JP2017143150A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2017143150A
JP2017143150A JP2016022963A JP2016022963A JP2017143150A JP 2017143150 A JP2017143150 A JP 2017143150A JP 2016022963 A JP2016022963 A JP 2016022963A JP 2016022963 A JP2016022963 A JP 2016022963A JP 2017143150 A JP2017143150 A JP 2017143150A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
compound
conversion element
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022963A
Other languages
Japanese (ja)
Other versions
JP6690276B2 (en
Inventor
遼太 新居
Ryota Arai
遼太 新居
田中 裕二
Yuji Tanaka
裕二 田中
直道 兼為
Naomichi Kanei
直道 兼為
徳重 木野
Tokushige Kino
徳重 木野
剛 松山
Takeshi Matsuyama
剛 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016022963A priority Critical patent/JP6690276B2/en
Publication of JP2017143150A publication Critical patent/JP2017143150A/en
Application granted granted Critical
Publication of JP6690276B2 publication Critical patent/JP6690276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element with high heat resistance.SOLUTION: A photoelectric conversion element is laminated with an electron transport layer, a photoelectric conversion layer 5, a hole transport layer 6, and an electrode 7 in this order on a conductive film 2. The electron transport layer comprises a first layer 3 containing a metal oxide, and a second layer 4 provided between the first layer and the photoelectric conversion layer. The second layer contains a first compound having at least one carboxylic acid group, and a second compound, which is a tertiary amine derivative having at least one pyridyl group.SELECTED DRAWING: Figure 1

Description

本発明は、光電変換素子に関する。ここでいう光電変換素子とは、光エネルギーを電気エネルギーに変換する素子又は電気エネルギーを光エネルギーに変換する素子を意味し、具体的には太陽電池、フォトダイオード等が挙げられる。   The present invention relates to a photoelectric conversion element. Here, the photoelectric conversion element means an element that converts light energy into electric energy or an element that converts electric energy into light energy, and specifically includes a solar cell, a photodiode, and the like.

近年、電子回路における駆動電力が非常に小さくなり、来たるIoT社会に向けて微弱な電力(μWオーダー)でもセンサ等の様々な電子部品を駆動できるようになった。更にセンサの活用に際し、その場で発電し消費できる自立電源として環境発電素子への応用が期待されており、その中でも光電変換素子は、光があればどこでも発電できる素子として注目を集めている。特に微弱な光でも効率よく発電できる光電変換素子が必要とされている。微弱光の代表としてはLEDライトや蛍光灯などが挙げられる。それらは主に室内で用いられるので特に室内光と呼ぶ。それらの光の照度は20Luxから1000Lux程度であり、太陽の直射光(およそ100000Lux)と比べて非常に微弱な光である。環境発電素子においては、特に蛍光灯やLEDランプなどの室内光で効率よく発電できる素子が求められている。   In recent years, driving power in electronic circuits has become very small, and various electronic components such as sensors can be driven even with weak power (μW order) for the coming IoT society. Furthermore, when utilizing the sensor, application to an environmental power generation element is expected as a self-supporting power source that can generate and consume on the spot. Among them, a photoelectric conversion element is attracting attention as an element that can generate power anywhere if there is light. In particular, there is a need for a photoelectric conversion element that can efficiently generate power even with weak light. Typical examples of weak light include LED lights and fluorescent lamps. Since they are mainly used indoors, they are called indoor light. The illuminance of these lights is about 20 Lux to 1000 Lux, which is very weak light compared to the direct sunlight (about 100000 Lux). In the environmental power generation element, an element capable of generating power efficiently with room light such as a fluorescent lamp and an LED lamp is required.

光電変換素子としてはシリコン系太陽電池が最も普及しており、太陽光下での変換効率の高いものが多く報告されている(例えば非特許文献1)。しかし、シリコン系太陽電池は太陽光下での変換効率は優れるが、微弱光下での変換効率は低いことが一般的に知られている(例えば非特許文献2)。一方で、スイスローザンヌ工科大学のGraetzelらが発表した色素増感型太陽電池は、微弱光下において、シリコン太陽電池以上の高い光電変換特性を有することが報告されている(例えば非特許文献3)。また、Heegerらが開発したP型有機半導体とフラーレンに代表されるN型有機半導体を混合したバルクヘテロ接合型有機薄膜太陽電池も微弱光下において比較的高い発電能を有することが知られている(非特許文献4)。しかしバルクへテロ接合型有機薄膜太陽電池は、高温に置かれた際、変換効率が著しく低下することが知られている(非特許文献5)。そこで耐熱性を向上させるための手段が幾つか報告されている(非特許文献6)が、これらの手段ではいまだ不十分である。特に室内光での特性は太陽光下での特性と比べて熱に敏感であり、より一層の耐熱性向上が望まれている。   As a photoelectric conversion element, a silicon-based solar cell is most popular, and many devices having high conversion efficiency under sunlight have been reported (for example, Non-Patent Document 1). However, it is generally known that silicon-based solar cells have excellent conversion efficiency under sunlight, but have low conversion efficiency under weak light (for example, Non-Patent Document 2). On the other hand, a dye-sensitized solar cell announced by Graetzel et al. Of Lausanne University of Technology in Switzerland has been reported to have a higher photoelectric conversion characteristic than a silicon solar cell under weak light (for example, Non-Patent Document 3). . It is also known that bulk heterojunction organic thin-film solar cells, which are a mixture of P-type organic semiconductors developed by Heeger et al. And N-type organic semiconductors typified by fullerenes, have a relatively high power generation capability under low light ( Non-patent document 4). However, it is known that the conversion efficiency of bulk heterojunction organic thin film solar cells is significantly reduced when placed at high temperatures (Non-patent Document 5). Thus, some means for improving heat resistance have been reported (Non-Patent Document 6), but these means are still insufficient. In particular, the characteristics under room light are more sensitive to heat than the characteristics under sunlight, and further improvement in heat resistance is desired.

本発明は、耐熱性の高い光電変換素子の提供を目的とする。   An object of this invention is to provide a photoelectric conversion element with high heat resistance.

上記課題は、次の1)の発明によって解決される。
1) 導電膜上に、電子輸送層、光電変換層、ホール輸送層、電極が順次積層された光電変換素子であって、前記電子輸送層が、金属酸化物を含有する第一の層、及び該第一の層と前記光電変換層との間に設けられた第二の層を有し、該第二の層は、少なくとも1つのカルボン酸基を有する第一の化合物と、少なくとも1つのピリジル基を有する第3級アミン誘導体である第二の化合物を含有することを特徴とする光電変換素子。
The above problem is solved by the following invention 1).
1) A photoelectric conversion element in which an electron transport layer, a photoelectric conversion layer, a hole transport layer, and an electrode are sequentially stacked on a conductive film, wherein the electron transport layer includes a first layer containing a metal oxide, and A second layer provided between the first layer and the photoelectric conversion layer, the second layer comprising: a first compound having at least one carboxylic acid group; and at least one pyridyl. A photoelectric conversion element comprising a second compound which is a tertiary amine derivative having a group.

本発明によれば、耐熱性の高い光電変換素子を提供できる。   According to the present invention, a photoelectric conversion element having high heat resistance can be provided.

本発明の光電変換素子の層構成の一例を示す図。The figure which shows an example of the laminated constitution of the photoelectric conversion element of this invention.

以下、上記本発明1)について詳しく説明するが、本発明1)の実施の形態には、次の2)〜4)も含まれるので、これらについても併せて説明する。
2) 前記第一の化合物が、下記一般式(1)で表されるものであることを特徴とする1)に記載の光電変換素子。
一般式(1)

Figure 2017143150
(上記式中、R1、R2は、炭素数1〜6の直鎖状又は分岐鎖状のアルキル基、又はベンジル基を表し、Xは、炭素数4〜6の2価の芳香族基、又は炭素数1〜4のアルキレン基を表す。また、R1とR2は、結合してヘテロ環を形成してもよい。)
3) 前記第一の化合物と前記第二の化合物の混合比が50:50〜99:1(重量比)であることを特徴とする1)又は2)に記載の光電変換素子。
4) 前記金属酸化物が、酸化亜鉛又は酸化チタンであることを特徴とする1)〜3)のいずれかに記載の光電変換素子。 Hereinafter, the present invention 1) will be described in detail. However, since the following 2) to 4) are also included in the embodiment of the present invention 1), these will be described together.
2) Said 1st compound is what is represented by following General formula (1), The photoelectric conversion element as described in 1) characterized by the above-mentioned.
General formula (1)
Figure 2017143150
(In the above formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 6 carbon atoms or a benzyl group, and X is a divalent aromatic group having 4 to 6 carbon atoms, or Represents an alkylene group having 1 to 4 carbon atoms, and R1 and R2 may combine to form a heterocycle.)
3) The photoelectric conversion element according to 1) or 2), wherein a mixing ratio of the first compound and the second compound is 50:50 to 99: 1 (weight ratio).
4) The photoelectric conversion element according to any one of 1) to 3), wherein the metal oxide is zinc oxide or titanium oxide.

本発明の光電変換素子の層構成の一例を図1に示すが、本発明の実施形態はこれに限定されるものではない。
図1では、基板1の上に導電膜2、第一の層3と第二の層4からなる電子輸送層、光電変換層5、ホール輸送層6、電極7がこの順に設けられている。
以下、各層について説明する。
An example of the layer structure of the photoelectric conversion element of the present invention is shown in FIG. 1, but the embodiment of the present invention is not limited to this.
In FIG. 1, a conductive film 2, an electron transport layer including a first layer 3 and a second layer 4, a photoelectric conversion layer 5, a hole transport layer 6, and an electrode 7 are provided on a substrate 1 in this order.
Hereinafter, each layer will be described.

<電子輸送層>
電子輸送層は第一の層と第二の層からなる。
電子輸送層の平均厚みは特に制限はなく、目的に応じて適宜選択することができるが、できるだけ全面を薄く覆うことが好ましく、10〜60nmがより好ましい。
<Electron transport layer>
The electron transport layer is composed of a first layer and a second layer.
There is no restriction | limiting in particular in the average thickness of an electron carrying layer, Although it can select suitably according to the objective, It is preferable to cover the whole surface thinly as much as possible, and 10-60 nm is more preferable.

≪第一の層≫
電子輸送層を形成する第一の層は、後述する第二の層に含まれる塩基性カルボン酸誘導体を吸着させるため金属酸化物を含有する必要がある。金属酸化物の例としては、酸化亜鉛、酸化チタン、酸化スズなどが挙げられる。
前記金属酸化物以外の材料は公知のものの中から適宜選択可能であるが、例えば、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、カーボンナノチューブ(CNT)、シアノ置換したポリフェニレンビニレン(CN−PPV)等の電子受容性有機材料、フッ化リチウム、カルシウム金属等の無機材料が挙げられる。
第一の層は上記材料を用いてゾルゲル法やスパッタリング法で作製することができる。
≪First layer≫
The first layer forming the electron transport layer needs to contain a metal oxide in order to adsorb a basic carboxylic acid derivative contained in the second layer described later. Examples of metal oxides include zinc oxide, titanium oxide, and tin oxide.
Materials other than the metal oxide can be appropriately selected from known materials. For example, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, oxazole derivative, triazole derivative, phenanthroline derivative, phosphine oxide derivative, fullerene compound , Carbon nanotubes (CNT), electron-accepting organic materials such as cyano-substituted polyphenylene vinylene (CN-PPV), and inorganic materials such as lithium fluoride and calcium metal.
The first layer can be manufactured by the sol-gel method or the sputtering method using the above material.

≪第二の層≫
電子輸送層を形成する第二の層は、少なくとも1つのカルボン酸基を有する第一の化合物と、少なくとも1つのピリジル基を有する第3級アミン誘導体である第二の化合物を含有する必要がある。

〔カルボン酸基を有する第一の化合物〕
第二の層に含まれるカルボン酸基を有する第一の化合物は第一の層に吸着される。前記第一の化合物の中でもカルボン酸基を有する第3級アミン誘導体が好ましく、前記一般式(1)で表される化合物がより好ましい。
前記一般式(1)中のR1、R2に係る炭素数1〜6の直鎖状又は分岐鎖状のアルキル基としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられるが、その中でもメチル基、エチル基が好ましい。
Xは炭素数4〜6の芳香族基、又は炭素数1〜4のアルキレン基を表す、その例としては、フェニレン基、チエニレン基、メチレン基、エチレン基が挙げられ、好ましくはフェニレン基、チエニレン基である。
≪Second layer≫
The second layer forming the electron transport layer needs to contain a first compound having at least one carboxylic acid group and a second compound that is a tertiary amine derivative having at least one pyridyl group. .

[First compound having a carboxylic acid group]
The first compound having a carboxylic acid group contained in the second layer is adsorbed on the first layer. Among the first compounds, tertiary amine derivatives having a carboxylic acid group are preferred, and compounds represented by the general formula (1) are more preferred.
Examples of the linear or branched alkyl group having 1 to 6 carbon atoms related to R1 and R2 in the general formula (1) include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Of these, a methyl group and an ethyl group are preferable.
X represents an aromatic group having 4 to 6 carbon atoms or an alkylene group having 1 to 4 carbon atoms. Examples thereof include a phenylene group, a thienylene group, a methylene group, and an ethylene group, preferably a phenylene group and a thienylene. It is a group.

本発明者等が鋭意検討した結果、理由は定かではないが、カルボン酸基を有する第一の化合物とピリジル基を有する第3級アミン誘導体である第二の化合物とを第一の層に吸着させることにより、微弱光下でも耐熱性の高い太陽電池を得ることができた。
カルボン酸基に代表される酸性基は金属酸化物上に好適に吸着されることが色素増感太陽電池等で知られている。また、ピリジル基も金属酸化物上のカルボン酸基とは異なるサイトに吸着されることが知られている。本発明では、その吸着性を巧みに利用することにより、カルボン酸基を有する第一の化合物とピリジル基を有する第3級アミン誘導体である第二の化合物とを第一の層に吸着させている。カルボン酸基やピリジル基を持たない低分子材料では光電変換層を塗布する際に溶解してしまうため第一の層上に残らず、効果を発揮できない。なお、第3級アミンを有するポリマー材料を第一の層上に塗布しても光電変換層と第一の層の間に塩基性の層を設けることができるが、第3級アミンを有するポリマー材料は絶縁性のため、膜厚が厚くなると電子輸送性を阻害する。また、単なる塗布では第一の層と塩基性の層との密着性が悪いためか、耐熱性の高い光電変換素子は得られない。これに対し、カルボン酸基を有する第一の化合物とピリジル基を有する第3級アミン誘導体である第二の化合物は、第一の層に単分子層として吸着できるため、電子輸送性を阻害せず、カルボン酸基やピリジル基で密に接しているためか、耐熱性を高くできる効果が大きい。
As a result of intensive studies by the present inventors, the reason is not clear, but the first compound having a carboxylic acid group and the second compound which is a tertiary amine derivative having a pyridyl group are adsorbed to the first layer. As a result, a solar cell having high heat resistance even under weak light could be obtained.
It is known in dye-sensitized solar cells and the like that acidic groups typified by carboxylic acid groups are favorably adsorbed on metal oxides. It is also known that pyridyl groups are adsorbed at sites different from carboxylic acid groups on metal oxides. In the present invention, the first compound having a carboxylic acid group and the second compound which is a tertiary amine derivative having a pyridyl group are adsorbed to the first layer by skillfully utilizing the adsorptivity. Yes. A low molecular weight material having no carboxylic acid group or pyridyl group dissolves when the photoelectric conversion layer is applied, so it does not remain on the first layer and cannot exhibit the effect. Even if a polymer material having a tertiary amine is applied on the first layer, a basic layer can be provided between the photoelectric conversion layer and the first layer, but a polymer having a tertiary amine can be provided. Since the material is insulative, electron transport properties are hindered when the film thickness is increased. In addition, it is impossible to obtain a photoelectric conversion element having high heat resistance because the adhesion between the first layer and the basic layer is poor by simple application. On the other hand, the first compound having a carboxylic acid group and the second compound which is a tertiary amine derivative having a pyridyl group can be adsorbed to the first layer as a monomolecular layer. However, the effect of increasing the heat resistance is great because it is in close contact with a carboxylic acid group or a pyridyl group.

ここで、前記一般式(1)で表される化合物の具体例を示すが、これらに限定されるものではない。

Figure 2017143150
Here, although the specific example of a compound represented by the said General formula (1) is shown, it is not limited to these.
Figure 2017143150

〔ピリジル基を有する第3級アミン誘導体である第二の化合物〕
上記第二の化合物は、前記第一の層に吸着される。好ましい例としては、ジメチルアミノピリジン、4−(ピロリジノ)ピリジン、1−(4−ピリジル)ピペラジン、4−(4−ピリジル)モルホリン、9−アザジュロリジン、1−(4−ピリジル)−4−ピペラジノン、N,N−ジイソプロピルアミノピリジン、N,N−ジベンジルアミノピリジン等が挙げられる。特に好ましいのは、ジメチルアミノピリジンである
[Second compound which is a tertiary amine derivative having a pyridyl group]
The second compound is adsorbed on the first layer. Preferred examples include dimethylaminopyridine, 4- (pyrrolidino) pyridine, 1- (4-pyridyl) piperazine, 4- (4-pyridyl) morpholine, 9-azajulolidine, 1- (4-pyridyl) -4-piperazinone, N, N-diisopropylaminopyridine, N, N-dibenzylaminopyridine and the like can be mentioned. Particularly preferred is dimethylaminopyridine.

<基板>
基板は特に制限されず公知のものを用いることができるが、透明な材質のものが好ましく、例えばガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体等が挙げられる。
<Board>
The substrate is not particularly limited and a known material can be used, but a transparent material is preferable, and examples thereof include glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal.

<導電膜、電極>
導電膜と電極の少なくとも一方は可視光に対して透明なものを使用する必要があるが、他方は透明でも不透明でも構わない。
可視光に対して透明な材料には特に制限はなく、通常の光電変換素子や液晶パネル等に用いられる公知のものを使用できる。その例としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等の導電性金属酸化物が挙げられる。
前記可視光に対して透明な導電膜又は電極の平均厚みは、5nm〜10μmが好ましく、50nm〜1μmがより好ましい。
前記可視光に対して透明な導電膜は、一定の硬性を維持するため可視光に対して透明な材質からなる基板上に設けることが好ましく、電極と基板が一体となっているものを用いることもできる。その例としては、FTOコートガラス、ITOコートガラス、酸化亜鉛:アルミニウムコートガラス、FTOコート透明プラスチック膜、ITOコート透明プラスチック膜などが挙げられる。
<Conductive film, electrode>
At least one of the conductive film and the electrode needs to be transparent to visible light, but the other may be transparent or opaque.
The material transparent to visible light is not particularly limited, and known materials used for ordinary photoelectric conversion elements and liquid crystal panels can be used. Examples include conductive metal oxides such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), and gallium-doped zinc oxide (GZO). Is mentioned.
The average thickness of the conductive film or electrode transparent to visible light is preferably 5 nm to 10 μm, and more preferably 50 nm to 1 μm.
The conductive film transparent to visible light is preferably provided on a substrate made of a material transparent to visible light in order to maintain a certain hardness, and the electrode and the substrate are integrated. You can also. Examples thereof include FTO coated glass, ITO coated glass, zinc oxide: aluminum coated glass, FTO coated transparent plastic film, ITO coated transparent plastic film and the like.

前記可視光に対して透明な導電膜は、メッシュ状、ストライプ状などの光が透過できる構造にした金属膜をガラス基板等の上に設けたものや、カーボンナノチューブ、グラフェン等を透明性を有する程度に積層したものでもよい。これらは1種を単独で用いてもよいし、2種以上を混合したり積層したりしてもよい。
更に、基板抵抗を下げる目的で、金属リード線等を用いてもよい。金属リード線の材質としては、例えば、アルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。前記金属リード線を設ける方法としては、基板に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法が挙げられる。
電子集電電極及び正孔集電電極のいずれか一方に不透明な電極を用いる場合の材料としては、例えば、白金、金、銀、銅、Al等の金属やグラファイトが挙げられる。不透明な電極の厚みには特に制限はなく、また、1種を単独用いても、2種以上を積層構成で用いてもよい。
The conductive film transparent to visible light has transparency such as a metal film provided on a glass substrate or the like having a structure capable of transmitting light such as a mesh shape or a stripe shape, carbon nanotube, graphene, or the like. It may be laminated to the extent. These may be used individually by 1 type, and 2 or more types may be mixed or laminated | stacked.
Furthermore, a metal lead wire or the like may be used for the purpose of reducing the substrate resistance. Examples of the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel. Examples of the method for providing the metal lead wire include a method in which deposition is performed on a substrate by vapor deposition, sputtering, pressure bonding, and the like, and ITO or FTO is provided thereon.
Examples of the material in the case where an opaque electrode is used for either the electron collector electrode or the hole collector electrode include metals such as platinum, gold, silver, copper, and Al, and graphite. The thickness of the opaque electrode is not particularly limited, and one type may be used alone, or two or more types may be used in a laminated configuration.

<ホール輸送層>
正孔の収集効率を向上させるためホール輸送層を設けてもよい。具体的にはPEDOT:PSS(ポリエチレンジオキシチオフェン:ポリスチレンスルホン酸)のような導電性高分子、芳香族アミン誘導体のようなホール輸送性有機化合物、酸化モリブデン、酸化バナジウム、酸化ニッケル等の正孔輸送性を有する無機化合物を、スピンコート、ゾルゲル法、スパッタリングなどで形成する。本発明では酸化モリブデンが好ましい。
ホール輸送層の平均厚みは特に制限はなく、目的に応じて適宜選択できるが、できるだけ薄く全面を覆うことが好ましく、1〜50nmがより好ましい。
<Hole transport layer>
A hole transport layer may be provided to improve the hole collection efficiency. Specifically, conductive polymers such as PEDOT: PSS (polyethylenedioxythiophene: polystyrenesulfonic acid), hole transporting organic compounds such as aromatic amine derivatives, holes such as molybdenum oxide, vanadium oxide, and nickel oxide. An inorganic compound having a transporting property is formed by spin coating, a sol-gel method, sputtering, or the like. In the present invention, molybdenum oxide is preferred.
There is no restriction | limiting in particular in the average thickness of a hole transport layer, Although it can select suitably according to the objective, It is preferable to cover the whole surface as thinly as possible, and 1-50 nm is more preferable.

<光電変換層>
光電変換層は電子輸送層とホール輸送層との間に形成する。P型有機半導体とN型有機半導体を混合したバルクへテロ接合型の光電変換層が好ましく、光電変換層内でナノサイズのPN接合が形成され、接合面で生じる光電荷分離を利用して電流を得る。P型有機半導体は電子供与性の材料で構成され、N型半導体は電子受容性の材料で構成される。
P型有機半導体の例としては、ポリチオフェン及びその誘導体、アリールアミン誘導体、スチルベン誘導体、オリゴチオフェン及びその誘導体、フタロシアニン誘導体、ポルフィリン及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ベンゾジチオフェン誘導体、ジケトピロロピロール誘導体等、共役高分子や低分子化合物が挙げられ、これらを併用してもよい。
好ましいP型有機半導体は、π共役を有する導電性高分子であるポリチオフェン及びその誘導体である。ポリチオフェン及びその誘導体は、優れた立体規則性を確保することができ、溶媒への溶解性が比較的高い。ポリチオフェン及びその誘導体としては、チオフェン骨格を有する化合物であれば特に限定されない。具体例としては、ポリ−3−ヘキシルチオフェンに代表されるポリアルキルチオフェン、ポリ−3−ヘキシルイソチオナフテン、ポリ−3−オクチルイソチオナフテン、ポリ−3−デシルイソチオナフテン等のポリアルキルイソチオナフテン;ポリエチレンジオキシチオフェン等が挙げられる。
<Photoelectric conversion layer>
The photoelectric conversion layer is formed between the electron transport layer and the hole transport layer. A bulk heterojunction type photoelectric conversion layer in which a P-type organic semiconductor and an N-type organic semiconductor are mixed is preferable. A nano-sized PN junction is formed in the photoelectric conversion layer, and current is generated by utilizing photocharge separation generated at the junction surface. Get. The P-type organic semiconductor is composed of an electron-donating material, and the N-type semiconductor is composed of an electron-accepting material.
Examples of P-type organic semiconductors include polythiophene and derivatives thereof, arylamine derivatives, stilbene derivatives, oligothiophene and derivatives thereof, phthalocyanine derivatives, porphyrin and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, benzo Conjugated polymers and low molecular weight compounds such as dithiophene derivatives and diketopyrrolopyrrole derivatives are exemplified, and these may be used in combination.
Preferred P-type organic semiconductors are polythiophene, which is a conductive polymer having π conjugation, and derivatives thereof. Polythiophene and its derivatives can ensure excellent stereoregularity and have relatively high solubility in solvents. Polythiophene and its derivatives are not particularly limited as long as they are compounds having a thiophene skeleton. Specific examples include polyalkylthiophenes such as poly-3-hexylthiophene, poly-3-hexylisothionaphthene, poly-3-octylisothionaphthene, and poly-3-decylisothionaphthene. Examples include thionaphthene; polyethylene dioxythiophene and the like.

また、近年では、ベンゾジチオフェン、カルバゾール、ベンゾチアジアゾール及びチオフェンからなる共重合体であるPTB7(ポリ({4,8−ビス[(2−エチルヘキシル)オキシ]ベンゾ[1,2−b:4,5−b′]ジチオフェン−2,6−ジイル}{3−フルオロ−2−[(2−エチルヘキシル)カルボニル]チエノ[3,4−b]チオフェネジル}))や、PCDTBT(ポリ[N−9″−ヘプタデカニル−2,7−カルバゾール−アルト−5,5−(4′,7′−ジ−2−チエニル−2′,1′,3′−ベンゾチアジアゾール)])などの誘導体が、優れた光電変換効率を得られる化合物として知られている。
更に共役高分子だけでなく、電子供与性ユニットと電子吸引性ユニットとを結合させた低分子化合物でも優れた光電変換効率を得られる化合物が知られており、本発明にも用いることができる。(非特許文献6参照)
Further, in recent years, PTB7 (poly ({4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,4,4), which is a copolymer of benzodithiophene, carbazole, benzothiadiazole, and thiophene. 5-b ′] dithiophene-2,6-diyl} {3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenezyl})) and PCDTBT (poly [N-9 ″ Derivatives such as -heptadecanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)]) It is known as a compound that can obtain conversion efficiency.
Furthermore, not only a conjugated polymer but also a low molecular compound in which an electron donating unit and an electron withdrawing unit are combined is known, and a compound capable of obtaining excellent photoelectric conversion efficiency is known and can be used in the present invention. (See Non-Patent Document 6)

N型有機半導体材料の例としては、フラーレン、フラーレン誘導体などが挙げられる。これらの中でも、電荷分離、電荷輸送の点からフラーレン誘導体が好ましい。
前記フラーレン誘導体としては、適宜合成したものを使用しても市販品を使用してもよい。市販品の例としては、フロンティアカーボン社製のPC71BM(フェニルC71酪酸メチルエステル)、PC61BM、フラーレンインデン2付加体などが挙げられる。
Examples of the N-type organic semiconductor material include fullerene and fullerene derivatives. Among these, fullerene derivatives are preferable from the viewpoint of charge separation and charge transport.
As said fullerene derivative, what was synthesize | combined suitably may be used or a commercial item may be used. Examples of commercially available products include PC71BM (phenyl C71 butyric acid methyl ester), PC61BM, fullerene indene 2-adduct, etc., manufactured by Frontier Carbon Corporation.

光電変換層の形成方法としては、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法などが挙げられる。これらの中から、厚み制御や配向制御など、作製しようとする有機材料薄膜の特性に応じて適宜選択することができる。
例えば、スピンコート塗布を行う場合には、P型有機半導体材料及びN型有機半導体材料の濃度が5〜40mg/mLであることが好ましく、この濃度にすることにより均質な有機材料薄膜を容易に作製することができる。
作製した有機材料薄膜から有機溶媒を除去するため、減圧下又は不活性雰囲気下(窒素やアルゴン雰囲気下)でアニーリング処理を行ってもよい。アニーリング処理の温度は、40℃〜300℃が好ましく、50℃〜200℃がより好ましい。また、アニーリング処理を行うことにより、積層した層が界面で互いに浸透して接触する実効面積が増加し、短絡電流を増大させることができる。なお、アニーリング処理は、電極の形成後に行ってもよい。
As a method for forming the photoelectric conversion layer, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, print transfer method, dip pulling method, ink jet method, spray method, vacuum deposition method, etc. Is mentioned. From these, thickness control and orientation control can be appropriately selected according to the characteristics of the organic material thin film to be produced.
For example, when spin coating is performed, the concentration of the P-type organic semiconductor material and the N-type organic semiconductor material is preferably 5 to 40 mg / mL, and a uniform organic material thin film can be easily formed by using this concentration. Can be produced.
In order to remove the organic solvent from the produced organic material thin film, an annealing treatment may be performed under reduced pressure or under an inert atmosphere (in a nitrogen or argon atmosphere). The temperature of the annealing treatment is preferably 40 ° C to 300 ° C, more preferably 50 ° C to 200 ° C. Also, by performing the annealing treatment, the effective area where the stacked layers permeate and contact each other at the interface increases, and the short circuit current can be increased. Note that the annealing treatment may be performed after the electrodes are formed.

有機溶媒としては特に制限はなく、目的に応じて適宜選択することができる。その例としては、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、テトラヒドロフラン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトンなどが挙げられる。これらは、1種を単独で用いても、2種以上を併用してもよい。これらの中でも、クロロベンゼン、クロロホルム、オルトジクロロベンゼンが好ましい。
また、P型有機半導体材料とN型有機半導体材料の相分離構造制御のために、上記溶媒に0.1〜10重量%の添加剤を加えてもよい。添加剤の例としては、ジヨードアルカン(1,8−ジヨードオクタン、1,6−ジヨードヘキサン、1,10−ジヨードデカンなど)、アルカンジチオール(1,8−オクタンジチオール、1,6−ヘキサンジチオール、1,10−デカンジチオールなど)、1−クロロナフタレン、ポリジメチルシロキサン誘導体などが挙げられる。
There is no restriction | limiting in particular as an organic solvent, According to the objective, it can select suitably. Examples include methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene, trichlorobenzene, chloronaphthalene, dimethylformamide, Examples thereof include dimethyl sulfoxide, N-methylpyrrolidone, and γ-butyrolactone. These may be used alone or in combination of two or more. Among these, chlorobenzene, chloroform, and orthodichlorobenzene are preferable.
In addition, an additive of 0.1 to 10% by weight may be added to the solvent for controlling the phase separation structure of the P-type organic semiconductor material and the N-type organic semiconductor material. Examples of additives include diiodoalkanes (1,8-diiodooctane, 1,6-diiodohexane, 1,10-diiododecane, etc.), alkanedithiols (1,8-octanedithiol, 1,6-hexane). Dithiol, 1,10-decanedithiol), 1-chloronaphthalene, polydimethylsiloxane derivatives and the like.

前記有機材料薄膜の平均厚みは、50〜400nmが好ましく、60〜250nmがより好ましい。前記平均厚みが50nm以上であれば、有機材料薄膜による光吸収が少なくてキャリア発生が不充分となることはなく、400nm以下であれば、光吸収により発生したキャリアの輸送効率が一段と低下するようなことはない。   The average thickness of the organic material thin film is preferably 50 to 400 nm, and more preferably 60 to 250 nm. If the average thickness is 50 nm or more, light absorption by the organic material thin film is small and carrier generation is not insufficient. If the average thickness is 400 nm or less, the transport efficiency of carriers generated by light absorption is further reduced. There is nothing wrong.

<用途>
本発明の光電変換素子は、発生した電流を制御する回路基盤等と組み合わせることにより電源装置に応用できる。このような電源装置を利用している機器類の例としては、電子卓上計算機や腕時計が挙げられる。この他に、携帯電話、電子手帳、電子ペーパー等にも本発明の光電変換素子を有する電源装置を適用することができる。また、充電式や乾電池式の電気器具の連続使用時間を長くするための補助電源として本発明の光電変換素子を有する電源装置を用いることもできる。更にイメージセンサーとして応用も可能である。
<Application>
The photoelectric conversion element of the present invention can be applied to a power supply device by combining with a circuit board for controlling the generated current. Examples of devices that use such a power supply device include an electronic desk calculator and a wristwatch. In addition, the power supply apparatus having the photoelectric conversion element of the present invention can be applied to a mobile phone, an electronic notebook, electronic paper, and the like. Moreover, the power supply device which has the photoelectric conversion element of this invention can also be used as an auxiliary power supply for extending the continuous use time of a rechargeable or dry battery type electric appliance. Furthermore, it can be applied as an image sensor.

以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.

実施例1
(電子輸送層の作製)
酢酸亜鉛(aldrich社製)1g、エタノールアミン(aldrich社製)0.28g、メトキシエタノール(和光社製)10mLを終夜室温で撹拌し、酸化亜鉛前駆体溶液を調製した。この酸化亜鉛前駆体溶液を、ITO基板上に膜厚20nmになるようにスピンコートで塗布し、200℃で10分間乾燥させて、第一の層を形成した。
4−メチル安息香酸(TCI社製)及び4−ジメチルアミノピリジンを、各々の濃度が1mg/mLになるようにエタノールに溶解させ、第二の層用の混合吸着液を調製した。この混合吸着液を、スピンコーター内で前記第一の層上に0.02mL滴下し、30秒間放置した後、5000rpmで30秒間回転させ、第一の層と第二の層からなる電子輸送層を作製した。
第一の層上の吸着物を、下記の方法で測定した。
電子輸送層を設けたITO基板を、100mLのTHFに10分間浸漬した。THFを1mLまで濃縮し、濃縮液を高速液体クロマトグラフィー(島津製作所製LC−2010)により分析した。結果を表1に示す。
Example 1
(Preparation of electron transport layer)
1 g of zinc acetate (manufactured by aldrich), 0.28 g of ethanolamine (manufactured by aldrich), and 10 mL of methoxyethanol (manufactured by Wako) were stirred overnight at room temperature to prepare a zinc oxide precursor solution. This zinc oxide precursor solution was applied onto an ITO substrate by spin coating so as to have a film thickness of 20 nm, and dried at 200 ° C. for 10 minutes to form a first layer.
4-Methylbenzoic acid (manufactured by TCI) and 4-dimethylaminopyridine were dissolved in ethanol so that each concentration was 1 mg / mL to prepare a mixed adsorption solution for the second layer. 0.02 mL of this mixed adsorbent is dropped on the first layer in a spin coater and left for 30 seconds, and then rotated at 5000 rpm for 30 seconds to form an electron transport layer composed of the first layer and the second layer. Was made.
The adsorbate on the first layer was measured by the following method.
The ITO substrate provided with the electron transport layer was immersed in 100 mL of THF for 10 minutes. THF was concentrated to 1 mL, and the concentrated solution was analyzed by high performance liquid chromatography (LC-2010 manufactured by Shimadzu Corporation). The results are shown in Table 1.

(光電変換層の作製)
下記構造式Aの化合物3mgと、PC61BM(Aldrich社製)3mgを1vol%の1−クロロナフタレン(TCI社製)を含むクロロホルム0.4mLに溶解させ、光電変換層用溶液を調製した。次いで、この光電変換層用溶液を、前記電子輸送層上に、膜厚100nmとなるようにスピンコート法で塗布し、光電変換層を作製した。
構造式A

Figure 2017143150
(Preparation of photoelectric conversion layer)
3 mg of the compound of the following structural formula A and 3 mg of PC61BM (manufactured by Aldrich) were dissolved in 0.4 mL of chloroform containing 1 vol% of 1-chloronaphthalene (manufactured by TCI) to prepare a solution for a photoelectric conversion layer. Next, this photoelectric conversion layer solution was applied on the electron transport layer by a spin coating method so as to have a film thickness of 100 nm, thereby preparing a photoelectric conversion layer.
Structural formula A
Figure 2017143150

(ホール輸送層、電極の作製)
光電変換層上にホール輸送層として酸化モリブデン(高純度化学社製)を厚さ10nm、電極として銀を厚さ100nm、順に真空蒸着法で形成し、光電変換素子(太陽電池)を作製した。
(Hole transport layer and electrode fabrication)
On the photoelectric conversion layer, molybdenum oxide (manufactured by Koyo Chemical Co., Ltd.) as a hole transport layer was formed to a thickness of 10 nm, and as an electrode, silver was formed to a thickness of 100 nm in this order by a vacuum deposition method to produce a photoelectric conversion element (solar cell).

得られた太陽電池の白色LED照射下(0.01mW/cm)における最大出力を測定した。その後、70℃の恒温槽に入れて100時間保持した後、取り出し、2時間室温で放置した後、耐熱試験後の最大出力を測定した。
表1に、次の式により算出した耐熱試験後の最大出力保持率を示す。

最大出力保持率=保持後の最大出力/保持前の最大出力

なお、白色LEDはコスモテクノ社製デスクランプCDS−90α(スタディーモード)を使用し、出力はNF回路設計ブロック社製の太陽電池評価システムAs−510−PV03を用いて測定した。
The maximum output of the obtained solar cell under white LED irradiation (0.01 mW / cm 2 ) was measured. Then, after putting in a 70 degreeC thermostat and hold | maintaining for 100 hours, after taking out and leaving to stand at room temperature for 2 hours, the maximum output after a heat test was measured.
Table 1 shows the maximum output retention rate after the heat resistance test calculated by the following equation.

Maximum output holding ratio = maximum output after holding / maximum output before holding

The white LED used was a desk lamp CDS-90α (study mode) manufactured by Cosmo Techno, and the output was measured using a solar cell evaluation system As-510-PV03 manufactured by NF Circuit Design Block.

実施例2
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−ジメチルアミノ安息香酸(TCI社製)を用いた点以外は、実施例1と同様にして、太陽電池を作製し評価した。結果を表1に示す。
Example 2
A solar cell was produced in the same manner as in Example 1 except that 4-dimethylaminobenzoic acid (manufactured by TCI) was used instead of 4-methylbenzoic acid in the production of the electron transport layer of Example 1. evaluated. The results are shown in Table 1.

実施例3
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−ジメチルアミノ安息香酸(TCI社製)を用い、その濃度を0.33mg/mLにし、かつ4−ジメチルアミノピリジンの濃度を0.66mg/mLに変えた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 3
Instead of 4-methylbenzoic acid in the production of the electron transport layer of Example 1, 4-dimethylaminobenzoic acid (manufactured by TCI) was used, the concentration was 0.33 mg / mL, and 4-dimethylaminopyridine A solar cell was produced and evaluated in the same manner as in Example 1 except that the concentration was changed to 0.66 mg / mL. The results are shown in Table 1.

実施例4
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−ジメチルアミノ安息香酸(TCI社製)を用い、その濃度を0.99mg/mLにし、かつ4−ジメチルアミノピリジンの濃度を0.01mg/mLに変えた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 4
Instead of 4-methylbenzoic acid in the preparation of the electron transport layer of Example 1, 4-dimethylaminobenzoic acid (manufactured by TCI) was used, the concentration was 0.99 mg / mL, and 4-dimethylaminopyridine A solar cell was produced and evaluated in the same manner as in Example 1 except that the concentration was changed to 0.01 mg / mL. The results are shown in Table 1.

実施例5
実施例1の電子輸送層の作製における4−ジメチルアミノピリジンに代えて、4−(ピロリジノ)ピリジン(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 5
A solar cell was produced and evaluated in the same manner as in Example 1 except that 4- (pyrrolidino) pyridine (manufactured by TCI) was used instead of 4-dimethylaminopyridine in the production of the electron transport layer of Example 1. did. The results are shown in Table 1.

実施例6
実施例1の電子輸送層の作製における4−ジメチルアミノピリジンに代えて、1−(4−ピリジル)ピペラジン(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 6
A solar cell was produced in the same manner as in Example 1 except that 1- (4-pyridyl) piperazine (manufactured by TCI) was used in place of 4-dimethylaminopyridine in the production of the electron transport layer of Example 1. And evaluated. The results are shown in Table 1.

実施例7
実施例1の電子輸送層の作製における4−ジメチルアミノピリジンに代えて、4−(4−ピリジル)モルホリン(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 7
A solar cell was produced in the same manner as in Example 1, except that 4- (4-pyridyl) morpholine (manufactured by TCI) was used instead of 4-dimethylaminopyridine in the production of the electron transport layer of Example 1. And evaluated. The results are shown in Table 1.

実施例8
実施例1の電子輸送層の作製における4−ジメチルアミノピリジンに代えて、9−アザジュロリジン(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 8
A solar cell was produced and evaluated in the same manner as in Example 1 except that 9-azajulolidine (manufactured by TCI) was used instead of 4-dimethylaminopyridine in the production of the electron transport layer of Example 1. The results are shown in Table 1.

実施例9
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−ジエチルアミノ安息香酸(TCI社製)を用いた点以外は、実施例1と同様にして、太陽電池を作製し評価した。結果を表1に示す。
Example 9
A solar cell was produced and evaluated in the same manner as in Example 1 except that 4-diethylaminobenzoic acid (manufactured by TCI) was used instead of 4-methylbenzoic acid in the production of the electron transport layer of Example 1. did. The results are shown in Table 1.

実施例10
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−(4−メチルピペラジニルジル)−安息香酸(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 10
The same as Example 1 except that 4- (4-methylpiperazinyl) -benzoic acid (manufactured by TCI) was used instead of 4-methylbenzoic acid in the production of the electron transport layer of Example 1. A solar cell was prepared and evaluated. The results are shown in Table 1.

実施例11
実施例1の電子輸送層の作製における4−メチル安息香酸に代えて、4−ジベンジルアミノ安息香酸(TCI社製)を用いた点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Example 11
A solar cell was produced in the same manner as in Example 1 except that 4-dibenzylaminobenzoic acid (manufactured by TCI) was used instead of 4-methylbenzoic acid in the production of the electron transport layer of Example 1. evaluated. The results are shown in Table 1.

実施例12
実施例2における光電変換層を下記のようにして作製したものに変えた点以外は、実施例2と同様にして太陽電池を作製し評価した。結果を表1に示す。
(光電変換層の作製)
PTB7(aldrich社製)10mgとICBA(N型有機半導体材料:frotier carbon社製)15mgを、3vol%のジヨードオクタン(TCI社製)を含むクロロベンゼン1mLに溶解させ、光電変換層用溶液を調製した。この光電変換層用溶液を用いて、実施例1と同様にして電子輸送層上に光電変換層を形成した。
Example 12
A solar cell was produced and evaluated in the same manner as in Example 2 except that the photoelectric conversion layer in Example 2 was changed to one produced as described below. The results are shown in Table 1.
(Preparation of photoelectric conversion layer)
10 mg of PTB7 (manufactured by aldrich) and 15 mg of ICBA (manufactured by N type organic semiconductor: frontier carbon) were dissolved in 1 mL of chlorobenzene containing 3 vol% diiodooctane (manufactured by TCI) to prepare a solution for a photoelectric conversion layer. did. Using this photoelectric conversion layer solution, a photoelectric conversion layer was formed on the electron transport layer in the same manner as in Example 1.

実施例13
実施例2の電子輸送層の作製における第一の層の材料を酸化チタンに変え、下記のようにして第一の層を形成した点以外は、実施例2と同様にして太陽電池を作製し評価した。結果を表1に示す。
(電子輸送層の第一の層の形成)
金属チタンからなるターゲットを用いた酸素ガスによる反応性スパッタにより、ITOガラス基板上にチタン金属酸化物からなる第一の層を形成した。スパッタリング製膜にはUNAXIS社製スパッタリング装置(DVD−Sprinter)を用いた。第一の層の膜厚は10nmとした。
Example 13
A solar cell was produced in the same manner as in Example 2 except that the material of the first layer in the production of the electron transport layer of Example 2 was changed to titanium oxide and the first layer was formed as follows. evaluated. The results are shown in Table 1.
(Formation of the first layer of the electron transport layer)
A first layer made of titanium metal oxide was formed on the ITO glass substrate by reactive sputtering with oxygen gas using a target made of metal titanium. A sputtering device (DVD-Spinter) manufactured by UNAXIS was used for the sputtering film formation. The film thickness of the first layer was 10 nm.

比較例1
実施例1において第二の層を形成しなかった点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 1
A solar cell was produced and evaluated in the same manner as in Example 1 except that the second layer was not formed in Example 1. The results are shown in Table 1.

比較例2
実施例2において、第二の層に4−ジメチルアミノピリジンを用いなかった点以外は、実施例2と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 2
In Example 2, a solar cell was produced and evaluated in the same manner as in Example 2 except that 4-dimethylaminopyridine was not used for the second layer. The results are shown in Table 1.

比較例3
実施例2において、第二の層に4−ジメチルアミノ安息香酸を用いなかった点以外は、実施例2と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 3
In Example 2, a solar cell was produced and evaluated in the same manner as in Example 2 except that 4-dimethylaminobenzoic acid was not used for the second layer. The results are shown in Table 1.

比較例4
実施例12において第二の層を形成しなかった点以外は、実施例12と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 4
A solar cell was produced and evaluated in the same manner as in Example 12 except that the second layer was not formed in Example 12. The results are shown in Table 1.

比較例5
実施例12において、第二の層に4−ジメチルアミノ安息香酸を用いなかった点以外は、実施例12と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 5
In Example 12, a solar cell was produced and evaluated in the same manner as in Example 12 except that 4-dimethylaminobenzoic acid was not used for the second layer. The results are shown in Table 1.

比較例6
実施例12において、第二の層に4−ジメチルアミノピリジンを用いなかった点以外は、実施例12と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 6
In Example 12, a solar cell was produced and evaluated in the same manner as in Example 12 except that 4-dimethylaminopyridine was not used for the second layer. The results are shown in Table 1.

比較例7
実施例2の4−ジメチルアミノピリジンに代えて、4−t−ブチルピリジン(TCI社製)を用いた点以外は、実施例2と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 7
A solar cell was prepared and evaluated in the same manner as in Example 2 except that 4-t-butylpyridine (manufactured by TCI) was used instead of 4-dimethylaminopyridine in Example 2. The results are shown in Table 1.

比較例8
実施例13において第二の層を形成しなかった点以外は、実施例13と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 8
A solar cell was produced and evaluated in the same manner as in Example 13 except that the second layer was not formed in Example 13. The results are shown in Table 1.

比較例9
実施例13において、第二の層に4−ジメチルアミノ安息香酸を用いなかった点以外は、実施例13と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 9
In Example 13, a solar cell was produced and evaluated in the same manner as in Example 13 except that 4-dimethylaminobenzoic acid was not used for the second layer. The results are shown in Table 1.

比較例10
実施例13において、第二の層に4−ジメチルアミノピリジンを用いなかった点以外は、実施例13と同様にして太陽電池を作製し評価した。結果を表1に示す。
Comparative Example 10
In Example 13, a solar cell was produced and evaluated in the same manner as in Example 13 except that 4-dimethylaminopyridine was not used for the second layer. The results are shown in Table 1.

比較例11
実施例1の電子輸送層の作製における第一の層を下記のようにして形成した点以外は、実施例1と同様にして太陽電池を作製し評価した。結果を表1に示す。
(電子輸送層の第一の層の形成)
ポリエチレンイミンの80%エトキシ化溶液、37wt% in HO(ポリマーの分子量110000、aldrich社製)を、2−メトキシエタノール(和光社製)で0.1重量%に希釈した。その溶液を、ITO基板上に膜厚20nmになるようにスピンコートで塗布し、100℃で10分間乾燥させて、第一の層を形成した。
Comparative Example 11
A solar cell was produced and evaluated in the same manner as in Example 1 except that the first layer in the production of the electron transport layer of Example 1 was formed as follows. The results are shown in Table 1.
(Formation of the first layer of the electron transport layer)
An 80% ethoxylation solution of polyethyleneimine, 37 wt% in H 2 O (molecular weight of polymer: 110000, manufactured by Aldrich) was diluted to 0.1% by weight with 2-methoxyethanol (manufactured by Wako). The solution was applied on the ITO substrate by spin coating so as to have a film thickness of 20 nm, and dried at 100 ° C. for 10 minutes to form a first layer.

Figure 2017143150
Figure 2017143150

表1から、実施例の太陽電池は比較例と比べて耐熱試験後も最大出力の保持率が高く、高耐久な太陽電池であることが分かる。   From Table 1, it can be seen that the solar cell of the example has a high maximum output retention rate even after the heat resistance test as compared with the comparative example and is a highly durable solar cell.

1 基板
2 導電膜
3 第一の層
4 第二の層
5 光電変換層
6 ホール輸送層
7 電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive film 3 First layer 4 Second layer 5 Photoelectric conversion layer 6 Hole transport layer 7 Electrode

パナソニック電工技報,56(2008)87Panasonic Electric Works Technical Report, 56 (2008) 87 Nature,353(1991)737Nature, 353 (1991) 737 J.Am.Chem.Soc.,115(1993)6382J. et al. Am. Chem. Soc. , 115 (1993) 6382 Semicond.Sci.Technol.,10(1995)1689Semicond. Sci. Technol. , 10 (1995) 1689 東芝レビュー vol69 No6 2014Toshiba review vol69 No6 2014 ACS Appl.Mater.Interfaces 2014,6,803−810ACS Appl. Mater. Interfaces 2014, 6, 803-810

Claims (4)

導電膜上に、電子輸送層、光電変換層、ホール輸送層、電極が順次積層された光電変換素子であって、前記電子輸送層が、金属酸化物を含有する第一の層、及び、該第一の層と前記光電変換層との間に設けられた第二の層を有し、該第二の層は、少なくとも1つのカルボン酸基を有する第一の化合物と、少なくとも1つのピリジル基を有する第3級アミン誘導体である第二の化合物を含有することを特徴とする光電変換素子。   A photoelectric conversion element in which an electron transport layer, a photoelectric conversion layer, a hole transport layer, and an electrode are sequentially stacked on a conductive film, wherein the electron transport layer includes a first layer containing a metal oxide, and A second layer provided between the first layer and the photoelectric conversion layer, the second layer comprising: a first compound having at least one carboxylic acid group; and at least one pyridyl group. The photoelectric conversion element characterized by including the 2nd compound which is a tertiary amine derivative which has this. 前記第一の化合物が、下記一般式(1)で表されるものであることを特徴とする請求項1に記載の光電変換素子。
一般式(1)
Figure 2017143150
(上記式中、R1、R2は、炭素数1〜6の直鎖状又は分岐鎖状のアルキル基、又はベンジル基を表し、Xは、炭素数4〜6の2価の芳香族基、又は炭素数1〜4のアルキレン基を表す。また、R1とR2は、結合してヘテロ環を形成してもよい。)
The photoelectric conversion element according to claim 1, wherein the first compound is represented by the following general formula (1).
General formula (1)
Figure 2017143150
(In the above formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 6 carbon atoms or a benzyl group, and X is a divalent aromatic group having 4 to 6 carbon atoms, or Represents an alkylene group having 1 to 4 carbon atoms, and R1 and R2 may combine to form a heterocycle.)
前記第一の化合物と前記第二の化合物の混合比が50:50〜99:1(重量比)であることを特徴とする請求項1又は2に記載の光電変換素子。   3. The photoelectric conversion element according to claim 1, wherein a mixing ratio of the first compound and the second compound is 50:50 to 99: 1 (weight ratio). 前記金属酸化物が、酸化亜鉛又は酸化チタンであることを特徴とする請求項1〜3のいずれかに記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the metal oxide is zinc oxide or titanium oxide.
JP2016022963A 2016-02-09 2016-02-09 Photoelectric conversion element Active JP6690276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022963A JP6690276B2 (en) 2016-02-09 2016-02-09 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022963A JP6690276B2 (en) 2016-02-09 2016-02-09 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2017143150A true JP2017143150A (en) 2017-08-17
JP6690276B2 JP6690276B2 (en) 2020-04-28

Family

ID=59627534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022963A Active JP6690276B2 (en) 2016-02-09 2016-02-09 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6690276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110927A1 (en) * 2018-11-28 2020-06-04 京セラ株式会社 Solar cell element and solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100361A (en) * 2001-09-26 2003-04-04 Mitsubishi Paper Mills Ltd Manufacturing method for semiconductor electrode and photoelectric conversion element using the same
US20090188558A1 (en) * 2008-01-25 2009-07-30 University Of Washington Photovoltaic devices having metal oxide electron-transport layers
JP2010525613A (en) * 2007-04-27 2010-07-22 コナルカ テクノロジーズ インコーポレイテッド Organic photovoltaic cell
CN103130985A (en) * 2011-11-23 2013-06-05 张勇 Novel surface polymerization method and application in preparation of organic electronic device thereof
JP2013149446A (en) * 2012-01-18 2013-08-01 Konica Minolta Inc Photoelectric conversion element, and solar cell using the same
WO2015159755A1 (en) * 2014-04-14 2015-10-22 東レ株式会社 Photovoltaic element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100361A (en) * 2001-09-26 2003-04-04 Mitsubishi Paper Mills Ltd Manufacturing method for semiconductor electrode and photoelectric conversion element using the same
JP2010525613A (en) * 2007-04-27 2010-07-22 コナルカ テクノロジーズ インコーポレイテッド Organic photovoltaic cell
US20090188558A1 (en) * 2008-01-25 2009-07-30 University Of Washington Photovoltaic devices having metal oxide electron-transport layers
CN103130985A (en) * 2011-11-23 2013-06-05 张勇 Novel surface polymerization method and application in preparation of organic electronic device thereof
JP2013149446A (en) * 2012-01-18 2013-08-01 Konica Minolta Inc Photoelectric conversion element, and solar cell using the same
WO2015159755A1 (en) * 2014-04-14 2015-10-22 東レ株式会社 Photovoltaic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110927A1 (en) * 2018-11-28 2020-06-04 京セラ株式会社 Solar cell element and solar cell module

Also Published As

Publication number Publication date
JP6690276B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6446644B2 (en) Organic compound, organic material thin film, photoelectric conversion layer, solution for forming photoelectric conversion layer, and photoelectric conversion element
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP6297891B2 (en) Organic material and photoelectric conversion element
JP6671599B2 (en) Organic materials and photoelectric conversion elements
JP6622229B2 (en) N-fluoroalkyl substituted dibromonaphthalenediimides and their use as semiconductors
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP5616273B2 (en) Organic semiconductor polymer, composition for organic semiconductor material, and photovoltaic cell
JP6699418B2 (en) Photoelectric conversion element
JP2013235903A (en) Organic thin-film solar cell and composition used for the same
JP7073626B2 (en) Photoelectric conversion element and solar cell
JP2018107352A (en) Photoelectric conversion element
JP7246126B2 (en) Photoelectric conversion element
JP6641692B2 (en) Photoelectric conversion element
JP5616272B2 (en) Organic semiconductor polymer, composition for organic semiconductor material, and photovoltaic cell
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
JP6690276B2 (en) Photoelectric conversion element
US12041797B2 (en) Photoelectric conversion element, device, and power supply module
Sharma et al. Efficient bulk heterojunction photovoltaic devices based on modified PCBM
KR101306070B1 (en) Conductive Polymer Compound and Organic Solar Cells with the Same
WO2014002664A1 (en) Photovoltaic element
KR101439275B1 (en) Novel compound, polymer compounds that contain them, and organic solar cells containing the same
KR101439272B1 (en) Novel compound, polymer compounds that contain them, and organic solar cells containing the same
JP2016134415A (en) Organic photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R151 Written notification of patent or utility model registration

Ref document number: 6690276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151