JP2017140868A - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
JP2017140868A
JP2017140868A JP2016021872A JP2016021872A JP2017140868A JP 2017140868 A JP2017140868 A JP 2017140868A JP 2016021872 A JP2016021872 A JP 2016021872A JP 2016021872 A JP2016021872 A JP 2016021872A JP 2017140868 A JP2017140868 A JP 2017140868A
Authority
JP
Japan
Prior art keywords
parking lock
lock
hybrid vehicle
output shaft
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016021872A
Other languages
Japanese (ja)
Inventor
真市 森本
Shinichi Morimoto
真市 森本
伊藤 芳輝
Yoshiteru Ito
芳輝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Suzuki Motor Corp
Original Assignee
Denso Corp
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Suzuki Motor Corp filed Critical Denso Corp
Priority to JP2016021872A priority Critical patent/JP2017140868A/en
Priority to DE102017102461.1A priority patent/DE102017102461A1/en
Priority to CN201710227226.9A priority patent/CN107042823A/en
Publication of JP2017140868A publication Critical patent/JP2017140868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • B60T1/062Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels acting on transmission parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/182Conjoint control of vehicle sub-units of different type or different function including control of braking systems including control of parking brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/032Fixing failures by repairing failed parts, e.g. loosening a sticking valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/22Locking of the control input devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • F16H63/483Circuits for controlling engagement of parking locks or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0297Control Giving priority to different actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/186Status of parking brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid vehicle control device capable of executing various P (parking) lock complement control.SOLUTION: A P lock completion determination section 51 determines that a P lock operation by a P lock mechanism 60 is completed. A P lock complement drive section 53 executes "P lock complement control" for driving at least one of a first MG 11 and a second MG 12 and rotating a drive shaft 14 until the P lock operation is completed when the P lock operation is incomplete. A P lock complement drive section 53 generates torque in a reverse rotation direction by the first MG 11 and rotates the drive shaft 14 with a one-way clutch 16 arranged at the position of an output shaft 130 of an engine 13 in a collinear diagram of a power transmission mechanism 100 as a fulcrum of a speed line in P lock complement control. Alternatively, the P lock complement drive section 53 generates toque in a normal rotation direction by the second MG 12 and rotates the drive shaft 14 with the one-way clutch 16 as the fulcrum of the speed line in the P lock complement control.SELECTED DRAWING: Figure 1

Description

本発明は、パーキングロック機構を備えたハイブリッド車両においてパーキングロック動作を制御するハイブリッド車制御装置に関する。   The present invention relates to a hybrid vehicle control device that controls a parking lock operation in a hybrid vehicle having a parking lock mechanism.

従来、シフトポジションが駐車ポジションに設定されたとき車両の駆動軸をロックするパーキングロック機構を備えたハイブリッド車両が知られている。このパーキングロック機構では、アクチュエータを駆動し、ギアの歯に回転規制部材を係止させる。しかし、回転規制部材がギアの歯の上で止まると、パーキングロック状態とならない場合がある。
そこで、特許文献1に開示された駐車時制御手段は、主に駆動用電動機として機能するモータジェネレータを駆動して車両進行方向に押し当てトルクを加え、駆動軸を回転させる。そのようなパーキングロックを行う制御を実行することにより、回転規制部材を確実にギアに係止させ、パーキングロック状態を確実なものとする。
Conventionally, a hybrid vehicle including a parking lock mechanism that locks the drive shaft of the vehicle when the shift position is set to the parking position is known. In this parking lock mechanism, the actuator is driven to lock the rotation restricting member on the gear teeth. However, if the rotation restricting member stops on the gear teeth, the parking lock state may not be achieved.
Therefore, the parking control means disclosed in Patent Document 1 drives a motor generator that mainly functions as a drive motor, applies a pressing torque in the vehicle traveling direction, and rotates the drive shaft. By executing the control for performing such parking lock, the rotation restricting member is reliably locked to the gear, and the parking lock state is ensured.

特開2008−184114号公報JP 2008-184114 A

特許文献1の駐車時制御手段は、発電用電動機としての第1MG、及び、駆動用電動機としての第2MGの二つのモータジェネレータを備えたハイブリッド車両に適用されている。それにもかかわらず、パーキングロックを行う制御の駆動には第2MGしか用いられていないため、パーキングロックを行う制御パターンが一通りに限られており、多様な制御を実施することができない。   The parking control means of Patent Document 1 is applied to a hybrid vehicle including two motor generators, a first MG as a generator motor and a second MG as a drive motor. Nevertheless, since only the second MG is used to drive the control for performing the parking lock, the control pattern for performing the parking lock is limited to one way, and various controls cannot be performed.

以下、本明細書では、パーキングロックを行う制御を、「未完了のパーキングロック動作を完了させる制御」という意味で、「パーキングロック補完制御」という用語を用いて表す。
本発明は、上述した従来の問題点に鑑みて創作されたものであり、その目的は、多様なパーキングロック補完制御を実施可能なハイブリッド車制御装置を提供することにある。
Hereinafter, in this specification, the control for performing the parking lock is expressed by using the term “parking lock complementary control” in the sense of “control for completing the incomplete parking lock operation”.
The present invention was created in view of the above-described conventional problems, and an object of the present invention is to provide a hybrid vehicle control device capable of performing various parking lock complementary controls.

本発明のハイブリッド車制御装置は、動力伝達機構(100)と、ワンウェイクラッチ(16)と、パーキングロック機構(60)と、を備えたハイブリッド車両(90)に適用され、少なくとも第1MG及び第2MGの駆動を制御する装置である。
動力伝達機構は、エンジン(13)の出力軸(130)、第1MG(11)の出力軸(110)、第2MG(12)の出力軸(120)、及び、駆動輪(94)に接続される駆動軸(14)の動力伝達に関し、エンジンの動力と、第1MGの動力と、第2MGの動力とを合成して駆動軸に出力する。
ワンウェイクラッチは、エンジンの出力軸の逆回転を防止する。
パーキングロック機構は、駆動軸と共に回転するロック用ギア(61)と、ロック用ギアとの係合により駆動軸の回転を規制可能な回転規制部材(62)とを、シフトポジションが駐車ポジションに設定されたときに係合させる「パーキングロック動作」を行う。
The hybrid vehicle control device of the present invention is applied to a hybrid vehicle (90) including a power transmission mechanism (100), a one-way clutch (16), and a parking lock mechanism (60), and at least a first MG and a second MG. It is a device that controls the drive of.
The power transmission mechanism is connected to the output shaft (130) of the engine (13), the output shaft (110) of the first MG (11), the output shaft (120) of the second MG (12), and the drive wheels (94). As for the power transmission of the drive shaft (14), the engine power, the first MG power, and the second MG power are combined and output to the drive shaft.
The one-way clutch prevents reverse rotation of the engine output shaft.
The parking lock mechanism has a locking gear (61) that rotates together with the drive shaft, and a rotation restricting member (62) that can restrict the rotation of the drive shaft by engagement with the lock gear. “Parking lock operation” to be engaged when it is performed.

このハイブリッド車制御装置は、パーキングロック完了判定部(51)と、パーキングロック補完駆動部(53)とを有する。
パーキングロック完了判定部は、パーキングロック機構によるパーキングロック動作が完了したことを判定する。
パーキングロック補完駆動部は、パーキングロック動作が未完了のとき、第1MG又は第2MGのうち少なくともいずれか一方を駆動し、パーキングロック動作が完了するまで駆動軸を回転させる「パーキングロック補完制御」を実行する。
The hybrid vehicle control device includes a parking lock completion determination unit (51) and a parking lock complementary drive unit (53).
The parking lock completion determination unit determines that the parking lock operation by the parking lock mechanism has been completed.
The parking lock complementary drive unit performs “parking lock complementary control” for driving at least one of the first MG and the second MG when the parking lock operation is not completed and rotating the drive shaft until the parking lock operation is completed. Run.

動力伝達機構は、具体的には遊星歯車機構で構成される。動力伝達機構において連結されるエンジン、第1MG、第2MG、及び駆動軸の各出力軸の回転数は共線図で表現することができ、各出力軸の回転数は直線関係を持つ速度線になる。
ここで、エンジンの出力軸の回転方向と同方向を正回転方向と定義する。
パーキングロック補完駆動部は、パーキングロック補完制御において、第1MGにより逆回転方向のトルクを発生させ、動力伝達機構の共線図でエンジンの出力軸の位置に配置されるワンウェイクラッチを速度線の支点として駆動軸を回転させる。
同様に、パーキングロック補完駆動部は、パーキングロック補完制御において、第2MGにより正回転方向のトルクを発生させ、動力伝達機構の共線図でエンジンの出力軸の位置に配置されるワンウェイクラッチを速度線の支点として駆動軸を回転させる。
Specifically, the power transmission mechanism is constituted by a planetary gear mechanism. The rotation speed of each output shaft of the engine, the first MG, the second MG, and the drive shaft connected in the power transmission mechanism can be expressed in a collinear diagram, and the rotation speed of each output shaft is a speed line having a linear relationship. Become.
Here, the same direction as the rotation direction of the output shaft of the engine is defined as the positive rotation direction.
In the parking lock supplement control, the parking lock supplement driving unit generates torque in the reverse rotation direction by the first MG, and the one-way clutch arranged at the position of the output shaft of the engine in the alignment chart of the power transmission mechanism is a fulcrum of the speed line. Rotate the drive shaft as
Similarly, in the parking lock supplement control, the parking lock supplement driving unit generates torque in the forward rotation direction by the second MG, and speeds the one-way clutch disposed at the position of the output shaft of the engine in the alignment chart of the power transmission mechanism. The drive shaft is rotated as a fulcrum of the line.

本発明のハイブリッド車制御装置は、ワンウェイクラッチを備えたハイブリッド車両に適用される。これにより、エンジンの出力軸が逆回転方向のトルクをワンウェイクラッチで支えることができる。そして、第1MGに逆回転方向のトルクを加えるか、又は第2MGに正回転方向のトルクを加えて駆動軸を回転させ、パーキングロック動作を完了させることができる。
したがって、ハイブリッド車両の駐車時におけるパーキングロック状態が不完全な場合、本発明のハイブリッド車制御装置は、第1MG又は第2MGの少なくともいずれか一方を駆動することによって、パーキングロック状態を確実なものとすることができる。よって、制御パターンが一通りに限られる従来技術に比べ、多様なパーキングロック補完制御を実施することができる。
The hybrid vehicle control device of the present invention is applied to a hybrid vehicle provided with a one-way clutch. Thereby, the output shaft of the engine can support the torque in the reverse rotation direction with the one-way clutch. Then, the parking lock operation can be completed by applying a torque in the reverse rotation direction to the first MG or rotating the drive shaft by applying a torque in the normal rotation direction to the second MG.
Therefore, when the parking lock state at the time of parking of the hybrid vehicle is incomplete, the hybrid vehicle control device of the present invention ensures the parking lock state by driving at least one of the first MG and the second MG. can do. Therefore, various parking lock supplementary controls can be performed as compared with the prior art in which the control pattern is limited to one.

好ましくは、ハイブリッド車制御装置は、第1MG又は第2MGが指令した回転方向に駆動不能となる異常が発生していることを検出するMG異常検出部(52)をさらに有する。そして、MG異常検出部により、第1MG又は第2MGのいずれか一方の異常が検出されたとき、パーキングロック補完駆動部は、他方の駆動可能なMGを駆動してパーキングロック補完制御を実行する。
ここで、第1MG又は第2MGの「異常」とは、指令した回転方向に駆動できない状態を指し、パーキングロック補完制御を実行する機能を喪失した状態を意味する。例えば実際の出力特性が指令値とずれているような場合でも、駆動軸を指令通りの回転方向に回転させることが可能であれば、パーキングロック補完制御を実行してもよく、「正常」と扱ってかまわない。
Preferably, the hybrid vehicle control device further includes an MG abnormality detection unit (52) that detects that an abnormality that disables driving in the rotational direction commanded by the first MG or the second MG has occurred. When either one of the first MG or the second MG is detected by the MG abnormality detection unit, the parking lock supplement driving unit drives the other drivable MG to execute the parking lock supplement control.
Here, the “abnormality” of the first MG or the second MG refers to a state where the command cannot be driven in the commanded rotation direction, and means a state where the function of executing the parking lock complementary control is lost. For example, even when the actual output characteristics deviate from the command value, if the drive shaft can be rotated in the rotation direction as commanded, the parking lock supplement control may be executed. You can handle it.

特許文献1の従来技術では、第2MGが故障している場合、パーキングロックを行う制御を実行することができず、パーキングロック状態を確実なものとすることができない場合がある。
それに対し、本発明では、第1MG又は第2MGのいずれか一方が異常の場合でも、他方の駆動可能なMGを駆動してパーキングロック補完制御を実行し、パーキングロック動作を確実に完了させることができる。
In the prior art of Patent Document 1, when the second MG is out of order, it may not be possible to execute control for performing parking lock, and the parking lock state may not be ensured.
On the other hand, in the present invention, even when either one of the first MG or the second MG is abnormal, the other drivable MG is driven to execute the parking lock complement control, and the parking lock operation is surely completed. it can.

一実施形態のハイブリッド車制御装置が適用されるハイブリッド車両の全体構成図。1 is an overall configuration diagram of a hybrid vehicle to which a hybrid vehicle control device of an embodiment is applied. ワンウェイクラッチが設けられたエンジンの出力軸の(a)正回転、(b)逆回転防止を説明する模式図。The schematic diagram explaining (a) forward rotation of the output shaft of the engine provided with the one-way clutch, and (b) prevention of reverse rotation. (a)第1MGによるPロック補完制御、(b)第2MGによるPロック補完制御を示す共線図。(A) P-lock complement control by 1st MG, (b) Collinear chart which shows P lock complement control by 2nd MG. パーキングロック補完制御のフローチャート。The flowchart of parking lock complementation control.

(一実施形態)
以下、ハイブリッド車制御装置の実施形態を図面に基づいて説明する。この実施形態のハイブリッド車制御装置は、動力源としてのエンジン及び二つのモータジェネレータ(以下、「MG」)、並びに、動力を合成して駆動軸に出力する動力伝達機構を備えたハイブリッド車両に適用され、二つのMGの駆動を制御する装置である。
(One embodiment)
Hereinafter, embodiments of a hybrid vehicle control device will be described with reference to the drawings. The hybrid vehicle control device of this embodiment is applied to a hybrid vehicle including an engine as a power source, two motor generators (hereinafter “MG”), and a power transmission mechanism that combines the power and outputs it to the drive shaft. This is a device for controlling the driving of two MGs.

最初に、本実施形態のハイブリッド車制御装置が適用されるハイブリッド車両の全体構成について、図1を参照して説明する。
図1に示すように、ハイブリッド車両90は、動力源として、エンジン13、第1MG11(図中「MG1」)、及び、第2MG12(図中「MG2」)を備えている。第1MG11及び第2MG12は、例えば永久磁石式同期型の三相交流電動機である。
車両走行中等の通常駆動時、第1MG11は、主に発電機として機能し、第2MG12は、主に動力を生成する電動機として機能する。
Initially, the whole structure of the hybrid vehicle to which the hybrid vehicle control apparatus of this embodiment is applied is demonstrated with reference to FIG.
As shown in FIG. 1, the hybrid vehicle 90 includes an engine 13, a first MG 11 (“MG1” in the figure), and a second MG 12 (“MG2” in the figure) as power sources. The first MG 11 and the second MG 12 are, for example, permanent magnet type synchronous three-phase AC motors.
During normal driving such as when the vehicle is running, the first MG 11 mainly functions as a generator, and the second MG 12 mainly functions as an electric motor that generates power.

図1には、充放電可能な直流電源であるバッテリ、バッテリと第1MG11との間で直流電力と三相交流電力とを変換する第1インバータ、及び、バッテリと第2MG12との間で直流電力と三相交流電力とを変換する第2インバータの図示を省略する。また、通常駆動時における第1MG11及び第2MG12の駆動制御、例えばフィードバック制御やPWM制御等の技術は周知技術であるため、詳細な説明を省略する。
さらに、車速やアクセル開度等に基づきエンジン13の運転を制御するエンジン制御装置や、各動力源の動作状態を統括的に管理する統括制御装置、及び、それらの制御装置に関する入出力信号の図示を省略する。
FIG. 1 shows a battery that is a chargeable / dischargeable DC power source, a first inverter that converts DC power and three-phase AC power between the battery and the first MG 11, and DC power between the battery and the second MG 12. And the second inverter that converts the three-phase AC power is omitted. Further, since the drive control of the first MG 11 and the second MG 12 during normal drive, such as feedback control and PWM control, are well-known techniques, detailed description thereof is omitted.
Further, an engine control device that controls the operation of the engine 13 based on the vehicle speed, the accelerator opening degree, and the like, a general control device that comprehensively manages the operating state of each power source, and illustration of input / output signals related to these control devices Is omitted.

ハイブリッド車両90において、エンジン13の動力と、第1MG11の動力と、第2MG12の動力とは、動力伝達機構100で合成され、駆動軸14に出力される。駆動軸14の動力は、ディファレンシャル装置92を介して車軸93に伝達され、駆動輪94を回転駆動する。   In hybrid vehicle 90, the power of engine 13, the power of first MG 11, and the power of second MG 12 are combined by power transmission mechanism 100 and output to drive shaft 14. The power of the drive shaft 14 is transmitted to the axle 93 via the differential device 92 and rotationally drives the drive wheels 94.

動力伝達機構100は、特許第3852562号公報、特許第5765596号公報等に開示された、共線図では4軸となる「4軸式」の動力入出力装置である。動力伝達機構100は、互いの二つの回転要素が連結された第1遊星歯車機構20と第2遊星歯車機構30とが並設されて構成される。
図1には、各遊星歯車機構のサンギアを「S」、プラネタリキャリアを「C」、リングギアを「R」と記し、模式的に図示する。
The power transmission mechanism 100 is a “4-axis type” power input / output device disclosed in Japanese Patent No. 3852562, Japanese Patent No. 5765596, and the like, which has four axes in the nomograph. The power transmission mechanism 100 includes a first planetary gear mechanism 20 and a second planetary gear mechanism 30 in which two rotation elements are connected to each other.
In FIG. 1, the sun gear of each planetary gear mechanism is indicated as “S”, the planetary carrier is indicated as “C”, and the ring gear is indicated as “R”, which are schematically illustrated.

第1遊星歯車機構20は、第1サンギア21、第1プラネタリキャリア22、及び、第1リングギア23を含む。第1プラネタリキャリア22は、第1サンギア21と第1リングギア23との間に噛み合った図示しないピニオンギアに連結されている。
第2遊星歯車機構30は、第2サンギア31、第2プラネタリキャリア32、及び、第2リングギア33を含む。第2プラネタリキャリア32は、第2サンギア31と第2リングギア33との間に噛み合った図示しないピニオンギアに連結されている。
The first planetary gear mechanism 20 includes a first sun gear 21, a first planetary carrier 22, and a first ring gear 23. The first planetary carrier 22 is connected to a pinion gear (not shown) meshed between the first sun gear 21 and the first ring gear 23.
The second planetary gear mechanism 30 includes a second sun gear 31, a second planetary carrier 32, and a second ring gear 33. The second planetary carrier 32 is connected to a pinion gear (not shown) meshed between the second sun gear 31 and the second ring gear 33.

動力伝達機構100において、第1サンギア21には、第1MG11の出力軸110が接続する。互いに連結された第1プラネタリキャリア22と第2サンギア31には、エンジン13の出力軸130が接続する。互いに連結された第1リングギア23と第2プラネタリキャリア32には、駆動軸14が接続する。第2リングギア33には、第2MG12の出力軸120が接続する。
このように4軸式の動力伝達機構100は、二つの遊星歯車機構20、30の互いの二つの回転要素が連結されて構成され、エンジン13、第1MG11、第2MG12、及び駆動軸14の間で動力の授受が行われる。
In the power transmission mechanism 100, the output shaft 110 of the first MG 11 is connected to the first sun gear 21. The output shaft 130 of the engine 13 is connected to the first planetary carrier 22 and the second sun gear 31 that are connected to each other. The drive shaft 14 is connected to the first ring gear 23 and the second planetary carrier 32 that are coupled to each other. The output shaft 120 of the second MG 12 is connected to the second ring gear 33.
As described above, the four-shaft power transmission mechanism 100 is configured by connecting two rotating elements of the two planetary gear mechanisms 20 and 30 to each other, and between the engine 13, the first MG 11, the second MG 12, and the drive shaft 14. Power is exchanged at.

エンジン13の出力軸130の途中には、エンジン13の出力軸130の逆回転を防止するためのワンウェイクラッチ16が設けられている。ワンウェイクラッチ16の入力軸と出力軸については、入力軸が駆動軸14側に接続されており、出力軸がエンジン13側に接続されているものとする。
図2(a)に示すように、ワンウェイクラッチ16の入力軸に正回転方向のトルクが加えられたとき、エンジン13の出力軸130は正回転する。一方、図2(b)に示すように、ワンウェイクラッチ16の入力軸に逆回転方向のトルクが加えられたとき、ワンウェイクラッチ16がロックし、ワンウェイクラッチ16の出力軸は回転しない。すなわち、エンジン13の出力軸130の逆回転を防止することができる。
A one-way clutch 16 for preventing reverse rotation of the output shaft 130 of the engine 13 is provided in the middle of the output shaft 130 of the engine 13. Regarding the input shaft and output shaft of the one-way clutch 16, it is assumed that the input shaft is connected to the drive shaft 14 side and the output shaft is connected to the engine 13 side.
As shown in FIG. 2A, when a torque in the forward rotation direction is applied to the input shaft of the one-way clutch 16, the output shaft 130 of the engine 13 rotates forward. On the other hand, as shown in FIG. 2B, when a torque in the reverse rotation direction is applied to the input shaft of the one-way clutch 16, the one-way clutch 16 is locked and the output shaft of the one-way clutch 16 does not rotate. That is, reverse rotation of the output shaft 130 of the engine 13 can be prevented.

また、駆動軸14の途中には、ロック用ギア61及び回転規制部材62を含むパーキングロック機構60が設けられている。ロック用ギア61は、駆動軸14と共に回転する。回転規制部材62は、ロック用ギア61との係合により駆動軸14の回転を規制可能である。パーキングロック機構60は、ハイブリッド車両90のシフトポジションが駐車ポジションに設定されたときにロック用ギア61と回転規制部材62とを係合させる「パーキングロック動作」を行う。本実施形態のハイブリッド車制御装置50は、主として、このパーキングロック動作を制御するものである。   A parking lock mechanism 60 including a lock gear 61 and a rotation restricting member 62 is provided in the middle of the drive shaft 14. The locking gear 61 rotates together with the drive shaft 14. The rotation restricting member 62 can restrict the rotation of the drive shaft 14 by being engaged with the locking gear 61. The parking lock mechanism 60 performs a “parking lock operation” that engages the locking gear 61 and the rotation restricting member 62 when the shift position of the hybrid vehicle 90 is set to the parking position. The hybrid vehicle control device 50 of the present embodiment mainly controls this parking lock operation.

パーキングロック機構60の基本的構成は、特許文献1(特開2008−184114号公報)に開示された構成と同様である。また、特許文献1に開示された従来技術では、ロック用ギアと回転規制部材とのパーキングロック状態が不完全な場合、第2MGをパーキングロックアクチュエータが駆動して駆動軸を回転させ、パーキングロック状態を確実なものとする。   The basic configuration of the parking lock mechanism 60 is the same as the configuration disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2008-184114). In the prior art disclosed in Patent Document 1, when the parking lock state between the locking gear and the rotation restricting member is incomplete, the parking lock actuator drives the second MG to rotate the drive shaft, and the parking lock state To ensure.

しかし、特許文献1の従来技術において、例えば、車両の走行中に第2MGが駆動不能となる故障が発生した状態で、運転者が坂道に車両を駐車しようとする場面を想定する。このとき、パーキングロック機構のパーキングロック状態が不完全であると、第2MGの駆動によるパーキングロックを行う制御を実行することができないため、意図せず車両が坂道をずり下がるおそれがある。   However, in the prior art of Patent Document 1, for example, a situation is assumed in which a driver attempts to park a vehicle on a slope in a state where a failure has occurred in which the second MG cannot be driven while the vehicle is running. At this time, if the parking lock state of the parking lock mechanism is incomplete, the control for performing the parking lock by driving the second MG cannot be executed, so that the vehicle may unintentionally slide down the slope.

このような問題を解決すべく、本実施形態のハイブリッド車制御装置50は、駐車時におけるパーキングロック状態が不完全な場合、第1MG11及び第2MG12のいずれを駆動することによっても、パーキングロック状態を確実なものとする制御を実行可能とすることを特徴とする。
その手段として、ハード面では、ハイブリッド車制御装置50が適用されるハイブリッド車両90にエンジン13の出力軸130の逆回転を防止するワンウェイクラッチ16が備えられる。第1MG11又は第2MG12のトルクがエンジン13の出力軸130に対して逆回転方向に回転させるように作用する場合、ワンウェイクラッチ16によって支えられることにより、駆動軸14を回転させ、パーキングロック動作を完了させることができる。
また、ソフト面では、ハイブリッド車制御装置50は、第1MG11又は第2MG12のいずれを用いて駆動軸14を回転させるのが適切であるかを判断する。その制御構成について、次に説明する。
In order to solve such a problem, the hybrid vehicle control device 50 according to the present embodiment sets the parking lock state by driving either the first MG 11 or the second MG 12 when the parking lock state at the time of parking is incomplete. It is characterized in that it is possible to execute control that is sure.
As a means, in terms of hardware, a one-way clutch 16 that prevents reverse rotation of the output shaft 130 of the engine 13 is provided in a hybrid vehicle 90 to which the hybrid vehicle control device 50 is applied. When the torque of the first MG 11 or the second MG 12 acts to rotate in the reverse rotation direction with respect to the output shaft 130 of the engine 13, the drive shaft 14 is rotated by being supported by the one-way clutch 16, and the parking lock operation is completed. Can be made.
In terms of software, the hybrid vehicle control device 50 determines whether it is appropriate to rotate the drive shaft 14 using either the first MG 11 or the second MG 12. The control configuration will be described next.

図1に示すように、ハイブリッド車制御装置50は、パーキングロック完了判定部51、MG異常検出部52、及び、パーキングロック補完駆動部53を有している。以下、図面中の表記を含め、「パーキングロック」を「Pロック」と記載する。
Pロック完了判定部51は、Pロック機構60によるPロック動作が完了したことを判定する。この判定は、例えば、ロック用ギア61と回転規制部材62との係合状態を検出するセンサからの信号に基づいて行ってもよい。或いは、ロック用ギア61の回転位置、駆動軸14の回転角速度及び動作時間等の情報に基づき、演算により推定してもよい。
As shown in FIG. 1, the hybrid vehicle control device 50 includes a parking lock completion determination unit 51, an MG abnormality detection unit 52, and a parking lock complement drive unit 53. Hereinafter, “parking lock” is referred to as “P lock”, including the notation in the drawings.
The P lock completion determination unit 51 determines that the P lock operation by the P lock mechanism 60 has been completed. This determination may be made based on, for example, a signal from a sensor that detects an engagement state between the locking gear 61 and the rotation restricting member 62. Alternatively, it may be estimated by calculation based on information such as the rotational position of the locking gear 61, the rotational angular velocity of the drive shaft 14, and the operation time.

MG異常検出部52は、第1MG11又は第2MG12が指令した回転方向に駆動不能となる異常が発生していることを検出する。この異常検出は、Pロック完了判定以前の第1MG11及び第2MG12の通常駆動中に検出された結果により判断してもよい。或いは、車両が駐車し、Pロック動作が未完了と判定された後に実施されてもよい。
ここで、第1MG11又は第2MG12の「異常」とは、指令した回転方向に駆動できない状態を指し、後述の「Pロック補完制御」を実行する機能を喪失した状態を意味する。例えば、第1MG11及び第2MG12の実際の出力特性が指令値とずれているような場合でも、駆動軸14を指令通りの回転方向に回転させることが可能であれば、Pロック補完制御を実行してもよく、MG異常検出部52は、「正常」と扱ってかまわない。
The MG abnormality detection unit 52 detects that an abnormality that disables driving in the rotation direction commanded by the first MG 11 or the second MG 12 has occurred. This abnormality detection may be determined based on a result detected during normal driving of the first MG 11 and the second MG 12 before the P lock completion determination. Alternatively, it may be performed after the vehicle is parked and the P-lock operation is determined to be incomplete.
Here, the “abnormality” of the first MG 11 or the second MG 12 refers to a state where it cannot be driven in the commanded rotation direction, and means a state where the function of executing “P lock complementation control” described later has been lost. For example, even when the actual output characteristics of the first MG 11 and the second MG 12 deviate from the command value, if the drive shaft 14 can be rotated in the rotation direction as commanded, the P lock complement control is executed. The MG abnormality detection unit 52 may handle “normal”.

Pロック補完駆動部53は、Pロック動作が未完了のとき、第1MG11又は第2MG12のうち少なくともいずれか一方を駆動し、Pロック動作が完了するまで駆動軸14を回転させる「Pロック補完制御」を実行する。具体的には、MG異常検出部52により、第1MG11又は第2MG12のいずれか一方の異常が検出されたとき、Pロック補完駆動部53は、他方の駆動可能なMGを駆動してPロック補完制御を実行する。第1MG11及び第2MG12のいずれも正常な場合、両方のMGを同時に駆動してもよい。   When the P lock operation is not completed, the P lock complement drive unit 53 drives at least one of the first MG 11 and the second MG 12 and rotates the drive shaft 14 until the P lock operation is completed. ”Is executed. Specifically, when either one of the first MG 11 or the second MG 12 is detected by the MG abnormality detection unit 52, the P lock complement drive unit 53 drives the other drivable MG to perform P lock complement. Execute control. When both the first MG 11 and the second MG 12 are normal, both MGs may be driven simultaneously.

なお、本明細書では、Pロックを行う制御を、「未完了のPロック動作を完了させる制御」という意味で、「Pロック補完制御」という用語を用いて表す。
一般にベクトル制御を用いるMG駆動制御では、Pロック補完駆動部53は、q軸電流指令を演算することにより、MGに対するトルクを指令する。つまり、Pロック補完駆動部53は、トルク指令に応じたトルクを第1MG11又は第2MG12に出力させるように、各インバータへの駆動信号を生成する機能を実質的に有するものである。
In this specification, the control for performing the P-lock is expressed by using the term “P-lock complementary control” in the sense of “control for completing an incomplete P-lock operation”.
In general, in MG drive control using vector control, the P lock complementary drive unit 53 commands a torque for the MG by calculating a q-axis current command. That is, the P lock complementary drive unit 53 substantially has a function of generating a drive signal to each inverter so that the torque according to the torque command is output to the first MG 11 or the second MG 12.

次に、Pロック補完制御における動力伝達機構100の回転要素の動作について、図3を参照して説明する。図3は、各回転要素間の回転数の関係を示す共線図である。
共線図において、「MG1」は第1MG11の出力軸110、「MG2」は第2MG12の出力軸110、「ENG」はエンジン13の出力軸130、「OUT」は駆動軸14を意味する。以下の説明中、「の出力軸」の部分を適宜省略して記載する。
Next, the operation of the rotating element of the power transmission mechanism 100 in the P lock complement control will be described with reference to FIG. FIG. 3 is a collinear diagram showing the relationship of the number of rotations between the rotating elements.
In the alignment chart, “MG1” means the output shaft 110 of the first MG 11, “MG2” means the output shaft 110 of the second MG 12, “ENG” means the output shaft 130 of the engine 13, and “OUT” means the drive shaft 14. In the following description, the “output shaft” portion is omitted as appropriate.

4軸式の動力伝達機構100の共線図において、内側の二つの回転要素にエンジン13と駆動軸14とが配置される。また、エンジン13側の外側の回転要素に第1MG11が配置され、駆動軸14側の外側の回転要素に第2MG12が配置される。ワンウェイクラッチ(図中「OWC」)16は、共線図でエンジン13の出力軸130の位置に配置され、速度線の支点となる。   In the collinear diagram of the four-axis power transmission mechanism 100, the engine 13 and the drive shaft 14 are arranged on the two inner rotating elements. Further, the first MG 11 is disposed on the outer rotating element on the engine 13 side, and the second MG 12 is disposed on the outer rotating element on the drive shaft 14 side. The one-way clutch ("OWC" in the figure) 16 is arranged at the position of the output shaft 130 of the engine 13 in the alignment chart, and serves as a fulcrum for the speed line.

共線図の回転数は、エンジン13の出力軸130の回転方向を正方向として定義する。また、エンジン13の出力軸130の回転方向、すなわち、回転数が正である回転方向を「正回転方向」と定義し、回転数が負である回転方向を「逆回転方向」と定義する。
図3(a)、(b)に太実線で示すように、ハイブリッド車両90の駐車時に全ての回転要素が停止しているとき、速度線は速度0の軸上に表される。
The rotation speed of the nomograph is defined as the positive direction of the rotation direction of the output shaft 130 of the engine 13. In addition, the rotation direction of the output shaft 130 of the engine 13, that is, the rotation direction in which the rotation speed is positive is defined as “forward rotation direction”, and the rotation direction in which the rotation speed is negative is defined as “reverse rotation direction”.
As shown by thick solid lines in FIGS. 3A and 3B, when all the rotating elements are stopped when the hybrid vehicle 90 is parked, the speed line is represented on the axis of speed 0.

Pロック補完駆動部53は、Pロック補完制御において、第1MG11を駆動する場合、第1MG11により逆回転方向のトルクを発生させ、共線図上でワンウェイクラッチ16を支点として駆動軸14を回転させる。
図3(a)に太破線で示すように、第1MG11により逆回転方向のトルクを発生させたとき、共線図の速度線は、ワンウェイクラッチ16を支点として、第1MG11側が負方向に、第2MG12側が正方向に傾く。その結果、駆動軸14は正方向に回転し、回転規制部材62がロック用ギア61の歯の前方の壁に押し当てられることにより、Pロック動作を完了させることができる。
When the first MG 11 is driven in the P lock complement control, the P lock complement drive unit 53 generates torque in the reverse rotation direction by the first MG 11 and rotates the drive shaft 14 with the one-way clutch 16 as a fulcrum on the alignment chart. .
As shown by the thick broken line in FIG. 3A, when the torque in the reverse rotation direction is generated by the first MG 11, the speed line in the collinear diagram is the first MG 11 side in the negative direction with the one-way clutch 16 as a fulcrum. The 2MG12 side is inclined in the positive direction. As a result, the drive shaft 14 rotates in the forward direction, and the rotation restricting member 62 is pressed against the wall in front of the teeth of the locking gear 61, whereby the P-locking operation can be completed.

また、Pロック補完駆動部53は、Pロック補完制御において、第2MG12を駆動する場合、第2MG12により正回転方向のトルクを発生させ、駆動軸14を回転させる。
図3(b)に太破線で示すように、第2MG12により正回転方向のトルクを発生させたとき、共線図の速度線は、ワンウェイクラッチ16を支点として、第2MG12側が正方向に、第1MG11側が負方向に傾く。その結果、駆動軸14は正方向に回転し、回転規制部材62がロック用ギア61の歯の前方の壁に押し当てられることにより、Pロック動作を完了させることができる。
In addition, when the second MG 12 is driven in the P lock complement control, the P lock complement driving unit 53 causes the second MG 12 to generate a torque in the forward rotation direction and rotate the drive shaft 14.
As shown by a thick broken line in FIG. 3 (b), when the torque in the forward rotation direction is generated by the second MG 12, the speed line in the collinear chart shows the second MG 12 side in the positive direction with the one-way clutch 16 as a fulcrum. The 1MG11 side is inclined in the negative direction. As a result, the drive shaft 14 rotates in the forward direction, and the rotation restricting member 62 is pressed against the wall in front of the teeth of the locking gear 61, whereby the P-locking operation can be completed.

次に、本実施形態のPロック補完制御処理について、図4のフローチャートを参照して説明する。以下のフローチャートの説明で、記号「S」はステップを意味する。
S1では、Pロック完了判定部51により、Pロックが完了したか否かが判定される。
Pロックが完了しており、S1でYESのとき、Pロック補完制御を行う必要はない。この場合、S8に移行し、Pロック補完駆動部53は、第1MG11及び第2MG12のトルク指令を0として処理をストップする。
Next, the P lock complement control processing of this embodiment will be described with reference to the flowchart of FIG. In the description of the flowchart below, the symbol “S” means a step.
In S1, the P lock completion determination unit 51 determines whether or not the P lock is completed.
When the P-lock is completed and S1 is YES, it is not necessary to perform the P-lock complement control. In this case, the process proceeds to S8, and the P lock complementary drive unit 53 sets the torque commands of the first MG 11 and the second MG 12 to 0 and stops the process.

Pロックが未完了でS1でNOのとき、以後のS2〜S7では、MG異常検出部52による第1MG11及び第2MG12の異常検出結果に基づき、Pロック補完駆動部53がPロック補完制御に用いるMGを決定する。
第1MG11及び第2MG12がいずれも正常のとき、S2でYESと判定され、S3で、正常な第1MG11又は第2MG12に対し、Pロック補完制御のためのトルク指令が出力される。
When the P-lock is not completed and S1 is NO, in subsequent S2 to S7, the P-lock complement driving unit 53 uses the first MG 11 and second MG 12 abnormality detection results by the MG abnormality detection unit 52 for P-lock complement control. Determine MG.
When both the first MG11 and the second MG12 are normal, it is determined YES in S2, and in S3, a torque command for P lock complement control is output to the normal first MG11 or second MG12.

S3の処理では、次の3つのパターンのうちいずれかが選択される。
<第1パターン>第1MG11のみを逆回転方向に駆動する。
<第2パターン>第2MG12のみを正回転方向に駆動する。
<第3パターン>第1MG11の逆回転方向の駆動と第2MG12の正回転方向の駆動とを同時に行う。
In the process of S3, one of the following three patterns is selected.
<First pattern> Only the first MG 11 is driven in the reverse rotation direction.
<Second pattern> Only the second MG 12 is driven in the forward rotation direction.
<Third Pattern> The first MG 11 is driven in the reverse rotation direction and the second MG 12 is driven in the forward rotation direction simultaneously.

第1MG11が正常で第2MG12が異常のとき、S2でNO、S4でYESと判定され、S5で、正常な第1MG11に対し、Pロック補完制御のためのトルク指令が出力される。一方、第1MG11が異常で第2MG12が正常のとき、S2及びS4でNO、S6でYESと判定され、S7で、正常な第2MG12に対し、Pロック補完制御のためのトルク指令が出力される。なお、S4及びS6の判断ステップの順は入れ替えてもよい。   When the first MG 11 is normal and the second MG 12 is abnormal, NO is determined in S2, YES is determined in S4, and a torque command for P lock complement control is output to the normal first MG 11 in S5. On the other hand, when the first MG 11 is abnormal and the second MG 12 is normal, NO is determined in S2 and S4, and YES is determined in S6. In S7, a torque command for P lock complement control is output to the normal second MG 12. . Note that the order of the determination steps of S4 and S6 may be changed.

また、第1MG11及び第2MG12がいずれも異常のとき、S2、S4、及びS6でNOと判定される。この場合、Pロック補完制御処理を実行不能であるため、S8に移行し、Pロック補完駆動部53は、第1MG11及び第2MG12のトルク指令を0として処理をストップする。ただし、現実に第1MG11及び第2MG12が同時に異常となる確率は、非常に低いと考えられる。   Further, when both the first MG11 and the second MG12 are abnormal, it is determined NO in S2, S4, and S6. In this case, since the P lock complement control process cannot be executed, the process proceeds to S8, and the P lock complement driving unit 53 sets the torque commands of the first MG 11 and the second MG 12 to 0 and stops the process. However, the probability that the first MG 11 and the second MG 12 will actually become abnormal at the same time is considered to be very low.

上記S2〜S8を総合すると、S3で第1パターンを選択する場合、Pロック補完駆動部53は、「少なくとも第1MG11が正常」のとき、Pロック補完制御において第1MG11のみを駆動する。言い換えれば、原則として第1MG11を用い、第1MG11が異常のときのみ第2MG12を用いてPロック補完制御を実行する。   Summarizing the above S2 to S8, when the first pattern is selected in S3, the P lock complement driving unit 53 drives only the first MG 11 in the P lock complement control when “at least the first MG 11 is normal”. In other words, in principle, the first MG 11 is used, and the P lock complement control is executed using the second MG 12 only when the first MG 11 is abnormal.

一方、S3で第2パターンを選択する場合、Pロック補完駆動部53は、「少なくとも第2MG12が正常」のとき、Pロック補完制御において第2MG12のみを駆動する。言い換えれば、原則として第2MG12を用い、第2MG12が異常のときのみ第1MG11を用いてPロック補完制御を実行する。   On the other hand, when the second pattern is selected in S3, the P lock complement driving unit 53 drives only the second MG 12 in the P lock complement control when “at least the second MG 12 is normal”. In other words, in principle, the second MG 12 is used, and the P lock complement control is executed using the first MG 11 only when the second MG 12 is abnormal.

以上のように、本実施形態のハイブリッド車制御装置50は、エンジン13の出力軸130の逆回転を防止するワンウェイクラッチ16を備えたハイブリッド車両90に適用される。そのため、第1MG11の逆回転方向のトルク、又は第2MG12の正回転方向のトルクを用いることによって駆動軸14を回転させ、Pロック動作を完了させることができる。
したがって、ハイブリッド車両90の駐車時におけるPロック状態が不完全な場合、ハイブリッド車制御装置50は、第1MG11及び第2MG12の少なくともいずれか一方を駆動することによって、Pロック状態を確実なものとすることができる。よって、制御パターンが一通りに限られる従来技術に比べ、多様なPロック補完制御を実施することができる。
As described above, the hybrid vehicle control device 50 according to the present embodiment is applied to the hybrid vehicle 90 including the one-way clutch 16 that prevents the output shaft 130 of the engine 13 from rotating in the reverse direction. Therefore, the drive shaft 14 can be rotated by using the torque in the reverse rotation direction of the first MG 11 or the torque in the forward rotation direction of the second MG 12 to complete the P-lock operation.
Therefore, when the P-lock state when the hybrid vehicle 90 is parked is incomplete, the hybrid vehicle control device 50 ensures the P-lock state by driving at least one of the first MG 11 and the second MG 12. be able to. Therefore, various P lock complement control can be performed as compared with the prior art in which the control pattern is limited to one.

また、本実施形態のハイブリッド車制御装置50はMG異常検出部52を有している。したがって、第1MG11又は第2MG12のいずれか一方の異常が検出されたとき、Pロック補完駆動部53は、他方の駆動可能なMGを駆動してPロック補完制御を実行することができる。
例えば、車両の走行中に第2MG12が駆動不能となる故障が発生したため、運転者が坂道に車両を駐車してディーラに電話連絡しようとする場面を想定する。このとき、Pロック機構のPロック状態が不完全であれば、正常な第1MG11を用いてPロック補完制御を実行し、Pロック状態を確実なものとすることができる。したがって、意図せず車両が坂道をずり下がる状況を回避することができる。
In addition, the hybrid vehicle control device 50 of the present embodiment has an MG abnormality detection unit 52. Therefore, when either one of the first MG 11 or the second MG 12 is detected, the P lock complement driving unit 53 can execute the P lock complement control by driving the other drivable MG.
For example, it is assumed that a failure occurs in which the second MG 12 cannot be driven while the vehicle is traveling, so that the driver parks the vehicle on a hill and tries to call the dealer. At this time, if the P lock state of the P lock mechanism is incomplete, the P lock complement control can be executed using the normal first MG 11 to ensure the P lock state. Therefore, it is possible to avoid a situation where the vehicle unintentionally moves down the slope.

(その他の実施形態)
(1)上記実施形態のハイブリッド車制御装置50は、MG異常検出部52を有し、第1MG11又は第2MG12のいずれか一方で異常が検出されたとき、Pロック補完駆動部53は、他方の駆動可能なMGを駆動してPロック補完制御を実行する。これに対し、他の実施形態のハイブリッド車制御装置は、MG異常検出部を有さず、正常/異常以外の点(例えば停止位置での電気角位相等)に着目してPロック補完制御に用いるMGを選択してもよい。
また、常に第1MG11及び第2MG12の両方を用いてPロック補完制御を実行する形態では、正常な状態から、仮に一方のMGが駆動不能となった場合でも、同一の制御によりPロック補完制御を実行可能となる。
(Other embodiments)
(1) The hybrid vehicle control device 50 of the above embodiment includes the MG abnormality detection unit 52, and when an abnormality is detected in one of the first MG11 or the second MG12, the P lock complementary drive unit 53 The drivable MG is driven to execute the P lock complement control. On the other hand, the hybrid vehicle control device of another embodiment does not have an MG abnormality detection unit, and performs P-lock complementation control by paying attention to points other than normal / abnormal (for example, an electrical angle phase at a stop position). You may select MG to be used.
Further, in the form in which the P lock complement control is always executed using both the first MG 11 and the second MG 12, even if one MG cannot be driven from a normal state, the P lock complement control is performed by the same control. It becomes executable.

(2)本発明のハイブリッド車制御装置は、エンジンの出力軸に逆回転防止用のワンウェイクラッチを備えるものであれば、共線図で第1MG軸、エンジン軸、駆動軸、及び、第2MG軸が独立に表される4軸式の動力伝達機構に限らず、4軸式の動力伝達機構に対して駆動軸が第2MG軸と共通化された場合などの3軸式の動力伝達機構を備えたハイブリッド車両にも適用することができる。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
(2) If the hybrid vehicle control device of the present invention is provided with a one-way clutch for preventing reverse rotation on the output shaft of the engine, the first MG shaft, the engine shaft, the drive shaft, and the second MG shaft in the collinear diagram Is not limited to a four-axis power transmission mechanism that is independently represented, and includes a three-axis power transmission mechanism such as a case where the drive shaft is shared with the second MG shaft with respect to the four-axis power transmission mechanism It can also be applied to other hybrid vehicles.
As mentioned above, this invention is not limited to the said embodiment at all, In the range which does not deviate from the meaning of invention, it can implement with a various form.

100・・・動力伝達機構、
11・・・第1MG、 110・・・(第1MGの)出力軸、
12・・・第2MG、 120・・・(第2MGの)出力軸、
13・・・エンジン、 130・・・(エンジンの)出力軸、
14・・・駆動軸、 16・・・ワンウェイクラッチ、
50・・・ハイブリッド車制御装置、
51・・・パーキングロック完了判定部、 52・・・MG異常検出部、
53・・・パーキングロック補完駆動部、
60・・・パーキングロック機構、
61・・・ロック用ギア、 62・・・回転規制部材、
90・・・ハイブリッド車両、 94・・・駆動輪。
100: power transmission mechanism,
11 ... 1st MG, 110 ... Output shaft (of 1st MG),
12 ... 2nd MG, 120 ... Output shaft (of 2nd MG),
13 ... Engine, 130 ... (Engine) output shaft,
14 ... drive shaft, 16 ... one-way clutch,
50 ... Hybrid vehicle control device,
51 ... Parking lock completion determination unit, 52 ... MG abnormality detection unit,
53 ... Parking lock complementary drive part,
60: Parking lock mechanism,
61 ... locking gear, 62 ... rotation restricting member,
90 ... hybrid vehicle, 94 ... drive wheel.

Claims (5)

エンジン(13)の出力軸(130)、第1MG(11)の出力軸(110)、第2MG(12)の出力軸(120)、及び、駆動輪(94)に接続される駆動軸(14)の動力伝達に関し、前記エンジンの動力と、前記第1MGの動力と、前記第2MGの動力とを合成して前記駆動軸に出力する動力伝達機構(100)と、
前記エンジンの出力軸の逆回転を防止するワンウェイクラッチ(16)と、
前記駆動軸と共に回転するロック用ギア(61)と、前記ロック用ギアとの係合により前記駆動軸の回転を規制可能な回転規制部材(62)とを、シフトポジションが駐車ポジションに設定されたときに係合させるパーキングロック動作を行うパーキングロック機構(60)と、
を備えたハイブリッド車両(90)に適用され、前記第1MG及び前記第2MGの駆動を制御するハイブリッド車制御装置であって、
前記パーキングロック機構による前記パーキングロック動作が完了したことを判定するパーキングロック完了判定部(51)と、
前記パーキングロック動作が未完了のとき、前記第1MG又は前記第2MGのうち少なくともいずれか一方を駆動し、前記パーキングロック動作が完了するまで前記駆動軸を回転させるパーキングロック補完制御を実行するパーキングロック補完駆動部(53)と、
を有し、
前記エンジンの出力軸の回転方向と同方向を正回転方向と定義すると、
前記パーキングロック補完駆動部は、前記パーキングロック補完制御において、
前記第1MGにより逆回転方向のトルクを発生させ、前記動力伝達機構の共線図で前記エンジンの出力軸の位置に配置される前記ワンウェイクラッチを速度線の支点として前記駆動軸を回転させるハイブリッド車制御装置
The output shaft (130) of the engine (13), the output shaft (110) of the first MG (11), the output shaft (120) of the second MG (12), and the drive shaft (14) connected to the drive wheels (94) ), The power transmission mechanism (100) that combines the power of the engine, the power of the first MG, and the power of the second MG and outputs the combined power to the drive shaft;
A one-way clutch (16) for preventing reverse rotation of the output shaft of the engine;
The shift position of the lock gear (61) that rotates with the drive shaft and the rotation restricting member (62) that can restrict the rotation of the drive shaft by engagement with the lock gear are set to the parking position. A parking lock mechanism (60) for performing a parking lock operation that is sometimes engaged;
A hybrid vehicle control device that is applied to a hybrid vehicle (90) including the above and controls driving of the first MG and the second MG,
A parking lock completion determination unit (51) for determining that the parking lock operation by the parking lock mechanism has been completed;
When the parking lock operation is not completed, the parking lock is executed to drive at least one of the first MG and the second MG and rotate the drive shaft until the parking lock operation is completed. A complementary drive unit (53);
Have
When the same direction as the rotation direction of the output shaft of the engine is defined as the positive rotation direction,
In the parking lock supplement control, the parking lock supplement driving unit
A hybrid vehicle that generates torque in the reverse rotation direction by the first MG and rotates the drive shaft with the one-way clutch arranged at the position of the output shaft of the engine in the alignment chart of the power transmission mechanism as a fulcrum of the speed line Control device
エンジン(13)の出力軸(130)、第1MG(11)の出力軸(110)、第2MG(12)の出力軸(120)、及び、駆動輪(94)に接続される駆動軸(14)の動力伝達に関し、前記エンジンの動力と、前記第1MGの動力と、前記第2MGの動力とを合成して前記駆動軸に出力する動力伝達機構(100)と、
前記エンジンの出力軸の逆回転を防止するワンウェイクラッチ(16)と、
前記駆動軸と共に回転するロック用ギア(61)と、前記ロック用ギアとの係合により前記駆動軸の回転を規制可能な回転規制部材(62)とを、シフトポジションが駐車ポジションに設定されたときに係合させるパーキングロック動作を行うパーキングロック機構(60)と、
を備えたハイブリッド車両(90)に適用され、前記第1MG及び前記第2MGの駆動を制御するハイブリッド車制御装置であって、
前記パーキングロック機構による前記パーキングロック動作が完了したことを判定するパーキングロック完了判定部(51)と、
前記パーキングロック動作が未完了のとき、前記第1MG又は前記第2MGのうち少なくともいずれか一方を駆動し、前記パーキングロック動作が完了するまで前記駆動軸を回転させるパーキングロック補完制御を実行するパーキングロック補完駆動部(53)と、
を有し、
前記エンジンの出力軸の回転方向と同方向を正回転方向と定義すると、
前記パーキングロック補完駆動部は、前記パーキングロック補完制御において、
前記第2MGにより正回転方向のトルクを発生させ、前記動力伝達機構の共線図で前記エンジンの出力軸の位置に配置される前記ワンウェイクラッチを速度線の支点として前記駆動軸を回転させるハイブリッド車制御装置。
The output shaft (130) of the engine (13), the output shaft (110) of the first MG (11), the output shaft (120) of the second MG (12), and the drive shaft (14) connected to the drive wheels (94) ), The power transmission mechanism (100) that combines the power of the engine, the power of the first MG, and the power of the second MG and outputs the combined power to the drive shaft;
A one-way clutch (16) for preventing reverse rotation of the output shaft of the engine;
The shift position of the lock gear (61) that rotates with the drive shaft and the rotation restricting member (62) that can restrict the rotation of the drive shaft by engagement with the lock gear are set to the parking position. A parking lock mechanism (60) for performing a parking lock operation that is sometimes engaged;
A hybrid vehicle control device that is applied to a hybrid vehicle (90) including the above and controls driving of the first MG and the second MG,
A parking lock completion determination unit (51) for determining that the parking lock operation by the parking lock mechanism has been completed;
When the parking lock operation is not completed, the parking lock is executed to drive at least one of the first MG and the second MG and rotate the drive shaft until the parking lock operation is completed. A complementary drive unit (53);
Have
When the same direction as the rotation direction of the output shaft of the engine is defined as the positive rotation direction,
In the parking lock supplement control, the parking lock supplement driving unit
A hybrid vehicle that generates torque in the forward rotation direction by the second MG and rotates the drive shaft with the one-way clutch arranged at the position of the output shaft of the engine as a fulcrum of the speed line in the alignment chart of the power transmission mechanism Control device.
前記第1MG又は前記第2MGが指令した回転方向に駆動不能となる異常が発生していることを検出するMG異常検出部(52)をさらに有し、
前記MG異常検出部により、前記第1MG又は前記第2MGのいずれか一方の異常が検出されたとき、
前記パーキングロック補完駆動部は、他方の駆動可能なMGを駆動して前記パーキングロック補完制御を実行する請求項1または2に記載のハイブリッド車制御装置。
An MG abnormality detection unit (52) for detecting that an abnormality that disables driving in the rotational direction commanded by the first MG or the second MG has occurred;
When the abnormality of either the first MG or the second MG is detected by the MG abnormality detection unit,
3. The hybrid vehicle control device according to claim 1, wherein the parking lock complement driving unit drives the other drivable MG to execute the parking lock complement control. 4.
前記パーキングロック補完駆動部は、少なくとも前記第1MGが駆動可能なとき、前記パーキングロック補完制御において前記第1MGのみを駆動する請求項3に記載のハイブリッド車制御装置。   4. The hybrid vehicle control device according to claim 3, wherein the parking lock complementary drive unit drives only the first MG in the parking lock complementary control when at least the first MG can be driven. 5. 前記パーキングロック補完駆動部は、少なくとも前記第2MGが駆動可能なとき、前記パーキングロック補完制御において前記第2MGのみを駆動する請求項3に記載のハイブリッド車制御装置。   4. The hybrid vehicle control device according to claim 3, wherein the parking lock complementary drive unit drives only the second MG in the parking lock complementary control when at least the second MG can be driven. 5.
JP2016021872A 2016-02-08 2016-02-08 Hybrid vehicle control device Pending JP2017140868A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016021872A JP2017140868A (en) 2016-02-08 2016-02-08 Hybrid vehicle control device
DE102017102461.1A DE102017102461A1 (en) 2016-02-08 2017-02-08 HYBRID VEHICLE CONTROL DEVICE
CN201710227226.9A CN107042823A (en) 2016-02-08 2017-02-08 Hybrid vehicle start stop control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021872A JP2017140868A (en) 2016-02-08 2016-02-08 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
JP2017140868A true JP2017140868A (en) 2017-08-17

Family

ID=59382240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021872A Pending JP2017140868A (en) 2016-02-08 2016-02-08 Hybrid vehicle control device

Country Status (3)

Country Link
JP (1) JP2017140868A (en)
CN (1) CN107042823A (en)
DE (1) DE102017102461A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549262B1 (en) * 2018-01-16 2019-07-24 本田技研工業株式会社 Vehicle parking device
JP7226092B2 (en) * 2019-05-22 2023-02-21 株式会社デンソー shift range controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184114A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Hybrid vehicle and its control method
JP2009185854A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Automobile and its control method
JP2009248707A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Rotary electrical machine control system
WO2012104961A1 (en) * 2011-01-31 2012-08-09 スズキ株式会社 Hybrid vehicle
JP2016007967A (en) * 2014-06-25 2016-01-18 三菱自動車工業株式会社 Control apparatus of hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852562B2 (en) 2001-03-21 2006-11-29 スズキ株式会社 Power input / output device
JP2009040296A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Controller for vehicle
US8948950B2 (en) * 2011-02-21 2015-02-03 Suzuki Motor Corporation Drive control apparatus of hybrid vehicle
JP6432109B2 (en) 2014-07-16 2018-12-05 ヤンマー株式会社 Combine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184114A (en) * 2007-01-31 2008-08-14 Toyota Motor Corp Hybrid vehicle and its control method
JP2009185854A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Automobile and its control method
JP2009248707A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Rotary electrical machine control system
WO2012104961A1 (en) * 2011-01-31 2012-08-09 スズキ株式会社 Hybrid vehicle
JP2016007967A (en) * 2014-06-25 2016-01-18 三菱自動車工業株式会社 Control apparatus of hybrid vehicle

Also Published As

Publication number Publication date
DE102017102461A1 (en) 2017-08-10
CN107042823A (en) 2017-08-15

Similar Documents

Publication Publication Date Title
JP4155461B2 (en) Electric vehicle drive control device and electric vehicle drive control method
JP4239923B2 (en) Electric power transmission device
JP4631936B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP6460044B2 (en) Drive device
JP4111140B2 (en) Electric vehicle drive control device and electric vehicle drive control method
JP3797354B2 (en) Electric vehicle drive control device and electric vehicle drive control method
JP2008290613A (en) Drive device of hybrid vehicle
JP5812183B2 (en) Drive device for hybrid vehicle
EP3259147B1 (en) Hybrid vehicle
JP4039416B2 (en) Hybrid vehicle and control method thereof
JP5962633B2 (en) vehicle
JP2017043299A (en) Hybrid vehicle
JP2017088069A (en) Hybrid-vehicular drive force control apparatus
JP2017140868A (en) Hybrid vehicle control device
JPWO2014087515A1 (en) Hybrid vehicle drive device
JP5720702B2 (en) Vehicle control device
JP5233844B2 (en) Meshing clutch device
JP2017175711A (en) Vehicle
JP6530618B2 (en) Drive device for hybrid vehicle
JP2009222105A (en) Vehicle control device
JP2017180669A (en) Power transmission device
JP2006299993A (en) Hybrid vehicle
JP2016215803A (en) Hybrid-vehicular control apparatus
JP7415631B2 (en) Electric vehicle drive device
JP2013001181A (en) Power train of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105