JP2017141703A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2017141703A
JP2017141703A JP2016022424A JP2016022424A JP2017141703A JP 2017141703 A JP2017141703 A JP 2017141703A JP 2016022424 A JP2016022424 A JP 2016022424A JP 2016022424 A JP2016022424 A JP 2016022424A JP 2017141703 A JP2017141703 A JP 2017141703A
Authority
JP
Japan
Prior art keywords
urea water
adsorption amount
nox
injection
injection control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016022424A
Other languages
Japanese (ja)
Inventor
正信 嶺澤
Masanobu Minesawa
正信 嶺澤
桂一 飯田
Keiichi Iida
桂一 飯田
明寛 澤田
Akihiro Sawada
明寛 澤田
賢 長谷川
Masaru Hasegawa
賢 長谷川
森 一弘
Kazuhiro Mori
一弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016022424A priority Critical patent/JP2017141703A/en
Publication of JP2017141703A publication Critical patent/JP2017141703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a difference between an estimated adsorption amount of ammonia adsorbed to an SCR and an actual adsorption amount.SOLUTION: A control device 100 includes: an estimated adsorption amount acquisition section 122 for acquiring an estimated adsorption amount of ammonia adsorbed to an SCR 40 that eliminates NOx in exhaust gas by using the ammonia generated from urea water injected from an urea water injection device 50 as a reducing agent; an injection control section 123 for causing the urea water injection device 50 to inject urea water on the basis of the estimated adsorption amount; an elimination rate acquisition section 121 for acquiring an NOx elimination rate of the SCR 40; and a determination section 124 for determining whether or not the NOx elimination rate is lowered to a level lower than a first threshold value C1 when the urea water injection device 50 does not inject the urea water. When the determination section 124 determines that the NOx elimination rate has been lowered to the level lower than the first threshold value C1, the injection control section 123 causes the amount of the urea water corresponding to an upstream side NOx value detected by an upstream side NOx sensor 60 to be injected.SELECTED DRAWING: Figure 2

Description

本発明は、排気中のNOxを還元浄化する選択的還元触媒(以下、SCRとも呼ぶ)を用いて排気を浄化する排気浄化制御装置に関する。   The present invention relates to an exhaust purification control apparatus that purifies exhaust using a selective reduction catalyst (hereinafter also referred to as SCR) that reduces and purifies NOx in exhaust.

従来、尿素水から加水分解されて生成されるアンモニアを還元剤として排気中のNOxを選択的に還元浄化するSCRを備えた排気浄化システムが知られている。このような排気浄化システムとして、例えば、下記の特許文献1には、各種センサのセンサ値等に基づいて算出したSCRのアンモニアの推定吸着量と目標吸着量との差に応じて尿素水噴射量を制御する技術が開示されている。   2. Description of the Related Art Conventionally, there has been known an exhaust gas purification system including an SCR that selectively reduces and purifies NOx in exhaust gas using ammonia generated by hydrolysis from urea water as a reducing agent. As such an exhaust purification system, for example, the following Patent Document 1 discloses a urea water injection amount according to a difference between an estimated adsorption amount of SCR ammonia calculated based on sensor values of various sensors and a target adsorption amount. Techniques for controlling are disclosed.

特開2003−293737号公報JP 2003-293737 A

ところで、アンモニアの推定吸着量が、SCRに実際に吸着されているアンモニアの実吸着量に対して乖離する場合がある。例えば、排気温度が低い場合には、尿素水からアンモニアが生成され難くなるため、推定吸着量が実吸着量よりも大幅に大きくなる場合がある。推定吸着量が大きい場合には尿素水の噴射が停止されるため、その後、実際にはNOxの浄化が必要であっても、尿素水の噴射停止に起因してNOxの浄化がされず、浄化率の異常が検出されてしまう。   By the way, the estimated adsorption amount of ammonia may deviate from the actual adsorption amount of ammonia actually adsorbed on the SCR. For example, when the exhaust gas temperature is low, ammonia is hardly generated from urea water, and thus the estimated adsorption amount may be significantly larger than the actual adsorption amount. Since the urea water injection is stopped when the estimated adsorption amount is large, the NOx purification is not performed due to the stop of the urea water injection even if the NOx purification is actually required. An abnormal rate is detected.

そこで、本発明はこれらの点に鑑みてなされたものであり、SCRのアンモニアの推定吸着量と実吸着量の乖離を抑制することを目的とする。   Therefore, the present invention has been made in view of these points, and an object thereof is to suppress the difference between the estimated adsorption amount of ammonia and the actual adsorption amount of SCR.

本発明の一の態様においては、尿素水噴射部から噴射された尿素水から生成されるアンモニアを還元剤として排気中のNOxを浄化する選択的還元触媒に吸着されているアンモニアの推定吸着量を取得する推定吸着量取得部と、前記推定吸着量に基づいて、前記尿素水噴射部に尿素水を噴射させる噴射制御部と、前記選択的還元触媒のNOx浄化率を取得する浄化率取得部と、前記尿素水噴射部が前記尿素水を噴射していない際に前記NOx浄化率が第1閾値よりも低下したか否かを判定する判定部と、を備え、前記噴射制御部は、前記判定部によって前記NOx浄化率が前記第1閾値よりも低下したと判定された場合には、排気通路において前記選択的還元触媒よりも上流側のNOx値を検出するNOx検出部が検出した上流側NOx値に応じた噴射量の尿素水を噴射させる第1噴射制御を行う、排気浄化制御装置を提供する。
かかる排気浄化制御装置によれば、選択的還元触媒のアンモニアの推定吸着量が目標吸着量よりも大きくなって尿素水が噴射されていない際に判定部によってNOx浄化率が第1閾値よりも低下したと判定された場合には、NOx検出部が検出した上流側NOx値に応じた噴射量の尿素水を噴射させる。かかる場合には、排気温度が小さいことに起因してアンモニアの推定吸着量が実際の吸着量に対して過大に乖離しても、上流側NOx値に応じた噴射量の尿素水を噴射することで、アンモニアの推定吸着量と実吸着量との乖離を抑制できる。
In one aspect of the present invention, the estimated adsorption amount of ammonia adsorbed on the selective reduction catalyst that purifies NOx in the exhaust gas using ammonia generated from urea water injected from the urea water injection section as a reducing agent. An estimated adsorption amount acquisition unit to be acquired; an injection control unit that causes the urea water injection unit to inject urea water based on the estimated adsorption amount; and a purification rate acquisition unit that acquires the NOx purification rate of the selective reduction catalyst; A determination unit that determines whether or not the NOx purification rate has decreased below a first threshold when the urea water injection unit is not injecting the urea water, and the injection control unit includes the determination If the NOx purification rate is determined to be lower than the first threshold value by the control unit, the upstream NOx detected by the NOx detection unit that detects the NOx value upstream of the selective reduction catalyst in the exhaust passage. In value Performing a first injection control for injecting the Flip injection amount of urea water, to provide an exhaust purification control device.
According to such an exhaust purification control device, when the estimated adsorption amount of ammonia of the selective reduction catalyst is larger than the target adsorption amount and urea water is not injected, the NOx purification rate is lowered below the first threshold by the determination unit. If it is determined that the NOx detection unit has detected, the injection amount of urea water corresponding to the upstream NOx value detected by the NOx detection unit is injected. In such a case, even if the estimated adsorption amount of ammonia is excessively deviated from the actual adsorption amount due to the low exhaust gas temperature, the injection amount of urea water corresponding to the upstream NOx value is injected. Thus, the difference between the estimated adsorption amount of ammonia and the actual adsorption amount can be suppressed.

また、前記噴射制御部は、前記第1噴射制御の実行中に前記判定部によって前記NOx浄化率が第2閾値を超えたと判定された場合には、予め設定された目標吸着量と前記推定吸着量とに基づいて前記尿素水を噴射させる第2噴射制御を行うこととしてもよい。   In addition, when the determination unit determines that the NOx purification rate has exceeded a second threshold value during execution of the first injection control, the injection control unit determines a preset target adsorption amount and the estimated adsorption. The second injection control for injecting the urea water based on the amount may be performed.

また、前記排気浄化制御装置は、前記第2噴射制御において前記尿素水が噴射されていない際に前記判定部によって前記NOx浄化率が第3閾値よりも低下したと判定された場合には、前記推定吸着量取得部が取得した推定吸着量を補正する推定吸着量補正部を更に備えることとしてもよい。   In the second injection control, the exhaust purification control device, when the determination unit determines that the NOx purification rate is lower than a third threshold when the urea water is not injected, An estimated adsorption amount correction unit that corrects the estimated adsorption amount acquired by the estimated adsorption amount acquisition unit may be further provided.

また、前記噴射制御部は、前記第2噴射制御において前記尿素水が噴射されていない際に前記判定部によって前記NOx浄化率が第3閾値よりも低下したと判定された場合には、前記上流側NOx値に応じた噴射量及び前記目標吸着量に相当する噴射量の尿素水を噴射させる第3噴射制御を行うこととしてもよい。   Further, when the NOx purification rate is determined to be lower than a third threshold by the determination unit when the urea water is not injected in the second injection control, the injection control unit Third injection control for injecting urea water in an injection amount corresponding to the side NOx value and an injection amount corresponding to the target adsorption amount may be performed.

本発明によれば、SCRのアンモニアの推定吸着量と実吸着量の乖離を抑制できるという効果を奏する。   According to the present invention, it is possible to suppress the difference between the estimated adsorption amount and the actual adsorption amount of ammonia in the SCR.

本発明の一の実施形態に係る排気浄化システムSの構成を示す模式図である。It is a mimetic diagram showing the composition of exhaust gas purification system S concerning one embodiment of the present invention. 一の実施形態に係る制御装置100の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the control apparatus 100 which concerns on one Embodiment. 浄化率の推移と尿素水の噴射量との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between transition of a purification rate, and the injection quantity of urea water. 上流側NOx値と尿素水の噴射量との関係を示すグラフである。It is a graph which shows the relationship between an upstream NOx value and the injection amount of urea water.

<排気浄化システムの構成>
図1を参照しながら、本発明の一の実施形態に係る排気浄化システムSの構成について説明する。
<Configuration of exhaust purification system>
A configuration of an exhaust purification system S according to an embodiment of the present invention will be described with reference to FIG.

図1は、一の実施形態に係る排気浄化システムSの構成を示す模式図である。図1に示すように、排気浄化システムSは、エンジン10と、排気通路20と、ディーゼルパティキュレート(以下、DPFと呼ぶ)30と、選択的還元触媒(以下、SCRと呼ぶ)40と、尿素水噴射装置50と、上流側NOxセンサ60と、下流側NOxセンサ65と、制御装置100とを有する。排気浄化システムSは、トラック等の車両に搭載されており、エンジン10の排気中のNOxを浄化する。   FIG. 1 is a schematic diagram showing a configuration of an exhaust purification system S according to one embodiment. As shown in FIG. 1, the exhaust purification system S includes an engine 10, an exhaust passage 20, a diesel particulate (hereinafter referred to as DPF) 30, a selective reduction catalyst (hereinafter referred to as SCR) 40, urea. The water injection device 50, the upstream NOx sensor 60, the downstream NOx sensor 65, and the control device 100 are included. The exhaust purification system S is mounted on a vehicle such as a truck and purifies NOx in the exhaust of the engine 10.

エンジン10は、ここでは4気筒のディーゼルエンジンであるが、これに限定されず、4気筒以外のエンジンであってもよい。エンジン10は、燃料と吸気(空気)の混合気を燃焼、膨張させて、動力を発生させる。エンジン10は、排気通路20が接続されている多岐管である排気マニホールド12を有する。   Here, the engine 10 is a four-cylinder diesel engine, but is not limited thereto, and may be an engine other than the four-cylinder engine. The engine 10 generates power by burning and expanding a mixture of fuel and intake air (air). The engine 10 has an exhaust manifold 12 that is a manifold to which an exhaust passage 20 is connected.

排気通路20は、排気マニホールド12で集合した排気を車両の外部へ排出するための通路である。排気通路20には、DPF30、SCR40及び尿素水噴射装置50等が設けられている。   The exhaust passage 20 is a passage for discharging exhaust collected in the exhaust manifold 12 to the outside of the vehicle. In the exhaust passage 20, a DPF 30, an SCR 40, a urea water injection device 50, and the like are provided.

DPF30は、排気に含まれる粒子状物質(PM)を捕集するフィルタである。DPF30は、例えば、金属やセラミックス製のハニカム体で構成されている。なお、DPF30は、PM堆積量が所定量に達すると、捕集したPMを燃焼処理する。   The DPF 30 is a filter that collects particulate matter (PM) contained in the exhaust gas. The DPF 30 is made of, for example, a honeycomb body made of metal or ceramics. The DPF 30 combusts the collected PM when the amount of accumulated PM reaches a predetermined amount.

SCR40は、例えば、ハニカム構造体等のセラミック製の担持体の表面に、ゼオライト等を担持して形成されている。SCR40は、多孔質性の隔壁で区画された多数のセルを備える。SCR40は、還元剤として尿素水噴射装置50から供給されるアンモニアを吸着すると共に、吸着したアンモニアによってSCR40を通過する排気中からNOxを選択的に還元浄化する。   The SCR 40 is formed, for example, by supporting zeolite or the like on the surface of a ceramic support such as a honeycomb structure. The SCR 40 includes a large number of cells partitioned by a porous partition wall. The SCR 40 adsorbs ammonia supplied from the urea water injection device 50 as a reducing agent, and selectively reduces and purifies NOx from the exhaust gas passing through the SCR 40 by the adsorbed ammonia.

尿素水噴射装置50は、DPF30とSCR40の間に設けられ、排気通路20に尿素水を噴射する。尿素水噴射装置50が噴射した尿素水から、SCR40に吸着されるアンモニアが生成される。尿素水噴射装置50は、尿素水添加弁51と、尿素水タンク52と、尿素水ポンプ53とを有する。尿素水タンク52から尿素水ポンプ53によって圧送された尿素水が、尿素水添加弁51から噴射される。   The urea water injection device 50 is provided between the DPF 30 and the SCR 40 and injects urea water into the exhaust passage 20. From the urea water injected by the urea water injection device 50, ammonia that is adsorbed by the SCR 40 is generated. The urea water injection device 50 includes a urea water addition valve 51, a urea water tank 52, and a urea water pump 53. The urea water pumped from the urea water tank 52 by the urea water pump 53 is injected from the urea water addition valve 51.

上流側NOxセンサ60は、排気通路20においてSCR40の上流側に設けられ、下流側NOxセンサ65は、SCR40の下流側に設けられている。上流側NOxセンサ60は、SCR40の入口のNOxの濃度(上流側NOx値)を検出し、下流側NOxセンサ65は、SCR40の出口のNOxの濃度(下流側NOx値)を検出する。なお、上流側NOxセンサ60及び下流側NOxセンサ65は、排気中のNOxを検出する。このため、上流側NOxセンサ60の検出値である上流側NOx値と、下流側NOxセンサ65の検出値である下流側NOx値との差から、SCR40に添加されているアンモニアの量を推定できる。   The upstream NOx sensor 60 is provided on the upstream side of the SCR 40 in the exhaust passage 20, and the downstream NOx sensor 65 is provided on the downstream side of the SCR 40. The upstream NOx sensor 60 detects the NOx concentration (upstream NOx value) at the inlet of the SCR 40, and the downstream NOx sensor 65 detects the NOx concentration (downstream NOx value) at the outlet of the SCR 40. The upstream NOx sensor 60 and the downstream NOx sensor 65 detect NOx in the exhaust. Therefore, the amount of ammonia added to the SCR 40 can be estimated from the difference between the upstream NOx value that is the detection value of the upstream NOx sensor 60 and the downstream NOx value that is the detection value of the downstream NOx sensor 65. .

制御装置100は、排気浄化システムSの動作を制御する。本実施形態では、制御装置100は、尿素水噴射装置50、上流側NOxセンサ60及び下流側NOxセンサ65の動作を制御して、排気中のNOxの浄化を制御する排気浄化制御装置として機能する。   The control device 100 controls the operation of the exhaust purification system S. In the present embodiment, the control device 100 functions as an exhaust purification control device that controls operations of the urea water injection device 50, the upstream NOx sensor 60, and the downstream NOx sensor 65 to control purification of NOx in the exhaust. .

<制御装置の詳細構成>
図2を参照しながら、制御装置100の詳細構成の一例について説明する。
図2は、一の実施形態に係る制御装置100の詳細構成を示すブロック図である。制御装置100は、記憶部110と、制御部120とを有する。
<Detailed configuration of control device>
An example of a detailed configuration of the control device 100 will be described with reference to FIG.
FIG. 2 is a block diagram illustrating a detailed configuration of the control device 100 according to the embodiment. The control device 100 includes a storage unit 110 and a control unit 120.

記憶部110は、例えばROM(Read Only Memory)及びRAM(Random Access Memory)を含む。記憶部110は、制御部120が実行するためのプログラムや各種データを記憶する。例えば、記憶部110は、尿素水噴射の制御の際に用いる、SCR40に吸着されるアンモニアの目標吸着量を記憶する。   The storage unit 110 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 110 stores programs and various data to be executed by the control unit 120. For example, the storage unit 110 stores a target adsorption amount of ammonia adsorbed on the SCR 40, which is used when controlling urea water injection.

制御部120は、例えばCPU(Central Processing Unit)である。制御部120は、記憶部110に記憶されたプログラムを実行することにより、排気浄化システムSの動作を制御する。本実施形態では、制御部120は、浄化率取得部121と、推定吸着量取得部122と、噴射制御部123と、判定部124と、推定吸着量補正部125として機能する。   The control unit 120 is, for example, a CPU (Central Processing Unit). The control unit 120 controls the operation of the exhaust purification system S by executing a program stored in the storage unit 110. In the present embodiment, the control unit 120 functions as a purification rate acquisition unit 121, an estimated adsorption amount acquisition unit 122, an injection control unit 123, a determination unit 124, and an estimated adsorption amount correction unit 125.

浄化率取得部121は、SCR40のNOx浄化率を取得する。例えば、浄化率取得部121は、SCR40よりも上流側の上流側NOxセンサ60が検出した上流側NOx値と、SCR40よりも下流側の下流側NOxセンサ65が検出した下流側NOx値とに基づいて、SCR40のNOx浄化率を算出する。   The purification rate acquisition unit 121 acquires the NOx purification rate of the SCR 40. For example, the purification rate acquisition unit 121 is based on the upstream NOx value detected by the upstream NOx sensor 60 upstream of the SCR 40 and the downstream NOx value detected by the downstream NOx sensor 65 downstream of the SCR 40. Thus, the NOx purification rate of the SCR 40 is calculated.

推定吸着量取得部122は、SCR40に吸着されているアンモニアの推定吸着量を取得する。例えば、推定吸着量取得部122は、浄化率取得部121が取得したNOx浄化率から、SCR40によって消費されたアンモニアの総消費量を算出する。そして、推定吸着量取得部122は、総消費量を、SCR40に供給されたアンモニアの総供給量から減算することで、現在の推定吸着量を算出する。なお、アンモニアの推定吸着量の算出方法は、上記に限定されず、他の公知の算出方法であってもよい。   The estimated adsorption amount acquisition unit 122 acquires an estimated adsorption amount of ammonia adsorbed on the SCR 40. For example, the estimated adsorption amount acquisition unit 122 calculates the total consumption amount of ammonia consumed by the SCR 40 from the NOx purification rate acquired by the purification rate acquisition unit 121. Then, the estimated adsorption amount acquisition unit 122 calculates the current estimated adsorption amount by subtracting the total consumption amount from the total supply amount of ammonia supplied to the SCR 40. Note that the method for calculating the estimated adsorption amount of ammonia is not limited to the above, and other known calculation methods may be used.

噴射制御部123は、推定吸着量取得部122が取得した推定吸着量に基づいて、尿素水噴射装置50による尿素水の噴射を制御する。例えば、噴射制御部123は、予め設定されたアンモニアの目標吸着量(例えば、記憶部110に記憶された目標吸着量)と、推定吸着量との差に基づいて、尿素水を噴射させる。   The injection control unit 123 controls the urea water injection by the urea water injection device 50 based on the estimated adsorption amount acquired by the estimated adsorption amount acquisition unit 122. For example, the injection control unit 123 causes the urea water to be injected based on a difference between a preset target adsorption amount of ammonia (for example, a target adsorption amount stored in the storage unit 110) and the estimated adsorption amount.

判定部124は、浄化率取得部121が取得したNOx浄化率と所定の閾値とを比較する。例えば、判定部124は、噴射制御部123による尿素水の噴射制御中に、NOx浄化率が図3に示す第1閾値C1、第2閾値C2及び第3閾値C3よりも低下したか又は上昇したかを判定する。第1閾値C1〜第3閾値C3は、例えば記憶部110に記憶されている。   The determination unit 124 compares the NOx purification rate acquired by the purification rate acquisition unit 121 with a predetermined threshold value. For example, during the urea water injection control by the injection control unit 123, the determination unit 124 decreases or increases the NOx purification rate from the first threshold value C1, the second threshold value C2, and the third threshold value C3 shown in FIG. Determine whether. The first threshold value C1 to the third threshold value C3 are stored in the storage unit 110, for example.

推定吸着量補正部125は、推定吸着量取得部122が取得した推定吸着量を補正する。例えば、推定吸着量補正部125は、NOx浄化率が図3に示す第3閾値C3よりも低下すると、推定吸着量を補正する。   The estimated adsorption amount correction unit 125 corrects the estimated adsorption amount acquired by the estimated adsorption amount acquisition unit 122. For example, the estimated adsorption amount correction unit 125 corrects the estimated adsorption amount when the NOx purification rate falls below the third threshold C3 shown in FIG.

本実施形態では、噴射制御部123は、尿素水の噴射に伴いNOx浄化率が変動する際に、判定部124による判定結果に応じて尿素水の噴射を制御する。また、推定吸着量補正部125は、判定部124による判定結果に基づいて推定吸着量を補正する。ここでは、図3を参照しながら、具体的に説明する。   In the present embodiment, the injection control unit 123 controls the injection of urea water according to the determination result by the determination unit 124 when the NOx purification rate varies with the injection of urea water. In addition, the estimated adsorption amount correction unit 125 corrects the estimated adsorption amount based on the determination result by the determination unit 124. Here, it demonstrates concretely, referring FIG.

図3は、浄化率の推移と尿素水の噴射量との関係を説明するための模式図である。図3では、浄化率の推移が太線で示されている。また、時刻t1の前には、推定吸着量が目標吸着量よりも多いため、尿素水噴射装置50尿素水を噴射していないものとする。このため、NOx浄化率が次第に低下し、時刻t1の際に、NOx浄化率が第1閾値C1よりも低下している。   FIG. 3 is a schematic diagram for explaining the relationship between the transition of the purification rate and the injection amount of urea water. In FIG. 3, the transition of the purification rate is indicated by a bold line. Further, since the estimated adsorption amount is larger than the target adsorption amount before time t1, it is assumed that the urea water injection device 50 does not inject urea water. For this reason, the NOx purification rate gradually decreases, and at the time t1, the NOx purification rate is lower than the first threshold value C1.

噴射制御部123は、判定部124によってNOx浄化率が第1閾値C1よりも低下したと判定された場合には、上流側NOxセンサ60が検出した上流側NOx値に応じた噴射量の尿素水を噴射させる第1噴射制御を行う。すなわち、噴射制御部123は、推定吸着量には左右されずに、上流側NOx値に応じて尿素水を噴射する。この際、推定吸着量の更新は停止される。上流側NOxに応じて尿素水の噴射量が増える場合には、推定吸着量の更新を続けると推定吸着量が増えて実吸着量との乖離が広がる恐れがあるので、推定吸着量の更新を停止することで上記の問題を抑制できる。   When the determination unit 124 determines that the NOx purification rate is lower than the first threshold C1, the injection control unit 123 has an injection amount of urea water corresponding to the upstream NOx value detected by the upstream NOx sensor 60. The first injection control for injecting is performed. That is, the injection control unit 123 injects urea water according to the upstream NOx value without being influenced by the estimated adsorption amount. At this time, the update of the estimated adsorption amount is stopped. When the injection amount of urea water increases according to upstream NOx, if the estimated adsorption amount is continuously updated, the estimated adsorption amount may increase and the deviation from the actual adsorption amount may increase. The above problem can be suppressed by stopping.

図3では、噴射制御部123は、時刻t1〜t2の間に第1噴射制御を行っている。これにより、推定吸着量と実吸着量に乖離があっても、第1噴射制御を行うことで乖離を抑制できる。第1噴射制御における尿素水の噴射量は、予め設定された係数に対応する量である。ここで、係数は、アンモニアスリップを抑制するために設定されており、目標吸着量での推定浄化率、実浄化率、排気温度、排気流量等に基づいて補正されたものである。なお、推定浄化率と実浄化率の差が小さい場合には、尿素水の噴射量は少なく、推定浄化率と実浄化率の差が大きい場合には、尿素水の噴射量は多い。また、排気温度及び排気流量は、噴射量の上限に関係する。   In FIG. 3, the injection control unit 123 performs the first injection control between times t1 and t2. Thereby, even if there is a divergence between the estimated adsorption amount and the actual adsorption amount, the divergence can be suppressed by performing the first injection control. The urea water injection amount in the first injection control is an amount corresponding to a preset coefficient. Here, the coefficient is set to suppress ammonia slip, and is corrected based on the estimated purification rate at the target adsorption amount, the actual purification rate, the exhaust temperature, the exhaust flow rate, and the like. When the difference between the estimated purification rate and the actual purification rate is small, the urea water injection amount is small, and when the difference between the estimated purification rate and the actual purification rate is large, the urea water injection amount is large. Further, the exhaust temperature and the exhaust flow rate are related to the upper limit of the injection amount.

図4は、上流側NOx値と尿素水の噴射量との関係を示すグラフである。グラフの横軸が、上流側NOxセンサ60が検出した上流側NOx値を示し、縦軸が、尿素水噴射装置50による尿素水の噴射量を示す。噴射制御部123は、上流側NOx値が大きくなるにつれて噴射量も大きくなるように、尿素水を噴射させる。   FIG. 4 is a graph showing the relationship between the upstream NOx value and the urea water injection amount. The horizontal axis of the graph indicates the upstream NOx value detected by the upstream NOx sensor 60, and the vertical axis indicates the urea water injection amount by the urea water injection device 50. The injection control unit 123 causes the urea water to be injected so that the injection amount increases as the upstream NOx value increases.

図3に戻り、上述した第1噴射制御によりNOx浄化率が改善され、時刻t2の際にNOx浄化率が第2閾値C2よりも上昇しているものとする。ここでは、第2閾値C2は、第1閾値C1よりも若干大きいが、これに限定されず、例えば第2閾値C1と同じ大きさであってもよい。
そして、噴射制御部123は、第1噴射制御の実行中に判定部124によってNOx浄化率が第2閾値C2を超えたと判定された場合には、目標吸着量と推定吸着量とに基づいて尿素水を噴射させる第2噴射制御を行う。すなわち、噴射制御部123は、正常な状態に復帰したものと判断し、通常の尿素水の噴射制御を行う。図3では、噴射制御部123は、時刻t2〜t3の間に第2噴射制御を行っている。この際の尿素水の噴射量は、時刻t1〜t2の間の噴射量よりも多い。
Returning to FIG. 3, it is assumed that the NOx purification rate is improved by the first injection control described above, and that the NOx purification rate is higher than the second threshold C2 at time t2. Here, the second threshold C2 is slightly larger than the first threshold C1, but is not limited thereto, and may be, for example, the same size as the second threshold C1.
When the determination unit 124 determines that the NOx purification rate has exceeded the second threshold C2 during execution of the first injection control, the injection control unit 123 determines urea based on the target adsorption amount and the estimated adsorption amount. Second injection control for injecting water is performed. That is, the injection control unit 123 determines that it has returned to a normal state, and performs normal urea water injection control. In FIG. 3, the injection control unit 123 performs the second injection control between times t2 and t3. The injection amount of urea water at this time is larger than the injection amount between times t1 and t2.

なお、所定時間経過してもNOx浄化率が第2閾値C2を超えないと判定部124が判定した場合には、制御部120は、排気浄化システムSにおいて何らかの故障が発生したものと判断する。   If the determination unit 124 determines that the NOx purification rate does not exceed the second threshold C2 even after a predetermined time has elapsed, the control unit 120 determines that some failure has occurred in the exhaust purification system S.

図3において、時刻t3の後は、推定吸着量が目標吸着量よりも多くなり、尿素水が噴射されていない。ここでは、装置の異常等に起因してNOx浄化率が次第に低下し、時刻t4の際に、NOx浄化率が第3閾値C3よりも低下するものとする。第3閾値C3は、第2閾値C2よりも小さい値である。   In FIG. 3, after time t3, the estimated adsorption amount becomes larger than the target adsorption amount, and urea water is not injected. Here, it is assumed that the NOx purification rate gradually decreases due to the abnormality of the device, and the NOx purification rate is lower than the third threshold C3 at time t4. The third threshold C3 is a value smaller than the second threshold C2.

噴射制御部123は、判定部124によってNOx浄化率が第3閾値C3よりも低下したと判定された場合には、上流側NOx値に応じた噴射量及び前記目標吸着量に相当する噴射量の尿素水を噴射させる第3噴射制御を行う。噴射制御部123は、時刻t4〜t5の間に第3噴射制御を行い、一時的に多くの尿素水を噴射する。   When it is determined by the determination unit 124 that the NOx purification rate has decreased below the third threshold C3, the injection control unit 123 sets the injection amount corresponding to the upstream NOx value and the injection amount corresponding to the target adsorption amount. Third injection control for injecting urea water is performed. The injection control unit 123 performs the third injection control between times t4 and t5, and temporarily injects a lot of urea water.

噴射制御部123は、時刻t5の後、時刻t2〜t3と同様に通常の尿素水の噴射制御を行う。そして、噴射制御部123は、NOx浄化率が第2閾値C2を超えた場合には、通常の尿素水の噴射制御を続ける。
一方で、上記の第3噴射制御を行っても、NOx浄化率が改善されない場合(具体的には、判定部124によってNOx浄化率が第2閾値C2を超えないと判定された場合)には、制御部120は、排気浄化システムSにおいて故障が発生したものと判断する。
The injection control unit 123 performs normal urea water injection control after the time t5, similarly to the times t2 to t3. The injection control unit 123 continues normal urea water injection control when the NOx purification rate exceeds the second threshold C2.
On the other hand, when the NOx purification rate is not improved even when the third injection control is performed (specifically, when the determination unit 124 determines that the NOx purification rate does not exceed the second threshold C2). The control unit 120 determines that a failure has occurred in the exhaust purification system S.

推定吸着量補正部125は、判定部124によってNOx浄化率が第3閾値C3よりも低下したと判定された場合には、推定吸着量が実吸着量と乖離していると判断し、推定吸着量取得部122が取得した推定吸着量を補正する。すなわち、推定吸着量補正部125は、推定吸着量を実吸着量に近い値に補正する。これにより、NOx浄化率が正常に戻り、適正な尿素水の噴射を行うことができる。   When the determination unit 124 determines that the NOx purification rate has decreased below the third threshold C3, the estimated adsorption amount correction unit 125 determines that the estimated adsorption amount is different from the actual adsorption amount, and the estimated adsorption amount The estimated adsorption amount acquired by the amount acquisition unit 122 is corrected. That is, the estimated adsorption amount correction unit 125 corrects the estimated adsorption amount to a value close to the actual adsorption amount. Thereby, the NOx purification rate returns to normal, and proper urea water injection can be performed.

なお、上述した第1噴射制御を行っても、NOx浄化率が0に近い値になった場合や、NOx浄化率の減少度合いが大きい場合には、噴射制御部123が第3噴射制御を実行してもよい。   Even if the first injection control described above is performed, the injection control unit 123 executes the third injection control when the NOx purification rate becomes a value close to 0 or when the degree of decrease in the NOx purification rate is large. May be.

<本実施形態における効果>
上述した制御装置100は、SCR40のアンモニアの推定吸着量が目標吸着量よりも大きくなって尿素水が噴射されていない際に判定部124によってNOx浄化率が第1閾値C1よりも低下したと判定された場合には、上流側NOxセンサ60が検出した上流側NOx値に応じた噴射量の尿素水を噴射させる。
<Effect in this embodiment>
The control device 100 described above determines that the NOx purification rate is lower than the first threshold C1 by the determination unit 124 when the estimated ammonia adsorption amount of the SCR 40 is larger than the target adsorption amount and urea water is not injected. If it is, the urea water of the injection amount corresponding to the upstream NOx value detected by the upstream NOx sensor 60 is injected.

かかる場合には、排気温度が小さいことに起因してアンモニアの推定吸着量が実吸着量に対して過大に乖離しても、上流側NOx値に応じた噴射量の尿素水を噴射することで、推定吸着量と実吸着量との乖離を抑制できる。
一方で、下流側NOx値を考量して噴射量を制御する場合には、実際のアンモニアの吸着量が不明な状態で噴射するため噴射量が過大になり、アンモニアスリップが発生する恐れがある。これに対して、本実施形態のように上流側NOx値に応じて少ない尿素水を噴射することで、アンモニアスリップの発生を抑制できる。
In such a case, even if the estimated adsorption amount of ammonia is excessively deviated from the actual adsorption amount due to the low exhaust temperature, the injection amount of urea water corresponding to the upstream NOx value is injected. Thus, it is possible to suppress the deviation between the estimated adsorption amount and the actual adsorption amount.
On the other hand, when the injection amount is controlled in consideration of the downstream NOx value, the injection amount is excessive because the injection is performed in a state where the actual ammonia adsorption amount is unknown, and ammonia slip may occur. In contrast, the occurrence of ammonia slip can be suppressed by injecting less urea water according to the upstream NOx value as in this embodiment.

上記では、排気浄化システムSがトラック等の車両に搭載されていることとしたが、これに限定されない。例えば、排気浄化システムSは、発電機、建設機械、船舶等に搭載されていてもよい。   In the above description, the exhaust purification system S is mounted on a vehicle such as a truck. However, the present invention is not limited to this. For example, the exhaust purification system S may be mounted on a generator, construction machine, ship, or the like.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

40 SCR
50 尿素水噴射装置
60 上流側NOxセンサ
100 制御装置
121 浄化率取得部
122 推定吸着量取得部
123 噴射制御部
124 判定部
125 推定吸着量補正部

40 SCR
DESCRIPTION OF SYMBOLS 50 Urea water injection apparatus 60 Upstream side NOx sensor 100 Control apparatus 121 Purification rate acquisition part 122 Estimated adsorption amount acquisition part 123 Injection control part 124 Judgment part 125 Estimated adsorption amount correction | amendment part

Claims (4)

尿素水噴射部から噴射された尿素水から生成されるアンモニアを還元剤として排気中のNOxを浄化する選択的還元触媒に吸着されているアンモニアの推定吸着量を取得する推定吸着量取得部と、
前記推定吸着量に基づいて、前記尿素水噴射部に尿素水を噴射させる噴射制御部と、
前記選択的還元触媒のNOx浄化率を取得する浄化率取得部と、
前記尿素水噴射部が前記尿素水を噴射していない際に前記NOx浄化率が第1閾値よりも低下したか否かを判定する判定部と、
を備え、
前記噴射制御部は、前記判定部によって前記NOx浄化率が前記第1閾値よりも低下したと判定された場合には、排気通路において前記選択的還元触媒よりも上流側のNOx値を検出するNOx検出部が検出した上流側NOx値に応じた噴射量の尿素水を噴射させる第1噴射制御を行う、排気浄化制御装置。
An estimated adsorption amount acquisition unit that acquires an estimated adsorption amount of ammonia adsorbed on a selective reduction catalyst that purifies NOx in exhaust gas using ammonia generated from urea water injected from the urea water injection unit as a reducing agent;
An injection control unit for injecting urea water to the urea water injection unit based on the estimated adsorption amount;
A purification rate acquisition unit for acquiring a NOx purification rate of the selective reduction catalyst;
A determination unit that determines whether or not the NOx purification rate has decreased below a first threshold when the urea water injection unit is not injecting the urea water;
With
The injection control unit detects a NOx value upstream of the selective reduction catalyst in the exhaust passage when the determination unit determines that the NOx purification rate is lower than the first threshold value. An exhaust purification control apparatus that performs a first injection control for injecting an injection amount of urea water corresponding to an upstream NOx value detected by a detection unit.
前記噴射制御部は、前記第1噴射制御の実行中に前記判定部によって前記NOx浄化率が第2閾値を超えたと判定された場合には、予め設定された目標吸着量と前記推定吸着量とに基づいて前記尿素水を噴射させる第2噴射制御を行う、
請求項1に記載の排気浄化制御装置。
When the determination unit determines that the NOx purification rate has exceeded a second threshold during execution of the first injection control, the injection control unit includes a preset target adsorption amount and the estimated adsorption amount. Performing second injection control for injecting the urea water based on
The exhaust purification control device according to claim 1.
前記第2噴射制御において前記尿素水が噴射されていない際に前記判定部によって前記NOx浄化率が第3閾値よりも低下したと判定された場合には、前記推定吸着量取得部が取得した推定吸着量を補正する推定吸着量補正部を更に備える、
請求項2に記載の排気浄化制御装置。
When the determination unit determines that the NOx purification rate has decreased below a third threshold when the urea water is not injected in the second injection control, the estimated adsorption amount acquisition unit acquires An estimated adsorption amount correction unit for correcting the adsorption amount;
The exhaust purification control apparatus according to claim 2.
前記噴射制御部は、前記第2噴射制御において前記尿素水が噴射されていない際に前記判定部によって前記NOx浄化率が第3閾値よりも低下したと判定された場合には、前記上流側NOx値に応じた噴射量及び前記目標吸着量に相当する噴射量の尿素水を噴射させる第3噴射制御を行う、
請求項2又は3に記載の排気浄化制御装置。

In the second injection control, when the determination unit determines that the NOx purification rate is lower than a third threshold value when the urea water is not injected in the second injection control, the injection control unit Performing a third injection control for injecting urea water of an injection amount corresponding to the value and an injection amount corresponding to the target adsorption amount;
The exhaust purification control device according to claim 2 or 3.

JP2016022424A 2016-02-09 2016-02-09 Exhaust emission control device Pending JP2017141703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022424A JP2017141703A (en) 2016-02-09 2016-02-09 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022424A JP2017141703A (en) 2016-02-09 2016-02-09 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2017141703A true JP2017141703A (en) 2017-08-17

Family

ID=59628298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022424A Pending JP2017141703A (en) 2016-02-09 2016-02-09 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2017141703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039399A (en) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2020118077A (en) * 2019-01-23 2020-08-06 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039399A (en) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2020118077A (en) * 2019-01-23 2020-08-06 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine, and vehicle
JP7115334B2 (en) 2019-01-23 2022-08-09 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine and vehicle

Similar Documents

Publication Publication Date Title
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
JP6248789B2 (en) Exhaust purification system
CN107448265B (en) Controlling nitrogen oxide emissions in the exhaust of an internal combustion engine
JP5678475B2 (en) SCR system
JP4803107B2 (en) Exhaust gas purification device for internal combustion engine
JP2008196340A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
JP6344259B2 (en) Urea addition control device, learning device
JP6287539B2 (en) Exhaust purification system
JP2010261320A (en) Exhaust emission control device of internal combustion engine
JP5471832B2 (en) SCR system
JP2017141703A (en) Exhaust emission control device
JP5471833B2 (en) SCR system
JP2007239698A (en) Air-fuel ratio control device for internal combustion engine
JP2014206150A (en) Exhaust gas purification control device and program
JP2012057591A (en) Exhaust emission control device
JP6436074B2 (en) Exhaust gas purification device for internal combustion engine
JP6512535B2 (en) Exhaust purification system for internal combustion engine
JP2015197086A (en) Deterioration determination device of selectively reducing catalyst
JP5880593B2 (en) Exhaust gas purification device for internal combustion engine
JP6112093B2 (en) Exhaust purification system
JP2009209788A (en) Exhaust emission control device
JP2009138525A (en) Sulfur accumulation degree estimation device of exhaust emission control device
JP6183659B2 (en) Exhaust gas purification device