JP2017142932A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2017142932A JP2017142932A JP2016022595A JP2016022595A JP2017142932A JP 2017142932 A JP2017142932 A JP 2017142932A JP 2016022595 A JP2016022595 A JP 2016022595A JP 2016022595 A JP2016022595 A JP 2016022595A JP 2017142932 A JP2017142932 A JP 2017142932A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- electrode active
- graphite
- carbon particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
近年、リチウムイオン二次電池、ニッケル水素電池その他の非水電解液二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。リチウムイオン二次電池では、正極と負極との間をLiイオンが行き来することによって充電および放電が行われる。 In recent years, lithium ion secondary batteries, nickel metal hydride batteries, and other nonaqueous electrolyte secondary batteries have become increasingly important as power sources for mounting on vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. In a lithium ion secondary battery, charging and discharging are performed by Li ions traveling between a positive electrode and a negative electrode.
この種の非水電解液二次電池の典型的な負極は、電荷担体(リチウムイオン二次電池の場合、リチウムイオン)を可逆的に吸蔵及び放出し得る負極活物質を含む負極活物質層が負極集電体上に保持された構造を有する。負極活物質としては、主として種々の炭素材料が挙げられ、例えば、黒鉛粒子が用いられている。この種の二次電池に関する従来技術として特許文献1が挙げられる。 A typical negative electrode of this type of nonaqueous electrolyte secondary battery has a negative electrode active material layer containing a negative electrode active material capable of reversibly occluding and releasing charge carriers (lithium ions in the case of a lithium ion secondary battery). It has a structure held on the negative electrode current collector. Examples of the negative electrode active material mainly include various carbon materials, and for example, graphite particles are used. Patent document 1 is mentioned as a prior art regarding this kind of secondary battery.
特許文献1には、鱗片状黒鉛粒子と、黒鉛粒子の表面が非晶質炭素粒子と非晶質炭素層とを含む被覆層により被覆されてなり、比表面積が4〜6m2/gである被覆黒鉛粒子とを混合した負極活物質を用いることが提案されている。同文献には、かかる構成によって、ハイレートサイクル後の容量維持率やIV特性に優れた(すなわちハイレート耐久性の高い)非水電解質二次電池を実現できるとされている。しかし、本発明者の知見によれば、このような技術によっても、被覆黒鉛粒子表面と電解液との副反応により高温保存後の容量維持率が低下する場合があり、更なる改善の余地がある。 In Patent Document 1, scaly graphite particles and the surface of the graphite particles are coated with a coating layer containing amorphous carbon particles and an amorphous carbon layer, and the specific surface area is 4 to 6 m 2 / g. It has been proposed to use a negative electrode active material mixed with coated graphite particles. According to the document, such a configuration can realize a non-aqueous electrolyte secondary battery excellent in capacity retention ratio and high IV characteristics after high rate cycle (that is, having high rate durability). However, according to the inventor's knowledge, even with such a technique, the capacity retention rate after high-temperature storage may decrease due to a side reaction between the coated graphite particle surface and the electrolytic solution, and there is room for further improvement. is there.
本発明は上記事情に鑑みてなされたものであり、その主な目的は、ハイレート耐久性と高温保存特性とを両立し得る非水電解液二次電池を提供することである。 This invention is made | formed in view of the said situation, The main objective is to provide the non-aqueous-electrolyte secondary battery which can make high-rate durability and high temperature storage characteristics compatible.
本発明により提供される非水電解液二次電池は、黒鉛系負極活物質を含む負極活物質層が負極集電体上に形成された負極と、正極とを備える非水電解液二次電池である。前記負極活物質層は、さらに炭素粒子を含んでいる。前記黒鉛系負極活物質および前記炭素粒子の含有量の比(黒鉛系負極活物質:炭素粒子)が質量基準で95:5〜80:20である。前記黒鉛系負極活物質のBET比表面積をAとし、前記黒鉛系負極活物質の嵩密度をBとし、前記炭素粒子のBET比表面積をCとし、前記炭素粒子の嵩密度をDとし、前記黒鉛系負極活物質のBET比表面積Aと前記炭素粒子のBET比表面積Cとの加重平均値をEとしたときに、以下の関係:
2m2/g≦A≦6m2/g
0.44g/cm3≦B≦0.7g/cm3
10m2/g≦C≦30m2/g
0.05g/cm3≦D≦0.32g/cm3
4.8m2/g≦E≦7.9m2/g
を満たす。そして、前記黒鉛系負極活物質と前記炭素粒子との合計質量100質量部に対して、スチレンブタジエンラバーを3質量部〜6質量部含む。
A nonaqueous electrolyte secondary battery provided by the present invention is a nonaqueous electrolyte secondary battery comprising a negative electrode in which a negative electrode active material layer containing a graphite-based negative electrode active material is formed on a negative electrode current collector, and a positive electrode. It is. The negative electrode active material layer further contains carbon particles. The ratio of the content of the graphite-based negative electrode active material and the carbon particles (graphite-based negative electrode active material: carbon particles) is 95: 5 to 80:20 on a mass basis. The BET specific surface area of the graphite-based negative electrode active material is A, the bulk density of the graphite-based negative electrode active material is B, the BET specific surface area of the carbon particles is C, the bulk density of the carbon particles is D, and the graphite When the weighted average value of the BET specific surface area A of the system negative electrode active material and the BET specific surface area C of the carbon particles is E, the following relationship:
2 m 2 / g ≦ A ≦ 6 m 2 / g
0.44 g / cm 3 ≦ B ≦ 0.7 g / cm 3
10 m 2 / g ≦ C ≦ 30 m 2 / g
0.05 g / cm 3 ≦ D ≦ 0.32 g / cm 3
4.8m 2 /g≦E≦7.9m 2 / g
Meet. And 3 mass parts-6 mass parts of styrene butadiene rubber are included with respect to 100 mass parts of total mass of the said graphite-type negative electrode active material and the said carbon particle.
かかる構成によると、ハイレートサイクル後の抵抗上昇が抑えられ、なおかつ、高温保存後においても高い電池容量を維持し得る、高性能な非水電解液二次電池を実現することができる。 According to such a configuration, it is possible to realize a high-performance nonaqueous electrolyte secondary battery that can suppress an increase in resistance after a high-rate cycle and that can maintain a high battery capacity even after high-temperature storage.
以下、本発明の一実施形態に係る非水電解液二次電池を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化する。 Hereinafter, a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described. The embodiments described herein are, of course, not intended to limit the present invention in particular. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships. Further, members / parts having the same action are denoted by the same reference numerals, and redundant description is omitted or simplified.
以下では捲回タイプの電極体(以下「捲回電極体」という。)と非水電解液とを角形(ここでは、直方体の箱形状)のケースに収容した形態のリチウムイオン二次電池を例に挙げる。なお、電池構造は、図示例に限定されず、特に、角形電池に限定されない。 In the following, an example of a lithium ion secondary battery in which a wound type electrode body (hereinafter referred to as “wound electrode body”) and a non-aqueous electrolyte are accommodated in a rectangular (here, rectangular box shape) case is shown as an example. To The battery structure is not limited to the illustrated example, and is not particularly limited to a prismatic battery.
図1は、本発明の一実施形態に係るリチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体20と電池ケース30とを備えている。図2は、捲回電極体20を示す図である。本発明の一実施形態に係るリチウムイオン二次電池100は、図1および図2に示すように、扁平形状の捲回電極体20が、図示しない液状電解質(電解液)とともに、扁平な角形の電池ケース(即ち外装容器)30に収容されている。
FIG. 1 shows a lithium ion
電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる封口板(蓋体)34とから構成される。電池ケース30の材質は、例えばアルミニウムが例示される。図1に示すように、封口板34には外部接続用の正極端子42および負極端子44が形成されている。封口板34の両端子42、44の間には、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁36が形成されている。
The
捲回電極体20は、図2に示すように、長尺なシート状正極(正極シート50)と、該正極シート50と同様の長尺シート状負極(負極シート60)とを計二枚の長尺シート状セパレータ(セパレータ70,72)とを備えている。
As shown in FIG. 2, the
正極シート50は、帯状の正極集電体52と正極活物質層54とを備えている。正極集電体52には、例えば、帯状のアルミニウム箔が用いられている。正極集電体52の幅方向片側の縁部に沿って未塗工部52aが設定されている。図示例では、正極活物質層54は、正極集電体52に設定された未塗工部52aを除いて、正極集電体52の両面に保持されている。正極活物質層54には、正極活物質や導電材やバインダが含まれている。
The
正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、LiNiCoMnO2(リチウムニッケルコバルトマンガン複合酸化物)などのリチウム遷移金属酸化物が挙げられる。例えば、正極活物質に、導電材としてアセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)等のバインダを添加することができる。これらを適当な分散媒体に分散させて混練することによって、正極合剤(ペースト)を調製することができる。正極活物質層54は、この正極合剤を正極集電体52に塗布し、乾燥させ、予め定められた厚さに圧延(プレス)することによって形成されている。
As the positive electrode active material, a material used as a positive electrode active material of a lithium ion secondary battery can be used. Examples of cathode active materials include lithium transition metal oxides such as LiNiCoMnO 2 (lithium-nickel-cobalt-manganese composite oxide). For example, the positive electrode active material can be mixed with carbon black such as acetylene black (AB) or other (graphite or the like) powdery carbon material as a conductive material. In addition to the positive electrode active material and the conductive material, a binder such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), or polytetrafluoroethylene (PTFE) can be added. A positive electrode mixture (paste) can be prepared by dispersing these in a suitable dispersion medium and kneading. The positive electrode
負極シート60は、図2に示すように、帯状の負極集電体62と負極活物質層64とを備えている。負極集電体62には、例えば、帯状の銅箔が用いられている。負極集電体62の幅方向片側には、縁部に沿って未塗工部62aが設定されている。負極活物質層64は、負極集電体62に設定された未塗工部62aを除いて、負極集電体62の両面に保持されている。負極活物質層64には、黒鉛系負極活物質や増粘剤やバインダなどが含まれている。バインダとしては、スチレンブタジエンラバー(SBR)が用いられている。また、増粘剤としては、カルボキシメチルセルロース(CMC)が例示される。
As shown in FIG. 2, the
上記負極活物質層64に含まれる黒鉛系負極活物質としては、天然黒鉛または人造黒鉛を主成分とするものが好ましく、なかでも天然黒鉛がより好ましい。また、天然黒鉛、人工黒鉛等の各種黒鉛を粒子状(球状)に加工(粉砕、球状成形等)したものを使用することができる。例えば鱗片状(Flake Graphite)の黒鉛を球形化したものであり得る。また、黒鉛系活物質は、黒鉛粒子(コア核)の表面を炭素材料(例えばアモルファス炭素材料、難黒鉛化炭素材料)で被覆してなる複合粒子であってもよい。負極活物質層64についてはさらに後述する。
The graphite-based negative electrode active material contained in the negative electrode
セパレータ70、72は、図2に示すように、正極シート50と負極シート60とを隔てる部材である。この例では、セパレータ70、72は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ70、72には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2に示すように、負極活物質層64の幅b1は、正極活物質層54の幅a1よりも広い(b1>a1)。また、セパレータ70、72の幅c1、c2は、負極活物質層64の幅b1よりも広い(c1、c2>b1>a1)。
As illustrated in FIG. 2, the
電解液(非水電解液)としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、等を用いることができる。また、上記支持塩としては、例えば、LiPF6等のリチウム塩を用いることができる。 As the electrolytic solution (non-aqueous electrolytic solution), the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without any particular limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like. Moreover, as said support salt, lithium salts, such as LiPF 6 , can be used, for example.
以下、負極シート60について、より詳細に説明する。
Hereinafter, the
負極シート60は、前述したように、黒鉛系負極活物質を含む負極活物質層64が負極集電体62上に保持された構造を有する。ここに開示される負極活物質層64は、黒鉛系負極活物質のほか、さらに炭素粒子を含んでいる。炭素粒子は、充放電に関与しない無定形の炭素粒子であってもよいが、Liイオンを吸蔵および放出し得る炭素粒子(すなわち負極活物質として機能し得る炭素粒子)であることが好ましい。好ましい一態様では、上記炭素粒子は、負極活物質および導電材として機能し得る。
As described above, the
黒鉛系負極活物質のBET比表面積Aは、炭素粒子のBET比表面積Cよりも小さく(A<C)、概ね6m2/g以下である。黒鉛系負極活物質のBET比表面積Aは、高温保存特性向上等の観点から、好ましくは5.5m2/g以下、より好ましくは5m2/g以下、さらに好ましくは4.5m2/g以下である。また、高温保存特性とハイレート耐久性とを両立する観点から、黒鉛系負極活物質のBET比表面積Aは、概ね2m2/g以上、好ましくは2.5m2/g以上、より好ましくは3m2/g以上である。なお、本明細書において「BET比表面積」は、吸着質として窒素(N2)ガスを用いたガス吸着法(定容量吸着法)によって測定されたガス吸着量を、BET法で解析した値をいう。 The BET specific surface area A of the graphite-based negative electrode active material is smaller than the BET specific surface area C of the carbon particles (A <C) and is approximately 6 m 2 / g or less. The BET specific surface area A of the graphite-based negative electrode active material is preferably 5.5 m 2 / g or less, more preferably 5 m 2 / g or less, and still more preferably 4.5 m 2 / g or less, from the viewpoint of improving high-temperature storage characteristics. It is. Further, from the viewpoint of achieving both high-temperature storage characteristics and high-rate durability, the BET specific surface area A of the graphite-based negative electrode active material is approximately 2 m 2 / g or more, preferably 2.5 m 2 / g or more, more preferably 3 m 2. / G or more. In this specification, “BET specific surface area” is a value obtained by analyzing a gas adsorption amount measured by a gas adsorption method (constant capacity adsorption method) using nitrogen (N 2 ) gas as an adsorbate by a BET method. Say.
黒鉛系負極活物質の嵩密度Bは、炭素粒子の嵩密度Dよりも大きく(B>D)、概ね0.44g/cm3以上である。黒鉛系負極活物質の嵩密度Bは、高温保存特性向上等の観点から、好ましくは0.48g/cm3以上、より好ましくは0.52g/cm3以上、さらに好ましくは0.55g/cm3以上である。また、高温保存特性とハイレート耐久性とを両立する観点から、黒鉛系負極活物質の嵩密度Bは、概ね0.7g/cm3以下、好ましくは0.65g/cm3以下、より好ましくは0.6g/cm3以下である。なお、本明細書において「嵩密度」とは、JIS K1469(2003)に規定された方法により測定された値をいう。 The bulk density B of the graphite-based negative electrode active material is larger than the bulk density D of the carbon particles (B> D) and is generally about 0.44 g / cm 3 or more. Bulk density B of the graphite-based negative active material, from the viewpoint of high-temperature storage characteristics improved, preferably 0.48 g / cm 3 or more, more preferably 0.52 g / cm 3 or more, more preferably 0.55 g / cm 3 That's it. From the viewpoint of achieving both high-temperature storage characteristics and high-rate durability, the bulk density B of the graphite-based negative electrode active material is approximately 0.7 g / cm 3 or less, preferably 0.65 g / cm 3 or less, more preferably 0. 0.6 g / cm 3 or less. In this specification, “bulk density” refers to a value measured by the method defined in JIS K1469 (2003).
炭素粒子のBET比表面積Bは、黒鉛系負極活物質のBET比表面積Aよりも大きく(A<C)、概ね10m2/g以上である。炭素粒子のBET比表面積Bは、ハイレート耐久性向上等の観点から、好ましくは15m2/g以上、より好ましくは18m2/g以上、さらに好ましくは20m2/g以上である。また、高温保存特性向上等の観点から、炭素粒子のBET比表面積Bは、概ね30m2/g以下である。例えば、BET比表面積Bが20m2/g以上25m2/g以下である炭素粒子が、高温保存特性とハイレート耐久性とを高いレベルで両立する観点から好適である。なお、BET比表面積Bが10m2/g以上20m2/g以下である炭素粒子としては、天然黒鉛や高結晶性の鱗片状人造黒鉛を粉砕処理したものを好適に用いることができる。また、BET比表面積Bが20m2/g以上30m2/g以下である炭素粒子としては、カーボンブラック(CB)やCBを黒鉛化処理したものを好適に用いることができる。 The BET specific surface area B of the carbon particles is larger than the BET specific surface area A of the graphite-based negative electrode active material (A <C), and is generally about 10 m 2 / g or more. The BET specific surface area B of the carbon particles is preferably 15 m 2 / g or more, more preferably 18 m 2 / g or more, and still more preferably 20 m 2 / g or more from the viewpoint of improving high-rate durability. Further, from the viewpoint of improving high-temperature storage characteristics, etc., the BET specific surface area B of the carbon particles is approximately 30 m 2 / g or less. For example, carbon particles having a BET specific surface area B of 20 m 2 / g or more and 25 m 2 / g or less are suitable from the viewpoint of achieving both high temperature storage characteristics and high rate durability at a high level. As the carbon particles having a BET specific surface area B of 10 m 2 / g or more and 20 m 2 / g or less, those obtained by pulverizing natural graphite or highly crystalline artificial graphite can be preferably used. Further, as carbon particles having a BET specific surface area B of 20 m 2 / g or more and 30 m 2 / g or less, carbon black (CB) or CB graphitized can be preferably used.
炭素粒子の嵩密度Dは、黒鉛系負極活物質の嵩密度Bよりも小さく(B>D)、概ね0.32g/cm3以下である。炭素粒子の嵩密度Dは、ハイレート耐久性等の観点から、好ましくは0.3g/cm3以下、より好ましくは0.25g/cm3以下、さらに好ましくは0.2g/cm3以下である。高温保存特性等の観点から、炭素粒子の嵩密度Dは、概ね0.05g/cm3以上である。例えば、嵩密度Dが0、1g/cm3以上0.2g/cm3以下であるである炭素粒子が、高温保存特性とハイレート耐久性とを高いレベルで両立する観点から好適である。 The bulk density D of the carbon particles is smaller than the bulk density B of the graphite-based negative electrode active material (B> D), and is generally 0.32 g / cm 3 or less. The bulk density D of the carbon particles is preferably 0.3 g / cm 3 or less, more preferably 0.25 g / cm 3 or less, and still more preferably 0.2 g / cm 3 or less from the viewpoint of high rate durability and the like. From the viewpoint of high-temperature storage characteristics and the like, the bulk density D of the carbon particles is approximately 0.05 g / cm 3 or more. For example, carbon particles bulk density D is not more than 0,1g / cm 3 or more 0.2 g / cm 3 are preferred from the viewpoint of achieving both high-temperature storage characteristics and high-rate durability at a high level.
黒鉛系負極活物質のBET比表面積Aと炭素粒子のBET比表面積Cとの加重平均値E
(すなわちE=α×A+β×C、ここでαは黒鉛系負極活物質と炭素粒子との合計質量を1としたときの黒鉛系負極活物質の質量比、βは黒鉛系負極活物質と炭素粒子との合計質量を1としたときの炭素粒子の質量比、α+β=1)は、概ね4.8m2/g以上である。上記BET比表面積の加重平均値Eは、ハイレート耐久性向上等の観点から、好ましくは5m2/g以上、より好ましくは5.5m2/g以上、さらに好ましくは6m2/g以上である。また、高温保存特性向上等の観点からは、上記BET比表面積の加重平均値Eは、概ね7.9m2/g以下、好ましくは7.5m2/g以下、より好ましくは6.5m2/g以下である。例えば、上記BET比表面積の加重平均値Eが5.5g/cm3以上6.5g/cm3以下であるである黒鉛系負極活物質および炭素粒子が、高温保存特性とハイレート耐久性とを高いレベルで両立する観点から好適である。
Weighted average value E of BET specific surface area A of graphite-based negative electrode active material and BET specific surface area C of carbon particles
(That is, E = α × A + β × C, where α is the mass ratio of the graphite-based negative electrode active material when the total mass of the graphite-based negative electrode active material and the carbon particles is 1, and β is the graphite-based negative electrode active material and carbon. The mass ratio of carbon particles, α + β = 1) when the total mass with the particles is 1, is approximately 4.8 m 2 / g or more. The weighted average value E of the BET specific surface area is preferably 5 m 2 / g or more, more preferably 5.5 m 2 / g or more, and further preferably 6 m 2 / g or more from the viewpoint of improving high-rate durability. Further, from the standpoint of a high-temperature storage characteristics improve, a weighted average value E of the BET specific surface area is approximately 7.9 m 2 / g or less, preferably 7.5 m 2 / g, more preferably 6.5m 2 / g or less. For example, the graphite-based negative electrode active material and carbon particles having a weighted average value E of the BET specific surface area of 5.5 g / cm 3 or more and 6.5 g / cm 3 or less have high temperature storage characteristics and high rate durability. It is preferable from the viewpoint of achieving both levels.
黒鉛系負極活物質と炭素粒子との含有量の比(質量基準)は、95:5〜80:20である。黒鉛系負極活物質と炭素粒子とを併用することによる効果をより良く発揮される観点から、黒鉛系負極活物質と炭素粒子との質量比は、好ましくは90:10〜80:20、例えば85:15〜80:20であり得る。 The ratio (mass basis) of the content of the graphite-based negative electrode active material and the carbon particles is 95: 5 to 80:20. The mass ratio of the graphite-based negative electrode active material and the carbon particles is preferably 90:10 to 80:20, for example, 85 from the viewpoint of better exhibiting the effect of using the graphite-based negative electrode active material and the carbon particles in combination. : 15-80: 20.
ここで開示される負極活物質層64は、前述したようにSBRを含んでいる。負極活物質層中に含まれるSBRの含有量は、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対して、概ね3質量部〜6質量部である。上記SBRの含有量は、負極活物質層の密着性向上等の観点から、好ましくは3.5質量部以上、より好ましくは4質量部以上である。また、低温時のLi析出を抑制する等の観点から、SBRの含有量は、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対して、好ましくは5.5質量部以下、より好ましくは5質量部以下である。ここに開示される技術は、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対して、SBRの含有量が4質量部以上6質量部以下である態様で好ましく実施され得る。
The negative electrode
なお、黒鉛系負極活物質および炭素粒子は、完成後のリチウムイオン二次電池の負極活物質層から、以下のようにして分離することができる。すなわち、リチウムイオン二次電池を解体し、負極活物質層を負極集電体から引き剥がす。次いで、負極活物質層を水に溶かしてSBRおよび増粘剤(例えばCMC)を洗い流す。その後、残留物を乾燥、粉砕し、気流による分級を実施し、黒鉛系負極活物質と炭素粒子とを分離するとよい。 The graphite-based negative electrode active material and carbon particles can be separated from the completed negative electrode active material layer of the lithium ion secondary battery as follows. That is, the lithium ion secondary battery is disassembled, and the negative electrode active material layer is peeled off from the negative electrode current collector. Next, the negative electrode active material layer is dissolved in water to wash away SBR and a thickener (for example, CMC). Thereafter, the residue is dried, pulverized, and classified by airflow to separate the graphite-based negative electrode active material from the carbon particles.
ここで開示されるリチウムイオン二次電池は、黒鉛系負極活物質および炭素粒子の含有量の比(黒鉛系負極活物質:炭素粒子)が質量基準で95:5〜80:20であり、黒鉛系負極活物質のBET比表面積をAとし、黒鉛系負極活物質の嵩密度をBとし、炭素粒子のBET比表面積をCとし、炭素粒子の嵩密度をDとし、黒鉛系負極活物質のBET比表面積Aと炭素粒子のBET比表面積Cとの加重平均値をEとしたときに、以下の関係:2m2/g≦A≦6m2/g;0.44g/cm3≦B≦0.7g/cm3;10m2/g≦C≦30m2/g;0.05g/cm3≦D≦0.32g/cm3;4.8m2/g≦E≦7.9m2/gを満たし、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対して、SBRを3質量部〜6質量部含む。このような特定のBET比表面積および嵩密度を有する黒鉛系負極活物質および炭素粒子を所定量のSBRと組み合わせて用いることにより、ハイレートサイクル後の抵抗上昇が抑えられ、かつ、高温保存後においても高い電池容量を維持し得る、高性能な非水電解液二次電池を実現することができる。 The lithium ion secondary battery disclosed herein has a graphite-based negative electrode active material and carbon particle content ratio (graphite-based negative electrode active material: carbon particles) of 95: 5 to 80:20 on a mass basis, and graphite. The negative electrode active material BET specific surface area is A, the graphite negative electrode active material bulk density is B, the carbon particle BET specific surface area is C, the carbon particle bulk density is D, and the graphite negative electrode active material BET. a weighted average value of the BET specific surface area C of the specific surface area a and the carbon particles is taken as E, the following relationship: 2m 2 / g ≦ a ≦ 6m 2 /g;0.44g/cm 3 ≦ B ≦ 0. met 4.8m 2 /g≦E≦7.9m 2 / g; 7g / cm 3; 10m 2 / g ≦ C ≦ 30m 2 /g;0.05g/cm 3 ≦ D ≦ 0.32g / cm 3 , SBR with respect to 100 parts by mass of the total mass of the graphite-based negative electrode active material and the carbon particles Comprising 3 parts by 6 parts by weight. By using such a graphite negative electrode active material and carbon particles having a specific BET specific surface area and bulk density in combination with a predetermined amount of SBR, an increase in resistance after a high rate cycle can be suppressed, and even after high-temperature storage. A high-performance nonaqueous electrolyte secondary battery capable of maintaining a high battery capacity can be realized.
上記のような効果が得られる理由としては、特に限定的に解釈されるものではないが、例えば以下のように考えられる。すなわち、黒鉛系負極活物質を用いた従来の非水電解液二次電池では、ハイレートでの充放電を繰り返すと、負極の膨張収縮によって非水電解液が負極の外部に押し出され、電解液の塩濃度に場所による偏り(ムラ)が生じる結果、抵抗上昇を起こしやすい。これに対して、前述した炭素粒子は、黒鉛系負極活物質に比べて嵩高い(嵩密度が低い)ため、該炭素粒子を黒鉛系負極活物質に混合すると、黒鉛系負極活物質の充填性が低下し、負極活物質層が厚く、かつ、負極活物質層の空孔容積が大きくなる。その結果、負極活物質層空孔内のLiイオンの拡散速度が速まり、負極中の電解液の塩濃度ムラによる抵抗増大を抑えることができる。
ここで、上記電解液の塩濃度の偏り(ムラ)による抵抗増大を抑えるために、炭素粒子の嵩密度を低くすると、その背反として、炭素粒子のBET比表面積が増大するため、高温環境下では炭素粒子と電解液との副反応(典型的には炭素粒子表面での被膜形成反応)が促進され、高温保存後の容量維持率が低下してしまう。
そのため、本態様によると、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対して、3質量部〜6質量部のSBRを含有させる。本発明者の知見によれば、SBRは、嵩高くBET比表面積が大きい炭素粒子との親和性が高いため、3質量部〜6質量部のSBRを負極活物質層に含有させると、SBRが黒鉛系負極活物質よりも炭素粒子に優先的に吸着し、炭素粒子の表面を被覆する。炭素粒子の表面をSBRで被覆することにより、ハイレート充放電時の電解液の塩濃度ムラによる抵抗増大を抑えつつ、高温環境下での炭素粒子と電解液との副反応を抑制することができる。したがって、本態様によれば、高温保存特性とハイレート充放電サイクル耐久性とを高度なレベルで両立させた、高性能なリチウムイオン二次電池を提供することができる。
The reason why the above effects can be obtained is not particularly limited, but is considered as follows, for example. That is, in a conventional non-aqueous electrolyte secondary battery using a graphite-based negative electrode active material, when charging and discharging at a high rate are repeated, the non-aqueous electrolyte is pushed out of the negative electrode due to expansion and contraction of the negative electrode, As a result of unevenness (unevenness) in the salt concentration depending on the location, resistance is likely to increase. On the other hand, since the carbon particles described above are bulky (low bulk density) compared to the graphite-based negative electrode active material, when the carbon particles are mixed with the graphite-based negative electrode active material, the filling properties of the graphite-based negative electrode active material Decreases, the negative electrode active material layer is thick, and the pore volume of the negative electrode active material layer is increased. As a result, the diffusion rate of Li ions in the negative electrode active material layer vacancies increases, and an increase in resistance due to uneven salt concentration of the electrolyte in the negative electrode can be suppressed.
Here, in order to suppress an increase in resistance due to unevenness (unevenness) in the salt concentration of the electrolytic solution, if the bulk density of the carbon particles is lowered, the BET specific surface area of the carbon particles increases as a contradiction. A side reaction (typically a film formation reaction on the surface of the carbon particles) between the carbon particles and the electrolytic solution is promoted, and the capacity retention rate after high-temperature storage is lowered.
Therefore, according to this aspect, 3 to 6 parts by mass of SBR is contained with respect to 100 parts by mass of the total mass of the graphite-based negative electrode active material and the carbon particles. According to the inventor's knowledge, since SBR has high affinity with carbon particles having a large bulk and a large BET specific surface area, when 3 parts by mass to 6 parts by mass of SBR is contained in the negative electrode active material layer, SBR is It preferentially adsorbs to carbon particles over the graphite-based negative electrode active material, and coats the surface of the carbon particles. By coating the surface of the carbon particles with SBR, it is possible to suppress side reactions between the carbon particles and the electrolytic solution in a high temperature environment while suppressing an increase in resistance due to uneven salt concentration of the electrolytic solution during high-rate charge / discharge. . Therefore, according to this aspect, it is possible to provide a high-performance lithium ion secondary battery in which high-temperature storage characteristics and high-rate charge / discharge cycle durability are compatible at a high level.
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.
<負極シート>
BET比表面積や嵩密度が異なる複数種類の黒鉛系負極活物質および炭素粒子を用意した。黒鉛系負極活物質としては、球形化天然黒鉛を非晶質コートした黒鉛材料を用いた。炭素粒子としては、カーボン材料を用いた。これらの黒鉛系負極活物質と炭素粒子とを組み合わせて混合した混合物100質量部と、バインダとしてのSBRと、増粘剤としてのCMC0.7質量部とを水中に分散させて負極合剤を調製した。この負極合剤を長尺シート状の銅箔の両面に塗布し、乾燥することにより、負極集電体の両面に負極活物質層が設けられた各例の負極シートを作製した。各例に係る負極シートについて、使用した黒鉛系負極活物質のBET比表面積Aおよび嵩密度B、炭素粒子のBET比表面積Cおよび嵩密度D、黒鉛系負極活物質と炭素粒子との混合比率、黒鉛系負極活物質と炭素粒子との合計質量100質量部に対するSBRの添加量、黒鉛系負極活物質のBET比表面積Aと炭素粒子のBET比表面積Cとの加重平均値Eを表1〜表10に纏めて示す。
<Negative electrode sheet>
A plurality of types of graphite-based negative electrode active materials and carbon particles having different BET specific surface areas and bulk densities were prepared. As the graphite-based negative electrode active material, a graphite material coated with spheroidized natural graphite was used. A carbon material was used as the carbon particles. A negative electrode mixture is prepared by dispersing 100 parts by mass of a mixture of these graphite-based negative electrode active materials and carbon particles, dispersing SBR as a binder, and 0.7 parts by mass of CMC as a thickener in water. did. This negative electrode mixture was applied to both sides of a long sheet-like copper foil and dried to prepare each negative electrode sheet in which negative electrode active material layers were provided on both sides of the negative electrode current collector. For the negative electrode sheet according to each example, the BET specific surface area A and bulk density B of the graphite-based negative electrode active material used, the BET specific surface area C and bulk density D of the carbon particles, the mixing ratio of the graphite-based negative electrode active material and carbon particles, Table 1 to Table 1 show the addition amount of SBR with respect to 100 parts by mass of the total mass of the graphite-based negative electrode active material and the carbon particles, and the weighted average value E of the BET specific surface area A of the graphite-based negative electrode active material and the BET specific surface area C of the carbon particles. 10 is shown collectively.
<剥離強度試験>
万能試験機を用いて、負極シートの負極集電体から負極活物質層を90°剥離するときの引張強度を測定し、剥離強度とした。結果を表1〜表10に示す。ここでは剥離強度が1.5N/m以上のものを「○」、1.5N/m未満のものを「×」と評価した。
<Peel strength test>
Using a universal testing machine, the tensile strength when the negative electrode active material layer was peeled by 90 ° from the negative electrode current collector of the negative electrode sheet was measured and taken as the peel strength. The results are shown in Tables 1-10. Here, the case where the peel strength was 1.5 N / m or more was evaluated as “◯”, and the case where the peel strength was less than 1.5 N / m was evaluated as “X”.
<リチウムイオン二次電池>
各例の負極シートを用いて評価用リチウムイオン二次電池を作製し、その電池性能を評価した。ここで、評価用リチウムイオン二次電池の正極シートは、アルミニウム箔を正極集電体に用いた。正極活物質層を形成する際に用意した正極合剤の固形分は、質量割合において正極活物質:導電材:バインダ=90:8:2とした。正極活物質としては、LiNi1/3Co1/3Mn1/3O2(リチウムニッケルコバルトマンガン複合酸化物)の粒子を用い、各評価用セルにおいて共通の正極活物質を用いた。導電材としてアセチレンブラック(AB)を用い、バインダとしてポリフッ化ビニリデン(PVDF)を用いた。
<Lithium ion secondary battery>
A lithium ion secondary battery for evaluation was produced using the negative electrode sheet of each example, and the battery performance was evaluated. Here, the positive electrode sheet of the lithium ion secondary battery for evaluation used aluminum foil for the positive electrode current collector. The solid content of the positive electrode mixture prepared when forming the positive electrode active material layer was positive electrode active material: conductive material: binder = 90: 8: 2 in mass ratio. As the positive electrode active material, particles of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel cobalt manganese composite oxide) were used, and a common positive electrode active material was used in each evaluation cell. Acetylene black (AB) was used as the conductive material, and polyvinylidene fluoride (PVDF) was used as the binder.
正極シートおよび負極シートを2枚のセパレータを介して扁平状に捲回することによって捲回電極体を作製した。該捲回電極体を非水電解液とともに角型の電池ケースに収容し、電池ケースの開口部を気密に封口した。セパレータとしては、ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)からなる三層構造の多孔質フィルムを用いた。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPF6を約1mol/リットルの濃度で含有させたものを用いた。このようにして評価用のリチウムイオン二次電池を構築した。 A wound electrode body was produced by winding the positive electrode sheet and the negative electrode sheet in a flat shape via two separators. The wound electrode body was accommodated in a rectangular battery case together with a non-aqueous electrolyte, and the opening of the battery case was hermetically sealed. As the separator, a porous film having a three-layer structure made of polypropylene (PP) / polyethylene (PE) / polypropylene (PP) was used. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3, and about 1 mol of LiPF 6 as a supporting salt. The one contained at a concentration of 1 / liter was used. In this way, a lithium ion secondary battery for evaluation was constructed.
<初期容量測定>
このようにして作製した各例のリチウムイオン二次電池のそれぞれに対し、25℃において、電流0.7C(2.8A)、電圧4.1Vの定電流定電圧方式で合計充電時間が2時間となるまで充電した。10分間の休止後、かかる充電後の電池を、25℃において、0.5C(2A)の定電流定電圧で3Vまで放電し、このときの放電容量を初期容量として測定した。
<Initial capacity measurement>
For each of the lithium ion secondary batteries of each example thus produced, the total charging time was 2 hours at 25 ° C. using a constant current / constant voltage method with a current of 0.7 C (2.8 A) and a voltage of 4.1 V. Charged until After 10 minutes of rest, the charged battery was discharged to 3 V at a constant current and a constant voltage of 0.5 C (2 A) at 25 ° C., and the discharge capacity at this time was measured as the initial capacity.
<低温パルスサイクル試験>
各例のリチウムイオン二次電池のそれぞれに対し、低温パルスサイクル試験を行った。具体的には、各例の電池の充電深度(SOC)を初期容量の60%となるように充電した後、−10℃の低温環境下において、20C(80A)で20秒間のハイレートパルス充電を行い、10C(40)Aで40秒間のハイレートパルス放電を行う充放電サイクルを1000回連続して繰り返した。そして、低温パルスサイクル試験後における放電容量を初期容量測定と同じ方法により求め、上記低温パルスサイクル試験後における放電容量と初期容量とから、低温パルスサイクル試験後の容量維持率(=[低温パルスサイクル試験後の放電容量/初期容量]×100)を算出した。結果を表1〜表10に示す。ここでは容量維持率が98%以上のものを「○」、98%未満のものを「×」と評価した。
<Low-temperature pulse cycle test>
A low temperature pulse cycle test was performed on each of the lithium ion secondary batteries of each example. Specifically, after charging so that the charging depth (SOC) of the battery in each example is 60% of the initial capacity, high-rate pulse charging at 20 C (80 A) for 20 seconds is performed in a low temperature environment of −10 ° C. The charging / discharging cycle which performs high-rate pulse discharge for 40 seconds at 10C (40) A was repeated 1000 times continuously. Then, the discharge capacity after the low temperature pulse cycle test is obtained by the same method as the initial capacity measurement, and the capacity retention rate after the low temperature pulse cycle test (= [low temperature pulse cycle] Discharge capacity after test / initial capacity] × 100) was calculated. The results are shown in Tables 1-10. Here, a capacity maintenance rate of 98% or more was evaluated as “◯”, and a capacity maintenance rate of less than 98% was evaluated as “X”.
<高温保持試験>
各例のリチウムイオン二次電池のそれぞれに対し、80℃で60日間保存する高温保存試験を行った。具体的には、各例の電池の充電深度を初期容量の80%となるように充電(電流0.7C(2.8A)、電圧3.9Vの定電流定電圧方式で合計充電時間が3時間となるまで充電)した後、かかる充電状態の電池を80℃の環境下で60日間保存した。そして、上記高温保存試験後における放電容量を初期容量測定と同じ方法により求め、上記高温保存試験後における放電容量と初期容量とから容量維持率(=[高温保存試験後の放電容量/初期容量]×100)を算出した。結果を表1〜表10に示す。ここでは容量維持率が80%以上のものを「○」、80%未満のものを「×」と評価した。
<High temperature holding test>
Each of the lithium ion secondary batteries in each example was subjected to a high-temperature storage test in which the batteries were stored at 80 ° C. for 60 days. Specifically, charging is performed so that the charging depth of each example battery is 80% of the initial capacity (current 0.7C (2.8A), voltage 3.9V constant current constant voltage method, total charging time 3 The battery in a charged state was stored in an environment at 80 ° C. for 60 days. Then, the discharge capacity after the high-temperature storage test is obtained by the same method as the initial capacity measurement, and the capacity retention ratio (= [discharge capacity after the high-temperature storage test / initial capacity] is calculated from the discharge capacity and the initial capacity after the high-temperature storage test. × 100) was calculated. The results are shown in Tables 1-10. Here, a capacity maintenance rate of 80% or more was evaluated as “◯”, and a capacity maintenance rate of less than 80% was evaluated as “×”.
<ハイレートパルスサイクル試験(充電過多)>
各例のリチウムイオン二次電池のそれぞれに対し、ハイレートパルスサイクル試験を行った。具体的には、各例の電池の充電深度(SOC)を放電状態から初期容量の60%となるように充電した後、以下の(I)〜(II)からなる充放電サイクルを3000回繰り返すハイレートパルスサイクル試験を行った。図3は、当該評価試験における充放電サイクルを示している。そして、上記ハイレートパルスサイクル試験後におけるIV抵抗と初期のIV抵抗とから抵抗上昇率(=[ハイレートパルスサイクル試験後におけるIV抵抗/初期のIV抵抗]×100)を算出した。なお、IV抵抗は、10Cで10秒間の放電を行ったときの電流(I)−電圧(V)プロット値の一次近似直線の傾きから求めた。結果を表1〜表10に示す。ここでは抵抗上昇率が120%以下のものを「○」、120%を上回るものを「×」と評価した。
(I).10C(40A)の定電流で10秒間充電する。
(II).2C(8A)の定電流で400秒間放電する。
<High-rate pulse cycle test (excessive charge)>
A high rate pulse cycle test was performed on each of the lithium ion secondary batteries of each example. Specifically, after charging the charging depth (SOC) of the battery in each example from the discharged state to 60% of the initial capacity, the charge / discharge cycle consisting of the following (I) to (II) is repeated 3000 times. A high rate pulse cycle test was conducted. FIG. 3 shows a charge / discharge cycle in the evaluation test. Then, the rate of increase in resistance (= [IV resistance after high-rate pulse cycle test / initial IV resistance] × 100) was calculated from the IV resistance after the high-rate pulse cycle test and the initial IV resistance. In addition, IV resistance was calculated | required from the inclination of the linear approximation line of the current (I) -voltage (V) plot value when discharging for 10 second at 10C. The results are shown in Tables 1-10. Here, a resistance increase rate of 120% or less was evaluated as “◯”, and a resistance increase rate exceeding 120% was evaluated as “x”.
(I) Charge for 10 seconds at a constant current of 10 C (40 A).
(II) Discharge for 400 seconds at a constant current of 2C (8A).
表1〜表10に示されるように、黒鉛系負極活物質のBET比表面積Aを2m2/g≦A≦6m2/gとし、嵩密度Bを0.44g/cm3≦B≦0.7g/cm3とし、炭素粒子のBET比表面積Cを10m2/g≦C≦30m2/gとし、嵩密度Dを0.05g/cm3≦D≦0.32g/cm3とし、黒鉛系負極活物質のBET比表面積Aと炭素粒子のBET比表面積Cとの加重平均値Eを4.8m2/g≦E≦7.9m2/gとし、黒鉛系負極活物質および炭素粒子の含有量の比(黒鉛系負極活物質:炭素粒子)を質量基準で95:5〜80:20とし、SBRの添加量を3質量部〜6質量部としたサンプルは、高温保存後の容量維持率が80%以上と高く、かつ、ハイレートパルスサイクル後の抵抗上昇率も120%以下に抑えられていた。また、負極活物質層の剥離強度が1.5N/m以上となり、負極活物質層の密着性が良好であった。さらに、低温パルスサイクル後の容量維持率が98%以上となり、Li析出耐性にも優れていた。これらのサンプルの負極活物質層中のSBRをBrで染色し、電子線マイクロアナライザ(EPMA)でSBR分布を断面観察したところ、黒鉛系負極活物質よりも炭素粒子の表面にSBRが多く存在していた。この結果から、上記サンプルにおいては、黒鉛系負極活物質よりも炭素粒子にSBRが優先的に吸着することで、炭素粒子と電解液との副反応を抑制でき、高温保存後の容量維持率の低下を抑制し得たものと推測される。 As shown in Tables 1 to 10, the graphite-based negative electrode active material has a BET specific surface area A of 2 m 2 / g ≦ A ≦ 6 m 2 / g and a bulk density B of 0.44 g / cm 3 ≦ B ≦ 0. and 7 g / cm 3, a BET specific surface area C of the carbon particles and 10m 2 / g ≦ C ≦ 30m 2 / g, a bulk density D and 0.05g / cm 3 ≦ D ≦ 0.32g / cm 3, graphite The weighted average value E between the BET specific surface area A of the negative electrode active material and the BET specific surface area C of the carbon particles is 4.8 m 2 /g≦E≦7.9 m 2 / g, and the graphite negative electrode active material and the carbon particles are contained. Samples in which the ratio of the amounts (graphite-based negative electrode active material: carbon particles) was 95: 5 to 80:20 on a mass basis and the amount of SBR added was 3 parts by mass to 6 parts by mass were the capacity retention ratio after high-temperature storage Is as high as 80% or more, and the rate of increase in resistance after a high-rate pulse cycle is also 120% It was suppressed to below. Further, the peel strength of the negative electrode active material layer was 1.5 N / m or more, and the adhesion of the negative electrode active material layer was good. Furthermore, the capacity retention after the low-temperature pulse cycle was 98% or more, and the Li precipitation resistance was also excellent. When SBR in the negative electrode active material layer of these samples was stained with Br and the SBR distribution was observed by a cross section with an electron beam microanalyzer (EPMA), more SBR was present on the surface of the carbon particles than the graphite-based negative electrode active material. It was. From this result, in the above sample, SBR preferentially adsorbs to the carbon particles over the graphite-based negative electrode active material, thereby suppressing side reactions between the carbon particles and the electrolytic solution, and maintaining the capacity retention rate after high-temperature storage. It is presumed that the decrease could be suppressed.
例えば、黒鉛系負極活物質と炭素粒子とのBET比表面積の加重平均値Eが4.8m2/g≦E≦7.9m2/gの範囲では、SBRの添加量を1質量部から6質量部に増大すると(表3、表6、表7、表9参照)、高温保存後の容量維持率が向上する効果を示すことがわかる。このとき、低温パルスサイクル後の容量維持率が何れも98%以上であることから、SBRを増量したことによるLi析出耐性の低下は殆どないと云える。 For example, when the weighted average value E of the BET specific surface area of the graphite-based negative electrode active material and the carbon particles is in the range of 4.8 m 2 /g≦E≦7.9 m 2 / g, the amount of SBR added is 1 to 6 parts by mass. When increased to parts by mass (see Table 3, Table 6, Table 7, and Table 9), it can be seen that the capacity retention rate after high-temperature storage is improved. At this time, since the capacity retention ratios after the low-temperature pulse cycle are both 98% or more, it can be said that there is almost no decrease in Li precipitation resistance due to the increase in the SBR.
一方、黒鉛系負極活物質と炭素粒子とのBET比表面積の加重平均値Eを8.1m2/g以上としたサンプルは、高温保存後の容量維持率が80%を下回った。かかるサンプルにおいては、炭素粒子表面の一部がSBRで被覆しきれていなかったため、炭素粒子と電解液との副反応が生じ、高温保存後の容量維持率が低下したものと考えられる。 On the other hand, in the sample in which the weighted average value E of the BET specific surface area of the graphite-based negative electrode active material and the carbon particles was 8.1 m 2 / g or more, the capacity retention rate after high temperature storage was less than 80%. In such a sample, since a part of the surface of the carbon particles was not completely covered with SBR, a side reaction between the carbon particles and the electrolytic solution occurred, and it is considered that the capacity retention rate after high temperature storage was lowered.
また、黒鉛系負極活物質と炭素粒子とのBET比表面積の加重平均値Eを4.7m2/g以下としたサンプルは、ハイレートパルスサイクル後の抵抗上昇率が120%を大幅に上回った。かかるサンプルにおいては、嵩高くBET比表面積が大きい炭素粒子を用いたことによる負極活物質層の空孔容積増大効果が不十分であったため、負極の膨張によって電解液が負極の外部に押し出され、電解液の塩濃度に場所による偏り(ムラ)が生じた結果、抵抗上昇を起こしたものと考えられる。 Further, in the sample in which the weighted average value E of the BET specific surface area of the graphite-based negative electrode active material and the carbon particles was 4.7 m 2 / g or less, the resistance increase rate after the high-rate pulse cycle significantly exceeded 120%. In such a sample, since the effect of increasing the void volume of the negative electrode active material layer due to the use of bulky carbon particles having a large BET specific surface area was insufficient, the electrolyte was pushed out of the negative electrode due to the expansion of the negative electrode, It is considered that the increase in resistance was caused as a result of the occurrence of unevenness (unevenness) in the salt concentration of the electrolytic solution depending on the location.
また、SBRの添加量を1質量部としたサンプルは、負極活物質層の剥離強度が1.5N/m未満となり、負極活物質層の密着性に欠けていた。負極活物質層の密着性が不足すると、捲回電極体の捲回時に負極活物質層の滑落等の不具合が発生するため好ましくない。また、SBRの添加量を8質量部としたサンプルは、低温パルスサイクル後の容量維持率が98%未満となり、Li析出耐性に欠けていた。かかるサンプルにおいては、炭素粒子表面へのSBRの吸着が飽和し、黒鉛系負極活物質の表面もSBRで被覆されたため、リチウムイオンが黒鉛系負極活物質に入りにくくなり、Liの析出が生じたものと考えられる。 Further, in the sample in which the amount of SBR added was 1 part by mass, the peel strength of the negative electrode active material layer was less than 1.5 N / m, and the adhesion of the negative electrode active material layer was lacking. Insufficient adhesion of the negative electrode active material layer is not preferable because problems such as slipping of the negative electrode active material layer occur when the wound electrode body is wound. Further, the sample in which the amount of SBR added was 8 parts by mass had a capacity retention rate of less than 98% after the low-temperature pulse cycle and lacked Li precipitation resistance. In such a sample, the adsorption of SBR on the surface of the carbon particles was saturated, and the surface of the graphite-based negative electrode active material was also coated with SBR, so that lithium ions were less likely to enter the graphite-based negative electrode active material and Li deposition occurred. It is considered a thing.
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれ得る。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The invention disclosed herein may include various modifications and alterations of the specific examples described above.
20 捲回電極体
50 正極シート
52 正極集電体
54 正極活物質層
60 負極シート
62 負極集電体
64 負極活物質層
70,72 セパレータ
100 リチウムイオン二次電池
20
Claims (1)
前記負極活物質層は、さらに炭素粒子を含んでおり、
前記黒鉛系負極活物質および前記炭素粒子の含有量の比(黒鉛系負極活物質:炭素粒子)が質量基準で95:5〜80:20であり、
前記黒鉛系負極活物質のBET比表面積をAとし、前記黒鉛系負極活物質の嵩密度をBとし、前記炭素粒子のBET比表面積をCとし、前記炭素粒子の嵩密度をDとし、前記黒鉛系負極活物質のBET比表面積Aと前記炭素粒子のBET比表面積Cとの加重平均値をEとしたときに、以下の関係:
2m2/g≦A≦6m2/g
0.44g/cm3≦B≦0.7g/cm3
10m2/g≦C≦30m2/g
0.05g/cm3≦D≦0.32g/cm3
4.8m2/g≦E≦7.9m2/g
を満たし、
前記黒鉛系負極活物質と前記炭素粒子との合計質量100質量部に対して、スチレンブタジエンラバーを3質量部〜6質量部含む、非水電解液二次電池。 A negative electrode active material layer containing a graphite-based negative electrode active material is a non-aqueous electrolyte secondary battery comprising a negative electrode formed on a negative electrode current collector and a positive electrode,
The negative electrode active material layer further contains carbon particles,
The ratio of the content of the graphite-based negative electrode active material and the carbon particles (graphite-based negative electrode active material: carbon particles) is 95: 5 to 80:20 on a mass basis,
The BET specific surface area of the graphite-based negative electrode active material is A, the bulk density of the graphite-based negative electrode active material is B, the BET specific surface area of the carbon particles is C, the bulk density of the carbon particles is D, and the graphite When the weighted average value of the BET specific surface area A of the system negative electrode active material and the BET specific surface area C of the carbon particles is E, the following relationship:
2 m 2 / g ≦ A ≦ 6 m 2 / g
0.44 g / cm 3 ≦ B ≦ 0.7 g / cm 3
10 m 2 / g ≦ C ≦ 30 m 2 / g
0.05 g / cm 3 ≦ D ≦ 0.32 g / cm 3
4.8m 2 /g≦E≦7.9m 2 / g
The filling,
A non-aqueous electrolyte secondary battery comprising 3 to 6 parts by mass of styrene butadiene rubber with respect to 100 parts by mass of a total mass of the graphite-based negative electrode active material and the carbon particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016022595A JP2017142932A (en) | 2016-02-09 | 2016-02-09 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016022595A JP2017142932A (en) | 2016-02-09 | 2016-02-09 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017142932A true JP2017142932A (en) | 2017-08-17 |
Family
ID=59627396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016022595A Pending JP2017142932A (en) | 2016-02-09 | 2016-02-09 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017142932A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020012587A1 (en) * | 2018-07-11 | 2020-01-16 | 日立化成株式会社 | Lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, lithium-ion secondary battery, and method for producing lithium-ion secondary battery negative electrode |
WO2020012586A1 (en) * | 2018-07-11 | 2020-01-16 | 日立化成株式会社 | Lithium-ion secondary battery and lithium-ion secondary battery production method |
CN113711382A (en) * | 2019-04-19 | 2021-11-26 | 松下电器产业株式会社 | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
-
2016
- 2016-02-09 JP JP2016022595A patent/JP2017142932A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020012587A1 (en) * | 2018-07-11 | 2020-01-16 | 日立化成株式会社 | Lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, lithium-ion secondary battery, and method for producing lithium-ion secondary battery negative electrode |
WO2020012586A1 (en) * | 2018-07-11 | 2020-01-16 | 日立化成株式会社 | Lithium-ion secondary battery and lithium-ion secondary battery production method |
CN112437993A (en) * | 2018-07-11 | 2021-03-02 | 昭和电工材料株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery |
JPWO2020012587A1 (en) * | 2018-07-11 | 2021-07-08 | 昭和電工マテリアルズ株式会社 | Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and negative electrode for lithium ion secondary battery |
JPWO2020012586A1 (en) * | 2018-07-11 | 2021-07-08 | 昭和電工マテリアルズ株式会社 | Method for manufacturing lithium ion secondary battery and lithium ion secondary battery |
JP7147844B2 (en) | 2018-07-11 | 2022-10-05 | 昭和電工マテリアルズ株式会社 | Lithium ion secondary battery and method for manufacturing lithium ion secondary battery |
JP7147845B2 (en) | 2018-07-11 | 2022-10-05 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery |
CN113711382A (en) * | 2019-04-19 | 2021-11-26 | 松下电器产业株式会社 | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10522816B2 (en) | Lithium secondary battery | |
KR101522485B1 (en) | Nonaqueous electrolyte secondary battery and vehicle | |
JP5787196B2 (en) | Lithium ion secondary battery | |
JP6061145B2 (en) | Secondary battery | |
JP5696904B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP7211900B2 (en) | Positive electrode material for secondary battery, and secondary battery using the same | |
JP6120093B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2021176123A (en) | Positive electrode material for lithium secondary battery | |
JP7344440B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2013246900A (en) | Secondary battery | |
US9312568B2 (en) | Lithium secondary battery | |
JP7152360B2 (en) | Positive electrode of secondary battery, and secondary battery using the same | |
KR101980422B1 (en) | Nonaqueous electrolyte secondary cell | |
JP5397715B2 (en) | Lithium secondary battery | |
EP3151311B1 (en) | Lithium ion secondary battery | |
KR20170034724A (en) | Negative electrode for lithium secondary battery comprising active material-non-coated portion and lithium secondary battery comprising the same | |
JP2020202021A (en) | Positive electrode material for lithium secondary battery and lithium secondary battery using the same | |
JP2017142932A (en) | Nonaqueous electrolyte secondary battery | |
JP6902206B2 (en) | Lithium ion secondary battery | |
JP7074697B2 (en) | Positive electrode material for lithium secondary batteries | |
KR101392803B1 (en) | Positive Electrode for Secondary Battery Comprising Cathode Active Material of Different Size, and Lithium Secondary battery Comprising the Same | |
JP2021082479A (en) | Nonaqueous electrolyte secondary battery | |
US20210242466A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2018125216A (en) | Lithium ion secondary battery | |
JP2023034699A (en) | Positive electrode and nonaqueous electrolyte secondary battery using the same |