode is centered on each speed level in the order of “hold” → “make it a little faster” → “make it faster”. Are created in such a manner as to increase in order of 0, +1, +2.
Referring to FIG. 9D, the membership function of the forming angle is such that the central variable is 0, +1 as the respective angle levels in the order of “hold” → “higher” → “higher” the propositions. , +2 in order.

以上の前件部(図8)を後件部(図9)のそれぞれに適用するための各ファジールールの設定例として、例えば、図10(a)(b)(c)(d)に示すように設定される。そして、ファジー推論部71では、図10(a)(b)(c)(d)に示したそれぞれのファジールールにおいて、そのファジールールに従ってシャリ質及びシャリ玉11のシャリ量から前件部が一致するときの後件部の推論結果をすべてのルール1〜4について求め、得られたそれぞれの推論結果を和集合して総合的な推論結果を得る。次いで、この総合的な推論結果を重心法又は菅野の方法等により脱ファジー化を行い、最終の演算結果を得る。各ファジールールに対応してここで得られた最終の演算結果は、本実施形態では、シャリ玉11の硬さ及び形状を決定する装置部分、すなわち、送出部3、切断部4及び成形部5の各動作を制御するための制御要素として、シャリ密度、成形速度(形状優先モード)、成形速度(生産優先モード)、成形角度についての標準値に対する可変レベル(調整値)となる。   As an example of setting each fuzzy rule for applying the above antecedent part (FIG. 8) to each of the consequent part (FIG. 9), for example, shown in FIGS. 10 (a), (b), (c), and (d). Is set as follows. Then, in the fuzzy inference unit 71, in each fuzzy rule shown in FIGS. 10 (a), (b), (c), and (d), the antecedent part is matched according to the fuzzy rule and the amount of the sharp ball 11 according to the fuzzy rule. The inference result of the consequent part is obtained for all the rules 1 to 4, and the respective inference results obtained are summed to obtain a comprehensive inference result. Next, this comprehensive inference result is defuzzified by the center of gravity method or the Sagano method, and the final calculation result is obtained. In this embodiment, the final calculation result obtained here corresponding to each fuzzy rule is a device part that determines the hardness and shape of the sharp ball 11, that is, the sending part 3, the cutting part 4, and the molding part 5. As control elements for controlling each of these operations, there are variable levels (adjustment values) with respect to standard values for the shear density, molding speed (shape priority mode), molding speed (production priority mode), and molding angle.

なお、各制御要素は、図9の後件部メンバーシップ関数に示すとおり、以下の範囲で可変されるが、これに示す範囲に限らず、実験等を通じて任意に設定することができる。
シャリ密度は、密度レベルとして、標準値「0」とし最低「−1」から最高「+4」の範囲で可変できるようにしている。
成形速度(形状優先)は、速度レベルとして、標準値「0」とし最低「−4」から最高「+1」の範囲で可変できるようにしている。
成形速度(生産優先)は、速度レベルとして、標準値「0」とし最低「−1」から最高「+3」の範囲で可変できるようにしている。
成形角度は、角度レベルとして、標準値「0」とし最低「−1」から最高「+3」の範囲で可変できるようにしている。
なお、以上のような標準値は、制御部7において予め設定されている。
Each control element can be varied within the following range as shown in the consequent part membership function in FIG. 9, but is not limited to this range, and can be arbitrarily set through experiments or the like.
The density of the shear is set to a standard value “0” as a density level, and can be varied in a range from a minimum “−1” to a maximum “+4”.
The molding speed (priority of shape) is set to a standard value “0” as a speed level, and can be varied in a range from a minimum “−4” to a maximum “+1”.
The molding speed (production priority) is set to a standard value “0” as a speed level, and can be varied from a minimum “−1” to a maximum “+3”.
The molding angle is set to a standard value “0” as an angle level, and can be varied in a range from a minimum “−1” to a maximum “+3”.
The standard values as described above are preset in the control unit 7.

図6を参照して、演算処理部73は、ファジー推論部71からの各制御要素の出力値(可変レベル)に基づいて、送出部3、切断部4及び成形部5に対してそれぞれの動作を制御するための制御値を演算し、この制御値を司令部8へ出力する。司令部8は、演算処理部73からの制御値に基づいて、各駆動装置83A,84A,85A,86A等へ動作制御の制御信号が出力され、各部に所定の動作を実行させる。   Referring to FIG. 6, the arithmetic processing unit 73 operates on the sending unit 3, the cutting unit 4, and the forming unit 5 based on the output values (variable levels) of the control elements from the fuzzy inference unit 71. Is calculated, and this control value is output to the command section 8. Based on the control value from the arithmetic processing unit 73, the command unit 8 outputs a control signal for operation control to each of the driving devices 83A, 84A, 85A, 86A, etc., and causes each unit to execute a predetermined operation.

図11及び図12には、ファジー推論部71での演算結果の一例として、制御要素が成形速度(形状優先モード)の場合のものを抜粋して示す。同図11(a)〜(c)は、成形速度(形状優先モード)として、シャリ量が16g、18g、20gのそれぞれの場合におけるシャリ質の変化(シャリ硬さ度合い−2〜+2)に対する演算結果(適合度)であり、同図12(a)〜(c)は、成形速度(形状優先モード)として、シャリ質としてのシャリ10の硬さ度合いが−1、0、+1のそれぞれの場合におけるシャリ量の変化(15g〜22g)に対する演算結果(適合度)である。   FIGS. 11 and 12 show an example of a calculation result in the fuzzy inference unit 71 when the control element is a molding speed (shape priority mode). 11 (a) to 11 (c) show the calculation with respect to the change in the shear quality (sharp hardness degree -2 to +2) when the amount of shear is 16g, 18g, and 20g as the molding speed (shape priority mode). 12 (a) to 12 (c) are results (fitness), and the molding speed (shape priority mode) is the case where the hardness degree of the shaving 10 as the shaving quality is -1, 0, +1, respectively. It is the calculation result (fitness) with respect to the change (15g-22g) of the amount of shavings.

例えば、図11(a)に示すように、使用者により、形状優先モードが選択されているとき、シャリ量が少なく(16g)、シャリ質としてシャリ硬さ度合いが柔らかい(−2)、とする場合、ファジー推論部71にて、成形ローラ部材51の成形速度(形状優先モード)を遅くする(速度レベル−2.7)という演算結果(制御要素)が得られる。この場合、成形速度を標準値(速度レベルが0)より−2.7(可変レベル)下げた速度とされる。そして、演算処理部73は、ファジー推論部71からの前記制御要素に基づいて、成形部5における成形ローラ部材51の側部成形面51aをシャリ玉11に当接させている状態のときの成形ローラ部材51の正回転の動作速度は、速度レベル−2.7の指示に従って標準速度(速度レベル0)より遅くなるような制御値が演算処理される。司令部8は、成形部5の駆動装置85Aに対しては、演算処理部73からの前記制御値に基づく制御信号が出力される。その結果、形状優先モードの選択時、シャリ量が少なくシャリ硬さ度合いが柔らかい場合でも、得られるシャリ玉11の形状が整った綺麗な形の仕上がりにすることができる。なお、ここでは成形速度について説明したが、成形角度、シャリ密度も同様にファジー推論部71によりファジー推論演算され、演算処理部73及び司令部8により成形速度とともに成形角度、シャリ密度も同時に設定され制御される。   For example, as shown in FIG. 11 (a), when the shape priority mode is selected by the user, the amount of shear is small (16g), and the degree of shear hardness is soft (-2) as the quality of the shear. In this case, the fuzzy reasoning unit 71 obtains a calculation result (control element) that slows the forming speed (shape priority mode) of the forming roller member 51 (speed level −2.7). In this case, the molding speed is set to a speed that is -2.7 (variable level) lower than the standard value (speed level is 0). Then, based on the control element from the fuzzy inference unit 71, the arithmetic processing unit 73 is molded when the side molding surface 51 a of the molding roller member 51 in the molding unit 5 is in contact with the sharp ball 11. The control value is calculated so that the normal rotation speed of the roller member 51 is lower than the standard speed (speed level 0) according to the instruction of speed level -2.7. The command unit 8 outputs a control signal based on the control value from the arithmetic processing unit 73 to the driving device 85 </ b> A of the molding unit 5. As a result, when the shape priority mode is selected, even if the amount of shear is small and the degree of shear hardness is soft, it is possible to obtain a beautifully finished shape in which the shape of the resulting ball 11 is arranged. Although the forming speed has been described here, the forming angle and the shear density are similarly calculated by the fuzzy inference unit 71, and the forming angle and the shear density are set simultaneously with the forming speed by the arithmetic processing unit 73 and the command unit 8. Be controlled.

ニューロ部72は、製造されたシャリ玉11の調整用として使用者が入力したシャリ玉11の品質(例えば、シャリ玉11の硬さ度合い、シャリ玉11の形状度合いなど)に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論で導き出した各制御要素を補正して出力するものである。このニューロ部72は、例えば、図13に示すように、入力層、中間層、出力層を持つ多層構造をなす階層型ネットワークとして構成され、出力層からの出力と教師信号との誤差が最小となるように出力層から入力層に向かってネットワークの各層間のシナプス荷重を修正する誤差逆伝播法により学習が行われる。本実施形態では、教師信号として使用者が入力したシャリ玉11の品質についての信号が与えられる。すなわち、この寿司ロボット1では、ファジー推論演算結果に基づいて製造されたシャリ玉11が使用者の希望品質と合致しない場合、使用者にて補正入力を可能とするものであり、このときの補正がニューロ部72によって行われる。   The neuro section 72 is configured to perform error propagation learning based on the quality (for example, the degree of hardness of the ball 11, the shape of the ball 11, etc.) input by the user for adjustment of the manufactured ball 11. Each control element derived by the fuzzy inference is corrected by a model neural network and output. As shown in FIG. 13, for example, the neuro section 72 is configured as a hierarchical network having a multi-layer structure having an input layer, an intermediate layer, and an output layer, and the error between the output from the output layer and the teacher signal is minimized. Learning is performed by an error back propagation method for correcting the synaptic load between each layer of the network from the output layer to the input layer. In the present embodiment, a signal regarding the quality of the sharp ball 11 input by the user is provided as a teacher signal. That is, the sushi robot 1 allows the user to make correction input when the spear ball 11 manufactured based on the fuzzy inference calculation result does not match the user's desired quality. Is performed by the neuro section 72.

例えば、操作パネル14に設けられたシャリ玉11の品質調整ボタンで使用者がシャリ玉11の硬さを「硬め」又は「軟らかめ」などのボタンを押し操作することにより、ニューロ部72にてシャリ玉11の硬さ度合いを「硬め」又は「軟らかめ」と変更するための補正信号が出力され、この場合、ファジー推論部71から出力されるシャリ密度が現在の密度レベルより、例えば、一段階高くする(現在より+1、「硬め」ボタン操作時)、又は低くする(現在より−1、「軟らかめ」ボタン操作時)ように補正される。これにより、使用者の希望するシャリ玉11が簡単に得られるようになる。   For example, when the user presses a button such as “hard” or “soft” with the quality adjustment button of the sharp ball 11 provided on the operation panel 14, the neuro portion 72 A correction signal for changing the degree of hardness of the ball 11 to “hard” or “soft” is output. In this case, the shear density output from the fuzzy inference unit 71 is, for example, less than the current density level. It is corrected so as to be higher (+1 from the current, when operating the “hard” button) or lower (−1 from the current, when operating the “soft” button). As a result, the sharp ball 11 desired by the user can be easily obtained.

以上より、実施形態の寿司ロボット1によれば、装置の機械制御について、具体的数値ではなく、例えば、使用者が感覚的、抽象的に判断した米飯の質や米飯量などの入力をファジー推論及びニューロ理論にて演算処理して最適値を導き出して適切な機械制御の各種設定を自動的に行うことができる。なお、使用者のみならず製造者側が機械制御の各種設定を行うようにしてもよい。例えば、ファジー推論を使用することにより、もっと硬く、少し硬く、少し柔らかく、もっと柔らかくなどのような、より人間の感覚に近い入力でもって簡易に且つ適切な機械制御の各種設定が可能になり、使用者の希望に沿った品質のシャリ玉11を簡単に製造することが可能になる。   From the above, according to the sushi robot 1 of the embodiment, the machine control of the apparatus is not a specific numerical value, for example, fuzzy inference such as the quality of cooked rice and the amount of cooked rice judged sensuously and abstractly by the user. In addition, it is possible to automatically perform various settings for appropriate machine control by deriving an optimum value by performing arithmetic processing using neuro theory. Note that not only the user but also the manufacturer may perform various machine control settings. For example, by using fuzzy inference, it is possible to easily and appropriately set various machine control settings with input closer to human sense, such as harder, slightly harder, slightly softer, softer, etc. It becomes possible to easily produce the quality ball 11 according to the user's wishes.

なお、本発明は、上述した実施形態に限定されず、本発明の目的を逸脱しない限りにおいて種々の変更が可能であり、例えば、本発明は、以上の寿司ロボット1に限らず、おむすび成形装置、海苔巻き成形装置などの各種の米飯成形装置にも適用可能である。   In addition, this invention is not limited to embodiment mentioned above, A various change is possible unless it deviates from the objective of this invention, for example, this invention is not restricted to the above sushi robot 1, A rice ball molding apparatus The present invention is also applicable to various cooked rice forming apparatuses such as a laver roll forming apparatus.

1 寿司ロボット(米飯成形装置)
2 搬出部
3 送出部
4 切断部
5 成形部
6 載置部
7 制御部
8 司令部
10 シャリ(米飯)
11 シャリ玉(米飯成形体)
14 操作パネル
20 ホッパ
21 フィーダ
30 上段圧縮ローラ部材
30a 凹凸部
30c 外周ツバ部
31 下段圧縮ローラ部材
31a 凹凸部
31c 外周ツバ部
40 カッター部材
41 切刃
42a 上部成形枠
51 成形ローラ部材
51a 側部成形面
51b 凹凸部
51c 外周ツバ部
53 係止片
53a 下部成形枠
53b 凸形状部
60 ターンテーブル
71 ファジー推論部
72 ニューロ部
73 演算処理部
1 Sushi robot (rice cooker)
2 Unloading unit 3 Sending unit 4 Cutting unit 5 Molding unit 6 Mounting unit 7 Control unit 8 Command unit 10 Shari
11 Shari balls (rice cooked rice)
14 Operation panel 20 Hopper 21 Feeder 30 Upper compression roller member 30a Uneven portion 30c Outer peripheral flange portion 31 Lower compression roller member 31a Uneven portion 31c Outer flange portion 40 Cutter member 41 Cutting blade 42a Upper forming frame 51 Forming roller member 51a Side forming surface 51b Concavity and convexity 51c Outer peripheral flange 53 Locking piece 53a Lower molding frame 53b Convex part 60 Turntable 71 Fuzzy inference part 72 Neuro part 73 Arithmetic processing part

本発明に係る米飯成形装置の制御方法は、
送出部により米飯を圧縮する工程、切断部により圧縮された米飯を一定量に切断する工程、成形部により一定量に切断された米飯を所定形状の米飯成形体に成形する工程を実行する米飯成形装置に対して、米飯から米飯成形体を製造する一連の米飯成形工程の前記各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、当該ファジー推論で導き出した各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御する構成とし、
前記ファジー推論では、前記各制御要素となる米飯密度、成形角度及び成形速度の各標準値に対する可変レベルとして、前記米飯の硬さ度合いと前記米飯量の変化に対する適合度を求めるものである。
The method for controlling the cooked rice forming apparatus according to the present invention is as follows:
Cooked rice molding that performs the steps of compressing cooked rice by the delivery unit, cutting the cooked rice compressed by the cutting unit into a predetermined amount, and molding the cooked rice cut by the molding unit into a predetermined shape Corresponding to each step of a series of cooked rice molding processes for producing cooked rice molded products from cooked rice, the hardness of the cooked rice molded product with the quality of cooked rice and the amount of cooked rice cooked as an index, and A plurality of control elements that determine the shape of the cooked rice molded body are calculated and derived by fuzzy inference, and based on each control element derived by the fuzzy inference, each of the feeding section, the cutting section, and the forming section a structure for controlling the operation,
In the fuzzy inference, the degree of hardness of the cooked rice and the degree of conformity with respect to changes in the cooked rice amount are obtained as variable levels with respect to the standard values of the cooked rice density, the forming angle, and the forming speed as the control elements .

本発明に係る米飯成形装置は、
貯留した米飯を下流へと搬出する搬出部と、前記搬出部から搬出された米飯を棒状に圧縮しながら下流へと送出する送出部と、前記送出部から送出された棒状の米飯を一定量に切断する切刃が形成される一対のカッター部材を有する切断部と、前記切断部で一定量に切断された米飯を所定形状の米飯成形体に成形する成形部と、前記各部の動作を制御する制御部とを備え、
前記成形部は、周面に前記一対のカッター部材にて切断された米飯を係止する係止片が形成される一対の成形ローラ部材を有し、当該一対の成形ローラ部材が前記一対のカッター部材の下流位置に相対向して正逆回転可能に配置され、前記一対のカッター部材の切刃が当接する際に前記一対の成形ローラ部材を正回転させて前記係止片を下動させながら切断された米飯を受け止める状態と、前記一対のカッター部材の切刃が当接した状態で前記一対の成形ローラ部材を逆回転させて前記係止片を上動させながら前記切刃に米飯を押圧する状態と、前記一対の成形ローラ部材を正回転させながら当該一対の成形ローラ部材の外周面に形成する側部成形面を米飯の側面に当接する状態とに変化可能に構成されており、
前記制御部は、
米飯から米飯成形体を製造する一連の米飯成形工程の各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、また、前記成形部の成形速度に対応するファジールールとして米飯成形体の形状品質を良くする形状優先モード用と米飯成形体の生産量を多くする生産優先モード用との各別に有し、選択された前記優先モードのファジールールを適用して前記成形部の成形速度についての制御要素をファジー推論演算して導き出す構成を有するファジー推論部と、
調整用に入力された米飯成形体の品質に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論部から出力される各制御要素を補正するニューロ部と、
前記ファジー推論部で導き出された各制御要素又は前記ニューロ部で補正された前記各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御するための制御値を演算する演算処理部と
を備え
前記ファジー推論では、前記各制御要素となる米飯密度、成形角度及び成形速度の各標準値に対する可変レベルとして、前記米飯の硬さ度合いと前記米飯量の変化に対する適合度を求める構成とするものである。
The cooked rice forming apparatus according to the present invention is
A carry-out unit for carrying out the stored cooked rice downstream, a delivery unit for sending the cooked rice carried out from the carry-out unit to a downstream while compressing the cooked rice into a rod shape, and a fixed amount of stick-shaped cooked rice delivered from the delivery unit A cutting part having a pair of cutter members on which cutting blades to be cut are formed, a forming part for forming cooked rice that has been cut into a predetermined amount by the cutting part into a predetermined shape rice cooked body, and controlling the operation of each part A control unit,
The molding unit has a pair of molding roller members formed with locking pieces for locking the cooked rice cut by the pair of cutter members on a peripheral surface, and the pair of molding roller members is the pair of cutters. While facing the downstream position of the member so as to be able to rotate forward and backward, when the cutting blades of the pair of cutter members come into contact with each other, the pair of forming roller members are rotated forward to move the locking piece downward With the state where the cut cooked rice is received and the cutting blades of the pair of cutter members are in contact, the pair of forming roller members are reversely rotated to press the cooked rice against the cutting blades while moving the locking pieces upward And a state in which the side molding surface formed on the outer peripheral surface of the pair of molding roller members is in contact with the side surface of the cooked rice while rotating the pair of molding roller members in the forward direction.
The controller is
Corresponding to each step of a series of cooked rice molding processes for producing cooked rice products from cooked rice, the hardness of the cooked rice product and / or the cooked rice product using the quality of cooked rice and the cooked rice content of the cooked rice product as indicators. A plurality of control elements for determining the shape of the rice are calculated and derived by fuzzy inference, and as a fuzzy rule corresponding to the forming speed of the forming portion, the shape priority mode for improving the shape quality of the cooked rice product and the cooked rice product A fuzzy structure that is separately provided for the production priority mode for increasing the production volume and that derives the fuzzy inference calculation of the control element for the molding speed of the molding part by applying the fuzzy rule of the selected priority mode. The reasoning department;
A neuro part for correcting each control element output from the fuzzy inference part by a neural network of an error propagation learning model based on the quality of the cooked rice molded body inputted for adjustment;
Based on each control element derived by the fuzzy inference part or each control element corrected by the neuro part, control values for controlling the operations of the sending part, the cutting part and the forming part are set. An arithmetic processing unit for calculating ,
In the fuzzy inference, as a variable level with respect to each standard value of the cooked rice density, forming angle and forming speed as the control elements, the degree of hardness of the cooked rice and the conformity to the change in the amount of cooked rice are obtained. is there.

Claims (4)

送出部により米飯を圧縮する工程、切断部により圧縮された米飯を一定量に切断する工程、成形部により一定量に切断された米飯を所定形状の米飯成形体に成形する工程を実行する米飯成形装置に対して、米飯から米飯成形体を製造する一連の米飯成形工程の前記各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、当該ファジー推論で導き出した各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御する米飯成形装置の制御方法。   Cooked rice molding that performs the steps of compressing cooked rice by the delivery unit, cutting the cooked rice compressed by the cutting unit into a predetermined amount, and molding the cooked rice cut by the molding unit into a predetermined shape Corresponding to each step of a series of cooked rice molding processes for producing cooked rice molded products from cooked rice, the hardness of the cooked rice molded product with the quality of cooked rice and the amount of cooked rice cooked as an index, and A plurality of control elements that determine the shape of the cooked rice molded body are calculated and derived by fuzzy inference, and based on each control element derived by the fuzzy inference, each of the feeding section, the cutting section, and the forming section Method of cooked rice forming apparatus for controlling the operation of the rice. 請求項1に記載の米飯成形装置の制御方法において、
調整用に入力された米飯成形体の品質に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論から出力される各制御要素を補正する米飯成形装置の制御方法。
In the control method of the cooked rice forming apparatus according to claim 1,
A method for controlling a cooked rice forming apparatus, wherein each control element output from the fuzzy inference is corrected by a neural network of an error propagation learning model based on the quality of the cooked rice product inputted for adjustment.
請求項1又は2に記載の米飯成形装置の制御方法において、
前記ファジー推論は、前記成形部の成形速度に対応するファジールールとして米飯成形体の形状品質を良くする形状優先モード用と米飯成形体の生産量を多くする生産優先モード用との各別に有し、選択された前記優先モードのファジールールを適用して前記成形部の成形速度についての制御要素をファジー推論演算して導き出す米飯成形装置の制御方法。
In the control method of the cooked rice forming apparatus according to claim 1 or 2,
The fuzzy inference has a fuzzy rule corresponding to the forming speed of the forming part for each of the shape priority mode for improving the shape quality of the cooked rice molded product and the production priority mode for increasing the production amount of the cooked rice molded product. The method for controlling the cooked rice forming apparatus, which applies the fuzzy rule of the selected priority mode and derives a control element for the forming speed of the forming part by fuzzy inference calculation.
貯留した米飯を下流へと搬出する搬出部と、前記搬出部から搬出された米飯を棒状に圧縮しながら下流へと送出する送出部と、前記送出部から送出された棒状の米飯を一定量に切断する切刃が形成される一対のカッター部材を有する切断部と、前記切断部で一定量に切断された米飯を所定形状の米飯成形体に成形する成形部と、前記各部の動作を制御する制御部とを備え、
前記成形部は、周面に前記一対のカッター部材にて切断された米飯を係止する係止片が形成される一対の成形ローラ部材を有し、当該一対の成形ローラ部材が前記一対のカッター部材の下流位置に相対向して正逆回転可能に配置され、前記一対のカッター部材の切刃が当接する際に前記一対の成形ローラ部材を正回転させて前記係止片を下動させながら切断された米飯を受け止める状態と、前記一対のカッター部材の切刃が当接した状態で前記一対の成形ローラ部材を逆回転させて前記係止片を上動させながら前記切刃に米飯を押圧する状態と、前記一対の成形ローラ部材を正回転させながら当該一対の成形ローラ部材の外周面に形成する側部成形面を米飯の側面に当接する状態とに変化可能に構成されており、
前記制御部は、
米飯から米飯成形体を製造する一連の米飯成形工程の各工程に対応して、前記米飯の質及び前記米飯成形体の米飯量を指標として前記米飯成形体の硬さ及び/又は前記米飯成形体の形状を決定する複数の制御要素をファジー推論により演算して導き出し、また、前記成形部の成形速度に対応するファジールールとして米飯成形体の形状品質を良くする形状優先モード用と米飯成形体の生産量を多くする生産優先モード用との各別に有し、選択された前記優先モードのファジールールを適用して前記成形部の成形速度についての制御要素をファジー推論演算して導き出す構成を有するファジー推論部と、
調整用に入力された米飯成形体の品質に基づいて誤差伝播学習モデルのニューラルネットワークにより前記ファジー推論部から出力される各制御要素を補正するニューロ部と、
前記ファジー推論部で導き出された各制御要素又は前記ニューロ部で補正された前記各制御要素に基づいて、前記送出部、前記切断部及び前記成形部のそれぞれの動作を制御するための制御値を演算する演算処理部と
を備える米飯成形装置。
A carry-out unit for carrying out the stored cooked rice downstream, a delivery unit for sending the cooked rice carried out from the carry-out unit to a downstream while compressing the cooked rice into a rod shape, and a fixed amount of stick-shaped cooked rice delivered from the delivery unit A cutting part having a pair of cutter members on which cutting blades to be cut are formed, a forming part for forming cooked rice that has been cut into a predetermined amount by the cutting part into a predetermined shape rice cooked body, and controlling the operation of each part A control unit,
The molding unit has a pair of molding roller members formed with locking pieces for locking the cooked rice cut by the pair of cutter members on a peripheral surface, and the pair of molding roller members is the pair of cutters. While facing the downstream position of the member so as to be able to rotate forward and backward, when the cutting blades of the pair of cutter members come into contact with each other, the pair of forming roller members are rotated forward to move the locking piece downward With the state where the cut cooked rice is received and the cutting blades of the pair of cutter members are in contact, the pair of forming roller members are reversely rotated to press the cooked rice against the cutting blades while moving the locking pieces upward And a state in which the side molding surface formed on the outer peripheral surface of the pair of molding roller members is in contact with the side surface of the cooked rice while rotating the pair of molding roller members in the forward direction.
The controller is
Corresponding to each step of a series of cooked rice molding processes for producing cooked rice products from cooked rice, the hardness of the cooked rice product and / or the cooked rice product using the quality of cooked rice and the cooked rice content of the cooked rice product as indicators. A plurality of control elements for determining the shape of the rice are calculated and derived by fuzzy inference, and as a fuzzy rule corresponding to the forming speed of the forming portion, the shape priority mode for improving the shape quality of the cooked rice product and the cooked rice product A fuzzy structure that is separately provided for the production priority mode for increasing the production volume and that derives the fuzzy inference calculation of the control element for the molding speed of the molding part by applying the fuzzy rule of the selected priority mode. The reasoning department;
A neuro part for correcting each control element output from the fuzzy inference part by a neural network of an error propagation learning model based on the quality of the cooked rice molded body inputted for adjustment;
Based on each control element derived by the fuzzy inference part or each control element corrected by the neuro part, control values for controlling the operations of the sending part, the cutting part and the forming part are set. A cooked rice forming apparatus comprising: an arithmetic processing unit for calculating.
JP2016025506A 2016-02-15 2016-02-15 Method for controlling cooked rice forming apparatus and cooked rice forming apparatus Active JP6147378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025506A JP6147378B1 (en) 2016-02-15 2016-02-15 Method for controlling cooked rice forming apparatus and cooked rice forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025506A JP6147378B1 (en) 2016-02-15 2016-02-15 Method for controlling cooked rice forming apparatus and cooked rice forming apparatus

Publications (2)

Publication Number Publication Date
JP6147378B1 JP6147378B1 (en) 2017-06-14
JP2017143741A true JP2017143741A (en) 2017-08-24

Family

ID=59061239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025506A Active JP6147378B1 (en) 2016-02-15 2016-02-15 Method for controlling cooked rice forming apparatus and cooked rice forming apparatus

Country Status (1)

Country Link
JP (1) JP6147378B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563119A (en) * 2018-03-26 2018-09-21 哈尔滨工程大学 A kind of unmanned boat motion control method based on fuzzy support vector machine algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170920A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Rice cooker
JPH04261611A (en) * 1991-02-18 1992-09-17 Omron Corp Rice boiler
US5681496A (en) * 1994-09-07 1997-10-28 Sharp Kabushiki Kaisha Apparatus for and method of controlling a microwave oven and a microwave oven controlled thereby
JP2012029617A (en) * 2010-07-30 2012-02-16 Audio Technica Corp Apparatus for molding cooked rice and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170920A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Rice cooker
JPH04261611A (en) * 1991-02-18 1992-09-17 Omron Corp Rice boiler
US5681496A (en) * 1994-09-07 1997-10-28 Sharp Kabushiki Kaisha Apparatus for and method of controlling a microwave oven and a microwave oven controlled thereby
JP2012029617A (en) * 2010-07-30 2012-02-16 Audio Technica Corp Apparatus for molding cooked rice and method of controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563119A (en) * 2018-03-26 2018-09-21 哈尔滨工程大学 A kind of unmanned boat motion control method based on fuzzy support vector machine algorithm
CN108563119B (en) * 2018-03-26 2021-06-15 哈尔滨工程大学 Unmanned ship motion control method based on fuzzy support vector machine algorithm

Also Published As

Publication number Publication date
JP6147378B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US4626439A (en) Method for producing thin portions of pasta filata cheese
US4665811A (en) Apparatus for producing thin portions of pasta filata cheese
JP6147378B1 (en) Method for controlling cooked rice forming apparatus and cooked rice forming apparatus
US5576041A (en) Process for producing latticed fried food and product thereof
US20050123663A1 (en) Shredded food products and methods of producing and applying shredded food products
US10306896B2 (en) Variable contoured rounding bar, device and method of using same
US20170127687A1 (en) Cutter for Manufacturing Three-Dimensional Noodles
CN105010449B (en) A kind of butterfly noodles forming machine
CN103862722A (en) Apparatus for manufacturing handle of hand bag
US20230329247A1 (en) Apparatus and Method for Producing Scored Dough Pieces
WO2015198292A1 (en) Forming device for the production of pasta of elongated type and related method
CN105283279A (en) Cutter having varied cavity draft angle
KR101871458B1 (en) Manufacturing system for noodle having slope embossing line
CN211091596U (en) Mushroom noodless forming device
US20080160127A1 (en) Dough divider
US10897912B2 (en) Variable contoured rounding bar, device and method of using same
EP1424010B1 (en) Process for the preparation of edible pasta with a high absorption of substances, a relative dough processing device and the pasta thus obtained
CN106325154A (en) Tea rolling and frying machine control method based on mode recognition
KR102221134B1 (en) Sujebi noodles manufacturing apparatus
CN214709971U (en) Intelligent food material molding and cutting device
KR102659786B1 (en) Crab stick manufacturing method and apparatus using extruding
JP2017051141A (en) Rice molding device
JP5787250B2 (en) Rolled sushi continuous production equipment
CA1260864A (en) Technique for producing cheese
JPH10179110A (en) Cutter for cylindrical food

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170516

R150 Certificate of patent or registration of utility model

Ref document number: 6147378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250