JP2017142110A - Gap sensor - Google Patents

Gap sensor Download PDF

Info

Publication number
JP2017142110A
JP2017142110A JP2016022536A JP2016022536A JP2017142110A JP 2017142110 A JP2017142110 A JP 2017142110A JP 2016022536 A JP2016022536 A JP 2016022536A JP 2016022536 A JP2016022536 A JP 2016022536A JP 2017142110 A JP2017142110 A JP 2017142110A
Authority
JP
Japan
Prior art keywords
gap
claw
planar coil
claw portion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016022536A
Other languages
Japanese (ja)
Inventor
宣昭 ▲高▼田
宣昭 ▲高▼田
Nobuaki Takada
浩司 溝上
Koji Mizogami
浩司 溝上
裕也 横山
Hironari Yokoyama
裕也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EISHIN SANGYO CO Ltd
EISHIN SANGYO KK
Original Assignee
EISHIN SANGYO CO Ltd
EISHIN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EISHIN SANGYO CO Ltd, EISHIN SANGYO KK filed Critical EISHIN SANGYO CO Ltd
Priority to JP2016022536A priority Critical patent/JP2017142110A/en
Publication of JP2017142110A publication Critical patent/JP2017142110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gap sensor which is hardly affected by the outside.SOLUTION: The gap sensor includes a main body and a slider which is slidable by a predetermined range in a predetermined direction to the main body. The main body comprises: a first pawl part; a planar coil; a circuit part; a recording part; and a processing part. The slider has a second pawl part and a conductive part. The planar coil is arranged in parallel to the predetermined direction. The circuit part outputs data corresponding to inductance of the planar coil as measurement data. The recording part records a correspondence table indicating correspondence between the measurement data and a dimension of a gap. The processing part outputs the dimension of the gap from the measurement data on the basis of the correspondence table. The conductive part is opposite to a predetermined area near the planar coil at a predetermined interval from the planar coil. A structure of the main body keeps a conductive body except the conductive part away from the predetermined area. An area of a portion in which the conductive part is opposite to the planar coil changes according to the interval between the first pawl part and the second pawl part.SELECTED DRAWING: Figure 1

Description

本発明は、隙間の寸法を測定する隙間センサに関する。   The present invention relates to a gap sensor that measures the dimension of a gap.

隙間もしくは間隔を測定する道具として特許文献1〜3に示された技術などが知られている。特許文献1にはノギスが示されていて、第1爪部と第2爪部(特許文献1での符号は、2と12)を測定対象の隙間に挿入し、第1爪部と第2爪部との間隔を広げ、第1爪部と第2爪部の互いに遠い面同士の間隔を隙間の寸法として測定する。特許文献2の技術では、テーパー部材を隙間に差し込むことで隙間の寸法を測定する。特許文献3の技術では、金属物体との距離に応じてコイルのインピーダンスが変化することを用いて距離を測定する。非特許文献1には、コイルのインダクタンスをデジタル信号に変換する技術が示され、その応用例としてコイルとの距離や位置関係を検知する技術が示されている。   The technique etc. which were shown by patent documents 1-3 are known as a tool which measures a clearance gap or a space | interval. Patent Document 1 shows a caliper. The first claw part and the second claw part (reference numerals 2 and 12 in Patent Document 1 are inserted) into the gap to be measured, and the first claw part and the second claw part are inserted. The distance between the claw portions is widened, and the distance between the surfaces of the first claw portion and the second claw portion that are far from each other is measured as the size of the gap. In the technique of Patent Document 2, the dimension of the gap is measured by inserting a tapered member into the gap. In the technique of Patent Document 3, the distance is measured using the fact that the impedance of the coil changes according to the distance from the metal object. Non-Patent Document 1 shows a technique for converting the inductance of a coil into a digital signal. As an application example thereof, a technique for detecting the distance and positional relationship with a coil is shown.

特開平6−307802号公報JP-A-6-307802 特開平8−122047号公報JP-A-8-1222047 特開2006−300719号公報JP 2006-300719 A

Texas Instruments,“LDC1000-Q1 Inductance to Digital Converter”,[平成28年1月21日検索]、インターネット< http://www.tij.co.jp/jp/lit/ds/symlink/ldc1000-q1.pdf >.Texas Instruments, “LDC1000-Q1 Inductance to Digital Converter”, [Search January 21, 2016], Internet <http://www.tij.co.jp/en/lit/ds/symlink/ldc1000-q1. pdf>.

しかしながら、特許文献1の技術は汎用的な道具に関する技術であり、静電容量の変化を用いた技術である。そして、一般的に、静電容量は人の手が近付くだけで変化するので外部環境の影響を受けやすい。特許文献2の技術は隙間の開口部の寸法を測定する技術であり、隙間の奥の部分の寸法を測定するための技術ではない。特許文献3の技術はコイルとの距離を測定する技術であり、2つの物体の隙間を測定する技術ではない。非特許文献1には位置関係を検知する応用例が示されているが、抽象的な説明であり、隙間を測定するための具体的な構造は示されていない。   However, the technique of Patent Document 1 is a technique related to a general-purpose tool, and is a technique using a change in capacitance. In general, the capacitance changes only by approaching a human hand, and thus is easily affected by the external environment. The technique of Patent Document 2 is a technique for measuring the dimension of the opening of the gap, and is not a technique for measuring the dimension of the inner part of the gap. The technique of Patent Document 3 is a technique for measuring a distance from a coil, and is not a technique for measuring a gap between two objects. Non-Patent Document 1 shows an application example for detecting the positional relationship, but it is an abstract explanation and does not show a specific structure for measuring the gap.

本発明は、外部環境からの影響を受けにくい隙間センサを実現することを目的とする。   An object of this invention is to implement | achieve the clearance gap sensor which is hard to receive the influence from an external environment.

本発明の隙間センサは、第1爪部と第2爪部を測定対象の隙間に挿入し、第1爪部と第2爪部との間隔を広げ、第1爪部と第2爪部の互いに遠い面同士の間隔を隙間の寸法として測定する。本発明の隙間センサは、本体と、本体に対して所定方向に所定範囲だけスライド可能なスライダとを備える。本体は、第1爪部、平面状コイル、回路部、記録部、処理部を有する。スライダは、第2爪部、導電部を有する。   The gap sensor of the present invention inserts the first claw part and the second claw part into the gap to be measured, widens the distance between the first claw part and the second claw part, and the first claw part and the second claw part. The distance between the surfaces that are far from each other is measured as the size of the gap. The gap sensor of the present invention includes a main body and a slider that is slidable by a predetermined range in a predetermined direction with respect to the main body. The main body includes a first claw portion, a planar coil, a circuit portion, a recording portion, and a processing portion. The slider has a second claw portion and a conductive portion.

平面状コイルは、所定方向と平行に配置されている。回路部は、平面状コイルのインダクタンスに対応するデータを、測定データとして出力する。記録部は、測定データと隙間の寸法との対応関係を示す対応テーブルを記録している。処理部は、対応テーブルに基づいて、測定データから隙間の寸法を求め、出力する。導電部は、導電体であって、平面状コイルの近傍の所定領域に平面状コイルと所定の間隔を有して対向する。   The planar coil is disposed in parallel with the predetermined direction. The circuit unit outputs data corresponding to the inductance of the planar coil as measurement data. The recording unit records a correspondence table indicating a correspondence relationship between the measurement data and the dimension of the gap. The processing unit obtains and outputs the dimension of the gap from the measurement data based on the correspondence table. The conductive portion is a conductor, and faces a predetermined region in the vicinity of the planar coil with a predetermined distance from the planar coil.

第1爪部と第2爪部の互いに遠い面同士は、測定対象の隙間に接触させるための平行な部分を有する。本体は、所定領域に導電部以外の導電体を近づけない構造である。導電部が平面状コイルと対向する部分の面積は、第1爪部と第2爪部の平行な部分の間隔に応じて変化する。   The surfaces of the first claw portion and the second claw portion that are distant from each other have parallel portions for contacting the gap to be measured. The main body has a structure in which a conductor other than the conductive portion cannot be brought close to a predetermined region. The area of the portion where the conductive portion faces the planar coil changes according to the interval between the parallel portions of the first claw portion and the second claw portion.

本発明の隙間センサによれば、平面状コイルの近傍の所定領域に導電部以外の導電体を近づけない構造を有する。コイルのインダクタンスは、近傍の導電体の影響は受けるが、近傍以外の導電体の影響を受けにくい。よって、本発明の隙間センサによれば、導電部以外の導電体によるインダクタンスの変化(ノイズ)を求められる精度の範囲内に抑えることが容易である。そして、導電部が平面状コイルと対向する部分の面積は、測定対象の隙間に接触する第1爪部と第2爪部の平行な部分の間隔に応じて変化する。したがって、外部環境からの影響を受けにくい隙間センサにできる。   The gap sensor of the present invention has a structure in which a conductor other than the conductive portion cannot be brought close to a predetermined region near the planar coil. The inductance of the coil is influenced by nearby conductors, but is not easily influenced by conductors other than the vicinity. Therefore, according to the gap sensor of the present invention, it is easy to suppress an inductance change (noise) due to a conductor other than the conductive portion within a required accuracy range. The area of the portion where the conductive portion faces the planar coil changes according to the interval between the parallel portions of the first claw portion and the second claw portion that are in contact with the gap to be measured. Therefore, the gap sensor can be made less susceptible to the influence of the external environment.

本発明の隙間センサの構成を示す図であって、第1爪部110と第2爪部210の平行な部分111−1,111−2,211が最も離れた状態を示す図。It is a figure which shows the structure of the clearance gap sensor of this invention, Comprising: The figure which shows the state which the parallel parts 111-1, 111-2, 211 of the 1st nail | claw part 110 and the 2nd nail | claw part 210 have left most. 本発明の隙間センサの構成を示す図であって、第1爪部110と第2爪部210の平行な部分111−1,111−2,211が最も近づいた状態を示す図。It is a figure which shows the structure of the clearance gap sensor of this invention, Comprising: The figure which shows the state which the parallel parts 111-1, 111-2, 211 of the 1st nail | claw part 110 and the 2nd claw part 210 approached most. テーパー部材を隙間に差し込む方式と本発明の方式の違いを示す図。The figure which shows the difference between the system which inserts a taper member in a clearance gap, and the system of this invention. 第1爪部と第2爪部の関係を示す図。The figure which shows the relationship between a 1st nail | claw part and a 2nd nail | claw part. 平面状コイル120と導電部220との関係を示す図。The figure which shows the relationship between the planar coil 120 and the electroconductive part 220. FIG. 記録部140が記録する対応テーブルの例を示す図。The figure which shows the example of the corresponding | compatible table which the recording part 140 records. 処理フローの例を示す図。The figure which shows the example of a processing flow. 平面状コイル120が設けられた平面の法線方向に、平面状コイル120と導電板との距離(間隔)を変える様子を示す図。The figure which shows a mode that the distance (space | interval) of the planar coil 120 and a electrically conductive plate is changed to the normal line direction of the plane in which the planar coil 120 was provided. 所定の間隔で対向する導電板の対向する部分の面積を変えた場合と、平面状コイルが設けられた平面の法線方向に平面状コイルと導電板との距離(間隔)を変えた場合の平面状コイルのインダクタンスの変化の違いを示す図。When the area of the opposing portion of the conductive plate that is opposed at a predetermined interval is changed, and when the distance (interval) between the planar coil and the conductive plate is changed in the normal direction of the plane on which the planar coil is provided The figure which shows the difference in the change of the inductance of a planar coil.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

図1と図2に本発明の隙間センサの構成を示す。本発明の隙間センサ10は、第1爪部110と第2爪部210を測定対象の隙間に挿入し、第1爪部110と第2爪部210との間隔を広げ、第1爪部110と第2爪部210の互いに遠い面同士の間隔を隙間の寸法として測定する。第1爪部110と第2爪部210の互いに遠い面同士は、測定対象の隙間に接触させるための平行な部分111−1,111−2,211を有する。図1は、第1爪部110と第2爪部210の平行な部分111−1,111−2,211が最も離れた状態を示す図であり、(A)は平面図、(B)は正面図、(C)は右側面図である。図2は、第1爪部110と第2爪部210の平行な部分111−1,111−2,211が最も近づいた状態を示す図であり、(A)は平面図、(B)は正面図、(C)は右側面図である。   1 and 2 show the configuration of the gap sensor of the present invention. The gap sensor 10 of the present invention inserts the first claw part 110 and the second claw part 210 into the gap to be measured, widens the distance between the first claw part 110 and the second claw part 210, and the first claw part 110. And the distance between the mutually distant surfaces of the second claw portion 210 is measured as the size of the gap. The mutually distant surfaces of the first claw portion 110 and the second claw portion 210 have parallel portions 111-1, 111-2, 211 for contacting the gap to be measured. FIG. 1 is a diagram illustrating a state in which the parallel portions 111-1, 111-2, and 211 of the first claw portion 110 and the second claw portion 210 are farthest apart, (A) is a plan view, and (B) is a plan view. Front view, (C) is a right side view. 2A and 2B are diagrams showing a state in which the parallel portions 111-1, 111-2, and 211 of the first claw portion 110 and the second claw portion 210 are closest, (A) is a plan view, and (B) is a plan view. Front view, (C) is a right side view.

隙間センサ10は、本体100と、本体100に対して所定方向に所定範囲だけスライド可能なスライダ200とを備える。図1と図2の例では、スライダ200にはシャフト171−1,171−2が貫通しており、スライダ200はシャフト171−1,171−2の軸方向を所定方向として、シャフト171−1,171−2の長さが許容する範囲を所定範囲としてスライド可能である。所定範囲は、計測対象の隙間の大きさに応じて決めればよい。また、弾性体180によって、スライダ200は一方向に押された状態としてもよい。なお、スライドできる機構は、シャフトを用いた方式に限定する必要はなく、他の方式でも構わない。   The gap sensor 10 includes a main body 100 and a slider 200 that can slide with respect to the main body 100 in a predetermined direction within a predetermined range. In the example of FIGS. 1 and 2, shafts 171-1 and 171-2 penetrate the slider 200. The slider 200 has a shaft 171-1 with the axial direction of the shafts 171-1 and 171-2 as a predetermined direction. , 171-2 can be slid as a predetermined range. The predetermined range may be determined according to the size of the gap to be measured. Further, the slider 200 may be pushed in one direction by the elastic body 180. The mechanism that can slide is not necessarily limited to a system using a shaft, and other systems may be used.

本体100は、第1爪部110、平面状コイル120、回路部130、記録部140、処理部150を有する。スライダ200は、第2爪部210、導電部220、支持部212を有する。図1と図2の例では、第2爪部210は、支持部212によってスライダ200全体と一体的に移動するように固定されている。平面状コイル120は、所定方向と平行に配置されている。図1と図2の例では、平面状コイル120は基板161に取り付けた上で配置している。回路部130は、平面状コイル120のインダクタンスに対応するデータを、測定データとして出力する。記録部140は、測定データと隙間の寸法との対応関係を示す対応テーブルを記録している。処理部150は、対応テーブルに基づいて、測定データから隙間の寸法を出力する。処理部150は算出部151と表示部152を備えればよい。図1と図2の例では、回路部130、記録部140、算出部151は基板162上に設けられ、表示部152は本体100の外部に取り付けられている。導電部220は、導電体であって、平面状コイル120の近傍の所定領域に平面状コイルと所定の間隔を有して対向する。所定の間隔とは、近傍の所定領域の中に含まれる間隔であり、導電体が平面状コイル120のインダクタンスに影響を与える間隔の中から決めればよい。   The main body 100 includes a first claw portion 110, a planar coil 120, a circuit portion 130, a recording portion 140, and a processing portion 150. The slider 200 includes a second claw portion 210, a conductive portion 220, and a support portion 212. In the example of FIGS. 1 and 2, the second claw portion 210 is fixed by the support portion 212 so as to move integrally with the entire slider 200. The planar coil 120 is arranged in parallel with a predetermined direction. In the example of FIGS. 1 and 2, the planar coil 120 is disposed after being attached to the substrate 161. The circuit unit 130 outputs data corresponding to the inductance of the planar coil 120 as measurement data. The recording unit 140 records a correspondence table indicating a correspondence relationship between the measurement data and the gap size. The processing unit 150 outputs the dimension of the gap from the measurement data based on the correspondence table. The processing unit 150 may include a calculation unit 151 and a display unit 152. In the example of FIGS. 1 and 2, the circuit unit 130, the recording unit 140, and the calculation unit 151 are provided on the substrate 162, and the display unit 152 is attached to the outside of the main body 100. The conductive portion 220 is a conductor, and faces a predetermined region near the planar coil 120 with a predetermined spacing from the planar coil. The predetermined interval is an interval included in a predetermined region in the vicinity, and may be determined from intervals in which the conductor affects the inductance of the planar coil 120.

本体100は、所定領域に導電部220以外の導電体を近づけない構造である。図1と図2の例ではカバー102によって、所定領域に導電部220以外の導電体が近づけないようにしている。ただし、カバーを設ける方法に限定する必要はなく、例えば、回路部130を設けるための基板などによって導電部220以外の導電体が近づけないようにしてもよい。なお、近傍の所定領域とは、導電体が存在すると平面状コイル120のインダクタンスに影響を与える領域であり、平面状コイルの大きさや特性、測定に求められる精度などから決めればよい。導電部220が平面状コイル120と対向する部分の面積は、第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔に応じて変化する。   The main body 100 has a structure in which a conductor other than the conductive portion 220 cannot be brought close to a predetermined region. In the example of FIGS. 1 and 2, the cover 102 prevents a conductor other than the conductive portion 220 from approaching a predetermined region. However, the method is not limited to the method of providing the cover. For example, a conductor other than the conductive unit 220 may not be brought close to the substrate by which the circuit unit 130 is provided. The predetermined area in the vicinity is an area that affects the inductance of the planar coil 120 when a conductor is present, and may be determined from the size and characteristics of the planar coil, the accuracy required for measurement, and the like. The area of the portion where the conductive portion 220 faces the planar coil 120 changes according to the distance between the parallel portions 111-1, 111-2, and 211 of the first claw portion 110 and the second claw portion 210.

図3に、テーパー部材を隙間に差し込む方式と本発明の方式の違いを示す。図3(A)は、板金加工後の製品90(例えば自動車のボディー)と板金加工の精度を確認するための検具80を示した断面図である。板金加工の精度は、検具80と製品90との間の隙間を測定することで確認する。図3(A)では、間隔Gで示した部分の隙間が板金加工の精度を示している。図3(B)は、テーパー部材70を隙間に差し込んだ状態を示す図である。図3(B)に示すように、テーパー部材70で測定できているのは開口部の間隔Gであり、測定したい間隔Gを測定できない場合がある。図3(C)は、隙間センサ10を用いた状態を示す図である。隙間センサ10の場合は、第1爪部110と第2爪部210を隙間に挿入し、第1爪部110と第2爪部210との間隔を広げるので、第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔Gを測定することで、間隔Gを測定できる。 FIG. 3 shows the difference between the method of inserting the tapered member into the gap and the method of the present invention. FIG. 3A is a cross-sectional view showing a product 90 (for example, an automobile body) after sheet metal processing and a check tool 80 for confirming the accuracy of sheet metal processing. The accuracy of sheet metal processing is confirmed by measuring the gap between the inspection tool 80 and the product 90. In FIG. 3 (A), the gap of the portion indicated by intervals G 1 is shows the accuracy of the sheet metal processing. FIG. 3B is a diagram illustrating a state where the taper member 70 is inserted into the gap. As shown in FIG. 3 (B), of which can be measured with the taper member 70 is the spacing G 2 of the opening may not be measured the distance G 1 to be measured. FIG. 3C is a diagram illustrating a state in which the gap sensor 10 is used. In the case of the gap sensor 10, the first claw part 110 and the second claw part 210 are inserted into the gap, and the distance between the first claw part 110 and the second claw part 210 is widened. by measuring the gap G parallel portions of the claw portions 210 111-1,111-2,211, it can measure the gap G 1.

図4は、第1爪部と第2爪部の関係を示す図であり、正面図の第1爪部と第2爪部の部分を拡大した図である。図4(A)は、図1(B),図2(B)の第1爪部110と第2爪部210を拡大した図である。実線の第2爪部210が図2(B)の第2爪部210であり、一点鎖線の第2爪部210が図1(B)の第2爪部210である。この例では、第1爪部110は、所定方向(スライダ200がスライドする方向)を法線とする平面に配置された2つの爪を有する。第2爪部210は1つの爪を有する。第2爪部210が第1爪部110に最も近づいたとき(図2(B)のとき)には、第2爪部210の爪は、第1爪部110の2つの爪の間に位置する。第2爪部210の平行な部分211は、高さLの位置から高さHの位置まで移動可能であり、間隔GMINが隙間センサ10で測定できる最小の隙間、間隔GMAXが隙間センサ10で測定できる最大の隙間である。このように第2爪部210の爪が第1爪部110の2つの爪の間に位置するようにすれば、1つの爪の厚さを測定できる最小の隙間にできる。図4(B)は、第2爪部210’が第1爪部110’と接触する構造の例を示している。この場合の第2爪部210’の平行な部分211’は、高さLの位置から高さHの位置まで移動可能であり、間隔G’MINが隙間センサで測定できる最小の隙間、間隔G’MAXが隙間センサで測定できる最大の隙間である。図4(B)の場合は、測定できる最小の隙間は2つ分の爪の厚さとなる。爪の長さを長くすれば、爪のたわみによる測定誤差を無視できなくなるので、爪を厚くする必要がある。しかし、爪を厚くすれば測定できる最小の隙間の値が大きくなってしまう。図4(A)のような構造にすれば、測定できる最小の隙間の値を小さくできる。どちらの爪にするかは、要求される測定可能な最小の間隔を考慮して決めればよい。 FIG. 4 is a diagram illustrating the relationship between the first claw portion and the second claw portion, and is an enlarged view of the first claw portion and the second claw portion of the front view. FIG. 4A is an enlarged view of the first claw portion 110 and the second claw portion 210 shown in FIGS. 1B and 2B. The second claw portion 210 in the solid line is the second claw portion 210 in FIG. 2B, and the second claw portion 210 in the one-dot chain line is the second claw portion 210 in FIG. In this example, the 1st nail | claw part 110 has two nail | claws arrange | positioned on the plane which makes a normal direction the predetermined direction (direction in which the slider 200 slides). The 2nd nail | claw part 210 has one nail | claw. When the second claw portion 210 comes closest to the first claw portion 110 (in FIG. 2B), the claw of the second claw portion 210 is positioned between the two claws of the first claw portion 110. To do. The parallel portion 211 of the second claw portion 210 can move from the position of the height L to the position of the height H, and the gap G MIN is the smallest gap that can be measured by the gap sensor 10, and the gap G MAX is the gap sensor 10. It is the maximum gap that can be measured with. Thus, if the nail | claw of the 2nd nail | claw part 210 is located between two nail | claws of the 1st nail | claw part 110, it can be set as the minimum clearance which can measure the thickness of one nail | claw. FIG. 4B shows an example of a structure in which the second claw portion 210 ′ is in contact with the first claw portion 110 ′. In this case, the parallel portion 211 ′ of the second claw portion 210 ′ is movable from the position of the height L to the position of the height H, and the gap G ′ MIN is the smallest gap that can be measured by the gap sensor, the gap G. ' MAX is the maximum gap that can be measured by the gap sensor. In the case of FIG. 4B, the minimum gap that can be measured is the thickness of two nails. If the length of the nail is increased, the measurement error due to the deflection of the nail cannot be ignored, so it is necessary to increase the thickness of the nail. However, if the nail is thickened, the minimum gap value that can be measured increases. With the structure as shown in FIG. 4A, the value of the minimum gap that can be measured can be reduced. Which nail is selected may be determined in consideration of the minimum measurable distance required.

また、第1爪部110の第2爪部210から遠い面の平行な部分111−1,111−2は、本体100の底101と同じ面に形成し、所定方向(スライダ200がスライドする方向)は本体100の底101の面の法線方向とすればよい。さらに、スライダ200は、弾性体180によって第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔が広がる方向に押されるようにすればよい。このようにすれば、測定者が第1爪部110と第2爪部210を測定対象の隙間に挿入し、手を離せば第1爪部110と第2爪部210との間隔が隙間の広さまで広がる。また、図4(A)に示したように、第1爪部110が、所定方向を法線とする平面に配置された2つの爪を持てば、第2爪部210の平行な部分211は、測定対象の隙間の間隔を正確に測定する方向に広がる。したがって、測定者の個人差によらず、正確に隙間の寸法を測定できる。   Further, parallel portions 111-1 and 111-2 of the surface of the first claw portion 110 far from the second claw portion 210 are formed on the same surface as the bottom 101 of the main body 100, and a predetermined direction (direction in which the slider 200 slides). ) May be the normal direction of the surface of the bottom 101 of the main body 100. Furthermore, the slider 200 may be pushed by the elastic body 180 in the direction in which the distance between the parallel portions 111-1, 111-2, 211 of the first claw portion 110 and the second claw portion 210 is increased. In this way, if the measurer inserts the first nail part 110 and the second nail part 210 into the gap to be measured and releases his / her hand, the gap between the first nail part 110 and the second nail part 210 becomes the gap. It spreads to the size. As shown in FIG. 4A, if the first claw portion 110 has two claws arranged on a plane whose normal is a predetermined direction, the parallel portion 211 of the second claw portion 210 is , Spread in the direction to accurately measure the gap of the measurement object. Therefore, it is possible to accurately measure the dimension of the gap regardless of individual differences among the measurers.

図5は、平面状コイル120と導電部220との関係を示す図である。実線の導電部220が図2の状態のときであって、一点鎖線の導電部220が図1の状態のときである。導電部220は、スライダ200を形成する材料(ステンレスやアルミニウム)の一部でもよいし、スライダ200の大部分をプラスチックで形成し、平面状コイル120に対向する部分(導電部220の部分)にだけにステンレスやアルミニウムなどの導電板を取り付けてもよい。また、導電部220を平面状コイル120の両面に存在させれば、さらに平面状コイル120のインダクタンスを変化させやすい。図5に示すように、導電部220が平面状コイル120と対向する部分の面積は、第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔に応じて変化する。なお、平面状コイル120に交流の電流が流れると、導電部220を突き抜ける方向の磁界が時間的に変化する。この磁界の変化によって導電部220に渦電流が生じ、渦電流によって生じる磁界は平面状コイルによって生じる磁界を打ち消すことになる。したがって、導電部220が平面状コイル120と対向する部分の面積が大きいほど、平面状コイル120のインダクタンスは小さくなる。平面状コイル120の大きさは、測定対象の隙間の大きさから決めればよく、例えば、平面状コイル120の直径を10mm程度にすれば、8mm程度の隙間まで測定できる。   FIG. 5 is a diagram showing the relationship between the planar coil 120 and the conductive portion 220. This is when the solid-line conductive portion 220 is in the state of FIG. 2 and when the dashed-dotted conductive portion 220 is in the state of FIG. The conductive portion 220 may be a part of the material (stainless steel or aluminum) forming the slider 200, or most of the slider 200 is made of plastic, and the portion facing the planar coil 120 (the portion of the conductive portion 220) is formed. Only a conductive plate such as stainless steel or aluminum may be attached. Further, if the conductive portions 220 are present on both surfaces of the planar coil 120, the inductance of the planar coil 120 can be further changed. As shown in FIG. 5, the area of the portion where the conductive portion 220 faces the planar coil 120 is the interval between the parallel portions 111-1, 111-2, and 211 of the first claw portion 110 and the second claw portion 210. Will change accordingly. When an alternating current flows through the planar coil 120, the magnetic field in the direction penetrating the conductive portion 220 changes with time. Due to this change in the magnetic field, an eddy current is generated in the conductive portion 220, and the magnetic field generated by the eddy current cancels the magnetic field generated by the planar coil. Therefore, the inductance of the planar coil 120 decreases as the area of the portion where the conductive portion 220 faces the planar coil 120 is larger. The size of the planar coil 120 may be determined from the size of the gap to be measured. For example, if the diameter of the planar coil 120 is about 10 mm, a gap of about 8 mm can be measured.

図6に記録部140が記録する対応テーブルの例、図7に処理フローの例を示す。回路部130は、平面状コイル120のインダクタンスに対応するデータを、測定データとして出力する(S130)。例えば、非特許文献1の技術を用いれば、平面状コイル120のインダクタンスに対応するデジタルのデータを測定データとして得ることができる。記録部140は、あらかじめ測定データと隙間の寸法との対応関係を示す対応テーブルを記録しておく。例えば、図6に示すような対応テーブルを記録しておけばよい。処理部150は算出部151と表示部152を備えればよい。算出部151は、測定データを対応テーブルと比較し、隙間の寸法を求める(S151)。図6の対応テーブルの場合、測定データの値は離散的なので、得られた測定データが対応テーブルに示されていない場合が多いと考えられる。この場合は、補間によって隙間の寸法を求めればよい。例えば、測定データXが8500より大きく9000より小さいのであれば、隙間の寸法Gを
G=1.5+(2.0−1.5)×(X−8500)/(9000−8500)
のように求めればよい。なお、上記の補間は対応テーブルに示された隣り合う隙間の寸法同士の間では、測定データと隙間の寸法の関係を線形と考えることを前提としている。対応テーブルに記録する隙間の寸法は、このように隣同士の間では線形として扱える間隔で記録すればよい。表示部152は、隙間の寸法Gを表示する(S152)。
FIG. 6 shows an example of the correspondence table recorded by the recording unit 140, and FIG. 7 shows an example of the processing flow. The circuit unit 130 outputs data corresponding to the inductance of the planar coil 120 as measurement data (S130). For example, if the technique of Non-Patent Document 1 is used, digital data corresponding to the inductance of the planar coil 120 can be obtained as measurement data. The recording unit 140 records a correspondence table indicating the correspondence between the measurement data and the gap size in advance. For example, a correspondence table as shown in FIG. 6 may be recorded. The processing unit 150 may include a calculation unit 151 and a display unit 152. The calculation unit 151 compares the measurement data with the correspondence table, and obtains the dimension of the gap (S151). In the case of the correspondence table of FIG. 6, since the values of the measurement data are discrete, it is considered that the obtained measurement data is often not shown in the correspondence table. In this case, the size of the gap may be obtained by interpolation. For example, if the measurement data X is larger than 8500 and smaller than 9000, the gap size G is set to G = 1.5 + (2.0−1.5) × (X−8500) / (9000−8500).
You can ask as follows. Note that the above-described interpolation is based on the premise that the relationship between the measurement data and the size of the gap is linear between the sizes of the adjacent gaps shown in the correspondence table. The size of the gap recorded on the correspondence table may be recorded at an interval that can be treated as linear between the neighbors. The display unit 152 displays the gap size G (S152).

図8は、平面状コイル120が設けられた平面の法線方向に、平面状コイル120と導電板との距離(間隔)を変える様子を示す図である。図9は、所定の間隔で対向する導電板の対向する部分の面積を変えた場合と、平面状コイルが設けられた平面の法線方向に平面状コイルと導電板との距離(間隔)を変えた場合の平面状コイルのインダクタンスの変化の違いを示す図である。対向する部分の面積を変えた場合を実線、法線方向の距離(間隔)を変えた場合を点線で示す。なお、対向する部分の面積については、導電部220が図5のように移動するときの、第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔を横軸の距離としている。この例では、測定可能な隙間の最小値GMINが1.5mmであり、最大値GMAXが8mmである。法線方向の距離(間隔)を変えた場合は、図8の間隔Dを横軸の距離としている。 FIG. 8 is a diagram illustrating how the distance (interval) between the planar coil 120 and the conductive plate is changed in the normal direction of the plane on which the planar coil 120 is provided. FIG. 9 shows the distance (interval) between the planar coil and the conductive plate in the normal direction of the plane where the planar coil is provided when the area of the opposing portions of the conductive plates facing each other at a predetermined interval is changed. It is a figure which shows the difference of the change of the inductance of the planar coil at the time of changing. A case where the area of the facing portion is changed is indicated by a solid line, and a case where the distance (interval) in the normal direction is changed is indicated by a dotted line. In addition, about the area of the part which opposes, when the electroconductive part 220 moves like FIG. 5, the space | interval of the parallel parts 111-1, 111-2, 211 of the 1st nail | claw part 110 and the 2nd nail | claw part 210 Is the distance on the horizontal axis. In this example, the minimum value G MIN of the measurable gap is 1.5 mm, and the maximum value G MAX is 8 mm. When the distance (interval) in the normal direction is changed, the interval D in FIG. 8 is the distance on the horizontal axis.

図9に示した例では、点線から分かるように、導電板320が2mm以上離れるとインダクタンスにほとんど影響を与えない。つまり、この場合は、近傍の所定領域を平面状コイル120から2mm以内とすればよい。そして、例えば所定の間隔を0.3mmとすればよい。実線で示された対向する部分の面積を変更する場合は、完全な線形性は実現していないが1.5mm〜8.0mmまで線形に近い特性でインダクタンスが変化している。したがって、対向する部分の面積を変更する方式の方が、広い範囲で正確に寸法を測定できること(高い分解能で測定できること)が分かる。なお、記録部140が記録している対応テーブルによって、完全には線形でない特性を補い、より正確な測定を実現している。   In the example shown in FIG. 9, as can be seen from the dotted line, when the conductive plate 320 is separated by 2 mm or more, the inductance is hardly affected. That is, in this case, the predetermined region in the vicinity may be within 2 mm from the planar coil 120. For example, the predetermined interval may be set to 0.3 mm. When changing the area of the opposing part shown by the solid line, perfect linearity is not realized, but the inductance changes with characteristics close to linear from 1.5 mm to 8.0 mm. Therefore, it can be seen that the method of changing the areas of the opposing portions can measure the dimensions accurately in a wide range (measuring with high resolution). The correspondence table recorded by the recording unit 140 compensates for characteristics that are not completely linear, thereby realizing more accurate measurement.

隙間センサ10によれば、平面状コイル120の近傍の所定領域に導電部220以外の導電体を近づけない構造を有する。図9に点線で示したように、平面状コイル120のインダクタンスは、近傍の導電体の影響は受けるが、近傍以外の導電体の影響を受けにくい。よって、隙間センサ10によれば、導電部220以外の導電体によるインダクタンスの変化(ノイズ)を求められる精度の範囲内に抑えることが容易である。そして、導電部220が平面状コイル120と対向する部分の面積は、測定対象の隙間に接触する第1爪部110と第2爪部210の平行な部分111−1,111−2,211の間隔に応じて変化する。したがって、外部環境からの影響を受けにくい隙間センサにできる。   The gap sensor 10 has a structure in which a conductor other than the conductive portion 220 cannot be brought close to a predetermined region near the planar coil 120. As indicated by the dotted line in FIG. 9, the inductance of the planar coil 120 is affected by nearby conductors, but is not easily influenced by conductors other than the vicinity. Therefore, according to the gap sensor 10, it is easy to suppress an inductance change (noise) due to a conductor other than the conductive portion 220 within a required accuracy range. The area of the portion where the conductive portion 220 faces the planar coil 120 is equal to the parallel portions 111-1, 111-2, 211 of the first claw portion 110 and the second claw portion 210 that are in contact with the gap to be measured. It changes according to the interval. Therefore, the gap sensor can be made less susceptible to the influence of the external environment.

10 隙間センサ 70 テーパー部材
80 検具 90 製品
100 本体 101 底
102 カバー 110 第1爪部
111 平行な部分 120 平面状コイル
130 回路部 140 記録部
150 処理部 151 算出部
152 表示部 161,162 基板
171 シャフト 180 弾性体
200 スライダ 210 第2爪部
211 平行な部分 212 支持部
220 導電部 320 導電板
DESCRIPTION OF SYMBOLS 10 Clearance sensor 70 Tapered member 80 Check tool 90 Product 100 Main body 101 Bottom 102 Cover 110 1st nail | claw part 111 Parallel part 120 Planar coil 130 Circuit part 140 Recording part 150 Processing part 151 Calculation part 152 Display part 161,162 Substrate 171 Shaft 180 Elastic body 200 Slider 210 Second claw portion 211 Parallel portion 212 Support portion 220 Conductive portion 320 Conductive plate

Claims (4)

第1爪部と第2爪部を測定対象の隙間に挿入し、前記第1爪部と前記第2爪部との間隔を広げ、前記第1爪部と前記第2爪部の互いに遠い面同士の間隔を隙間の寸法として測定する隙間センサであって、
本体と、前記本体に対して所定方向に所定範囲だけスライド可能なスライダとを備え、
前記本体は、
前記第1爪部と、
前記所定方向と平行に配置された平面状コイルと、
前記平面状コイルのインダクタンスに対応するデータを、測定データとして出力する回路部と、
前記測定データと隙間の寸法との対応関係を示す対応テーブルを記録した記録部と、
前記対応テーブルに基づいて、前記測定データから隙間の寸法を求め、出力する処理部と
を有し、
前記スライダは、
前記第2爪部と、
導電体であって、前記平面状コイルの近傍の所定領域に前記平面状コイルと所定の間隔を有して対向する導電部と、
を有し、
前記第1爪部と前記第2爪部の互いに遠い面同士は、測定対象の隙間に接触させるための平行な部分を有し、
前記本体は、前記所定領域に前記導電部以外の導電体を近づけない構造であり、
前記導電部が前記平面状コイルと対向する部分の面積は、前記第1爪部と前記第2爪部の前記平行な部分の間隔に応じて変化する
ことを特徴とする隙間センサ。
The first claw part and the second claw part are inserted into the gap to be measured, the distance between the first claw part and the second claw part is widened, and the first claw part and the second claw part are far from each other. A gap sensor that measures the distance between each other as the dimension of the gap,
A main body and a slider that is slidable by a predetermined range in a predetermined direction relative to the main body
The body is
The first claw portion;
A planar coil disposed parallel to the predetermined direction;
A circuit unit for outputting data corresponding to the inductance of the planar coil as measurement data;
A recording unit that records a correspondence table showing a correspondence relationship between the measurement data and the dimension of the gap;
A processing unit that obtains and outputs the size of the gap from the measurement data based on the correspondence table, and
The slider is
The second claw portion;
A conductive portion, a conductive portion facing the planar coil with a predetermined spacing in a predetermined region near the planar coil;
Have
The distant surfaces of the first claw part and the second claw part have parallel parts for contacting the gap of the measurement object,
The main body has a structure that prevents a conductor other than the conductive portion from approaching the predetermined region,
The gap sensor characterized in that the area of the portion where the conductive portion faces the planar coil changes according to the interval between the parallel portions of the first claw portion and the second claw portion.
請求項1記載の隙間センサであって、
前記導電部は、前記平面状コイルの両面に存在する
ことを特徴とする隙間センサ。
The gap sensor according to claim 1,
The gap sensor, wherein the conductive portion exists on both surfaces of the planar coil.
請求項1または2記載の隙間センサであって、
前記第1爪部は、前記所定方向を法線とする平面に配置された2つの爪を有し、
前記第2爪部は1つの爪を有し、
前記第2爪部の爪は、前記第1爪部の2つの爪の間に位置する
ことを特徴とする隙間センサ。
The gap sensor according to claim 1 or 2,
The first claw portion has two claws arranged on a plane having the predetermined direction as a normal line,
The second claw portion has one claw,
The claw of the second claw portion is located between two claws of the first claw portion.
請求項3記載の隙間センサであって、
前記第1爪部の前記第2爪部から遠い面は、前記本体の底と同じ面に形成され、
前記所定方向は前記本体の底の面の法線方向であり、
前記スライダは、弾性体によって前記第1爪部と前記第2爪部の前記平行な部分の間隔が広がる方向に押されている
ことを特徴とする隙間センサ。
The gap sensor according to claim 3,
The surface of the first claw portion far from the second claw portion is formed on the same surface as the bottom of the main body,
The predetermined direction is a normal direction of a bottom surface of the main body;
The gap sensor, wherein the slider is pressed by an elastic body in a direction in which a gap between the parallel portions of the first claw portion and the second claw portion is widened.
JP2016022536A 2016-02-09 2016-02-09 Gap sensor Pending JP2017142110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022536A JP2017142110A (en) 2016-02-09 2016-02-09 Gap sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022536A JP2017142110A (en) 2016-02-09 2016-02-09 Gap sensor

Publications (1)

Publication Number Publication Date
JP2017142110A true JP2017142110A (en) 2017-08-17

Family

ID=59628448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022536A Pending JP2017142110A (en) 2016-02-09 2016-02-09 Gap sensor

Country Status (1)

Country Link
JP (1) JP2017142110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781019A (en) * 2019-03-05 2019-05-21 安徽工业大学 A kind of rail gauge measuring apparatus and measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781019A (en) * 2019-03-05 2019-05-21 安徽工业大学 A kind of rail gauge measuring apparatus and measurement method

Similar Documents

Publication Publication Date Title
JP7016572B2 (en) Winding configuration of electromagnetic induction encoder
US9435663B2 (en) Absolute position encoder scale having layers in a stacked configuration
US9417094B2 (en) Displacement sensor for force indicating caliper
EP1873507A1 (en) Pressure distribution detection device
JP2018004628A (en) Encoder, measurement method and measurement system
JP2016004041A (en) Absolute encoder scale having plates repeatedly arranged relative to varying recesses
JP2020003492A (en) Scale composition for electromagnetic induction encoder
JP6377817B2 (en) Non-contact magnetic linear position sensor
EP2770333A2 (en) Current sensor
US20150035519A1 (en) Sensor for indicating a position or a change in position of a coupling element and method for operating the sensor
JP2018004630A (en) Electronic absolute type encoder
JP2017142110A (en) Gap sensor
US7576532B2 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
JP2014048234A (en) Apparatus and method for measuring gap
EP0876580B1 (en) A method and a device for inductive measurement of measures and positions of objects of electrically conductive material
JP6145467B2 (en) Position detection device
US9506778B2 (en) Linear encoder
Tüysüz et al. Eddy-current-based contactless speed sensing of conductive surfaces
JP3192978B2 (en) Clearance gauge
US6188217B1 (en) Inductive measurement device for determining dimensions of objects
KR101574017B1 (en) Load cell structure based on a nonlinear strain model
JP2003156364A (en) Direct actuator having slide position detector
US11326902B2 (en) Scale used in an electromagnetic inductive encoder or a magnetic encoder
KR20040055747A (en) LVDT using double coil type
Schönecker-Baußmann AC characteristics of low-ohmic foil shunts influenced by eddy currents in the mounting body