JP2017141772A - Carbureter - Google Patents

Carbureter Download PDF

Info

Publication number
JP2017141772A
JP2017141772A JP2016024622A JP2016024622A JP2017141772A JP 2017141772 A JP2017141772 A JP 2017141772A JP 2016024622 A JP2016024622 A JP 2016024622A JP 2016024622 A JP2016024622 A JP 2016024622A JP 2017141772 A JP2017141772 A JP 2017141772A
Authority
JP
Japan
Prior art keywords
passage
air bleed
bleed passage
slow
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016024622A
Other languages
Japanese (ja)
Inventor
知幸 千田
Tomoyuki CHIDA
知幸 千田
崇 後藤
Takashi Goto
崇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016024622A priority Critical patent/JP2017141772A/en
Publication of JP2017141772A publication Critical patent/JP2017141772A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carbureter capable of being configured in compact in controlling an opening of an air bleeding passage by action of an electric driving member.SOLUTION: A carburetor 11 has an intake passage 15 defined on a body 13, a slide space 16 branched from the intake passage 15 is defined by a valve cylinder 14 integrated with the body 13, and a throttle valve 19 sliding in the valve cylinder 14 to change an opening area of the intake passage 15 is disposed on a carbureter body 12 accommodated in the valve cylinder 14. The carburetor body 12 has connection passages 43b, 43c, 45b, 45c extending toward nozzle portions 37, 38, 39, 41 facing the intake passage 15 continuously from a passage hole 46 as air breeding passages 43, 45, at one side where the passage hole 46 is disposed, with reference to a plane PV including a center line 17a of the intake passage 15 and a center line 17b of the valve cylinder 14.SELECTED DRAWING: Figure 2

Description

本発明は気化器に関する。   The present invention relates to a vaporizer.

特許文献1は、メインエアブリード通路およびスローエアブリード通路を有する気化器を開示する。メインエアブリード通路とスローエアブリード通路とは吸気路で合流している。それぞれのエアブリード通路に弁体が配置されている。弁体はそれぞれのエアブリード通路の開口面積を調整する。また、エアブリード通路は、チューブを介して、弁体が配置されるフロート室側へ延びている。   Patent Document 1 discloses a carburetor having a main air bleed passage and a slow air bleed passage. The main air bleed passage and the slow air bleed passage merge at the intake passage. A valve element is disposed in each air bleed passage. The valve body adjusts the opening area of each air bleed passage. Further, the air bleed passage extends to the float chamber side where the valve element is disposed via the tube.

特開平8−296504号公報JP-A-8-296504

特許文献1に記載の気化器では、エアブリード通路は、チューブを介して、弁体が配置されるフロート室へ延びている。したがって、気化器はフロート室側に大きく広がってしまう。気化器のコンパクト化は妨げられる。   In the carburetor described in Patent Document 1, the air bleed passage extends to a float chamber in which a valve body is disposed via a tube. Therefore, the vaporizer spreads greatly to the float chamber side. Vaporizer compaction is impeded.

本発明は、上記実状に鑑みてなされたもので、電気駆動部材の働きでエアブリード通路の開度を制御する際にコンパクトに構成されることができる気化器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carburetor that can be compactly configured when the opening of an air bleed passage is controlled by the action of an electric drive member.

本発明の第1側面によれば、軸を有する電気駆動部材と、前記軸に同軸である基準線に平行に延び、エアブリード通路を有する通路孔と、前記通路孔に位置し、前記軸に連結され、前記軸によるスライド動作に応じて前記エアブリード通路の開口面積を変更する弁体と、胴体に吸気路を区画するとともに、前記胴体に一体化される弁筒で当該吸気路から分岐するスライド空間を区画し、前記弁筒内でスライド動作し前記吸気路の開口面積を変更するスロットル弁を前記弁筒に収容する気化器本体を備え、前記気化器本体は、前記吸気路の中心線と前記弁筒の中心線を含む平面を基準に、前記通路孔が配置される一側で、前記エアブリード通路として前記通路孔から連続して前記吸気路に臨むジェットに向かって延びる接続路を有する気化器が提供される。   According to the first aspect of the present invention, an electric drive member having a shaft, a passage hole extending in parallel to a reference line coaxial with the shaft, having an air bleed passage, and located in the passage hole, A valve body that is connected and changes an opening area of the air bleed passage according to a sliding operation by the shaft, and an intake passage is defined in the fuselage, and a valve cylinder integrated with the fuselage branches off from the intake passage. A carburetor body that divides a slide space, slides within the valve cylinder, and accommodates a throttle valve that changes an opening area of the intake passage in the valve cylinder, and the carburetor body includes a center line of the intake passage And a connection path extending toward the jet continuously facing the intake path as the air bleed passage on one side where the passage hole is arranged on the basis of a plane including the center line of the valve cylinder. Have a vaporizer It is subjected.

第2側面によれば、第1側面の構成に加えて、前記気化器本体は、前記一側に、前記エアブリード通路として、前記通路孔から前記吸気路へ向かって開口する空気導入路を備える。   According to the second aspect, in addition to the configuration of the first side surface, the carburetor body includes, on the one side, an air introduction path that opens from the passage hole toward the intake path as the air bleed passage. .

第3側面によれば、第2側面の構成に加えて、前記エアブリード通路はメインエアブリード通路およびスローエアブリード通路を構成し、前記ジェットはメインジェットおよびスロージェットを構成し、前記接続路は、前記メインエアブリード通路として、前記メインジェットに向かって延びる第1接続路と、前記スローエアブリード通路として、前記スロージェットに向かって延びる第2接続路を構成する。   According to the third aspect, in addition to the configuration of the second side, the air bleed passage constitutes a main air bleed passage and a slow air bleed passage, the jet constitutes a main jet and a slow jet, and the connection passage is A first connection path extending toward the main jet is formed as the main air bleed passage, and a second connection path extending toward the slow jet is formed as the slow air bleed passage.

第4側面によれば、第3側面の構成に加えて、前記通路孔内で、前記メインエアブリード通路および前記スローエアブリード通路が連通され、前記メインエアブリード通路および前記スローエアブリード通路の共通路が形成される。   According to the fourth aspect, in addition to the configuration of the third side face, the main air bleed passage and the slow air bleed passage are communicated in the passage hole, and the main air bleed passage and the slow air bleed passage are common. A path is formed.

第5側面によれば、第4側面の構成に加えて、前記電気駆動部材はモーターであって、前記軸はモーターの駆動軸であって、前記メインエアブリード通路および前記スローエアブリード通路は、前記共通路に面し、前記基準線に平行に延びるスライド面で開口し、前記弁体は、前記メインエアブリード通路の開口面積を変更する第1弁体と、前記第1弁体に一体化され、前記スローエアブリード通路の開口面積を変更する第2弁体とを構成する。   According to the fifth aspect, in addition to the configuration of the fourth side surface, the electric drive member is a motor, the shaft is a drive shaft of the motor, and the main air bleed passage and the slow air bleed passage are: The valve element is open to the common path and extends in parallel with the reference line, and the valve element is integrated with the first valve element and the first valve element for changing the opening area of the main air bleed passage. And a second valve body that changes an opening area of the slow air bleed passage.

第6側面によれば、第5側面の構成に加えて、前記通路孔は、前記弁筒の中心線より吸気路方向の上流側であって前記吸気路の側面に設けられ、前記接続路は吸気路に沿って延び、前記空気導入路は吸気路に向かって延びる。   According to the sixth aspect, in addition to the configuration of the fifth side surface, the passage hole is provided upstream of the center line of the valve cylinder in the intake passage direction and on the side surface of the intake passage. It extends along the intake path, and the air introduction path extends toward the intake path.

第7側面によれば、第6側面の構成に加えて、前記一側に対する他側にチョーク弁が設置される。   According to the seventh aspect, in addition to the configuration of the sixth side, a choke valve is installed on the other side with respect to the one side.

第1側面によれば、電気駆動部材からの動力に応じて弁体はスライド動作を実現する。弁体はエアブリード通路の開口に対して変位しエアブリード通路の開口面積を変化させる。このとき通路孔および接続路を気化器本体の一側に集中的に配置することによって、エアブリード通路を成型または加工により比較的に簡単に形成することができ、および、気化器はコンパクトに構成されることができる。   According to the first aspect, the valve body realizes a sliding operation in accordance with the power from the electric drive member. The valve body is displaced with respect to the opening of the air bleed passage and changes the opening area of the air bleed passage. At this time, the air bleed passage can be formed relatively easily by molding or processing by centrally arranging the passage hole and the connection passage on one side of the carburetor body, and the carburetor is configured compactly. Can be done.

チューブを短縮して、エアブリード通路の開口面積を変化させた際に応答性を向上、コストを削減することができる。   When the tube is shortened and the opening area of the air bleed passage is changed, the response can be improved and the cost can be reduced.

チューブを廃止して組立性を向上、部品点数を削減することができる。   The tube can be eliminated to improve assembly and reduce the number of parts.

第2側面によれば、空気導入路、通路孔および接続路を気化器本体の一側に集中的に配置して、エアブリード通路を成型または加工により比較的に簡単に形成することができ、気化器はコンパクトに構成されることができる。   According to the second aspect, the air introduction passage, the passage hole, and the connection passage are concentrated on one side of the carburetor body, and the air bleed passage can be formed relatively easily by molding or processing. The vaporizer can be configured compactly.

第3側面によれば、第1および第2接続路を気化器本体の一側に集中的に配置して、メインエアブリード通路およびスローエアブリード通路を成型または加工により比較的に簡単に形成することができ、気化器はコンパクトに構成されることができる。   According to the third aspect, the first and second connection paths are concentrated on one side of the carburetor body, and the main air bleed passage and the slow air bleed passage are formed relatively easily by molding or processing. And the vaporizer can be configured compactly.

第4側面によれば、通路孔内でメインエアブリード通路およびスローエアブリード通路の共通路が形成されるので、メインエアブリード通路およびスローエアブリードの弁体を一体化することができ、気化器はコンパクトに構成されることができる。また、通路孔内でメインエアブリード通路およびスローエアブリード通路の共通路が形成されるので、空気導入路をメインエアブリード通路およびスローエアブリード通路として共通化することができ、気化器はコンパクトに構成されることができる。   According to the fourth aspect, since the common passage of the main air bleed passage and the slow air bleed passage is formed in the passage hole, the main air bleed passage and the valve body of the slow air bleed can be integrated, and the vaporizer Can be configured compactly. Also, since a common path for the main air bleed path and the slow air bleed path is formed in the path hole, the air introduction path can be shared as the main air bleed path and the slow air bleed path, and the carburetor can be made compact. Can be configured.

第5側面によれば、弁体が統合され、同一のスライド面にメインブリード通路およびスローブリード通路が開口するので、通路孔の形状を簡素化して、エアブリード通路を簡単に形成することができ、気化器をコンパクトに構成することができる。また、同一のスライド面にメインエアブリード通路およびスローエアブリード通路が開口するので、弁体がスライド面に向かう方向に負圧が発生し、通路内での弁体のがたつきを極力抑えることができる。   According to the fifth aspect, since the valve body is integrated and the main bleed passage and the slobe lead passage are opened on the same slide surface, the shape of the passage hole can be simplified and the air bleed passage can be easily formed. The vaporizer can be made compact. Also, since the main air bleed passage and the slow air bleed passage open on the same slide surface, negative pressure is generated in the direction of the valve body toward the slide surface, and the rattling of the valve body in the passage is suppressed as much as possible. Can do.

第6側面によれば、接続路および空気導入路を簡単に設けることができるとともに、気化器をコンパクトに構成することができる。   According to the sixth aspect, the connection path and the air introduction path can be easily provided, and the vaporizer can be configured compactly.

第7側面によれば、一側にブリードエア通路および通路孔を配置し、チョーク弁を他側に配置することで、気化器をコンパクトに構成することができる。   According to the seventh aspect, the carburetor can be made compact by disposing the bleed air passage and the passage hole on one side and the choke valve on the other side.

本発明の第1実施形態に係る気化器の全体構成を概略的に示す垂直断面図である。1 is a vertical sectional view schematically showing an overall configuration of a vaporizer according to a first embodiment of the present invention. 図1の2−2線に沿った垂直断面図である。FIG. 2 is a vertical sectional view taken along line 2-2 of FIG. 図1の3−3線に沿った垂直断面図である。FIG. 3 is a vertical sectional view taken along line 3-3 in FIG. 1. メインエアブリード通路およびスローエアブリード通路の共通として機能する通路孔の拡大垂直断面図である。FIG. 4 is an enlarged vertical sectional view of a passage hole that functions as a common main air bleed passage and slow air bleed passage. 他の角度から観察される通路孔の拡大垂直断面図である。It is an expansion vertical sectional view of the passage hole observed from other angles. 第2実施形態および第3実施形態に係る気化器の一部を概略的に示す拡大部分垂直断面図である。It is an enlarged partial vertical sectional view schematically showing a part of the vaporizer according to the second embodiment and the third embodiment.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る気化器11の全体を概略的に示す。気化器11は気化器本体12を備える。気化器本体12は胴体13および弁筒14を有する。気化器本体12は胴体13に吸気路15を区画する。吸気路15には吸気口15aから空気が導入される。気化器11の吸気路15中で空気には気化燃料が混合される。こうして生成された混合気は排出口15bから排出される。こうした気化器11は例えば自動二輪車といった鞍乗り型車両に組み込まれて利用されることができる。自動二輪車への搭載にあたって吸気路15の吸気口15aには例えばエアクリーナーに通じる吸気ダクト(図示されず)が接続されればよく、吸気路15の排出口15bには例えば内燃機関の吸気ポートに通じる吸気管(図示されず)が接続されればよい。   FIG. 1 schematically shows the entire vaporizer 11 according to the first embodiment of the present invention. The vaporizer 11 includes a vaporizer body 12. The carburetor body 12 has a body 13 and a valve cylinder 14. The carburetor body 12 defines an intake passage 15 in the body 13. Air is introduced into the intake passage 15 from an intake port 15a. Vaporized fuel is mixed with air in the intake passage 15 of the carburetor 11. The air-fuel mixture thus generated is discharged from the discharge port 15b. Such a carburetor 11 can be used by being incorporated in a saddle type vehicle such as a motorcycle. For example, an intake duct (not shown) leading to an air cleaner may be connected to the intake port 15a of the intake passage 15 for mounting on a motorcycle, and the exhaust port 15b of the intake passage 15 is connected to, for example, an intake port of an internal combustion engine. An intake pipe (not shown) may be connected.

弁筒14は胴体13に一体化される。気化器本体12は、弁筒14内で、水平方向に延びる吸気路15から分岐するスライド空間16を区画する。ここでは、スライド空間16は吸気路15の中心軸線17aに直交する中心軸線17bを有する円柱形に象られる。弁筒14の周囲で気化器本体12には収容室18が形成される。   The valve cylinder 14 is integrated with the body 13. The carburetor body 12 defines a slide space 16 that branches from an intake passage 15 extending in the horizontal direction within the valve cylinder 14. Here, the slide space 16 is shaped like a cylinder having a central axis 17 b orthogonal to the central axis 17 a of the intake passage 15. A storage chamber 18 is formed in the vaporizer body 12 around the valve cylinder 14.

気化器本体12は弁筒14内にピストン形状のスロットル弁19を収容する。スロットル弁19はスライド空間16にスライド自在に嵌め入れられ収容される。スロットル弁19の上下動に応じてスロットル弁19は吸気路15を開閉する。スロットル弁19の位置に応じて吸気路15の開度は調整される。   The carburetor body 12 accommodates a piston-shaped throttle valve 19 in the valve cylinder 14. The throttle valve 19 is slidably fitted in and accommodated in the slide space 16. The throttle valve 19 opens and closes the intake passage 15 according to the vertical movement of the throttle valve 19. The opening degree of the intake passage 15 is adjusted according to the position of the throttle valve 19.

スロットル弁19にはスロットルケーブル21が連結される。スロットルケーブル21は例えば自動二輪車のスロットルグリップ(図示されず)に接続される。スロットルグリップの操作はスロットルケーブル21の軸方向移動に変換される。こうしたスロットルケーブル21の操作に応じて混合気の流量や混合比は調整される。   A throttle cable 21 is connected to the throttle valve 19. The throttle cable 21 is connected to, for example, a throttle grip (not shown) of a motorcycle. The operation of the throttle grip is converted into the movement of the throttle cable 21 in the axial direction. The flow rate and mixture ratio of the air-fuel mixture are adjusted according to the operation of the throttle cable 21.

気化器本体12には第1蓋部材22が取り付けられる。第1蓋部材22は気化器本体12の上端で収容室18の開放端を覆う。取り付けにあたって締結部材すなわちボルト23が用いられる。第1蓋部材22は気化器本体12に例えば複数本のボルト23で着脱自在に結合される。第1蓋部材22には収容室18に対してスロットル弁19の出入りを許容する開口22aが形成される。開口22aはスロットルケーブル21の軸心に同軸の円形の輪郭を有する。第1蓋部材22には開口22aを囲むボス22bが形成される。ボス22bの外周面には雄ねじ24が刻まれる。   A first lid member 22 is attached to the vaporizer body 12. The first lid member 22 covers the open end of the storage chamber 18 at the upper end of the vaporizer body 12. A fastening member, that is, a bolt 23 is used for attachment. The first lid member 22 is detachably coupled to the vaporizer body 12 with, for example, a plurality of bolts 23. The first lid member 22 is formed with an opening 22 a that allows the throttle valve 19 to enter and exit the storage chamber 18. The opening 22 a has a circular outline coaxial with the axis of the throttle cable 21. The first lid member 22 is formed with a boss 22b surrounding the opening 22a. A male screw 24 is engraved on the outer peripheral surface of the boss 22b.

第1蓋部材22には着脱自在に第2蓋部材25が取り付けられる。スロットルケーブル21は第2蓋部材25を貫通する。第2蓋部材25は、スロットルケーブル21の軸心に同心の円形の輪郭を有する。第2蓋部材は、スロットルケーブル21の軸心に重なる回転軸線回りで第1蓋部材22に対して回転する。回転軸線は中心軸線17bに重なる。第2蓋部材25の内周面には雌ねじ26が刻まれる。第2蓋部材25の雌ねじ26は第1蓋部材22の雄ねじ24に噛み合う。こうして第2蓋部材25は第1蓋部材22にねじ結合される。   A second lid member 25 is detachably attached to the first lid member 22. The throttle cable 21 passes through the second lid member 25. The second lid member 25 has a circular outline concentric with the axis of the throttle cable 21. The second lid member rotates with respect to the first lid member 22 around the rotation axis that overlaps the axis of the throttle cable 21. The rotation axis overlaps the center axis 17b. A female screw 26 is engraved on the inner peripheral surface of the second lid member 25. The female screw 26 of the second lid member 25 meshes with the male screw 24 of the first lid member 22. Thus, the second lid member 25 is screwed to the first lid member 22.

スロットル弁19と第2蓋部材25との間には弦巻ばね27が配置される。弦巻ばね27はスロットル弁19と第2蓋部材25との間に挟まれて伸張方向に反発力を発揮する。したがって、弦巻ばね27は最下位置に向かってスロットル弁19を押し下げる。最下位置のスロットル弁19は吸気路15で最小値の開度(例えばアイドル運転開度状態)を確立する。スロットルケーブル21が引っ張られ弦巻ばね27の反発力に抗してスロットル弁19が上方向に変位すると、吸気路15の開度は増大する。   A string-wound spring 27 is disposed between the throttle valve 19 and the second lid member 25. The string spring 27 is sandwiched between the throttle valve 19 and the second lid member 25 and exhibits a repulsive force in the extending direction. Accordingly, the string spring 27 pushes down the throttle valve 19 toward the lowest position. The throttle valve 19 at the lowest position establishes a minimum opening (for example, an idle operation opening state) in the intake passage 15. When the throttle cable 21 is pulled and the throttle valve 19 is displaced upward against the repulsive force of the string spring 27, the opening of the intake passage 15 increases.

吸気路15にはスロットル弁19の上流側でチョーク弁28が配置される。チョーク弁28はいわゆるバタフライ型に構成される。チョーク弁28は、水平方向に延びる軸回りで回転し、回転に応じて吸気路15を開閉する。チョーク弁28は、始動時に燃料の割合を濃くするために使用される。   A choke valve 28 is disposed in the intake passage 15 upstream of the throttle valve 19. The choke valve 28 is configured as a so-called butterfly type. The choke valve 28 rotates about an axis extending in the horizontal direction, and opens and closes the intake passage 15 according to the rotation. The choke valve 28 is used to increase the fuel ratio at start-up.

気化器本体12の下端にはフロート室体29が結合される。フロート室体29は気化器本体12との間にフロート室31を区画する。フロート室31には燃料よりも小さい比重を有するフロート32が収容される。フロート32は燃料の液位に応じて上下動する。フロート32には支え板33が結合される。支え板33は支軸34回りで揺動自在にフロート室31内に配置される。支え板33は下方からフロート弁35を支える。フロート弁35は決められた液位で燃料流入路36を塞ぐ。燃料の液位が下降すると、フロート弁35は開弁する。開弁に応じて燃料流入路36から燃料がフロート室31内に流入する。こうしてフロート室31内には常時一定液位の油面を形成する燃料が貯留される。燃料流入路36には燃料タンクから延びる燃料導管が接続される。燃料流入路36には燃料タンクから燃料が供給される。   A float chamber body 29 is coupled to the lower end of the vaporizer body 12. The float chamber body 29 partitions the float chamber 31 between the vaporizer body 12. The float chamber 31 accommodates a float 32 having a specific gravity smaller than that of the fuel. The float 32 moves up and down according to the fuel level. A support plate 33 is coupled to the float 32. The support plate 33 is disposed in the float chamber 31 so as to be swingable around the support shaft 34. The support plate 33 supports the float valve 35 from below. The float valve 35 closes the fuel inflow path 36 at a predetermined liquid level. When the fuel level drops, the float valve 35 opens. The fuel flows into the float chamber 31 from the fuel inflow passage 36 in response to opening of the valve. In this way, the fuel that forms the oil level at a constant liquid level is always stored in the float chamber 31. A fuel conduit extending from the fuel tank is connected to the fuel inflow path 36. Fuel is supplied to the fuel inflow path 36 from a fuel tank.

フロート室31内にはメインジェット37およびスロージェット38が並列に配置される。メインジェット37には、吸気路15に開口するメインノズル39が接続される。燃料はメインジェット37で計量されてメインノズル39から噴き出す。スロージェット38には、メインノズル39よりも下流で吸気路15に開口するスローノズル41が接続される。燃料はスロージェット38で計量されてスローノズル41から噴き出す。該スローノズル41の開口面積により燃料の噴き出しが設定される。   In the float chamber 31, a main jet 37 and a slow jet 38 are arranged in parallel. A main nozzle 39 that opens to the intake passage 15 is connected to the main jet 37. The fuel is measured by the main jet 37 and ejected from the main nozzle 39. The slow jet 38 is connected to a slow nozzle 41 that opens to the intake passage 15 downstream of the main nozzle 39. The fuel is measured by the slow jet 38 and ejected from the slow nozzle 41. The ejection of fuel is set by the opening area of the slow nozzle 41.

スロットル弁19にはニードル弁42が連結される。ニードル弁42はスロットル弁19に同軸に配置されスロットル弁19の下端から下方に突き出て、該下方側に向かい径が細くなるように設定される。ニードル弁42はメインノズル39内に挿入される。スロットル弁19の上下動に応じてニードル弁42はメインノズル39内を上下動する。該上下動によりメインノズル39の開口面積を変化させて燃料の噴き出しが設定される。   A needle valve 42 is connected to the throttle valve 19. The needle valve 42 is disposed coaxially with the throttle valve 19, protrudes downward from the lower end of the throttle valve 19, and is set so that the diameter decreases toward the lower side. The needle valve 42 is inserted into the main nozzle 39. The needle valve 42 moves up and down in the main nozzle 39 according to the vertical movement of the throttle valve 19. The up and down movement changes the opening area of the main nozzle 39 to set the ejection of fuel.

図2に示されるように、気化器本体12にはメインエアブリード通路43が形成される。メインエアブリード通路43の第2路43cは先端でメインノズル部37、39に開口する。第2路43cは下向きに傾斜するドリル孔で形成される。第2路43cの外端は気化器本体12に嵌め込まれる閉塞部材44aで塞がれる。ここでは、メインエアブリード通路43は、吸気路15の中心線17aと弁筒14の中心線17bを含む平面VPを基準に、一側で、吸気路15に臨むメインノズル部37、39に向かって延びる第1接続路として機能する。   As shown in FIG. 2, a main air bleed passage 43 is formed in the vaporizer body 12. The second passage 43c of the main air bleed passage 43 opens to the main nozzle portions 37 and 39 at the tip. The second path 43c is formed by a drill hole inclined downward. The outer end of the second path 43c is closed by a closing member 44a fitted into the vaporizer body 12. Here, the main air bleed passage 43 faces the main nozzle portions 37 and 39 facing the intake passage 15 on one side with respect to a plane VP including the center line 17a of the intake passage 15 and the center line 17b of the valve cylinder 14. It functions as the 1st connection path extended.

図3に示されるように、気化器本体12にはスローエアブリード通路45が形成される。スローエアブリード通路45の第4路45cは先端でスローノズル部38、41に開口する。第4路45cは下向きに傾斜するドリル孔で形成される。第4路45cの外端は気化器本体12に嵌め込まれる閉塞部材44bで塞がれる。ここでは、スローエアブリード通路45は、吸気路15の中心線17aと弁筒14の中心線17bを含む平面VPを基準に、一側で、吸気路15に臨むスローノズル部38、41に向かって延びる第2接続路として機能する。   As shown in FIG. 3, a slow air bleed passage 45 is formed in the vaporizer body 12. The fourth passage 45c of the slow air bleed passage 45 opens to the slow nozzle portions 38 and 41 at the tip. The fourth path 45c is formed by a drill hole inclined downward. The outer end of the fourth path 45c is closed by a closing member 44b fitted into the vaporizer body 12. Here, the slow air bleed passage 45 faces the slow nozzle portions 38 and 41 facing the intake passage 15 on one side with reference to a plane VP including the center line 17a of the intake passage 15 and the center line 17b of the valve cylinder 14. It functions as the 2nd connection path extended.

図4に示されるように、気化器本体12には2つのエアブリード通路(メインエアブリード通路43およびスローエアブリード通路45)を有する通路孔46が形成される。メインエアブリード通路43およびスローエアブリード通路45は通路孔46に個別に接続される。メインエアブリード通路43およびスローエアブリード通路45は、吸気路15の中心線17aと弁筒14の中心線17bを含む平面VPを基準に、通路孔46が配置される一側で延びる。チョーク弁28は、チョーク弁28から該操作レバー60にかけて当該一側に対する他側に配置される(図2参照)。通路孔46は、重力が作用する方向(ここでは鉛直方向)に延びる中心軸線を有する円柱形状の空間を区画する。通路孔46の中心軸線は、吸気路方向(吸気路15が延びる方向)に直交および弁筒方向(弁筒14が延びる方向)に直交する方向視において、弁筒14が延びる方向側に延びている。メインエアブリード通路43およびスローエアブリード通路45はおのおの通路孔46に開口することから、通路孔46は共通路として機能する。   As shown in FIG. 4, a passage hole 46 having two air bleed passages (a main air bleed passage 43 and a slow air bleed passage 45) is formed in the carburetor body 12. The main air bleed passage 43 and the slow air bleed passage 45 are individually connected to the passage hole 46. The main air bleed passage 43 and the slow air bleed passage 45 extend on one side where the passage hole 46 is disposed with reference to a plane VP including the center line 17a of the intake passage 15 and the center line 17b of the valve cylinder 14. The choke valve 28 is disposed on the other side from the choke valve 28 to the operation lever 60 (see FIG. 2). The passage hole 46 defines a cylindrical space having a central axis extending in a direction in which gravity acts (here, a vertical direction). The central axis of the passage hole 46 extends in the direction in which the valve cylinder 14 extends in a direction perpendicular to the intake path direction (direction in which the intake path 15 extends) and in the valve cylinder direction (direction in which the valve cylinder 14 extends). Yes. Since the main air bleed passage 43 and the slow air bleed passage 45 open to the respective passage holes 46, the passage holes 46 function as a common path.

通路孔46内に弁体47が位置する。通路孔46は気化器本体12に形成されて、弁体47は気化器本体12に収容されることになる。弁体47は通路孔46のスライド面46bにスライド自在に面接触する。スライド面46bは中心軸線46aに平行に重力が作用する方向に延びる。弁体47は通路孔46内を軸方向に動作する。メインエアブリード通路43の第1路43bは吸気路方向(ここでは水平方向)に延びて通路孔46のスライド面46bで開口し、通路孔46と第1路43bとでクランクを形成している。第1路43bの開口43aは吸気路方向(ここでは水平方向)に延びて通路孔46を横切るドリル孔で形成される。ドリル孔の先端は第1路43bに接続され、第1路43bの先端は第2路43cに接続され、第2路43cはメインノズル部37、39に接続される。こうして通路孔46はメインエアブリード通路43の第1接続路43b,43cを経てメインノズル部37、39に繋がり、メインジェット37で計量された燃料に空気を混合し、メインノズル39から吸気路15へ混合気が出される。   A valve body 47 is located in the passage hole 46. The passage hole 46 is formed in the vaporizer main body 12, and the valve body 47 is accommodated in the vaporizer main body 12. The valve body 47 is slidably brought into surface contact with the slide surface 46 b of the passage hole 46. The slide surface 46b extends in a direction in which gravity acts in parallel to the central axis 46a. The valve body 47 moves in the passage hole 46 in the axial direction. The first passage 43b of the main air bleed passage 43 extends in the intake passage direction (here, the horizontal direction) and opens at the slide surface 46b of the passage hole 46, and the passage hole 46 and the first passage 43b form a crank. . The opening 43 a of the first passage 43 b is formed by a drill hole that extends in the intake passage direction (here, the horizontal direction) and crosses the passage hole 46. The tip of the drill hole is connected to the first passage 43b, the tip of the first passage 43b is connected to the second passage 43c, and the second passage 43c is connected to the main nozzle portions 37 and 39. In this way, the passage hole 46 is connected to the main nozzle portions 37 and 39 via the first connection passages 43 b and 43 c of the main air bleed passage 43, and air is mixed with the fuel measured by the main jet 37, and then from the main nozzle 39 to the intake passage 15. A mixture is released.

スローエアブリード通路45の第3路45bは吸気路方向(ここでは水平方向)に延びてメインエアブリード通路43と同様にスライド面46bで開口し、通路孔46と第3路45bとでクランクを形成している。メインエアブリード通路43の開口43aはスローエアブリード通路45の開口45aよりも重力が作用する方向に下方に配置される。メインエアブリード通路43およびスローエアブリード通路45は基準線46aに平行に延びる第2の基準線46c上の位置で開口する。第3路45bの開口45aは吸気路方向(ここでは水平方向)に延びて通路孔46を横切るドリル孔で形成される。ドリル孔の先端は第3路45bに接続され、第3路45bの先端は第4路45cに接続され(図3参照)、第4路45cはスローノズル部38、41に接続される。こうして通路孔46はスローエアブリード通路45の第2接続路45b、45cを経てスローノズル部38、41に繋がり、スロージェット38で計量された燃料に空気を混合し、スローノズル41から吸気路15へ混合気が出される。   The third passage 45b of the slow air bleed passage 45 extends in the intake passage direction (here, the horizontal direction) and opens at the slide surface 46b like the main air bleed passage 43, and the crank is formed by the passage hole 46 and the third passage 45b. Forming. The opening 43a of the main air bleed passage 43 is disposed below the opening 45a of the slow air bleed passage 45 in the direction in which gravity acts. The main air bleed passage 43 and the slow air bleed passage 45 open at a position on the second reference line 46c extending in parallel to the reference line 46a. The opening 45 a of the third passage 45 b is formed by a drill hole that extends in the intake passage direction (here, the horizontal direction) and crosses the passage hole 46. The tip of the drill hole is connected to the third passage 45b, the tip of the third passage 45b is connected to the fourth passage 45c (see FIG. 3), and the fourth passage 45c is connected to the slow nozzle portions 38 and 41. In this way, the passage hole 46 is connected to the slow nozzle portions 38 and 41 through the second connection passages 45b and 45c of the slow air bleed passage 45, and the air is mixed with the fuel measured by the slow jet 38. The air-fuel mixture is released.

通路孔46には空気導入路48が開口する。空気導入路48の一端は外気空間すなわち吸気路15に接続される。空気導入路48の一端はスロットル弁19の上流側に配置される。空気導入路48の他端は通路孔46に開口する。空気導入路48の開口48aはメインエアブリード通路43の開口43aよりも低い位置に(すなわち、重力が作用する方向に開口43aよりも下方に)配置される。通路孔46には空気導入路48を経て吸気路15から空気が導入される。   An air introduction path 48 opens in the passage hole 46. One end of the air introduction path 48 is connected to the outside air space, that is, the intake path 15. One end of the air introduction path 48 is disposed on the upstream side of the throttle valve 19. The other end of the air introduction path 48 opens into the passage hole 46. The opening 48a of the air introduction path 48 is disposed at a position lower than the opening 43a of the main air bleed passage 43 (that is, below the opening 43a in the direction in which gravity acts). Air is introduced from the intake passage 15 into the passage hole 46 through the air introduction passage 48.

弁体47には軸(駆動軸49)を有する電気駆動部材としての電動モーター51が連結される。基準線46aは駆動軸49に同軸である。電動モーター51の駆動軸49にはねじ溝が刻まれる。ねじ溝は弁体47に固定された雌ねじ部材52のねじ溝に噛み合う。ねじ溝の働きで駆動軸49の回転動作は雌ねじ部材52の軸方向の動きに変換される。こうして電動モーター51の回転制御に応じて弁体47の軸方向の動きは制御される。その他、弁体の駆動にあたって電動モーター51に代えて電磁弁その他の駆動源が用いられてもよい。内燃機関の上流側に設置されたO2センサーの情報をフィードバックして電気駆動部材(ここでは電動モーター51)の回転制御を行なうことができる。   The valve body 47 is connected to an electric motor 51 as an electric drive member having a shaft (drive shaft 49). The reference line 46 a is coaxial with the drive shaft 49. A screw groove is formed in the drive shaft 49 of the electric motor 51. The thread groove meshes with the thread groove of the female thread member 52 fixed to the valve body 47. The rotational movement of the drive shaft 49 is converted into the axial movement of the female screw member 52 by the action of the thread groove. Thus, the axial movement of the valve body 47 is controlled according to the rotation control of the electric motor 51. In addition, a drive source such as an electromagnetic valve may be used instead of the electric motor 51 for driving the valve body. It is possible to control the rotation of the electric drive member (here, the electric motor 51) by feeding back the information of the O2 sensor installed on the upstream side of the internal combustion engine.

通路孔46を区画する気化器本体12と弁体47との間には通路孔46内で弁体47のがたつきを防止するがたつき防止機構Mが確立される。がたつき防止機構Mは、弁体47に設けられる弁体側係合53と、通路孔46で気化器本体12に設けられる通路孔側係合54とを備える。弁体側係合53は、弁体47に一体的に設けられて弁体47のスライド方向に線形に延びるキー溝で構成される。通路孔側係合54は、通路孔46で気化器本体12に固定されて、キー溝に噛み合って弁体47の移動を案内するガイドで構成される。ガイドは突起で構成されればよい。通路孔側係合54は、メインエアブリード通路43の開口43aよりもスローエアブリード通路45の開口45aの近傍の位置に設けられる。弁体側係合53および通路孔側係合54は、協働で、スライド動作する方向に直交する方向であってスライド動作する方向を軸にした回転方向において、スライド面46bに対して弁体47の動きを抑制する。   Between the carburetor main body 12 and the valve body 47 that define the passage hole 46, a rattling prevention mechanism M that prevents the valve body 47 from rattling within the passage hole 46 is established. The rattling prevention mechanism M includes a valve body side engagement 53 provided in the valve body 47 and a passage hole side engagement 54 provided in the vaporizer body 12 by the passage hole 46. The valve body side engagement 53 is formed by a key groove provided integrally with the valve body 47 and extending linearly in the sliding direction of the valve body 47. The passage hole side engagement 54 is configured by a guide that is fixed to the carburetor body 12 by the passage hole 46 and that engages with the key groove to guide the movement of the valve body 47. The guide should just be comprised by protrusion. The passage hole side engagement 54 is provided at a position closer to the opening 45 a of the slow air bleed passage 45 than the opening 43 a of the main air bleed passage 43. The valve body side engagement 53 and the passage hole side engagement 54 cooperate to form the valve body 47 with respect to the slide surface 46b in a rotation direction that is orthogonal to the slide operation direction and that is centered on the slide operation direction. Suppresses movement.

ここでは、ガイドは、気化器本体12の外面から通路孔46に向かって気化器本体12に穿たれて通路孔46に開口する受け入れ孔55に受け入れられる。受け入れ孔55は円形の断面を有する。スローエアブリード通路45は受け入れ孔55に同軸に断面が円形のキー(拡張部)を有する。   Here, the guide is received in the receiving hole 55 that is formed in the carburetor body 12 from the outer surface of the carburetor body 12 toward the passage hole 46 and opens in the passage hole 46. The receiving hole 55 has a circular cross section. The slow air bleed passage 45 has a key (expansion portion) having a circular cross section coaxially with the receiving hole 55.

図5に示されるように、弁体47には、スライド動作に応じてスローエアブリード通路45の開口(第1開口)45aに重なる第1弁体(第1仕切り)47aと、スライド動作に応じてメインエアブリード通路43の開口(第2開口)43aに重なる第2弁体(第2仕切り)47bとが区画される。第1仕切り47aの区画にあたって弁体47には窓孔56が形成される。第2仕切り47bの区画にあたって弁体47の外縁57には切り欠きが形成される。弁体47のスライド動作に応じてメインエアブリード通路43の開口面積およびスローエアブリード通路45の開口面積は変更される。電動モーター51および駆動軸49は第1弁体47aを駆動する駆動力伝達機構として機能する。駆動力伝達機構は前述のようにねじ機構を採用する。動力伝達機構、スローエアブリード通路45の開口45a、およびメインエアブリード通路43の開口43aは一方向(ここでは鉛直方向)に並べられる。第2弁体47bは第1弁体47aに一体化されることから、第2弁体47bは第1弁体47aに連動する。第1弁体47aは通路孔46でスローエアブリード通路45の開口面積を変更し、第2弁体47bは通路孔46でメインエアブリード通路43の開口面積を変更する。   As shown in FIG. 5, the valve body 47 includes a first valve body (first partition) 47 a that overlaps the opening (first opening) 45 a of the slow air bleed passage 45 according to the sliding operation, and a sliding operation. Thus, a second valve body (second partition) 47b that overlaps the opening (second opening) 43a of the main air bleed passage 43 is partitioned. A window hole 56 is formed in the valve body 47 when the first partition 47a is partitioned. A notch is formed in the outer edge 57 of the valve body 47 when the second partition 47b is partitioned. The opening area of the main air bleed passage 43 and the opening area of the slow air bleed passage 45 are changed according to the sliding operation of the valve body 47. The electric motor 51 and the drive shaft 49 function as a driving force transmission mechanism that drives the first valve body 47a. The driving force transmission mechanism employs a screw mechanism as described above. The power transmission mechanism, the opening 45a of the slow air bleed passage 45, and the opening 43a of the main air bleed passage 43 are arranged in one direction (here, the vertical direction). Since the second valve body 47b is integrated with the first valve body 47a, the second valve body 47b is interlocked with the first valve body 47a. The first valve body 47 a changes the opening area of the slow air bleed passage 45 at the passage hole 46, and the second valve body 47 b changes the opening area of the main air bleed passage 43 at the passage hole 46.

通路孔46は、弁筒14の中心線17bより吸気路方向の上流側であって、吸気路15の側面側に設けられる。メインエアブリード通路43の第1路43bおよびスローエアブリード通路45の第3路45bは吸気路15に沿って延びている。空気導入路48は、吸気路15に向かって(ここでは吸気路15に向かって水平方向に)延びて通路孔46に対してクランクを形成する。   The passage hole 46 is provided on the upstream side in the intake passage direction from the center line 17 b of the valve cylinder 14 and on the side surface side of the intake passage 15. The first passage 43 b of the main air bleed passage 43 and the third passage 45 b of the slow air bleed passage 45 extend along the intake passage 15. The air introduction path 48 extends toward the intake path 15 (here, in the horizontal direction toward the intake path 15) and forms a crank with respect to the passage hole 46.

メインエアブリード通路43はエンジン負圧が弱いとき(高負荷時)に特に使用され、スローエアブリード通路45はエンジン負圧が強いとき(低負荷時)に特に使用されるので、共通路としての通路孔46にスローエアブリード通路45用の第1弁体47aおよびメインエアブリード通路43用の第2弁体47bを配置することができる。よって、弁体47の構造を簡素化することができる。また、メインエアブリード通路43とスローエアブリード通路45を両方開口させた状態にして、両開口を近づけて小型化することができるとともに、低負荷から高負荷(加速時)へ移行する際、また逆の場合(減速時)に、応答性を良好にすることができる(例えば、加速時にメインエアブリード通路43の開度面積を急速に開く場合、あらかじめある程度開いた状態から制御することができる)。   The main air bleed passage 43 is particularly used when the engine negative pressure is low (high load), and the slow air bleed passage 45 is particularly used when the engine negative pressure is strong (low load). A first valve body 47 a for the slow air bleed passage 45 and a second valve body 47 b for the main air bleed passage 43 can be disposed in the passage hole 46. Therefore, the structure of the valve body 47 can be simplified. In addition, both the main air bleed passage 43 and the slow air bleed passage 45 can be opened to reduce the size by bringing both openings close to each other, and when shifting from a low load to a high load (acceleration), In the opposite case (during deceleration), the responsiveness can be improved (for example, when the opening area of the main air bleed passage 43 is rapidly opened during acceleration, it can be controlled from a state where it is opened to some extent in advance). .

気化器11では、第1弁体47aおよび第2弁体47bは一体化されることから、第1弁体47aおよび第2弁体47bは1部材として形成されることができる。したがって、部品点数の増加は回避される。組み立て作業の負担は軽減される。また、弁体47をコンパクトに形成することができる。   In the vaporizer 11, since the first valve body 47a and the second valve body 47b are integrated, the first valve body 47a and the second valve body 47b can be formed as one member. Therefore, an increase in the number of parts is avoided. The burden of assembly work is reduced. Moreover, the valve body 47 can be formed compactly.

ブリードエアの供給にあたって、弁体47の第1仕切り56a(第1弁体47a)はスローエアブリード通路45の第1開口45aに対して変位しスローエアブリード通路45の開口面積を変化させる。同様に、弁体47の第2仕切り57a(第2弁体47b)はメインエアブリード通路43の第2開口43aに対して変位しメインエアブリード通路43の開口面積を変化させる。弁体47のスライド動作に応じてメインエアブリード通路43の開度およびスローエアブリード通路45の開度はきめ細かく制御される。また、スライド面46bの開口面積を変化させる構造なので、弁体47が簡易構造になり、弁体47をコンパクトにすることができる。   When supplying bleed air, the first partition 56 a (first valve body 47 a) of the valve body 47 is displaced with respect to the first opening 45 a of the slow air bleed passage 45 to change the opening area of the slow air bleed passage 45. Similarly, the second partition 57 a (second valve body 47 b) of the valve body 47 is displaced with respect to the second opening 43 a of the main air bleed passage 43 to change the opening area of the main air bleed passage 43. The opening of the main air bleed passage 43 and the opening of the slow air bleed passage 45 are finely controlled in accordance with the sliding operation of the valve body 47. Further, since the opening area of the slide surface 46b is changed, the valve body 47 has a simple structure, and the valve body 47 can be made compact.

前述のように、弁体47の駆動にあたって電動モーター51の回転動作は弁体47の線形動作に変換される。駆動力の変換にあたって駆動動力伝達機構にはねじ機構が用いられる。電動モーター51、駆動軸49、スローエアブリード通路45の開口45aおよびメインエアブリード通路43の開口43aは一方向に並んで設けられる。一方向に延びるねじ機構は該一方向に沿って簡単に設けられることができる。一方向以外がコンパクト(小型化)になるので、気化器11がコンパクトになるように(弁筒14に、または吸気路15の外形に沿って配置して)通路孔46を気化器11に設置することができる。   As described above, the rotation operation of the electric motor 51 is converted into the linear operation of the valve body 47 when the valve body 47 is driven. A screw mechanism is used as the driving power transmission mechanism for converting the driving force. The electric motor 51, the drive shaft 49, the opening 45a of the slow air bleed passage 45 and the opening 43a of the main air bleed passage 43 are provided side by side in one direction. A screw mechanism extending in one direction can be easily provided along the one direction. Since the direction other than one direction is compact (downsized), the passage hole 46 is installed in the carburetor 11 so that the carburetor 11 is compact (arranged in the valve cylinder 14 or along the outer shape of the intake passage 15). can do.

第1仕切り56a(第1弁体47a)または第2仕切り57a(第2弁体47b)は弁体47の外縁に形成される。一方向において弁体47をコンパクトにすることができる。また、コンパクトな弁体47を気化器11に設置するので、気化器11をコンパクトにすることができる。   The first partition 56 a (first valve body 47 a) or the second partition 57 a (second valve body 47 b) is formed on the outer edge of the valve body 47. The valve body 47 can be made compact in one direction. Moreover, since the compact valve body 47 is installed in the vaporizer 11, the vaporizer 11 can be made compact.

気化器本体12は、吸気路15の中心線17aと弁筒14の中心線17bを含む平面VPを基準に、通路孔46が配置される一側で、エアブリード通路43、45として通路孔46から連続して吸気路15に臨むノズル部37、39、38、41に向かって延びる接続路として第1路43b、第2路43c、第3路45bおよび第4路45cを有する。通路孔46並びにメインエアブリード通路43およびスローエアブリード通路45を気化器本体12の一側に集中的に配置することによって、エアブリード通路43、45を成型または加工により比較的に簡単に形成することができ、気化器11はコンパクトに構成されることができる。   The carburetor main body 12 has a passage hole 46 as an air bleed passage 43, 45 on one side where the passage hole 46 is arranged on the basis of a plane VP including the center line 17a of the intake passage 15 and the center line 17b of the valve cylinder 14. The first passage 43b, the second passage 43c, the third passage 45b, and the fourth passage 45c are provided as connection passages extending toward the nozzle portions 37, 39, 38, and 41 that face the intake passage 15 continuously. By arranging the passage hole 46, the main air bleed passage 43 and the slow air bleed passage 45 in a concentrated manner on one side of the carburetor body 12, the air bleed passages 43 and 45 are formed relatively easily by molding or processing. The vaporizer 11 can be configured compactly.

気化器本体12は、平面VPを基準に、通路孔46が配置される一側に、エアブリード通路として、通路孔46から吸気路15へ向かって開口する空気導入路48を備える。空気導入路48、通路孔46および接続路(エアブリード通路43、45)を気化器本体12の一側に集中的に配置して、エアブリード通路43、45を成型または加工により比較的に簡単に形成することができ、気化器11はコンパクトに構成されることができる。   The carburetor main body 12 includes an air introduction path 48 that opens from the passage hole 46 toward the intake path 15 as an air bleed passage on one side where the passage hole 46 is disposed with respect to the plane VP. The air introduction passage 48, the passage hole 46, and the connection passage (air bleed passages 43, 45) are concentrated on one side of the carburetor body 12, and the air bleed passages 43, 45 are relatively easy to mold or process. The vaporizer 11 can be configured compactly.

気化器本体12は、メインエアブリード通路43として、メインノズル部37、39に向かって延びる第1接続路43b、43cと、スローエアブリード通路45として、メインノズル部38、41に向かって延びる第2接続路45b、45cとを構成する。第1および第2接続路を気化器本体12の一側に集中的に配置して、メインエアブリード通路43およびスローエアブリード通路45を成型または加工により比較的に簡単に形成することができ、気化器11はコンパクトに構成されることができる。   The carburetor body 12 includes first connection passages 43b and 43c that extend toward the main nozzle portions 37 and 39 as the main air bleed passage 43, and a first connection passage that extends toward the main nozzle portions 38 and 41 as the slow air bleed passage 45. Two connection paths 45b and 45c are formed. The first and second connection paths are concentrated on one side of the carburetor body 12, and the main air bleed passage 43 and the slow air bleed passage 45 can be formed relatively easily by molding or processing. The vaporizer 11 can be configured compactly.

通路孔46内でメインエアブリード通路43およびスローエアブリード通路45の共通路が形成されるので、メインエアブリードおよびスローエアブリードの弁体を一体化することができ、気化器11はコンパクトに構成されることができる。また、通路孔46内でメインエアブリード通路43およびスローエアブリード通路45の共通路が形成されるので、空気導入路48をメインエアブリード通路43およびスローエアブリード通路45として共通化することができ、気化器11はコンパクトに構成されることができる。   Since a common passage for the main air bleed passage 43 and the slow air bleed passage 45 is formed in the passage hole 46, the valve bodies of the main air bleed and the slow air bleed can be integrated, and the carburetor 11 has a compact configuration. Can be done. In addition, since the common passage for the main air bleed passage 43 and the slow air bleed passage 45 is formed in the passage hole 46, the air introduction passage 48 can be shared as the main air bleed passage 43 and the slow air bleed passage 45. The vaporizer 11 can be configured compactly.

弁体47は、スローエアブリード通路45の開口面積を変更する第1弁体47aと、第1弁体47aに一体化され、メインエアブリード通路43の開口面積を変更する第2弁体47bとを構成するので、スローエアブリード通路45およびメインエアブリード通路43で弁体47が統合され、加えて、同一のスライド面46bにメインエアブリード通路43およびスローエアブリード通路45が開口するので、通路孔46の形状を簡素化して、エアブリード通路43、45を簡単に形成することができ、ひいては気化器11をコンパクトに構成することができる。また、同一のスライド面46bにメインエアブリード通路43およびスローエアブリード通路45が開口するので、弁体47がスライド面46bに向かう方向に負圧が発生し、通路孔46内での弁体47のがたつきを極力抑えることができる。   The valve body 47 includes a first valve body 47a that changes the opening area of the slow air bleed passage 45, and a second valve body 47b that is integrated with the first valve body 47a and changes the opening area of the main air bleed passage 43. Therefore, the valve body 47 is integrated by the slow air bleed passage 45 and the main air bleed passage 43, and in addition, the main air bleed passage 43 and the slow air bleed passage 45 open on the same slide surface 46b. The shape of the hole 46 can be simplified, and the air bleed passages 43 and 45 can be easily formed. As a result, the vaporizer 11 can be made compact. Further, since the main air bleed passage 43 and the slow air bleed passage 45 are opened on the same slide surface 46b, negative pressure is generated in the direction of the valve body 47 toward the slide surface 46b, and the valve body 47 in the passage hole 46 is formed. It is possible to suppress rattling as much as possible.

通路孔46は、弁筒15の中心線17bより吸気路方向の上流側であって吸気路15の側面に設けられ、メインエアブリード通路43およびスローエアブリード通路45は吸気路15に沿って延びていて、空気導入路48は吸気路15に向かって延びることから、メインエアブリード通路43およびスローエアブリード通路45並びに空気導入路48を簡単に設けることができるとともに、気化器11をコンパクトに構成することができる。   The passage hole 46 is provided upstream of the center line 17 b of the valve cylinder 15 in the intake passage direction and on the side surface of the intake passage 15. The main air bleed passage 43 and the slow air bleed passage 45 extend along the intake passage 15. In addition, since the air introduction path 48 extends toward the intake path 15, the main air bleed passage 43, the slow air bleed passage 45, and the air introduction passage 48 can be easily provided, and the carburetor 11 has a compact configuration. can do.

気化器本体12の一側にメインエアブリード通路43およびスローエアブリード通路45並びに通路孔46を配置し、チョーク弁28は、チョーク弁28から該操作レバー60にかけて一側に対する他側に設置されるので、気化器11をコンパクトに構成することができる。   A main air bleed passage 43, a slow air bleed passage 45, and a passage hole 46 are arranged on one side of the carburetor body 12, and the choke valve 28 is installed on the other side of the one side from the choke valve 28 to the operation lever 60. Therefore, the vaporizer 11 can be configured in a compact manner.

前述のように、弁体47は通路孔46のスライド面46bに沿ってスライド動作を実現する。弁体47はエアブリード通路43、45の開口43a、45aに対して変位しエアブリード通路43、45の開口面積を変化させる。弁体47のスライド動作に応じてエアブリード通路43、45の開度はきめ細かく制御される。このとき、スライド面46bは重力が作用する方向に延びていることから、気流中のダストや燃料といった異物は弁体47よりも下方に落下し通路孔46の下端に溜まる。接触面への噛み込みは防止される。こうしてエアブリード通路の開度を制御する際にダストや燃料の混入および蓄積はできる限り回避されることができる。また、エアブリード通路43、45はスライド面46bに開口し、該スライド面46bの開口面積が弁体47により変更される構造なので、弁体47によって開口面積が変更されるスライド面46bの開口への異物の進入、および開口面積に影響のでるスライド面46bへの異物の進入が抑制される。こうして流通制御をさらに高い精度に維持することができる。   As described above, the valve body 47 realizes a sliding operation along the sliding surface 46 b of the passage hole 46. The valve body 47 is displaced with respect to the openings 43a and 45a of the air bleed passages 43 and 45 to change the opening areas of the air bleed passages 43 and 45. The opening degree of the air bleed passages 43 and 45 is finely controlled according to the sliding operation of the valve body 47. At this time, since the slide surface 46b extends in the direction in which gravity acts, foreign matters such as dust and fuel in the airflow fall below the valve body 47 and accumulate at the lower end of the passage hole 46. Biting into the contact surface is prevented. Thus, when the opening degree of the air bleed passage is controlled, dust and fuel can be prevented from being mixed and accumulated as much as possible. In addition, since the air bleed passages 43 and 45 are open to the slide surface 46 b and the opening area of the slide surface 46 b is changed by the valve body 47, the opening area of the slide surface 46 b is changed by the valve body 47. Entry of foreign matter and entry of foreign matter to the slide surface 46b that affects the opening area are suppressed. In this way, distribution control can be maintained with higher accuracy.

空気導入路48の他端は、重力が作用する方向にエアブリード通路43、45の開口43a、43aよりも下方で通路孔46に開口する。通路孔46に空気導入路48から外気が導入される際に、外気に混入する異物はエアブリード通路43、45の開口43a、45aよりも重力が作用する方向に下方で通路孔46に進入する。こうしてエアブリード通路43、45への異物の進入は一層抑制されることができる。   The other end of the air introduction path 48 opens into the passage hole 46 below the openings 43a and 43a of the air bleed passages 43 and 45 in the direction in which gravity acts. When outside air is introduced into the passage hole 46 from the air introduction path 48, foreign matter mixed in the outside air enters the passage hole 46 below in the direction in which gravity acts than the openings 43 a and 45 a of the air bleed passages 43 and 45. . In this way, entry of foreign matter into the air bleed passages 43 and 45 can be further suppressed.

気化器11では、メインエアブリード通路43はスローエアブリード通路45に比べて重力が作用する方向に下方で開口する。通路孔46では異物はその自重で重力方向に下方に溜まる。スローエアブリード通路45に比べてメインエアブリード通路43に異物は進入しやすいことから、スローエアブリード通路45への異物の進入は最大限に抑制される。異物の混入が回避されることで、スローエアブリード通路45では流通制御を高い精度に維持することができる。気化器11では、スローエアブリード通路45の制御はメインエアブリード通路43の制御に比べて高い精度が求められる。   In the carburetor 11, the main air bleed passage 43 opens downward in the direction in which gravity acts as compared to the slow air bleed passage 45. In the passage hole 46, the foreign matter accumulates downward in the direction of gravity by its own weight. Compared with the slow air bleed passage 45, foreign matters are likely to enter the main air bleed passage 43, so that foreign matters enter the slow air bleed passage 45 to the maximum extent. By avoiding the mixing of foreign matters, the slow air bleed passage 45 can maintain the flow control with high accuracy. In the carburetor 11, the control of the slow air bleed passage 45 requires higher accuracy than the control of the main air bleed passage 43.

通路孔46内では、空気導入路48が上流側に、その下流側にメインエアブリード通路43が、およびその下流側にスローエアブリード通路45が開口している。吸気の流れ上、異物がメインエアブリード通路43に入り易いので、スローエアブリード通路45への異物の進入は最大限に抑制される。異物の混入が回避されることで、スローエアブリード通路45では流通制御を高い精度に維持することができる。   In the passage hole 46, the air introduction passage 48 is opened upstream, the main air bleed passage 43 is opened downstream thereof, and the slow air bleed passage 45 is opened downstream thereof. Since foreign matter tends to enter the main air bleed passage 43 due to the flow of intake air, entry of foreign matter into the slow air bleed passage 45 is suppressed to the maximum. By avoiding the mixing of foreign matters, the slow air bleed passage 45 can maintain the flow control with high accuracy.

メインエアブリード通路43およびスローエアブリード通路45は軸に同軸である基準線46aに平行に延びる第2の基準線上の位置で開口する。空気導入路48から導入された外気はメインエアブリード通路43に先に近づく。ダストや燃料はスローエアブリード通路45よりもメインエアブリード通路43に進入しやすい。こうしてスローエアブリード通路45への異物の進入は最大限に抑制される。   The main air bleed passage 43 and the slow air bleed passage 45 open at a position on a second reference line extending in parallel to a reference line 46a coaxial with the axis. The outside air introduced from the air introduction passage 48 approaches the main air bleed passage 43 first. Dust and fuel enter the main air bleed passage 43 more easily than the slow air bleed passage 45. In this way, entry of foreign matter into the slow air bleed passage 45 is suppressed to the maximum.

通路孔46は吸気路15の側面側に設けられ、軸49に同軸である基準線46aと該基準線46aに平行な第2の基準線46cは、吸気路方向(吸気路15が延びる方向)に直交および弁筒方向(弁筒14が延びる方向)に直交する方向視において弁筒14が延びる方向側に延びていて、吸気路方向視において空気導入路48は吸気路15へ延びて、(ここでは水平方向に延びて、ここでは鉛直姿勢の)通路孔46に対してクランクを形成する。こうして空気導入路48は(ここでは共通路である)通路孔46に対してクランクを形成することから、外気中の異物は通路孔46への進入時に慣性力で通路孔46の壁面に衝突する。衝突後、異物は下方に落下する。こうしてメインエアブリード通路43やスローエアブリード通路45への異物の進入を一層抑制することができる。また、通路孔46が吸気路15の側面にあって、軸49に同軸である基準線46aと該基準線46aに平行な第2の基準線46cは、吸気路方向の直交および弁筒方向に直交する方向視において、弁筒14が延びる方向に(ここでは弁筒14に沿った方向に)設けられるので、エアブリード通路43、45を気化器本体12に形成して、気化器11をコンパクトにすることができる。   The passage hole 46 is provided on the side surface side of the intake passage 15, and a reference line 46 a coaxial with the shaft 49 and a second reference line 46 c parallel to the reference line 46 a are in the intake passage direction (the direction in which the intake passage 15 extends). The valve cylinder 14 extends in the direction extending in the direction orthogonal to the valve cylinder direction (the direction in which the valve cylinder 14 extends), and the air introduction path 48 extends to the intake path 15 in the intake path direction view. Here, a crank is formed with respect to the passage hole 46 extending in the horizontal direction (here, in a vertical position). Thus, since the air introduction path 48 forms a crank with respect to the passage hole 46 (which is a common path here), foreign matter in the outside air collides with the wall surface of the passage hole 46 by inertia force when entering the passage hole 46. . After the collision, the foreign object falls downward. In this way, entry of foreign matter into the main air bleed passage 43 and the slow air bleed passage 45 can be further suppressed. A reference line 46a that is coaxial with the shaft 49 and a second reference line 46c that is parallel to the reference line 46a are provided in the side surface of the intake passage 15 and in the direction perpendicular to the intake passage direction and in the valve cylinder direction. Since the valve cylinder 14 is provided in the extending direction (here, in the direction along the valve cylinder 14) when viewed in the orthogonal direction, the air bleed passages 43 and 45 are formed in the carburetor main body 12 to make the carburetor 11 compact. Can be.

外気は通路孔46に(ここでは共通路に)導入される。第1弁体47aおよび第2弁体47bのスライド動作に応じて外気は共通路からメインエアブリード通路43やスローエアブリード通路45に流れ込む。第1弁体47aはスローエアブリード通路45の開口45aに対して変位しメスローエアブリード通路45の開口面積を変化させる。同様に、第2弁体47bはメインエアブリード通路43の開口43aに対して変位しメインエアブリード通路43の開口面積を変化させる。第1弁体47aおよび第2弁体47bのスライド動作に応じて第2の基準線46c上の位置で開口するので、メインエアブリード通路43およびスローエアブリード通路45は精確にきめ細かく制御される。ここで、スライド動作にあたって弁体側係合53および通路孔側係合54は第1弁体47aや第2弁体47bのがたつきの両方を規制することができる。また、スライド面46bにメインエアブリード通路43およびスローエアブリード通路45が開口するので、弁体47がスライド面46bに向かう方向に負圧が発生し、通路孔46内での弁体47のがたつきを極力抑えることができる。このとき、電動モーター51、メインエアブリード通路43およびスローエアブリード通路45を軸49に同軸な基準線46aに直交する仮想平面上で積層構造のように配置することができ、電動モーター51、メインエアブリード通路43およびスローエアブリード通路45を通路孔46周りに(ここでは共通路周りに)集中的に配置することができる。   Outside air is introduced into the passage hole 46 (here, in the common path). The outside air flows from the common path into the main air bleed passage 43 and the slow air bleed passage 45 in accordance with the sliding operation of the first valve body 47a and the second valve body 47b. The first valve body 47 a is displaced with respect to the opening 45 a of the slow air bleed passage 45 and changes the opening area of the meslo air bleed passage 45. Similarly, the second valve body 47 b is displaced with respect to the opening 43 a of the main air bleed passage 43 to change the opening area of the main air bleed passage 43. The main air bleed passage 43 and the slow air bleed passage 45 are precisely and finely controlled because the first valve body 47a and the second valve body 47b open at a position on the second reference line 46c according to the sliding operation. Here, in the sliding operation, the valve body side engagement 53 and the passage hole side engagement 54 can regulate both rattling of the first valve body 47a and the second valve body 47b. Further, since the main air bleed passage 43 and the slow air bleed passage 45 are opened in the slide surface 46b, negative pressure is generated in the direction toward the slide surface 46b, and the valve body 47 in the passage hole 46 is Tack can be suppressed as much as possible. At this time, the electric motor 51, the main air bleed passage 43, and the slow air bleed passage 45 can be arranged like a laminated structure on a virtual plane orthogonal to the reference line 46a coaxial with the shaft 49. The air bleed passage 43 and the slow air bleed passage 45 can be concentrated around the passage hole 46 (here, around the common passage).

通路孔側係合54は、メインエアブリード通路43の開口43aよりもスローエアブリード通路45の開口45aに近い位置で弁体側係合53に噛み合うことから、メインエアブリード通路43よりもスローエアブリード通路45で弁体47のがたつきは抑制される。こうしてメインエアブリード通路43よりもスローエアブリード通路45の流量制御で高い精度は実現される。気化器11では、スローエアブリード通路45の制御はメインエアブリード通路43の制御に比べ、高い精度が求められる。   The passage hole side engagement 54 meshes with the valve element side engagement 53 at a position closer to the opening 45 a of the slow air bleed passage 45 than the opening 43 a of the main air bleed passage 43, so that the slow air bleed is more than the main air bleed passage 43. Shaking of the valve body 47 in the passage 45 is suppressed. Thus, higher accuracy is realized by controlling the flow rate of the slow air bleed passage 45 than by the main air bleed passage 43. In the carburetor 11, the control of the slow air bleed passage 45 is required to have higher accuracy than the control of the main air bleed passage 43.

弁体側係合53は、弁体47に一体的に設けられて、スライド方向に線形に延びるキー溝であって、通路孔側係合54は、通路孔46に固定されて、キー溝に噛み合って弁体47の移動を案内する突起である。第1弁体47aおよび第2弁体47bの移動を規制する係合を簡単に形成することができる。また、弁体47に一体的にキー溝を形成することで新たな部品を必要としない。   The valve body side engagement 53 is a key groove provided integrally with the valve body 47 and extending linearly in the sliding direction. The passage hole side engagement 54 is fixed to the passage hole 46 and meshes with the key groove. This is a protrusion for guiding the movement of the valve body 47. The engagement for restricting the movement of the first valve body 47a and the second valve body 47b can be easily formed. Further, by forming a key groove integrally with the valve body 47, no new parts are required.

スローエアブリード通路45は、通路孔46に穿たれて通路孔側係合54を受け入れる断面が円形の受け入れ孔55に同軸の断面が円形のキーを有する。スローエアブリード通路45と受け入れ孔55とは通路孔46を挟んで同軸に形成される。したがって、スローエアブリード通路45および受け入れ孔55とは共通のドリル加工で気化器本体12に加工されることができる。   The slow air bleed passage 45 has a key having a circular cross section coaxial with a receiving hole 55 having a circular cross section for receiving the passage hole side engagement 54 formed in the passage hole 46. The slow air bleed passage 45 and the receiving hole 55 are formed coaxially with the passage hole 46 interposed therebetween. Therefore, the slow air bleed passage 45 and the receiving hole 55 can be processed into the carburetor body 12 by a common drilling process.

気化器本体12は、胴体13に吸気路15を区画するとともに、胴体13に一体化される弁筒14で吸気路15から分岐するスライド空間16を区画し、弁筒14内でスライド動作し吸気路15の開口面積を変更するスロットル弁19を弁筒14に収容する。気化器本体12に通路孔46は設けられる。電動モーター51、メインエアブリード通路43およびスローエアブリード通路45を通路孔周りに(ここでは共通路周り)に集中的に配置することができるので、気化器11をコンパクトに構成することができる。   The carburetor main body 12 defines an intake passage 15 in the body 13, and defines a slide space 16 branched from the intake passage 15 by a valve cylinder 14 integrated with the body 13. A throttle valve 19 that changes the opening area of the passage 15 is accommodated in the valve cylinder 14. A passage hole 46 is provided in the vaporizer body 12. Since the electric motor 51, the main air bleed passage 43, and the slow air bleed passage 45 can be concentrated around the passage hole (here, around the common passage), the carburetor 11 can be configured compactly.

図6に示されるように、本発明の第2実施形態に係る気化器11aでは、前述と同様に、メインエアブリード通路43の開口43aはスローエアブリード通路45の開口45aよりも重力が作用する方向に下方に配置される。その一方で、空気導入路48Bの開口48aはスローエアブリード通路45の開口45aよりも高い位置に(すなわち、重力が作用する方向に開口45aよりも上方に)配置される。その他の構成は第1実施形態のそれと同様である。   As shown in FIG. 6, in the vaporizer 11 a according to the second embodiment of the present invention, the gravity of the opening 43 a of the main air bleed passage 43 acts more than the opening 45 a of the slow air bleed passage 45 as described above. Arranged downward in the direction. On the other hand, the opening 48a of the air introduction passage 48B is disposed at a position higher than the opening 45a of the slow air bleed passage 45 (that is, above the opening 45a in the direction in which gravity acts). Other configurations are the same as those of the first embodiment.

メインエアブリード通路43は、スローブリードエア通路45に比べて重力が作用する方向に下方で開口する。通路孔46では異物はその自重で重力方向に下方に溜まるので、スローエアブリード通路45では流通制御を高い精度に維持することができる。   The main air bleed passage 43 opens downward in the direction in which gravity acts as compared to the srobe lead air passage 45. In the passage hole 46, foreign matter accumulates downward in the direction of gravity due to its own weight, so that the flow control in the slow air bleed passage 45 can be maintained with high accuracy.

空気導入路48は、吸気路方向視において、吸気路15へ延びて、(ここでは水平方向に延びて、ここでは鉛直姿勢の)通路孔46に対してクランクを形成する。こうして空気導入路48は通路孔46(ここでは共通路)に対してクランクを形成することから、外気中の異物は通路孔46への進入時に慣性力で通路孔46の壁面に衝突する。衝突後、異物は下方に落下する。こうしてメインエアブリード通路43やスローエアブリード通路45への異物の進入を一層抑制することができる。   The air introduction path 48 extends to the intake path 15 when viewed in the direction of the intake path, and forms a crank with respect to the passage hole 46 (here, extending in the horizontal direction and having a vertical posture here). Thus, since the air introduction path 48 forms a crank with respect to the passage hole 46 (here, a common path), foreign matter in the outside air collides with the wall surface of the passage hole 46 by inertia force when entering the passage hole 46. After the collision, the foreign object falls downward. In this way, entry of foreign matter into the main air bleed passage 43 and the slow air bleed passage 45 can be further suppressed.

図6に示されるように、本発明の第3実施形態に係る気化器11bでは、前述と同様に、メインエアブリード通路43の開口43aはスローエアブリード通路45の開口45aよりも重力が作用する方向に下方に配置される。その一方で、空気導入路48Bの開口48aはスローエアブリード通路45の開口45aよりも低い位置であってメインエアブリード通路43の開口43aよりも高い位置に(すなわち、重力が作用する方向に開口45aよりも下方であって開口43aよりも上方に)配置される。その他の構成は第1実施形態のそれと同様である。   As shown in FIG. 6, in the carburetor 11b according to the third embodiment of the present invention, the gravity of the opening 43a of the main air bleed passage 43 acts more than the opening 45a of the slow air bleed passage 45, as described above. Arranged downward in the direction. On the other hand, the opening 48a of the air introduction path 48B is located at a position lower than the opening 45a of the slow air bleed passage 45 and higher than the opening 43a of the main air bleed passage 43 (that is, opening in the direction in which gravity acts). 45a and below the opening 43a). Other configurations are the same as those of the first embodiment.

メインエアブリード通路43は、スローブリードエア通路45に比べて重力が作用する方向に下方で開口する。通路孔46では異物はその自重で重力方向に下方に溜まるので、スローエアブリード通路45では流通制御を高い精度に維持することができる。   The main air bleed passage 43 opens downward in the direction in which gravity acts as compared to the srobe lead air passage 45. In the passage hole 46, foreign matter accumulates downward in the direction of gravity due to its own weight, so that the flow control in the slow air bleed passage 45 can be maintained with high accuracy.

空気導入路48は、吸気通路方向視において、吸気路15へ延びて、(ここでは水平方向に延びて、ここでは鉛直姿勢の)通路孔46に対してクランクを形成する。こうして空気導入路48は通路孔46(ここでは共通路)に対してクランクを形成することから、外気中の異物は通路孔46への進入時に慣性力で通路孔46の壁面に衝突する。衝突後、異物は下方に落下する。こうしてメインエアブリード通路43やスローエアブリード通路45への異物の進入を一層抑制することができる。   The air introduction path 48 extends to the intake path 15 when viewed in the direction of the intake passage, and forms a crank with respect to the passage hole 46 (here, extending in the horizontal direction and having a vertical posture here). Thus, since the air introduction path 48 forms a crank with respect to the passage hole 46 (here, a common path), foreign matter in the outside air collides with the wall surface of the passage hole 46 by inertia force when entering the passage hole 46. After the collision, the foreign object falls downward. In this way, entry of foreign matter into the main air bleed passage 43 and the slow air bleed passage 45 can be further suppressed.

以上、本発明の実施形態における気化器11は、搭載スペースに限りのある自動二輪車に搭載され、アイドルスクリュー70により、スロットル弁19のアイドル開度が設定され(図2参照)、第3路45bに屈曲して形成された中間路45b1に設置され、該中間路45b1の先端を閉じるとともに、スローエアブリード通路45の開口面積を絞るエアスクリュー71により、スローエアブリード通路45の基本的な開度(弁体47による制御の基準となる開度)が設定され(図3参照)、スロットル弁19のスロットルケーブル21とチョーク弁28の操作レバーは、操縦者により操作される。O2センサーの信号を受け取ったECUが電気駆動部材に指示をして、弁体47の動きを制御する。こうしてきめ細かな制御が実現される。   As described above, the carburetor 11 in the embodiment of the present invention is mounted on a motorcycle having a limited mounting space, the idle opening of the throttle valve 19 is set by the idle screw 70 (see FIG. 2), and the third path 45b. The basic opening degree of the slow air bleed passage 45 is set by an air screw 71 which is installed in an intermediate passage 45b1 formed by bending to close the tip of the intermediate passage 45b1 and reduces the opening area of the slow air bleed passage 45. (Opening that is a reference for control by the valve body 47) is set (see FIG. 3), and the throttle cable 21 of the throttle valve 19 and the operation lever of the choke valve 28 are operated by the operator. The ECU that has received the O2 sensor signal instructs the electric drive member to control the movement of the valve body 47. In this way, fine control is realized.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.

11…気化器、12…気化器本体、13…胴体、14…弁筒、15…吸気路、16…スライド空間、17a…中心線(中心軸線)、28…チョーク弁、37…ジェット(メインジェット)、38…ジェット(スロージェット)、49…軸(駆動軸)、43…エアブリード通路(メインエアブリード通路)、43a…接続路(第1路)、43b…接続路(第2路)、45…エアブリード通路(スローエアブリード通路)、45a…接続路(第1路)、45b…接続路(第2路)、45c…接続路(第3路)、46…通路孔、47…弁体、47a…第1弁体(第1仕切り)、47b…第2弁体(第2仕切り)、48…空気導入路、51…電気駆動部材(電動モーター)、PV…平面。   DESCRIPTION OF SYMBOLS 11 ... carburetor, 12 ... carburetor main body, 13 ... fuselage, 14 ... valve cylinder, 15 ... intake passage, 16 ... slide space, 17a ... center line (center axis), 28 ... choke valve, 37 ... jet (main jet) , 38 ... jet (slow jet), 49 ... shaft (drive shaft), 43 ... air bleed passage (main air bleed passage), 43a ... connection path (first path), 43b ... connection path (second path), 45 ... Air bleed passage (slow air bleed passage), 45a ... Connection passage (first passage), 45b ... Connection passage (second passage), 45c ... Connection passage (third passage), 46 ... Passage hole, 47 ... Valve 47a ... 1st valve body (1st partition), 47b ... 2nd valve body (2nd partition), 48 ... Air introduction path, 51 ... Electric drive member (electric motor), PV ... Plane.

Claims (7)

軸(49)を有する電気駆動部材(51)と、
前記軸(49)に同軸である基準線に平行に延び、エアブリード通路(43、45)を有する通路孔(46)と、
前記通路孔(46)に位置し、前記軸(49)に連結され、前記軸(49)によるスライド動作に応じて前記エアブリード通路(43、45)の開口面積を変更する弁体(47)と、
胴体(13)に吸気路(15)を区画するとともに、前記胴体(13)に一体化される弁筒(14)で当該吸気路(15)から分岐するスライド空間(16)を区画し、前記弁筒(14)内でスライド動作し前記吸気路(15)の開口面積を変更するスロットル弁(19)を前記弁筒(14)に収容する気化器本体(12)を備え、
前記気化器本体(12)は、前記吸気路(15)の中心線(17a)と前記弁筒(14)の中心線(17b)を含む平面(PV)を基準に、前記通路孔(46)が配置される一側で、前記エアブリード通路(43、45)として前記通路孔(46)から連続して前記吸気路(15)に臨むジェット(37、38)に向かって延びる接続路(43a、43b、45a、45b、45c)を有することを特徴とする気化器。
An electric drive member (51) having a shaft (49);
A passage hole (46) extending parallel to a reference line coaxial with the axis (49) and having an air bleed passage (43, 45);
A valve element (47) located in the passage hole (46), connected to the shaft (49), and changing an opening area of the air bleed passage (43, 45) in accordance with a sliding operation by the shaft (49). When,
An intake passage (15) is defined in the body (13), and a slide space (16) branched from the intake passage (15) is defined in a valve cylinder (14) integrated with the body (13), A carburetor body (12) that houses a throttle valve (19) that slides in the valve cylinder (14) and changes the opening area of the intake passage (15) in the valve cylinder (14);
The carburetor body (12) has the passage hole (46) with reference to a plane (PV) including a center line (17a) of the intake passage (15) and a center line (17b) of the valve cylinder (14). On one side where the air bleed passages (43, 45) are arranged, the connecting passages (43a) extending from the passage holes (46) toward the jets (37, 38) facing the intake passages (15) as the air bleed passages (43, 45). 43b, 45a, 45b, 45c).
請求項1に記載の気化器において、前記気化器本体(12)は、前記一側に、前記エアブリード通路(43、45)として、前記通路孔(46)から前記吸気路(15)へ向かって開口する空気導入路(48)を備えることを特徴とする気化器。   The carburetor body (12) according to claim 1, wherein the carburetor body (12) is formed on the one side as the air bleed passage (43, 45) from the passage hole (46) to the intake passage (15). The carburetor is characterized by comprising an air introduction path (48) that opens. 請求項2に記載の気化器において、前記エアブリード通路(43、45)はメインエアブリード通路(43)およびスローエアブリード通路(45)を構成し、前記ジェット(37、38)はメインジェット(37)およびスロージェット(38)を構成し、前記接続路は、前記メインエアブリード通路(43)として、前記メインジェット(37)に向かって延びる第1接続路(43a、43b)と、前記スローエアブリード通路(45)として、前記スロージェット(38)に向かって延びる第2接続路(45a、45b、45c)を構成することを特徴とする気化器。   The carburetor according to claim 2, wherein the air bleed passage (43, 45) constitutes a main air bleed passage (43) and a slow air bleed passage (45), and the jet (37, 38) is a main jet (37). ) And a slow jet (38), and the connecting path serves as the main air bleed path (43), the first connecting path (43a, 43b) extending toward the main jet (37), and the slow air bleed. The vaporizer characterized by comprising the 2nd connection path (45a, 45b, 45c) extended toward the said slow jet (38) as a channel | path (45). 請求項3に記載の気化器において、前記通路孔(46)内で、前記メインエアブリード通路(43)および前記スローエアブリード通路(45)が連通され、前記メインエアブリード通路(43)および前記スローエアブリード通路(45)の共通路が形成されることを特徴とする気化器。   The carburetor according to claim 3, wherein the main air bleed passage (43) and the slow air bleed passage (45) communicate with each other in the passage hole (46), and the main air bleed passage (43) and the A vaporizer characterized in that a common path for the slow air bleed passage (45) is formed. 請求項4に記載の気化器において、前記電気駆動部材はモーター(51)であって、前記軸はモーター(51)の駆動軸(49)であって、前記メインエアブリード通路(43)および前記スローエアブリード通路(45)は、前記共通路に面し、前記基準線に平行に延びるスライド面(46b)で開口し、前記弁体(47)は、前記メインエアブリード通路(43)の開口面積を変更する第1弁体(47a)と、前記第1弁体(47a)に一体化され、前記スローエアブリード通路(45)の開口面積を変更する第2弁体(47b)とを構成することを特徴とする気化器。   The carburetor according to claim 4, wherein the electric drive member is a motor (51), and the shaft is a drive shaft (49) of the motor (51), the main air bleed passage (43) and the The slow air bleed passage (45) faces the common path and opens with a slide surface (46b) extending in parallel with the reference line, and the valve body (47) opens the main air bleed passage (43). A first valve body (47a) that changes the area and a second valve body (47b) that is integrated with the first valve body (47a) and changes the opening area of the slow air bleed passage (45). A vaporizer, characterized by 請求項5に記載の気化器において、前記通路孔(46)は、前記弁筒(14)の中心線(17a)より吸気路方向の上流側であって前記吸気路(15)の側面に設けられ、前記接続路(43b、45b)は吸気路(15)に沿って延び、前記空気導入路(48)は吸気路(15)に向かって延びることを特徴とする気化器。   6. The carburetor according to claim 5, wherein the passage hole (46) is provided upstream of the center line (17a) of the valve cylinder (14) in the intake passage direction and on a side surface of the intake passage (15). The carburetor is characterized in that the connection path (43b, 45b) extends along the intake path (15), and the air introduction path (48) extends toward the intake path (15). 請求項6に記載の気化器において、前記一側に対する他側にチョーク弁(28)が設置されることを特徴とする気化器。   The carburetor according to claim 6, wherein a choke valve (28) is installed on the other side with respect to the one side.
JP2016024622A 2016-02-12 2016-02-12 Carbureter Pending JP2017141772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024622A JP2017141772A (en) 2016-02-12 2016-02-12 Carbureter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024622A JP2017141772A (en) 2016-02-12 2016-02-12 Carbureter

Publications (1)

Publication Number Publication Date
JP2017141772A true JP2017141772A (en) 2017-08-17

Family

ID=59627207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024622A Pending JP2017141772A (en) 2016-02-12 2016-02-12 Carbureter

Country Status (1)

Country Link
JP (1) JP2017141772A (en)

Similar Documents

Publication Publication Date Title
US3953548A (en) Fuel injection system
EP0112918B1 (en) Control valve for a gas fuel supply to an internal combustion engine and method for using the control valve
CN111133181B (en) Low pressure fuel injection system for multi-cylinder light duty internal combustion engine
CN101395363B (en) Two-cycle engine
US7263970B2 (en) Intake flow control apparatus for an internal combustion engine
WO2017110321A1 (en) Vaporizer
JP2017141772A (en) Carbureter
JP2017115735A (en) Carburetor
JP2017141773A (en) Carbureter
KR100349384B1 (en) Internal combustion engine fuel supply
CN101994619B (en) Intake manifold with vacuum chamber
JP2008255830A (en) Mixture device for gaseous fuel and air
JP2017115736A (en) Carbureter
US7472892B2 (en) Carburetor of an internal combustion engine
JP2018071370A (en) Carburetor
JP5118527B2 (en) Engine fuel supply system
US6871843B2 (en) Carburetor with idle fuel supply arrangement
WO2009119429A1 (en) Fuel supply device for engine
JPH0921354A (en) Intake system of engine
JP5118528B2 (en) Engine fuel supply system
KR920009659B1 (en) Throttle device
US6205958B1 (en) Hydraulic air-intake governor
US4154781A (en) Low profile horizontal positionable carburetor with self-adjusting double venturi
JP4464788B2 (en) Vaporizer low speed fuel system
JPS6312822A (en) Intake air pipe length variable device