JP2017142532A - Sound insulation material and method for manufacturing the same - Google Patents

Sound insulation material and method for manufacturing the same Download PDF

Info

Publication number
JP2017142532A
JP2017142532A JP2017085922A JP2017085922A JP2017142532A JP 2017142532 A JP2017142532 A JP 2017142532A JP 2017085922 A JP2017085922 A JP 2017085922A JP 2017085922 A JP2017085922 A JP 2017085922A JP 2017142532 A JP2017142532 A JP 2017142532A
Authority
JP
Japan
Prior art keywords
polyurethane foam
coating layer
insulating material
gap
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017085922A
Other languages
Japanese (ja)
Other versions
JP6352491B2 (en
Inventor
弘和 榊原
Hirokazu Sakakibara
弘和 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2017085922A priority Critical patent/JP6352491B2/en
Publication of JP2017142532A publication Critical patent/JP2017142532A/en
Application granted granted Critical
Publication of JP6352491B2 publication Critical patent/JP6352491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sound insulation material that is easily inserted into a gap of a sound transmission path in a periphery of a fender, an instrument panel, and cowl of a car, and is capable of obtaining favorable sound insulation property.SOLUTION: A sound insulation material 10 is composed of polyurethane foam that is preformed into a shape according to a gap to be arranged. The polyurethane foam has a coating layer 11 on a surface. Ventilation characteristics of inside of the polyurethane foam is smaller than that of the coating layer 11. At the same time, a kinetic friction coefficient (JIS K7125) of the surface of the coating layer 11 is configured to be 0.9 or less and surface hardness of the coating layer 11 is configured to be 20 or less by an Asker C hardness meter.SELECTED DRAWING: Figure 1

Description

本発明は、遮音材とその製造方法に関する。   The present invention relates to a sound insulating material and a method for manufacturing the same.

従来、自動車においては、フェンダー、インストルメントパネル、カウル周辺等における音の伝達経路の空隙内に遮音材を配置して騒音が車内に伝わるのを抑えるようにしている。遮音材としては、ポリウレタンフォームやフェルトなどからなるものがある。   2. Description of the Related Art Conventionally, in an automobile, a sound insulating material is disposed in a gap of a sound transmission path around a fender, an instrument panel, a cowl, and the like so as to suppress noise from being transmitted into the vehicle. Some sound insulation materials are made of polyurethane foam or felt.

音の伝達経路の空隙では、空隙内面と遮音材との間に隙間が存在すると遮音性が低下する。そのため、圧縮復元性を有するポリウレタンフォームで空隙よりも所定量大きな遮音材を形成し、前記遮音材を圧縮状態で空隙内に配置して復元力により空隙内面に密着させるのが好ましい。空隙内への遮音材の配置は、空隙の内面に遮音材を両面粘着テープ等で固定し、その後に空隙の開口部に蓋をして遮音材を空隙内面に密着させてもよいが、その場合には、遮音材の固定作業や空隙の開口部閉鎖作業等に手間取る問題がある。そのため、空隙よりも大きなポリウレタンフォームからなる遮音材を、圧縮変形させながら空隙の挿入口から空隙内に挿入し、空隙内で復元させることによって空隙内に遮音材を密に配置することが好ましい。   In the air gap in the sound transmission path, if there is a gap between the inner surface of the air gap and the sound insulating material, the sound insulating property is lowered. Therefore, it is preferable to form a sound insulating material having a predetermined amount larger than the gap with polyurethane foam having a compressive restoring property, and arrange the sound insulating material in the gap in a compressed state and closely contact the inner surface of the gap by a restoring force. The sound insulating material may be placed in the gap by fixing the sound insulating material to the inner surface of the gap with a double-sided adhesive tape, etc., and then covering the opening of the gap to close the sound insulating material to the inner surface of the gap. In such a case, there is a problem that it takes time to fix the sound insulating material or to close the opening of the air gap. Therefore, it is preferable that the sound insulating material made of polyurethane foam larger than the air gap is inserted into the air gap from the insertion opening of the air gap while being compressed and deformed, and is restored in the air gap so that the sound insulating material is densely arranged in the air gap.

しかし、従来のポリウレタンフォームからなる遮音材は、表面の滑りが悪いため、空隙よりも大きな遮音材を空隙内へ挿入する際に、空隙内面との摩擦抵抗によってスムーズに挿入し難いだけでなく、空隙内でも空隙内面との摩擦によってスムーズに復元し難いために空隙内に隙間を生じやすく、良好な遮音性が得られない問題がある。なお、表面の滑りを改善するため、ポリウレタンフォームの表面にプラスチックシートを積層することが考えられるが、その場合にはポリウレタンフォームの変形性が損なわれて、かえって空隙に挿入し難くなったり、空隙内で隙間を生じたりするようになる。   However, since the sound insulation material made of conventional polyurethane foam has a poor surface slip, when inserting a sound insulation material larger than the air gap into the air gap, not only is it difficult to insert smoothly due to frictional resistance with the inner surface of the air gap, There is a problem that even within the gap, it is difficult to restore smoothly due to friction with the inner surface of the gap, so that a gap is easily formed in the gap, and good sound insulation cannot be obtained. In order to improve the slip of the surface, it is conceivable to laminate a plastic sheet on the surface of the polyurethane foam, but in that case, the deformability of the polyurethane foam is impaired, which makes it difficult to insert into the gap. A gap is generated in the inside.

実開昭63−177657号公報Japanese Utility Model Publication No. 63-177657 特開2006−195055号公報JP 2006-195055 A 特開2011−235794号公報JP 2011-235794 A

本発明は前記の点に鑑みなされたものであって、音の伝達経路の空隙に挿入し易く、かつ良好な遮音性を有する遮音材とその製造方法の提供を目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a sound insulating material that can be easily inserted into a gap in a sound transmission path and has good sound insulating properties, and a method for manufacturing the same.

請求項1の発明は、ポリウレタンフォームからなる遮音材において、前記遮音材は、配置される空隙に応じた形状にあらかじめ成形されたものであって、圧縮されて空隙の内面に接触しながら空隙内に挿入され、挿入後に復元して空隙内面に密着するものであり、前記ポリウレタンフォームは表面に被膜層を有し、前記ポリウレタンフォームの内部側の通気性より前記被膜層の通気性が小さく、前記被膜層表面の動摩擦係数(JIS K7125)が0.9以下、前記被膜層の表面硬度がアスカーC硬度計で20以下であることを特徴とする。   The invention according to claim 1 is the sound insulating material made of polyurethane foam, wherein the sound insulating material is pre-shaped into a shape corresponding to the space to be disposed, and is compressed and contacts the inner surface of the space. The polyurethane foam has a coating layer on the surface, and the breathability of the coating layer is smaller than the breathability on the inner side of the polyurethane foam, The dynamic friction coefficient (JIS K7125) on the surface of the coating layer is 0.9 or less, and the surface hardness of the coating layer is 20 or less with an Asker C hardness meter.

請求項2の発明は、ポリオール成分、架橋剤、触媒、発泡剤、イソシアネートを含むポリウレタンフォーム原料を発泡成形型に注入し、発泡させることによりポリウレタンフォームからなる遮音材をモールド成形する遮音材の製造方法において、前記発泡成形型の内面が前記遮音材の外形状と等しい形状からなり、前記架橋剤は、分子量60〜470、官能基数2〜4のエチレングリコール、ジエチレングリコール、グリセリン、ブタンテトラオール、ポリオキシプロピレングリコール、ポリエーテルテトラオール、ジエタノールアミンから選択され、前記発泡成形型の内面に、分岐鎖状ワックス系離型剤を塗布した後、前記ポリウレタンフォーム原料を注入し、発泡させることにより、表面に被膜層を有し、前記被膜層表面の動摩擦係数(JIS K7125)が0.9以下であり、表面硬度がアスカーC硬度計で20以下であるポリウレタンフォームからなる後加工が不要な遮音材を形成することを特徴とする。   Invention of Claim 2 manufactures the sound insulation material which molds the sound insulation material which consists of a polyurethane foam by inject | pouring the polyurethane foam raw material containing a polyol component, a crosslinking agent, a catalyst, a foaming agent, and an isocyanate into a foaming mold, and making it foam. In the method, the inner surface of the foam mold has a shape equal to the outer shape of the sound insulating material, and the cross-linking agent is composed of ethylene glycol, diethylene glycol, glycerin, butanetetraol having a molecular weight of 60 to 470 and a functional group number of 2 to 4, It is selected from oxypropylene glycol, polyether tetraol, diethanolamine, and after applying a branched wax-based mold release agent to the inner surface of the foaming mold, the polyurethane foam raw material is injected and foamed on the surface. A coating layer, and a coefficient of dynamic friction ( IS K7125) is 0.9 or less, the processing after the surface hardness of the polyurethane foam is 20 or less in Asker C hardness scale, and forming unwanted sound insulator.

請求項3の発明は、請求項2において、前記発泡成形型の温度は、40〜80℃であり、前記分岐鎖状ワックス系離型剤の融点が40〜90℃であることを特徴とする。   The invention of claim 3 is characterized in that, in claim 2, the temperature of the foaming mold is 40 to 80 ° C., and the melting point of the branched wax-based mold release agent is 40 to 90 ° C. .

請求項4の発明は、請求項2または3において、前記ポリオール成分は、分子量3000〜7000のポリオール100〜50質量部とポリマーポリオール0〜50質量部からなることを特徴とする。   The invention of claim 4 is characterized in that, in claim 2 or 3, the polyol component comprises 100 to 50 parts by mass of a polyol having a molecular weight of 3000 to 7000 and 0 to 50 parts by mass of a polymer polyol.

請求項1の発明によれば、遮音材を構成するポリウレタンフォームは表面に被膜層を有し、前記被膜層表面の動摩擦係数(JIS K7125)が0.9以下であるため、通常のポリウレタンフォーム(表面の動摩擦係数0.94〜1.91)よりも表面の滑りがよく、かつポリウレタンフォームの表面硬度がアスカーC硬度計で20以下であるため、遮音材は圧縮変形性及び復元性がよい。そのため、本発明の遮音材は、例えば自動車のフェンダーや、インストルメントパネル、カウル周辺等音の伝達経路の空隙に挿入する際に、良好な滑り及び圧縮変形によって空隙内に挿入し易く、かつ空隙内ではスムーズに復元して空隙内面に密着させることができ、良好な遮音性が得られる。   According to the invention of claim 1, the polyurethane foam constituting the sound insulating material has a coating layer on the surface, and the dynamic friction coefficient (JIS K7125) of the coating layer surface is 0.9 or less. Since the surface slip is better than the dynamic friction coefficient of the surface (0.94 to 1.91) and the surface hardness of the polyurethane foam is 20 or less with an Asker C hardness meter, the sound insulating material has good compressibility and resilience. Therefore, when the sound insulating material of the present invention is inserted into a gap in a sound transmission path such as an automobile fender, an instrument panel, a cowl, etc. It can be smoothly restored and brought into close contact with the inner surface of the gap, and good sound insulation can be obtained.

請求項2の発明によれば、表面の滑り及び遮音性が良好な請求項1に記載の遮音材を容易に製造することができる。   According to invention of Claim 2, the sound-insulating material of Claim 1 with favorable surface slip and sound insulation property can be manufactured easily.

請求項3の発明によれば、発泡成形型の温度が、40〜80℃であるため、次の問題の発生を防ぐことができる。すなわち、型温が40℃よりも低い場合にはキュア性が悪くなり、生産性が良くないものとなり、逆に80℃よりも高い場合には型に接したウレタン原料の反応性が高くなりすぎて、ウレタン原料の流れ性が悪くなり、欠肉、外観表面が荒れる恐れがある。   According to invention of Claim 3, since the temperature of a foaming mold is 40-80 degreeC, generation | occurrence | production of the following problem can be prevented. That is, when the mold temperature is lower than 40 ° C., the curing property is deteriorated and the productivity is not good. Conversely, when the mold temperature is higher than 80 ° C., the reactivity of the urethane raw material in contact with the mold becomes too high. As a result, the flowability of the urethane raw material may be deteriorated, resulting in a lack of thickness and a rough appearance surface.

請求項4の発明によれば、空隙内に挿入したときに、よりしっかりとした保持性が保たれ、遮音性も向上した遮音材が得られる。   According to the invention of claim 4, when inserted into the gap, a sound insulating material that maintains a firm holding property and improves a sound insulating property can be obtained.

本発明における一実施形態の遮音材の斜視図である。It is a perspective view of the sound insulation material of one embodiment in the present invention. 本発明における一実施形態の遮音材について使用位置を示す自動車の部分図である。It is a fragmentary figure of the motor vehicle which shows a use position about the sound insulation material of one Embodiment in this invention.

以下、本発明の実施形態について説明する。図1に示す遮音材10は、図2に示す自動車のフェンダー内の空隙に、A部を上向き、B部を下向きにして挿入配置されるものであり、配置される空隙に応じた形状にモールド成形されたポリウレタンフォームからなる。前記ポリウレタンフォームは表面に被膜層11を有し、被膜層11表面の動摩擦係数(JIS K7125)が0.9以下、前記被膜層11が形成された前記ポリウレタンフォームの表面硬度がアスカーC硬度計で20以下である。   Hereinafter, embodiments of the present invention will be described. The sound insulating material 10 shown in FIG. 1 is inserted and arranged in the gap in the automobile fender shown in FIG. 2 with the A part facing upward and the B part facing downward, and is molded into a shape corresponding to the arranged gap. Made of molded polyurethane foam. The polyurethane foam has a coating layer 11 on the surface, the dynamic friction coefficient (JIS K7125) of the coating layer 11 surface is 0.9 or less, and the surface hardness of the polyurethane foam on which the coating layer 11 is formed is an Asker C hardness meter. 20 or less.

前記被膜層11表面の動摩擦係数(JIS K7125)が0.9より大きい場合には、滑りが悪く、空隙への挿入配置が難しくなる。より好ましい動摩擦係数の範囲は0.8〜0.1である。また、前記被膜層11が形成された前記ポリウレタンフォームの表面硬度(すなわち被膜層表面の硬度)がアスカーC硬度計で20より大の場合には、遮音材10が硬すぎて、空隙への挿入が難しくなる。より好ましい表面硬度の範囲はアスカーC硬度計で12〜1である。   When the coefficient of dynamic friction (JIS K7125) on the surface of the coating layer 11 is greater than 0.9, the slippage is poor and it is difficult to insert and arrange in the gap. A more preferable range of the dynamic friction coefficient is 0.8 to 0.1. Further, when the surface hardness of the polyurethane foam on which the coating layer 11 is formed (that is, the hardness of the coating layer surface) is larger than 20 by the Asker C hardness meter, the sound insulating material 10 is too hard and is inserted into the gap. Becomes difficult. A more preferable range of the surface hardness is 12 to 1 with an Asker C hardness meter.

また、前記ポリウレタンフォームは、前記被膜層11表面の通気性(JIS K6400−7A法)が10L/min以下、前記被膜層11よりも内部側(すなわち被膜層11から離れた内部側)の通気性(JIS K6400−7A法)が15L/min以上、前記被膜層11表面の通気性と前記被膜層11より内部側の通気性との差が10L/min以上であるのが好ましい。前記被膜層11表面の通気性、内部側の通気性、前記被膜層11表面の通気性及び内部側の通気性との差が前記範囲にあることにより、通気性が小さい表面の被膜層によって、より良好な遮音性が得られる。特に、内部側ポリウレタンフォームの通気性が15L/min以上であることから、空隙への圧縮挿入時にフォーム内部の空気がある程度流通することにより、空隙への挿入時の圧縮変形を阻害せず、挿入し易さを助けるものとなる。なお、前記被膜層11表面の通気性のより好ましい範囲は8〜2L/min、前記内部側の通気性のより好ましい範囲は20〜40L/min、前記被膜層11表面の通気性と前記内部側の通気性との差のより好ましい範囲は12〜35L/minである。   The polyurethane foam has an air permeability on the surface of the coating layer 11 (JIS K6400-7A method) of 10 L / min or less, and an inner side of the coating layer 11 (that is, an inner side away from the coating layer 11). (JIS K6400-7A method) is preferably 15 L / min or more, and the difference between the air permeability on the surface of the coating layer 11 and the air permeability on the inner side of the coating layer 11 is preferably 10 L / min or more. The difference between the air permeability on the surface of the coating layer 11, the air permeability on the inner side, the air permeability on the surface of the coating layer 11 and the air permeability on the inner side is within the above range. Better sound insulation is obtained. In particular, since the air permeability of the inner polyurethane foam is 15 L / min or more, the air inside the foam circulates to some extent at the time of compression insertion into the gap, so that the compression deformation at the time of insertion into the gap is not hindered. It will help ease. The more preferable range of the air permeability on the surface of the coating layer 11 is 8 to 2 L / min, the more preferable range of the air permeability on the inner side is 20 to 40 L / min, the air permeability of the surface of the coating layer 11 and the inner side. A more preferable range of the difference from the air permeability is 12 to 35 L / min.

前記遮音材10の製造は、ポリウレタンフォーム原料を発泡成形型内に注入して発泡させるモールド成形によって行われる。モールド成形は、ポリウレタンフォームの成形方法として多用されている方法であって、発泡成形型の型内面を製品形状としておくことによって、後加工を行うことなく所望の製品形状のポリウレタンフォームを得ることができる。   The sound insulating material 10 is manufactured by molding by injecting a polyurethane foam material into a foaming mold and foaming. Mold molding is a method often used as a method for molding polyurethane foam, and by setting the inner surface of a foam mold to a product shape, a polyurethane foam having a desired product shape can be obtained without post-processing. it can.

ポリウレタンフォーム原料は、ポリオール成分、架橋剤、触媒、発泡剤、イソシアネートを含む。
ポリオール成分は、分子量3000〜7000のポリオールを100〜50質量部とポリマーポリオール0〜50質量部とからなる。
分子量3000〜7000のポリオールとしては、ポリエーテルポリオール又はポリエステルポリオールの何れでもよい。ポリオールは一種類に限らず複数種類で構成してもよい。ポリオールの分子量が3000未満の場合には得られるポリウレタンフォームからなる遮音材が硬いものとなり、逆に7000を超える場合にはポリオールの粘度が高いものとなり、ポリオール成分等の原料を発泡成形型に注入時に原料の流れ性が悪くなり、型の隅々に原料が行き渡りにくくなり、ボイドや欠肉等を生じるおそれがある。また、分子量3000〜7000のポリオールは、官能基数が2〜4のものが好ましい。
ポリマーポリオールは、官能基数2〜4、分子量3000〜5000が好ましい。ポリマーオールの量は、ポリオール成分100質量部中0〜50質量部である。ポリマーポリオールの量が50質量部を超える場合、ポリウレタンフォームが硬くなり過ぎて空隙への挿入がしにくいものとなる。
The polyurethane foam raw material contains a polyol component, a crosslinking agent, a catalyst, a foaming agent, and an isocyanate.
The polyol component is composed of 100 to 50 parts by mass of a polyol having a molecular weight of 3000 to 7000 and 0 to 50 parts by mass of a polymer polyol.
The polyol having a molecular weight of 3000 to 7000 may be either a polyether polyol or a polyester polyol. The polyol is not limited to one type and may be composed of a plurality of types. When the molecular weight of the polyol is less than 3000, the resulting sound insulating material made of polyurethane foam becomes hard, and when it exceeds 7000, the polyol has a high viscosity, and the raw materials such as polyol components are injected into the foam mold. Occasionally, the flowability of the raw material is deteriorated, the raw material is difficult to reach every corner of the mold, and there is a possibility that a void, a lack of meat, or the like is generated. The polyol having a molecular weight of 3000 to 7000 preferably has 2 to 4 functional groups.
The polymer polyol preferably has 2 to 4 functional groups and a molecular weight of 3000 to 5000. The amount of the polymer ol is 0 to 50 parts by mass in 100 parts by mass of the polyol component. When the amount of the polymer polyol exceeds 50 parts by mass, the polyurethane foam becomes too hard to be inserted into the void.

架橋剤は、分子量60〜470、官能基数2〜4からなる。分子量が60未満の場合、実用性の高いものがほとんどなくなり、逆に470を超えると反応性が低くなりすぎて被膜成形に寄与しないものとなる。分子量60〜470、官能基数2〜4の架橋剤としては、エチレングリコール(官能基数2、分子量62.1)、ジエチレングリコール(官能基数2、分子量106.1)、グリセリン(官能基数3、分子量92.1)、ブタンテトラオール(官能基数4、分子量122.1)、ポリオキシプロピレングリコール(官能基数2〜3、分子量200〜400)等の多価アルコール、ジエタノールアミン(官能基数3、分子量105.1)、ポリアミンを挙げることができる。架橋剤は一種類に限られず、複数種類併用してもよい。架橋剤の量は、ポリオール成分100質量部に対して0.3〜5質量部が好ましい。架橋剤の量が前記範囲よりも少ない場合には被膜形成の効果が少ないものとなり、多い場合には、ポリウレタンフォームが硬くなり過ぎて空隙への挿入がしにくいものとなる。   The crosslinking agent has a molecular weight of 60 to 470 and a functional group number of 2 to 4. When the molecular weight is less than 60, there are almost no highly practical ones. Conversely, when the molecular weight exceeds 470, the reactivity becomes too low to contribute to film formation. As a crosslinking agent having a molecular weight of 60 to 470 and a functional group number of 2 to 4, ethylene glycol (functional group number 2, molecular weight 62.1), diethylene glycol (functional group number 2, molecular weight 106.1), glycerin (functional group number 3, molecular weight 92. 1), polyhydric alcohols such as butanetetraol (functional group number 4, molecular weight 122.1), polyoxypropylene glycol (functional group number 2-3, molecular weight 200-400), diethanolamine (functional group number 3, molecular weight 105.1) And polyamines. The crosslinking agent is not limited to one type and may be used in combination. The amount of the crosslinking agent is preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the polyol component. When the amount of the crosslinking agent is less than the above range, the effect of forming a film is small, and when the amount is large, the polyurethane foam becomes too hard to be inserted into the void.

触媒としては、ポリウレタンフォーム用として用いられるアミン系触媒、金属触媒を挙げることができる。アミン系触媒としては、具体的には、N,N−ジメチルシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルアミノエタノール、N,N´,N´−トリメチルアミノエチルピペラジン、トリエチレンジアミン等が用いられる。金属触媒としては、スタスオクトエートやジブチルチンジラウレート等の錫触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等を挙げることができる。触媒の量は、ポリオール成分100質量部に対して0.1〜8.0質量部程度である。   Examples of the catalyst include amine catalysts and metal catalysts used for polyurethane foams. Specific examples of the amine catalyst include N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethylaminoethanol, N, N ′, N′-trimethylaminoethylpiperazine, and triethylenediamine. Etc. are used. Examples of the metal catalyst include tin catalysts such as stass octoate and dibutyltin dilaurate, phenylmercury propionate and lead octenoate. The amount of the catalyst is about 0.1 to 8.0 parts by mass with respect to 100 parts by mass of the polyol component.

発泡剤としては、水、炭化水素、ハロゲン系化合物等を挙げることができ、これらの中から1種類でもよく、又2種類以上でもよい。前記炭化水素としては、シクロペンタン、イソペンタン、ノルマルペンタン等を挙げることができる。又、前記ハロゲン系化合物としては、塩化メチレン、トリクロロフルオロメタン、ジクロロジフルオロメタン、ノナフルオロブチルメチルエーテル、ノナフルオロブチルエチルエーテル、ペンタフルオロエチルメチルエーテル、ヘプタフルオロイソプロピルメチルエーテル等を挙げることができる。これらの中でも発泡剤として水が特に好適である。前記発泡剤としての水の量は、ポリオール成分100質量部に対して0.5〜4.0質量部程度が好ましい。   Examples of the foaming agent include water, hydrocarbons, halogen compounds, and the like. One of these may be used, or two or more may be used. Examples of the hydrocarbon include cyclopentane, isopentane, and normal pentane. Examples of the halogen compound include methylene chloride, trichlorofluoromethane, dichlorodifluoromethane, nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, pentafluoroethyl methyl ether, heptafluoroisopropyl methyl ether and the like. Among these, water is particularly suitable as a foaming agent. The amount of water as the foaming agent is preferably about 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the polyol component.

イソシアネートとしては、イソシアネート基を2以上有する化合物であれば、特に限定されるものではなく、ポリウレタンフォーム用のものが使用可能である。前記イソシアネートは、1種類の単独使用でも2種類以上の併用であってもよい。前記イソシアネートとしては、芳香族系、脂肪族系、脂環族系のイソシアネート化合物、及びこれらの変性物を挙げることができる。   Isocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups, and those for polyurethane foam can be used. The isocyanate may be used alone or in combination of two or more. Examples of the isocyanate include aromatic, aliphatic, and alicyclic isocyanate compounds, and modified products thereof.

芳香族系イソシアネート化合物としては、ジフェニルメタンジイソシアネート(MDI)、粗製ジフェニルメタンジイソシアネート、トリレンジイソシアネート(TDI)、ナフタレンジイソシアネート(NDI)、p−フェニレンジイソシアネート(PPDI)、キシレンジイソシアネート(XDI)、テトラメチルキシレンジイソジアネート(TMXDI)、トリジンイソシアネート(TODI)等が挙げられる。脂肪族系イソシアネート化合物としては、ヘキサメチレンジイソシアネート(HDI)、リシンジイソシアネート(LDI)、リシントリイソシアネート(LTI)等が挙げられる。脂環族系イソシアネート化合物としては、イソホロンジイソシアネート(IPDI)、シクロヘキシルジイソシアネート(CHDI)、水添化XDI(HXDI)、水添化MDI(H12MDI)等が挙げられる。変性イソシアネート化合物としては、イソシアネート化合物のウレタン変性体、2量体、3量体、カルボジイミド変性体、アロファネート変性体、ビュレット変性体、ウレア変性体、イソシアヌレート変性体、オキサゾリドン変性体、イソシアネート基末端プレポリマー等が挙げられる。 Examples of aromatic isocyanate compounds include diphenylmethane diisocyanate (MDI), crude diphenylmethane diisocyanate, tolylene diisocyanate (TDI), naphthalene diisocyanate (NDI), p-phenylene diisocyanate (PPDI), xylene diisocyanate (XDI), and tetramethylxylene diisosodium. Examples include dianate (TMXDI) and tolidine isocyanate (TODI). Examples of the aliphatic isocyanate compound include hexamethylene diisocyanate (HDI), lysine diisocyanate (LDI), and lysine triisocyanate (LTI). Examples of the alicyclic isocyanate compound include isophorone diisocyanate (IPDI), cyclohexyl diisocyanate (CHDI), hydrogenated XDI (H 6 XDI), hydrogenated MDI (H 12 MDI), and the like. Examples of the modified isocyanate compound include urethane-modified products, dimers, trimers, carbodiimide-modified products, allophanate-modified products, burette-modified products, urea-modified products, isocyanurate-modified products, oxazolidone-modified products, and isocyanate group-terminated prepolymers. Examples thereof include polymers.

前記イソシアネートの配合量は、イソシアネートインデックスが80〜120となる量が好ましい。イソシアネートインデックスが80未満の場合、ポリウレタンフォームの強度が低くなりすぎ耐久性に乏しいものとなったり、ガスが抜けにくくシュリンクして成形状態が悪いものとなる。一方、インデックスが120を超えるとポリウレタンフォームが高硬度になり、遮音材を空隙に挿入し難くなる。なお、イソシアネートインデックスは、ポリウレタンフォーム原料中の活性水素基(例えば、ポリオールの水酸基、発泡剤として用いられる水などの活性水素基)の合計に対するイソシアネートのイソシアネート基の当量比を百分率で示す値であり、ポリウレタフォームの分野で使用されている指標である。   The amount of the isocyanate blended is preferably such that the isocyanate index is 80 to 120. When the isocyanate index is less than 80, the strength of the polyurethane foam is too low and the durability is poor, or the gas is difficult to escape and the molded state is poor. On the other hand, when the index exceeds 120, the polyurethane foam has high hardness, and it becomes difficult to insert the sound insulating material into the gap. The isocyanate index is a value indicating the equivalent ratio of the isocyanate group of the isocyanate to the total of the active hydrogen groups in the polyurethane foam raw material (for example, the active hydrogen group such as water used as a blowing agent). It is an indicator used in the field of polyureta foam.

その他、添加剤が適宜配合される。適宜配合される添加剤としては、整泡剤、難燃剤、着色剤、充填剤等を挙げることができる。整泡剤としては、ポリウレタンフォームに用いられるものであればよく、シリコーン系整泡剤、含フッ素化合物系整泡剤および公知の界面活性剤を挙げることができる。   In addition, additives are appropriately blended. Examples of additives that are appropriately blended include foam stabilizers, flame retardants, colorants, fillers, and the like. Any foam stabilizer may be used as long as it is used for polyurethane foams, and examples thereof include silicone foam stabilizers, fluorine-containing compound foam stabilizers, and known surfactants.

前記遮音材のモールド成形時、まず発泡成形型の内面に離型剤を塗布する。発泡成形型は、上下型等に分離可能な分割型からなり、型内面が遮音材の外形状と等しい形状とされている。また、発泡成形型は電熱ヒータや熱媒体循環パイプなどの加温手段が埋設され、前記電熱ヒータや熱媒体循環パイプに流した温水や加熱オイル等によって所定型温に温調可能となっている。型温は40〜80℃が好ましい。型温が40℃よりも低い場合にはキュア性が悪くなり、生産性が良くないものとなり、逆に80℃よりも高い場合には型に接したウレタン原料の反応性が高くなりすぎて、ウレタン原料の流れ性が悪くなり、欠肉、外観表面が荒れる恐れがある。   When molding the sound insulating material, first, a release agent is applied to the inner surface of the foaming mold. The foaming mold is a split mold that can be separated into an upper mold and the like, and the inner surface of the mold is the same shape as the outer shape of the sound insulating material. Further, the foaming mold has a heating means such as an electric heater or a heat medium circulation pipe embedded therein, and the temperature can be adjusted to a predetermined mold temperature by hot water or heating oil flowing through the electric heater or the heat medium circulation pipe. . The mold temperature is preferably 40 to 80 ° C. When the mold temperature is lower than 40 ° C., the curing property is deteriorated and the productivity is not good. On the contrary, when the mold temperature is higher than 80 ° C., the reactivity of the urethane raw material in contact with the mold becomes too high, There is a risk that the flowability of the urethane raw material will deteriorate, resulting in a lack of thickness and a rough appearance.

離型剤としては、分岐鎖状ワックス系離型剤が用いられる。分岐鎖状ワックス系離型剤としては、変性ポリエチレンワックス、マイクロクリスタリンワックス、炭化水素系ワックス等の分岐鎖状ワックスを主成分として用い、これを有機溶媒に溶かしたもの、又は乳化剤を用いて水分に分散させてなるものがあげられる。また、分岐鎖状ワックスは、融点が40〜90℃ものが好ましい。
一般的に多用されている直鎖状炭化水素系ワックスからなる離型剤または、シリコーンを含有する離型剤を用いた場合にはフォーム表面に被膜が形成しにくく、いわゆるスキンレスとなるのに対し、分岐鎖状ワックス系離型剤を用いて、本願発明の特定の架橋剤を併用した場合には、ポリウレタンフォームの表面に前記被膜層11を形成することができる。離型剤の塗布は、刷毛あるいはスプレー等によって行う。離型剤の塗布量は30〜300g/mである。
As the release agent, a branched wax-based release agent is used. As the branched wax-based release agent, a branched wax such as modified polyethylene wax, microcrystalline wax, hydrocarbon wax or the like is used as a main component, which is dissolved in an organic solvent, or water is added using an emulsifier. What is dispersed in is mentioned. The branched wax preferably has a melting point of 40 to 90 ° C.
When a release agent composed of a linear hydrocarbon wax or a release agent containing silicone is used in general, it is difficult to form a film on the foam surface, so-called skinless. On the other hand, when the specific cross-linking agent of the present invention is used in combination using a branched wax-based release agent, the coating layer 11 can be formed on the surface of the polyurethane foam. The release agent is applied by brush or spray. The application amount of the release agent is 30 to 300 g / m 2 .

前記離型剤を型内面に塗布した後、発泡成形型内に前記ポリウレタンフォーム原料を混合して注入し、発泡成形型を閉型する。注入量は、ポリウレタンフォームの密度(JIS K7222:2005)が130〜200kg/m(0.13〜0.20g/cm)となる量が好ましい。
ポリウレタンフォーム原料の発泡後、発泡成形型を開けてポリウレタンフォームからなる前記遮音材10を脱型する。得られた遮音材10を構成するポリウレタンフォームは、表面に前記被膜層11を有し、前記の物性を有するものである。
After the release agent is applied to the inner surface of the mold, the polyurethane foam raw material is mixed and injected into the foam mold, and the foam mold is closed. The injection amount is preferably such that the density of the polyurethane foam (JIS K7222: 2005) is 130 to 200 kg / m 3 (0.13 to 0.20 g / cm 3 ).
After foaming the polyurethane foam raw material, the foam molding die is opened and the sound insulating material 10 made of polyurethane foam is removed. The polyurethane foam which comprises the obtained sound-insulating material 10 has the said film layer 11 on the surface, and has the said physical property.

型内面形状が直方体からなる内面寸法400×400×25mmの発泡成形型(型内容積4000cm)の型内面に、以下の離型剤A又はBをスプレーで(約100g/mの割合で)塗布し、以下の原料で構成した表1の配合からなるポリウレタンフォーム原料を混合して発泡成形型内に550g注入し、型温を60℃に維持して発泡させた。その後脱型してポリウレタンフォームからなる実施例1〜7及び比較例1、2の遮音材を得た。なお、比較例3は、表1の配合からなるポリウレタンフォーム原料を混合して発泡成形型内に360g注入し、型温を60℃に維持して発泡させた。表1の配合における原料の数値は質量部である。また、比較例4として、スラブ発泡したポリウレタンフォーム(密度23kg/m、品番:カームフレックス F−4、株式会社イノアックコーポレーション製)を他の実施例及び比較例と同じ寸法に裁断して遮音材を形成した。比較例4は、表面に被膜がないため、空隙の隙間に挿入しにくいものであった。 The following mold release agent A or B is sprayed (at a rate of about 100 g / m 2 ) on the inner surface of a foam molding die (internal volume 4000 cm 3 ) having an inner surface dimension of 400 × 400 × 25 mm, the inner surface shape of which is a rectangular parallelepiped. ) The polyurethane foam raw material having the composition shown in Table 1 composed of the following raw materials was mixed and injected into a foaming mold, and foaming was performed while maintaining the mold temperature at 60 ° C. Thereafter, it was demolded to obtain sound insulating materials of Examples 1 to 7 and Comparative Examples 1 and 2 made of polyurethane foam. In Comparative Example 3, a polyurethane foam raw material having the composition shown in Table 1 was mixed and 360 g was injected into a foaming mold, and foaming was performed while maintaining the mold temperature at 60 ° C. The numerical value of the raw material in the composition of Table 1 is part by mass. Further, as Comparative Example 4, a slab foamed polyurethane foam (density 23 kg / m 3 , product number: Calm Flex F-4, manufactured by INOAC Corporation) was cut into the same dimensions as other examples and comparative examples, and sound insulating material Formed. In Comparative Example 4, since there was no coating on the surface, it was difficult to insert into the gap.

・ポリオールA;ポリエーテルポリオール、分子量3000、官能基数3、水酸基価56mgKOH/g
・ポリオールB;ポリエーテルポリオール、分子量5000、官能基数3、水酸基価34mgKOH/g
・ポリマーポリオール;分子量5000、官能基数3,水酸基価28mgKOH/g
・架橋剤A;ジエタノールアミン、官能基数3、分子量105.1
・架橋剤B;エチレングリコール、官能基数2、分子量52.1
・架橋剤C;グリセリン、官能基数3、分子量92.1
・架橋剤D;ポリエ一テルテトラオール、官能基数4、分子量450、品名:EDP−450、ADEKA製
・触媒;アミン触媒、品名:33LV、エアプロダクツ株式会社製
・発泡剤;水
・整泡剤;シリコーン整泡剤、品名:SZ1346E、東レ・ダウコーニング・シリコーン株式会社製
イソシアネート;変性4,4’−ジフェニルメタンジイソシアネート、品名:コロネート1050、日本ポリウレタン工業株式会社製
・離型剤A;分岐鎖状ワックス系離型剤、品名:N−915、中京油脂株式会社製、融点48℃
・離型剤B;直鎖状ワックス系離型剤、品名:URH−520、コニシ株式会社製、融点92〜102℃
Polyol A: polyether polyol, molecular weight 3000, functional group number 3, hydroxyl value 56 mgKOH / g
Polyol B: polyether polyol, molecular weight 5000, functional group number 3, hydroxyl value 34 mgKOH / g
Polymer polyol: molecular weight 5000, functional group number 3, hydroxyl value 28 mgKOH / g
Crosslinking agent A: diethanolamine, 3 functional groups, molecular weight 105.1
Crosslinking agent B: ethylene glycol, functional group number 2, molecular weight 52.1
Crosslinking agent C: glycerin, 3 functional groups, molecular weight 92.1
-Crosslinking agent D: Polyether terol, functional group number 4, molecular weight 450, product name: EDP-450, manufactured by ADEKA-catalyst; amine catalyst, product name: 33LV, manufactured by Air Products Co., Ltd.-foaming agent: water-foam stabilizer ; Silicone foam stabilizer, product name: SZ1346E, manufactured by Toray Dow Corning Silicone Co., Ltd .; modified 4,4'-diphenylmethane diisocyanate, product name: Coronate 1050, manufactured by Nippon Polyurethane Industry Co., Ltd.-Mold release agent A; branched chain Wax release agent, product name: N-915, manufactured by Chukyo Yushi Co., Ltd., melting point 48 ° C.
-Release agent B; linear wax release agent, product name: URH-520, manufactured by Konishi Co., Ltd., melting point 92-102 ° C

Figure 2017142532
Figure 2017142532

実施例1はポリオール成分としてポリオールAとポリマーポリオールをそれぞれ50質量部使用した例、実施例2はポリオールBを単独で使用した場合、実施例3と実施例4はポリオールBとポリマーポリオールの量を変化させた場合、また実施例3と実施例5〜7は架橋剤の種類を異ならせた場合、比較例1は実施例3と実施例5〜7の配合において架橋剤を使用しない場合、比較例2は実施例3における離型剤A(分岐鎖状ワックス系離型剤)に代えて離型剤B(直鎖状ワックス系離型剤)を使用した場合、比較例3は架橋剤を使用しない比較例1において離型剤A(分岐鎖状ワックス系離型剤)に代えて離型剤B(直鎖状ワックス系離型剤)を使用した場合である。   Example 1 is an example in which 50 parts by mass of polyol A and polymer polyol are used as the polyol component, Example 2 is an example in which polyol B is used alone, Example 3 and Example 4 are the amounts of polyol B and polymer polyol. When changed, and when Example 3 and Examples 5-7 differed in the type of crosslinking agent, Comparative Example 1 was compared when no crosslinking agent was used in the formulation of Example 3 and Examples 5-7. In Example 2, when the release agent B (linear wax release agent) was used instead of the release agent A (branched wax release agent) in Example 3, Comparative Example 3 had a crosslinking agent. In Comparative Example 1 that is not used, a release agent B (linear wax release agent) is used instead of the release agent A (branched wax release agent).

実施例1〜7及び比較例1〜3に対して成形性と表面被膜層の有無を目視により判断した。また、密度(JIS JIS K7222:2005)、表面硬度及び遮音性を測定した。成形性は欠肉・ダウン・シュリンク・外観不良があれば「×」とし、外観不良等がない場合に「○」とした。表面被膜層は被膜層が存在しない場合に「無」、被膜層と内側の境界が不明確であるが表面被膜層が存在する場合に「△」、被膜層が明確に存在する場合に「有」とした。表面硬度はアスカーC硬度計(日本ゴム協会標準規格 SRIS 0101)で測定した。遮音性は、透過損失にて測定した(音響透過損失管 伝達マトリックス法:ASTM E2611−09準拠、細管用φ=28.9mm)。なお、遮音性については、測定データを縦軸に透過損失、横軸に周波数(500〜6300Hz)をとり、全周波数域(500〜6300Hz)を考慮して、透過損失が10デシベル以下の場合に「×」、10〜20デシベルの場合に「△」、20〜30デシベルの場合に「○」と評価した。各測定結果を表1に示す。   With respect to Examples 1 to 7 and Comparative Examples 1 to 3, the moldability and the presence or absence of a surface coating layer were judged visually. Further, the density (JIS JIS K7222: 2005), surface hardness and sound insulation were measured. The formability was evaluated as “X” when there was a lack of thickness, down, shrink, or defective appearance, and “◯” when there was no defective appearance. The surface coating layer is “None” when no coating layer is present, the boundary between the coating layer and the inner side is unclear but “△” when the surface coating layer is present, and “Yes” when the coating layer is clearly present. " The surface hardness was measured with an Asker C hardness meter (Japan Rubber Association Standard SRIS 0101). Sound insulation was measured by transmission loss (acoustic transmission loss tube transmission matrix method: ASTM E2611-09 compliant, φ = 28.9 mm for thin tubes). For sound insulation, the measurement data is taken as transmission loss on the vertical axis, frequency (500 to 6300 Hz) on the horizontal axis, and the transmission loss is 10 decibels or less in consideration of the entire frequency range (500 to 6300 Hz). In the case of “x”, 10 to 20 dB, “Δ”, and in the case of 20 to 30 dB, “◯” was evaluated. Table 1 shows the measurement results.

実施例1〜7の遮音材は全て成形性が「○」、表面被膜層有り、表面硬度がアスカーC硬度計で20以下であった。また、実施例1〜7の遮音材は、500〜900Hzの領域で20デシベルを下回ったが、1000Hz〜3500HZで20〜30デシベル、3500Hzを超える高周波数域で30デシベルを超えるため、評価が「○」となった。   All of the sound insulating materials of Examples 1 to 7 had a moldability of “◯”, a surface coating layer, and a surface hardness of 20 or less with an Asker C hardness meter. Moreover, although the sound insulating material of Examples 1-7 was less than 20 decibels in the region of 500 to 900 Hz, it exceeded 30 decibels in the high frequency region exceeding 1000 Hz to 3500 HZ and 20 to 30 decibels. ○ ”.

これに対し、比較例1(架橋剤無、離型剤A(分岐鎖状ワックス系離型剤)使用)は表面被膜層が「△」、比較例2(架橋剤Aと離型剤B(直鎖状ワックス系離型剤)使用)と比較例3(架橋剤無、離型剤B(直鎖状ワックス系離型剤)使用)は表面被膜層が「無」であった。また、遮音性については、比較例1と比較例2はほぼ全周波数域である4000Hz以下の領域において、10〜20デシベルであったため、△の評価となり、また、比較例3においては、全周波数域において、7〜18デシベルであったため、×〜△の評価となった。   In contrast, Comparative Example 1 (without crosslinking agent, using release agent A (branched wax-based release agent)) has a surface coating layer of “Δ”, and Comparative Example 2 (crosslinking agent A and release agent B ( The surface coating layer was “none” in Comparative Example 3 (no crosslinking agent, no release agent B (linear wax release agent) used) and Comparative Example 3 (use of linear wax release agent)). As for the sound insulation, Comparative Example 1 and Comparative Example 2 were 10 to 20 decibels in the region of 4000 Hz or less, which is almost the entire frequency range, and therefore, the evaluation was Δ. In Comparative Example 3, the total frequency was In the region, since it was 7 to 18 decibels, the evaluation was x to Δ.

さらに実施例3、比較例2(架橋剤Aと離型剤B(直鎖状ワックス系離型剤)を使用)及び比較例3(架橋剤無、離型剤B(直鎖状ワックス系離型剤)使用)について、表面の動摩擦係数(JIS K7125)を測定した。動摩擦係数の測定結果は表1に示す通りであり、実施例3の動摩擦係数がが0.76であったのに対し、比較例2の動摩擦係数が1.91、比較例3の動摩擦係数が0.94であり、実施例3は比較例2及び比較例3よりも表面の動摩擦係数が小さく、滑りが良好である。   Further, Example 3 and Comparative Example 2 (using a crosslinking agent A and a release agent B (linear wax-based release agent)) and Comparative Example 3 (without a crosslinking agent, release agent B (a linear wax-based release agent) The kinetic friction coefficient (JIS K7125) of the surface was measured with respect to (use of mold agent). The measurement results of the dynamic friction coefficient are as shown in Table 1. The dynamic friction coefficient of Example 3 was 0.76, whereas the dynamic friction coefficient of Comparative Example 2 was 1.91, and the dynamic friction coefficient of Comparative Example 3 was The surface friction coefficient of Example 3 is smaller than that of Comparative Example 2 and Comparative Example 3, and the slip is good.

また、実施例3、比較例2(架橋剤Aと離型剤B(直鎖状ワックス系離型剤)を使用)及び比較例3(架橋剤無、離型剤B(直鎖状ワックス系離型剤)使用)のポリウレタンフォーム原料を用い、型内面の寸法400×400×100mmの発泡成形型を用い、発泡成形型の型内深さが実施例1等に使用した前記発泡成形型の4倍になっていることに合わせて注入量を実施例1等の4倍にし、他の条件は前記の場合と同様にしてポリウレタンフォームを成形させたものを、通気性測定用の実施例3、比較例2、比較例3として作成し、表面通気性(JIS K6400−7A法)及び内部側通気性(JIS K6400−7A法)を測定した。表面通気性用の試験片は、ポリウレタンフォーム表面から10mmの厚みにカットして、51×51×10mmの寸法にし、一方、内部側通気性の試験片は、成形したポリウレタンフォームの厚み方向の中央の位置でカットして、同じ寸法の形状の測定用試験片を準備し、測定に用いた。なお、通気性測定用の実施例3は表面に被膜層が存在するため、表面通気性の測定は被膜層表面の通気性測定となる。一方、通気性測定用の比較例2及び比較例3は、何れも表面に被膜層が存在しないため、表面通気性の測定は被膜層の無い表面に対する通気性測定となる。   In addition, Example 3 and Comparative Example 2 (using a cross-linking agent A and a release agent B (linear wax-based release agent)) and Comparative Example 3 (no cross-linking agent, release agent B (linear wax-based) Of the foam molding die used in Example 1 or the like, using a polyurethane foam raw material of the mold release agent)), using a foam molding die having dimensions of 400 × 400 × 100 mm on the inner surface of the mold. According to the fact that the injection amount is four times that of Example 1, etc., the polyurethane foam was molded in the same manner as in the above case, and the third example was used for measuring air permeability. These were prepared as Comparative Example 2 and Comparative Example 3, and surface air permeability (JIS K6400-7A method) and internal side air permeability (JIS K6400-7A method) were measured. The surface breathability test piece is cut to a thickness of 10 mm from the surface of the polyurethane foam to a size of 51 × 51 × 10 mm, while the inner side breathability test piece is the center in the thickness direction of the molded polyurethane foam. The test piece for the measurement of the shape of the same dimension was prepared and used for measurement. Since Example 3 for measuring air permeability has a coating layer on the surface, the measurement of surface air permeability is the measurement of air permeability on the surface of the coating layer. On the other hand, since Comparative Example 2 and Comparative Example 3 for measuring air permeability do not have a coating layer on the surface, the measurement of surface air permeability is measurement of air permeability on the surface without the coating layer.

表面通気性は実施例3が7L/minであったのに対し、比較例2は15L/min、比較例3は36L/minであった。また内部側通気性は実施例3が23L/minであったのに対し、比較例2は22L/min、比較例3は36L/minであった。さらに表面通気性と内部側通気性の差は実施例3が16L/minであったのに対し、比較例2は7L/min、比較例3は0L/minであった。   The surface air permeability was 7 L / min in Example 3, while 15 L / min in Comparative Example 2 and 36 L / min in Comparative Example 3. Further, the inner side air permeability was 23 L / min in Example 3, whereas it was 22 L / min in Comparative Example 2 and 36 L / min in Comparative Example 3. Further, the difference between the surface air permeability and the internal side air permeability was 16 L / min in Example 3, whereas 7 L / min in Comparative Example 2 and 0 L / min in Comparative Example 3.

このように、本発明によれば、表面の滑りが良好で空隙に挿入し易く、かつ遮音性が良好な遮音材が得られる。   Thus, according to the present invention, it is possible to obtain a sound insulating material that has a good surface slip, can be easily inserted into a gap, and has a good sound insulating property.

10 遮音材
11 被膜層
10 Sound insulation material 11 Coating layer

Claims (4)

ポリウレタンフォームからなる遮音材において、
前記遮音材は、配置される空隙に応じた形状にあらかじめ成形されたものであって、圧縮されて空隙の内面に接触しながら空隙内に挿入され、挿入後に復元して空隙内面に密着するものであり、
前記ポリウレタンフォームは表面に被膜層を有し、
前記ポリウレタンフォームの内部側の通気性より前記被膜層の通気性が小さく、
前記被膜層表面の動摩擦係数(JIS K7125)が0.9以下、
前記被膜層の表面硬度がアスカーC硬度計で20以下であることを特徴とする遮音材。
In sound insulation material made of polyurethane foam,
The sound insulating material is pre-shaped into a shape corresponding to the gap to be arranged, and is compressed and inserted into the gap while contacting the inner face of the gap, and is restored after the insertion and is in close contact with the inner face of the gap. And
The polyurethane foam has a coating layer on the surface,
The air permeability of the coating layer is smaller than the air permeability of the inside of the polyurethane foam,
The dynamic friction coefficient (JIS K7125) of the coating layer surface is 0.9 or less,
The sound insulating material, wherein the surface hardness of the coating layer is 20 or less by an Asker C hardness meter.
ポリオール成分、架橋剤、触媒、発泡剤、イソシアネートを含むポリウレタンフォーム原料を発泡成形型に注入し、発泡させることによりポリウレタンフォームからなる遮音材をモールド成形する遮音材の製造方法において、
前記発泡成形型の内面が前記遮音材の外形状と等しい形状からなり、
前記架橋剤は、分子量60〜470、官能基数2〜4のエチレングリコール、ジエチレングリコール、グリセリン、ブタンテトラオール、ポリオキシプロピレングリコール、ポリエーテルテトラオール、ジエタノールアミンから選択され、
前記発泡成形型の内面に、分岐鎖状ワックス系離型剤を塗布した後、前記ポリウレタンフォーム原料を注入し、発泡させることにより、表面に被膜層を有し、前記被膜層表面の動摩擦係数(JIS K7125)が0.9以下であり、表面硬度がアスカーC硬度計で20以下であるポリウレタンフォームからなる後加工が不要な遮音材を形成することを特徴とする遮音材の製造方法。
In a method for producing a sound insulation material, a polyurethane foam raw material containing a polyol component, a crosslinking agent, a catalyst, a foaming agent, and an isocyanate is injected into a foaming mold and foamed to mold a sound insulation material made of polyurethane foam.
The inner surface of the foam mold has the same shape as the outer shape of the sound insulating material,
The cross-linking agent is selected from ethylene glycol, diethylene glycol, glycerin, butanetetraol, polyoxypropylene glycol, polyether tetraol, diethanolamine having a molecular weight of 60 to 470 and functional groups of 2 to 4,
After applying a branched wax-based release agent to the inner surface of the foaming mold, the polyurethane foam raw material is injected and foamed to have a coating layer on the surface, and the dynamic friction coefficient ( A method for producing a sound insulating material, characterized by forming a sound insulating material which is made of polyurethane foam having a JIS K7125) of 0.9 or less and a surface hardness of 20 or less with an Asker C hardness meter and which does not require post-processing.
前記発泡成形型の温度は、40〜80℃であり、前記分岐鎖状ワックス系離型剤の融点が40〜90℃であることを特徴とする請求項3に記載の遮音材の製造方法。   The method for producing a sound insulating material according to claim 3, wherein the temperature of the foaming mold is 40 to 80 ° C, and the melting point of the branched wax-based mold release agent is 40 to 90 ° C. 前記ポリオール成分は、分子量3000〜7000のポリオール100〜50質量部とポリマーポリオール0〜50質量部からなることを特徴とする請求項2または3に記載の遮音材の製造方法。   The said polyol component consists of 100-50 mass parts of polyols with a molecular weight of 3000-7000 and 0-50 mass parts of polymer polyols, The manufacturing method of the sound-insulating material of Claim 2 or 3 characterized by the above-mentioned.
JP2017085922A 2017-04-25 2017-04-25 Sound insulation material and manufacturing method thereof Active JP6352491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085922A JP6352491B2 (en) 2017-04-25 2017-04-25 Sound insulation material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085922A JP6352491B2 (en) 2017-04-25 2017-04-25 Sound insulation material and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012117229A Division JP6137783B2 (en) 2012-05-23 2012-05-23 Sound insulation material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017142532A true JP2017142532A (en) 2017-08-17
JP6352491B2 JP6352491B2 (en) 2018-07-04

Family

ID=59628531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085922A Active JP6352491B2 (en) 2017-04-25 2017-04-25 Sound insulation material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6352491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019094A1 (en) * 2022-07-22 2024-01-25 東ソー株式会社 Polyurethane foam and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459238A (en) * 1990-06-28 1992-02-26 Nippon Tokushu Toryo Co Ltd Sound insulation material using coating agent and its manufacture
JPH10121597A (en) * 1996-10-22 1998-05-12 Nissan Motor Co Ltd Sound absorption body and vehicle using the same
JP2004070128A (en) * 2002-08-08 2004-03-04 Tokai Rubber Ind Ltd Soundproof cover
JP2006330570A (en) * 2005-05-30 2006-12-07 Tokai Rubber Ind Ltd Soundproof cover having vibration damping property and manufacturing method thereof
JP2009241424A (en) * 2008-03-31 2009-10-22 Toyo Tire & Rubber Co Ltd Laminated sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459238A (en) * 1990-06-28 1992-02-26 Nippon Tokushu Toryo Co Ltd Sound insulation material using coating agent and its manufacture
JPH10121597A (en) * 1996-10-22 1998-05-12 Nissan Motor Co Ltd Sound absorption body and vehicle using the same
JP2004070128A (en) * 2002-08-08 2004-03-04 Tokai Rubber Ind Ltd Soundproof cover
JP2006330570A (en) * 2005-05-30 2006-12-07 Tokai Rubber Ind Ltd Soundproof cover having vibration damping property and manufacturing method thereof
JP2009241424A (en) * 2008-03-31 2009-10-22 Toyo Tire & Rubber Co Ltd Laminated sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019094A1 (en) * 2022-07-22 2024-01-25 東ソー株式会社 Polyurethane foam and production method therefor
JP7537651B2 (en) 2022-07-22 2024-08-21 東ソー株式会社 Polyurethane foam and its manufacturing method

Also Published As

Publication number Publication date
JP6352491B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6137783B2 (en) Sound insulation material and manufacturing method thereof
JP7545458B2 (en) Sound absorbing and insulating materials and structures
JP7244272B2 (en) Soundproofing material and its manufacturing method
JP7522887B2 (en) Soundproofing materials
US11532294B2 (en) Soundproof member and production method thereof
JP6352491B2 (en) Sound insulation material and manufacturing method thereof
JP4485979B2 (en) Flame-retardant soundproofing / vibration-proof material for vehicle and manufacturing method thereof
US6543574B1 (en) Method of making a speaker edge containing isocyanate and polyol
JP4704782B2 (en) Flame-retardant soundproofing / vibration-proof material for vehicle and manufacturing method thereof
JP6903870B2 (en) Composition for molding flexible polyurethane foam
JP7555202B2 (en) Soundproofing materials
JP2013047338A (en) Sound absorption shock absorbing material, and method of manufacturing the same
JP6218306B2 (en) Polyurethane foam
JP2007186551A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP2005060414A (en) Open-cell rigid polyurethane foam, method for producing the same and sound absorbing material
WO2024024845A1 (en) Polyurethane foam
JP2023050666A (en) Polyurethane foam and manufacturing method therefor
WO2024134985A1 (en) Sound-proofing material and method for producing same
JP2006330570A (en) Soundproof cover having vibration damping property and manufacturing method thereof
JP7522785B2 (en) Sound insulation material
JP2023050609A (en) Soundproof material and manufacturing method therefor
WO2012086776A1 (en) Process for production of expanded urethane sheet
JP4948055B2 (en) Polyurethane foam and method for producing the same
KR101491089B1 (en) Flexible polyurethane foam
JPH10139847A (en) Production of rigid polyurethane foam

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6352491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250