JP2017139077A - Positive electrode active material for lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2017139077A
JP2017139077A JP2016017630A JP2016017630A JP2017139077A JP 2017139077 A JP2017139077 A JP 2017139077A JP 2016017630 A JP2016017630 A JP 2016017630A JP 2016017630 A JP2016017630 A JP 2016017630A JP 2017139077 A JP2017139077 A JP 2017139077A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017630A
Other languages
Japanese (ja)
Other versions
JP6827695B2 (en
Inventor
肇 鹿島
Hajime Kajima
肇 鹿島
文彦 槙
Fumihiko Maki
文彦 槙
師宏 ▲濱▼田
師宏 ▲濱▼田
Kazuhiro Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP2016017630A priority Critical patent/JP6827695B2/en
Publication of JP2017139077A publication Critical patent/JP2017139077A/en
Application granted granted Critical
Publication of JP6827695B2 publication Critical patent/JP6827695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a LiCoO-based positive electrode active material which, when used for a lithium ion secondary battery, hardly causes reduction in discharge capacity even when subjected to repeated charging at a high voltage, which can realize a longer life and which, moreover, can be manufactured by an industrially easy operation.SOLUTION: A positive electrode active material for a lithium ion secondary battery comprises a mixture of LiCoMnO(0.01<x<0.2) with Mn solid-dissolved therein, and a Ca compound. The content of Mn is 1-20 mol% relative to the total amount of Co and Mn, and the content of Ca is 1-15 mol% relative to the total amount of Co and Mn. It is preferable that, in a composition map of a cross section of an arbitrary particle of the positive electrode active material, which is mapped by an energy dispersive X-ray analyzer (EDS) with a magnification of 5000 times, i.e., in a range of a visual field of 24×18 μm so that the whole particle falls in the field of view, a region occupied by Co coincides with a region occupied by Mn, that is, Mn is solid-dissolved in Co. Further, it is preferable that 3-60 regions occupied by unevenly distributed Ca particles of 1-10 μm in diameter are present therein. In addition, it is apparent that the Ca compound is present in the regions occupied by Ca.SELECTED DRAWING: Figure 3

Description

本発明は、コバルト酸リチウム系正極活物質に関し、特に、高電圧充電を繰り返しても放電容量が低下しにくく、長寿命のリチウムイオン二次電池を提供できる正極活物質に関する。   The present invention relates to a lithium cobaltate-based positive electrode active material, and more particularly, to a positive electrode active material that can provide a long-life lithium ion secondary battery that is less likely to have a reduced discharge capacity even after repeated high-voltage charging.

リチウムイオン二次電池の正極活物質として、従来、コバルト酸リチウム(LiCoO2)が用いられている。
図1(A)は、リチウムイオン二次電池の充放電の際の正極活物質(LiCoO2)の挙動を模式的に示す説明図であり、図1(B)の点線で囲んである部分は、(A)に示したLiCoO2の単位格子の模式図である。
Conventionally, lithium cobaltate (LiCoO 2 ) has been used as a positive electrode active material for lithium ion secondary batteries.
FIG. 1 (A) is an explanatory view schematically showing the behavior of the positive electrode active material (LiCoO 2 ) during charging / discharging of a lithium ion secondary battery, and the portion surrounded by the dotted line in FIG. 1 (B) 2A is a schematic diagram of a unit cell of LiCoO 2 shown in FIG.

図1(A)に示すように、LiCoO2の結晶構造は、酸化コバルト(CoO2)層とリチウム(Li)層とが交互に積み重なった構造を呈しており、充電時には、Li層からLi+が脱離して負極に移動し、放電時には、逆に負極からLi+がCoO2層間に戻る。
非特許文献1では、充電時のリチウムの脱離量は、充電電圧が高くなるほど増加するので、該脱離量が閾値を超えると、前記結晶構造が変化、崩壊する結果、正極活物質としての機能を失うと報告されている。この結晶構造の変化の程度は、粉末X線回折法とリートベルト法を用いた構造解析によって、図1(B)に示す単位格子の格子定数や体積を算出することで評価できる。
As shown in FIG. 1 (A), the crystal structure of LiCoO 2 is exhibited and cobalt oxide (CoO 2) layer and the lithium (Li) layer is stacked in alternating structure, at the time of charging, the Li layer Li + Desorbs and moves to the negative electrode. At the time of discharge, Li + returns from the negative electrode to the CoO 2 layer.
In Non-Patent Document 1, the amount of lithium desorbed at the time of charging increases as the charging voltage increases. Therefore, when the amount of desorbed exceeds a threshold value, the crystal structure changes and collapses. Reported loss of function. The degree of change in the crystal structure can be evaluated by calculating the lattice constant and volume of the unit cell shown in FIG. 1B by structural analysis using a powder X-ray diffraction method and a Rietveld method.

図2は、従来のLiCoO2を正極活物質とするリチウムイオン二次電池における、充電電圧(V)と、100回の充放電を繰り返した後(以下、「100サイクル目」と言うことがある)の放電容量維持率(%)との関係を示す棒グラフである。
図2に示すように、100サイクル目の放電容量維持率を70%以上とするためには、すなわち、リチウムイオン二次電池の一定の寿命を保つためには、充電電圧の上限は、4.2〜4.3Vに制限されているのが現状である。なお、本明細書において、100サイクル目の放電容量維持率とは、1回目(初期放電時)の放電容量に対する100回目の充放電を終えた際の放電容量の割合(%)を示す。
FIG. 2 shows a charge voltage (V) in a conventional lithium ion secondary battery using LiCoO 2 as a positive electrode active material, and after repeating 100 charge / discharge cycles (hereinafter, referred to as “100th cycle”). ) Is a bar graph showing the relationship with the discharge capacity retention rate (%).
As shown in FIG. 2, in order to make the discharge capacity maintenance rate at the 100th cycle 70% or more, that is, to maintain a constant life of the lithium ion secondary battery, the upper limit of the charging voltage is 4. The current situation is limited to 2 to 4.3V. In the present specification, the discharge capacity maintenance rate at the 100th cycle indicates the ratio (%) of the discharge capacity when the 100th charge / discharge is completed with respect to the discharge capacity at the first time (during initial discharge).

一方、非特許文献2には、LiCoO2にマンガン(Mn)を添加し、固溶させることが記載されている。
この記載によれば、4.3Vの充電電圧下で、100サイクル目の放電容量維持率を90%前後に引き上げることができるものの、4.4Vないし4.5Vの充電電圧下では、90%を超すことは困難である。
On the other hand, Non-Patent Document 2 describes that manganese (Mn) is added to LiCoO 2 to cause solid solution.
According to this description, the discharge capacity maintenance rate at the 100th cycle can be raised to around 90% under a charging voltage of 4.3V, but 90% under a charging voltage of 4.4V to 4.5V. It is difficult to exceed.

他方、非特許文献3には、LiCoO2にカルシウム(Ca)を添加し、LiCoO2の結晶構造を安定化させる手法が開示されている。
この手法は、水熱法によって、LiCoO2のLi層中にCaを挿入し、結晶構造の変化抑制を試みたものであるが、製造に要する時間や手間、コスト等を考慮すれば、工業的には実用性に乏しく、量産に適さない。
On the other hand, Non-Patent Document 3, the addition of calcium (Ca) in LiCoO 2, method of stabilizing discloses the crystal structure of LiCoO 2.
This method tried to suppress the change in crystal structure by inserting Ca into the LiCoO 2 Li layer by the hydrothermal method. However, considering the time, labor, cost, etc. required for production, Is not practical and is not suitable for mass production.

Solid State Ionics, 1996, 83, 167-173, Glenn Amatucci et al.Solid State Ionics, 1996, 83, 167-173, Glenn Amatucci et al. Chemistry of Materials, 2003, 15, 4699-4702, Yoshio Masaki et al.Chemistry of Materials, 2003, 15, 4699-4702, Yoshio Masaki et al. Journal of Power Sources, 2008, 184, 557-561, Wensheng Yang et al.Journal of Power Sources, 2008, 184, 557-561, Wensheng Yang et al.

本発明は、リチウムイオン二次電池に用いた際に、高電圧での充電を繰り返しても放電容量が低下しにくく、長寿命化が実現でき、しかも工業的に容易な操作で製造できるLiCoO2系正極活物質の提供を課題とする。 When the present invention is used in a lithium ion secondary battery, LiCoO 2 that is less likely to have a reduced discharge capacity even when it is repeatedly charged at a high voltage, can achieve a long life, and can be manufactured by an industrially easy operation. An object is to provide a positive electrode active material.

本発明者らは、上記の課題を解決するために検討を重ねた結果、LiCoO2の結晶構造の変化を抑制することが、電池の寿命改善の重要なカギであるとの基本に立ち、これを実現する上で、MnとCaの両方を添加することに着目し、MnとCaをそれぞれ特定量ずつ含有しているLiCo1-xMnx2(0.01<x<0.2)とCa化合物との混合体であれば、水熱法を用いることなく工業的に容易な操作で上記結晶構造の変化が極めて少ない構造体が得られ、結果、これを用いたリチウムイオン二次電池においては、充電電圧4.3V以上で充放電を繰り返しても結晶構造が変化しにくいことを見出した。このとき、上記のLiCo1-xMnx2は、Mnが固溶しているものが好ましいことも見出している。 As a result of repeated studies to solve the above-mentioned problems, the present inventors have been based on the principle that suppressing the change in the crystal structure of LiCoO 2 is an important key for improving the battery life. in order to realize, Mn and focused on the addition of both Ca, LiCo contains a Mn and Ca by each particular amount 1-x Mn x O 2 ( 0.01 <x <0.2) And a Ca compound, a structure having very little change in the crystal structure can be obtained by an industrially easy operation without using a hydrothermal method. As a result, a lithium ion secondary battery using the structure is obtained. In, it was found that the crystal structure hardly changes even when charging and discharging are repeated at a charging voltage of 4.3 V or higher. At this time, it has also been found that the above LiCo 1-x Mn x O 2 is preferably one in which Mn is dissolved.

次いで、このような知見を基に更なる検討を重ねたところ、上記LiCo1-xMnx2(0.01<x<0.2)において、特定のサイズのCa化合物が偏在している場合に、例えば充電電圧4.5V程度の条件で充放電を繰り返しても、100サイクル目の放電容量維持率を確実に70%以上にできることを見出し、本発明を完成するに至った。 Then, when further examination was repeated based on such knowledge, in the LiCo 1-x Mn x O 2 (0.01 <x <0.2), a Ca compound of a specific size is unevenly distributed. In this case, for example, even when charging / discharging was repeated under the condition of a charging voltage of about 4.5 V, it was found that the discharge capacity maintenance rate at the 100th cycle could be reliably increased to 70% or more, and the present invention was completed.

すなわち、本発明のリチウムイオン二次電池用正極活物質は、LiCo1-xMnx2(0.01<x<0.2)とCa化合物との混合体からなり、
Mn含有量が、CoとMnの合計量に対し1〜20モル%
Ca含有量が、CoとMnの合計量に対し1〜15モル%
であることを特徴とする。上記のLiCo1-xMnx2は、Mnが固溶しているものが好ましい。
この正極活物質を用いたリチウムイオン二次電池は、20℃の雰囲気下、160mA/gを1Cとして算出した電流密度(以下、単に電流密度と記す)0.5Cで電圧が4.3V〜4.5Vの範囲内の何れかになるまで充電した後、上記電流密度0.5Cで電圧3.0Vまで放電する操作を、100回繰り返したときの放電容量維持率が、70%以上であることが好ましい(この、充放電を100回繰り返す操作を、以下「サイクル試験」と呼ぶことがある)。
また、本発明の正極活物質の、任意の粒子の断面を、エネルギー分散型X線分析装置(EDS)によって、粒子全体が視野に収まるように、例えば倍率5000倍、すなわち視野24×18μmの範囲で組成をマッピングした場合、Coが占める領域とMnが占める領域が一致している、すなわちMnがCoに固溶しており、更に、径1〜10μmの《偏在》したCaが占める領域が3〜60個存在することが好ましい。このCaが占める領域に、Ca化合物が存在する。
That is, the positive electrode active material for a lithium ion secondary battery of the present invention consists of a mixture of LiCo 1-x Mn x O 2 (0.01 <x <0.2) and Ca compound,
Mn content is 1-20 mol% with respect to the total amount of Co and Mn
Ca content is 1 to 15 mol% with respect to the total amount of Co and Mn.
It is characterized by being. The LiCo 1-x Mn x O 2 is preferably one in which Mn is dissolved.
The lithium ion secondary battery using this positive electrode active material has a current density calculated from 160 mA / g as 1 C in an atmosphere of 20 ° C. (hereinafter simply referred to as current density) of 0.5 C and a voltage of 4.3 V to 4 V. The discharge capacity maintenance rate is 70% or more when the operation of discharging to a voltage of 3.0 V at a current density of 0.5 C is repeated 100 times after charging to be within a range of 0.5 V. (This operation of repeating charging and discharging 100 times may be hereinafter referred to as a “cycle test”).
Further, the cross section of an arbitrary particle of the positive electrode active material of the present invention is, for example, in a magnification of 5000 times, that is, in a range of 24 × 18 μm, so that the entire particle can be accommodated by an energy dispersive X-ray analyzer (EDS) When the composition is mapped with, the region occupied by Co is the same as the region occupied by Mn, that is, Mn is solid-solved in Co, and further, there are 3 regions occupied by <Eccentricity> Ca having a diameter of 1 to 10 μm. There are preferably ˜60. A Ca compound is present in the area occupied by Ca.

本発明の、特にMnが固溶しているLiCo1-xMnx2とCa化合物との混合体である正極活物質は、例えば、リチウムイオン二次電池に使用した場合に、充電電圧の上限が4.3V以上、4.5V以下の範囲内になるように充放電を繰り返しても100サイクル目の放電容量維持率が極めて高く、長寿命のリチウムイオン二次電池とすることができる。
また、本発明の正極活物質は、Ca化合物が均一に分散せずに偏在している場合に、高い放電容量維持率をより確実に得ることができる。
The positive electrode active material according to the present invention, in particular, a mixture of LiCo 1-x Mn x O 2 and Ca compound in which Mn is dissolved, for example, when used in a lithium ion secondary battery, Even when charging and discharging are repeated so that the upper limit is in the range of 4.3 V or more and 4.5 V or less, the discharge capacity maintenance rate at the 100th cycle is extremely high, and a long-life lithium ion secondary battery can be obtained.
Moreover, the positive electrode active material of this invention can obtain a high discharge capacity maintenance factor more reliably, when Ca compound is unevenly distributed without disperse | distributing uniformly.

(A)が、リチウムイオン二次電池の充放電の際の正極活物質(LiCoO2)の挙動を模式的に示した説明図であり、(B)の点線で囲んである部分が(A)に示したLiCoO2の単位格子の模式図である。(A) is an explanatory view of the behavior of the positive electrode active material (LiCoO 2) schematically showing during charging and discharging of the lithium ion secondary battery, portions are enclosed by the dotted line in (B) is (A) 2 is a schematic diagram of a unit cell of LiCoO 2 shown in FIG. 従来のLiCoO2を使用したリチウムイオン二次電池における、充電電圧(V)と、100回の充放電を繰り返した後の放電容量維持率(%)との関係を示す棒グラフである。In the lithium ion secondary battery using the conventional LiCoO 2, and the charging voltage (V), and is a bar graph showing the relationship between the 100 times the discharge capacity retention ratio after repeated charging and discharging of (%). (A)は、本発明のMnが固溶しているLiCo1-xMnx2とCa化合物との混合体(X=0.05、CoとMnの合計量に対するCa含有量が3モル%の場合)の粒子断面の走査型電子顕微鏡(SEM)画像であり、(B)〜(D)は、(A)に示した混合体の粒子断面をEDSによって組成マッピングした画像であり、(B)がCo、(C)がMn、(D)がCaの各分散状態を示す。(A) is mixture (X = 0.05, 3 mol Ca content relative to the total amount of Co and Mn between LiCo 1-x Mn x O 2 and Ca compound Mn is a solid solution of the present invention (B) to (D) are images obtained by EDS composition mapping of the particle cross section of the mixture shown in (A). B) is Co, (C) is Mn, and (D) is Ca. 参考例1及び実施例1〜3の放電容量維持率(%)を示すグラフであり、(A)が充電電圧4.3V、(B)が充電電圧4.5Vの場合を示す。It is a graph which shows the discharge capacity maintenance factor (%) of the reference example 1 and Examples 1-3, (A) shows the case where the charge voltage is 4.3V, and (B) is the charge voltage of 4.5V. (A)に、参考例1、比較例1〜3及び実施例1〜3における100回の充放電を繰り返した後のc軸長維持率(%)、(B)に、体積維持率(%)を示す。(A), c-axis length maintenance rate (%) after repeating 100 charge / discharge cycles in Reference Example 1, Comparative Examples 1 to 3 and Examples 1 to 3, and (B), volume maintenance rate (% ). 参考例1及び比較例1〜3の放電容量維持率(%)を示すグラフであり、(A)が充電電圧4.3V、(B)が充電電圧4.5Vの場合を示す。It is a graph which shows the discharge capacity maintenance factor (%) of the reference example 1 and Comparative Examples 1-3, (A) shows the case where the charge voltage is 4.3V, and (B) is the charge voltage of 4.5V. 参考例1及び実施例4〜7の放電容量維持率(%)を示すグラフであり、(A)が充電電圧4.3V、(B)が充電電圧4.5Vの場合を示す。It is a graph which shows the discharge capacity maintenance factor (%) of the reference example 1 and Examples 4-7, (A) shows the case where the charging voltage is 4.3V, and (B) is the charging voltage of 4.5V. (A)は、比較例5〜7のLiCo1-xMnx2とCa化合物との混合体(X=0.05、CoとMnの合計量に対するCa含有量が3モル%の場合)の粒子断面のSEM画像であり、(B)〜(D)は、(A)に示した混合体の粒子断面をEDSによって組成マッピングした画像であり、(B)がCo、(C)がMn、(D)がCaの各分散状態を示す。(A) is a mixture of LiCo 1-x Mn x O 2 and Ca compound of Comparative Examples 5 to 7 (X = 0.05, when the Ca content is 3 mol% with respect to the total amount of Co and Mn) (B) to (D) are images obtained by composition mapping the particle cross section of the mixture shown in (A) by EDS, (B) is Co, and (C) is Mn. , (D) shows each dispersion state of Ca.

本発明の正極活物質は、LiCo1-xMnx2(0.01<x<0.2)、特にMnが固溶しているLiCo1-xMnx2(0.01<x<0.2)と、Ca化合物との混合体からなり、
Mn含有量が、CoとMnの合計量に対し1〜20モル%
Ca含有量が、CoとMnの合計量に対し1〜15モル%である。
The positive electrode active material of the present invention is LiCo 1-x Mn x O 2 (0.01 <x <0.2), particularly LiCo 1-x Mn x O 2 (0.01 <x <0.2) and a mixture of Ca compound,
Mn content is 1-20 mol% with respect to the total amount of Co and Mn
Ca content is 1-15 mol% with respect to the total amount of Co and Mn.

上記混合体において、Mn含有量が、CoとMnの合計量に対し少なすぎれば放電容量維持率が低下しやすくなり、結果として長寿命を得ることができず、多すぎると、放電容量自体が低下する虞があるため、1〜20モル%、好ましくは5〜11モル%とする。
また、Ca含有量が、CoとMnの合計量に対し少なすぎても多すぎても、Mnと同様であるため、1〜15モル%、好ましくは1〜5モル%とする。
In the above mixture, if the Mn content is too small with respect to the total amount of Co and Mn, the discharge capacity retention rate tends to be lowered, and as a result, a long life cannot be obtained. Since there exists a possibility that it may fall, it is 1-20 mol%, Preferably you may be 5-11 mol%.
Moreover, since it is the same as Mn, even if Ca content is too little or too much with respect to the total amount of Co and Mn, it is 1-15 mol%, Preferably you may be 1-5 mol%.

図3(A)に、本発明のMnが固溶しているLiCo1-xMnx2とCa化合物との混合体(X=0.05、CoとMnの合計量に対するCa含有量が3モル%の場合)の粒子断面のSEM画像を示す。
図3(B)〜(D)は、図3(A)に示した混合体の粒子断面をEDSによって組成マッピングした画像であり、(B)がCo、(C)がMn、(D)がCaの各分散状態を示している。
FIG. 3A shows a mixture of LiCo 1-x Mn x O 2 and Ca compound in which Mn of the present invention is dissolved (X = 0.05, the Ca content relative to the total amount of Co and Mn is The SEM image of the particle | grain cross section of the case of 3 mol% is shown.
3 (B) to 3 (D) are images obtained by EDS composition mapping of the particle cross section of the mixture shown in FIG. 3 (A), where (B) is Co, (C) is Mn, and (D) is Each dispersion state of Ca is shown.

図3(B)〜(D)に示すように、図3(A)の混合体において、CoとMnは、均一に分散しているのに対し、Caは、偏在している。このことから、Mnは固溶しているが、Caは固溶することなく、Ca由来の副生成物が生成していると考えられる。粉末X線回折法による分析の結果、このときの副生成物はCa3Co26であることが確認されている。
一般に、添加元素が「固溶」せず、「混合体」として存在していると、電池性能は悪いと言われている。しかし、意外なことに、本発明者らは「Mnが固溶したLiCo1-xMnx2(0.01<x<0.2)に、Caが(固溶することなく)Ca化合物として偏在した混合体」となっていると、高電圧の充電によりLiの脱離量が閾値を超えた場合においても、前述のような結晶構造が崩壊することはなく、結果として、長寿命という優れた電池性能が得られることを見出し、本発明ではこれを正極活物質とすることとしている。
As shown in FIGS. 3B to 3D, in the mixture of FIG. 3A, Co and Mn are uniformly dispersed, whereas Ca is unevenly distributed. From this, Mn is dissolved, but Ca is not dissolved, and it is considered that a Ca-derived by-product is generated. As a result of analysis by a powder X-ray diffraction method, it is confirmed that the by-product at this time is Ca 3 Co 2 O 6 .
In general, it is said that the battery performance is poor when the additive element does not “solid solution” but exists as a “mixture”. Surprisingly, however, the present inventors have stated that “Ca compounds (without solid solution) are contained in LiCo 1-x Mn x O 2 (0.01 <x <0.2) in which Mn is dissolved. When the amount of Li desorption exceeds a threshold value due to high voltage charging, the crystal structure as described above does not collapse, resulting in long life. It has been found that excellent battery performance can be obtained, and in the present invention, this is used as a positive electrode active material.

なお、LiCo1-xMnx2(0.01<x<0.2)の単位格子(特に、Mnが固溶している該LiCo1-xMnx2)は、図1(B)に模式的に示したLiCoO2の単位格子と同様に、長さ方向に垂直の断面が菱形形状を有する柱状6面体をなしていると考えられる。
このように、本発明の正極活物質(特にMnが固溶しているLiCo1-xMnx2とCa化合物との混合体)は、リチウムイオン二次電池の正極材料として使用した場合、高電圧での充放電を繰り返しても、放電容量が低下し難いリチウムイオン二次電池とすることができる。
The unit cell of LiCo 1-x Mn x O 2 (0.01 <x <0.2) (particularly, the LiCo 1-x Mn x O 2 in which Mn is dissolved) is shown in FIG. As in the LiCoO 2 unit cell schematically shown in FIG. 5), it is considered that the cross section perpendicular to the length direction forms a columnar hexahedron having a rhombus shape.
Thus, when the positive electrode active material of the present invention (particularly, a mixture of LiCo 1-x Mn x O 2 and Ca compound in which Mn is dissolved) is used as a positive electrode material of a lithium ion secondary battery, Even if charging / discharging at a high voltage is repeated, a lithium ion secondary battery in which the discharge capacity does not easily decrease can be obtained.

さらに、本発明の正極活物質の、任意の粒子の断面を、粒子全体が視野に収まるように、例えば倍率5000倍、すなわち視野24×18μmの範囲でEDSによって組成のマッピングを行うと、この視野範囲において、Coの占める領域と、Mnの占める領域が一致していることが解る。このことから、MnはCoに固溶していることが好ましいことが解る。
しかも、径1〜10μmの《偏在》したCaの占める領域が3〜60個存在することが好ましいことも解る。なお、このCaが占める領域に、Ca化合物が存在することは明白である。《偏在》したCaが占める領域の径は、小さすぎても、大きすぎても、放電容量維持率を大幅に高くすることができず、結果長寿命化が達成できない。より好ましい径は2〜5μmである。また、視野24×18μm当たりの《偏在》したCaが占める領域の数は、少なすぎれば、放電容量維持率を大幅に高くすることができず、結果長寿命化が達成できず、多すぎれば不純物となって放電容量を低下させるため、3〜60個程度が好ましく、より好ましくは5〜40個程度である。このように、特定サイズの《偏在》したCaの占める領域が特定の数であれば、高い放電容量維持率をより確実に得ることができる正極活物質となる。
Furthermore, when the composition of the positive electrode active material of the present invention is mapped by EDS in a range of, for example, a magnification of 5000 times, that is, a field of view of 24 × 18 μm so that the entire particle can be within the field of view, this field of view can be obtained. In the range, it can be seen that the region occupied by Co and the region occupied by Mn coincide. From this, it is understood that Mn is preferably dissolved in Co.
In addition, it can be seen that it is preferable that there are 3 to 60 regions that are occupied by Ca unevenly distributed and having a diameter of 1 to 10 μm. It is obvious that a Ca compound is present in the area occupied by Ca. If the diameter of the region occupied by the unevenly distributed Ca is too small or too large, the discharge capacity maintenance rate cannot be significantly increased, and as a result, a long life cannot be achieved. A more preferable diameter is 2 to 5 μm. In addition, if the number of Ca unevenly distributed Ca areas per field of view 24 × 18 μm is too small, the discharge capacity maintenance rate cannot be significantly increased, and as a result, a long life cannot be achieved. In order to reduce the discharge capacity as an impurity, the number is preferably about 3 to 60, more preferably about 5 to 40. In this way, when the area occupied by a specific size of << unevenly distributed Ca >> is a specific number, it becomes a positive electrode active material capable of obtaining a high discharge capacity retention rate more reliably.

本発明の正極活物質(LiCo1-xMnx2(0.01<x<0.2)、特にMnが固溶している該LiCo1-xMnx2と、Ca化合物との混合体)は、例えば、(1)Co原料と粒径5μm未満のMn原料を混合する工程と、(2)(1)で得られた材料とCa原料を混合する工程と、(3)(2)で得られた材料とLi原料を混合する工程と、(4)得られた混合体を焼成して解砕する工程を行うことによって製造することができる。
(1)のCo原料とMn原料を混合する方法の好ましい例としては、Co原料を水に分散させたスラリーに、Mn塩の水溶液と苛性ソーダ水溶液を滴下する手法が挙げられる。(2)のCa原料を混合する方法の好ましい例としては、Ca塩水溶液を用いた湿式混合法が挙げられる。(3)のLi原料を混合する方法の好ましい例としては、ニューグラマシンやコンテナミキサー等を用いた乾式混合法が挙げられる。解砕方法の例としては、乳鉢で粉砕する方法やピンミルを用いた方法が挙げられる。(4)の混合体の焼成は、好ましくは、空気中、900〜1100℃、30〜360分間の条件で行い、焼成後の解砕は、好ましくはピンミルによる解砕が挙げられる。
The positive electrode active material of the present invention (LiCo 1-x Mn x O 2 (0.01 <x <0.2), in particular, the LiCo 1-x Mn x O 2 in which Mn is dissolved, and a Ca compound) For example, (mixture) includes (1) a step of mixing a Co raw material and a Mn raw material having a particle size of less than 5 μm, a step of (2) mixing the material obtained in (1) and a Ca raw material, and (3) ( It can be manufactured by mixing the material obtained in 2) and the Li raw material, and (4) firing and crushing the obtained mixture.
As a preferred example of the method (1) of mixing the Co raw material and the Mn raw material, a method in which an aqueous solution of Mn salt and an aqueous caustic soda solution are dropped into a slurry in which the Co raw material is dispersed in water. A preferable example of the method (2) of mixing the Ca raw material is a wet mixing method using an aqueous Ca salt solution. As a preferable example of the method of mixing the Li raw material of (3), a dry mixing method using a Newgra machine, a container mixer or the like can be mentioned. Examples of the crushing method include a method of pulverizing with a mortar and a method using a pin mill. Firing of the mixture of (4) is preferably performed in air at 900 to 1100 ° C. for 30 to 360 minutes, and crushing after firing is preferably crushing with a pin mill.

以上のような本発明の正極活物質を正極に用いる以外は、従来からの一般的なリチウムイオン二次電池と同様、金属リチウム箔を負極に用いて調製したリチウムイオン二次電池は、20℃の雰囲気下、電流密度0.5Cで電圧4.3V〜4.5Vまで充電し、電流密度0.5Cで電圧3.0Vまで放電する操作を100回繰り返したときの放電容量維持率が70%以上であることが好ましく、より好ましくは、91%以上である。   Except for using the positive electrode active material of the present invention as described above for the positive electrode, a lithium ion secondary battery prepared using a metal lithium foil as a negative electrode is 20 ° C. as in the case of a conventional general lithium ion secondary battery. The discharge capacity maintenance rate is 70% when the operation of charging to a voltage of 4.3 V to 4.5 V at a current density of 0.5 C and discharging to a voltage of 3.0 V at a current density of 0.5 C is repeated 100 times. Preferably, it is 91% or more.

以下に挙げる例において、結晶構造の変化の評価以外の粉末X線回折法は、株式会社リガク製粉末X線回折装置RINT1400を用いて測定した。   In the following examples, powder X-ray diffraction methods other than the evaluation of the change in crystal structure were measured using a powder X-ray diffraction apparatus RINT1400 manufactured by Rigaku Corporation.

参考例1
〔LiCoO2
正極活物質として従来のLiCoO2を用いて、正極活物質90重量%に、アセチレンブラック5重量%及びPVDF(ポリフッ化ビニリデン)5重量%をN−メチル−2−ピロリドンに添加して混練し、正極スラリーを作製した。作製したスラリーをアルミニウム箔の上に塗布した後乾燥し、その後圧延ロールを用いて圧延し、直径11mmの円板状に打ち抜いて正極とした。この正極と、負極としての金属リチウム箔と、セパレータとしてのガラス繊維ろ紙と、電解液としての、EC(エチレンカーボネイト)とDEC(ジエチルカーボネイト)を体積比1:1となるよう混合した溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を1モル/Lの濃度となるように溶解した溶液とを用いてリチウムイオン二次電池を作成した。これを参考例1とした。
Reference example 1
[LiCoO 2 ]
Using conventional LiCoO 2 as a positive electrode active material, 90% by weight of the positive electrode active material, 5% by weight of acetylene black and 5% by weight of PVDF (polyvinylidene fluoride) are added to N-methyl-2-pyrrolidone and kneaded. A positive electrode slurry was prepared. The prepared slurry was applied on an aluminum foil, dried, then rolled using a rolling roll, and punched into a disk shape having a diameter of 11 mm to obtain a positive electrode. In a solvent in which EC (ethylene carbonate) and DEC (diethyl carbonate) as an electrolyte solution are mixed at a volume ratio of 1: 1, this positive electrode, a metal lithium foil as a negative electrode, a glass fiber filter paper as a separator, A lithium ion secondary battery was prepared using a solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved to a concentration of 1 mol / L. This was designated as Reference Example 1.

比較例1〜3
〔LiCo1-xMnx2の作成〕
四酸化三コバルト(Co34)を水に分散させてスラリー化したものに、Co:Mnのモル比が、それぞれ95:5、92:8、89:11、となるように、硫酸マンガン(MnSO4)水溶液と、MnSO4の2.2モル当量にあたる苛性ソーダ(NaOH)水溶液を滴下してCo34にMn化合物を付着させ、CoとMnの混合物を得た。付着したMn化合物の径は5μm以下であった。これに炭酸リチウム(Li2CO3)を乾式法で混合した後、空気雰囲気中にて1000℃で4時間焼成し、乳鉢で解砕して、LiCo1-xMnx2を得た。
CoとMnの合計量に対しMn含有量が5モル%のものを比較例1、8モル%のものを比較例2、11モル%のものを比較例3とした。
Comparative Examples 1-3
[Production of LiCo 1-x Mn x O 2 ]
Manganese sulfate was prepared by dispersing tricobalt tetroxide (Co 3 O 4 ) in water so that the molar ratio of Co: Mn was 95: 5, 92: 8, and 89:11, respectively. A (MnSO 4 ) aqueous solution and a caustic soda (NaOH) aqueous solution corresponding to 2.2 molar equivalents of MnSO 4 were dropped to attach a Mn compound to Co 3 O 4 to obtain a mixture of Co and Mn. The diameter of the deposited Mn compound was 5 μm or less. Lithium carbonate (Li 2 CO 3 ) was mixed with this by a dry method, and then calcined at 1000 ° C. for 4 hours in an air atmosphere, and pulverized in a mortar to obtain LiCo 1-x Mn x O 2 .
Comparative Example 1 was used with a Mn content of 5 mol% relative to the total amount of Co and Mn, Comparative Example 2 was used with 8 mol%, and Comparative Example 3 was 11 mol%.

実施例1〜3≪Ca含有量が3モル%≫
〔LiCo1-xMnx2とCa化合物との混合体の作成〕
酢酸カルシウム(Ca(CH3COO)2)水溶液と、比較例1〜3の作成途中で得たCoとMnの混合物を混合してスラリーとし、水分を蒸発させてCoとMnとCaの混合物を得た。なお、Ca(CH3COO)2は、CoとMnの合計量に対し、Ca含有量が3モル%となるように秤量した。
上記のようにして得られた混合物と炭酸リチウム(Li2CO3)を乾式法で混合した後、空気雰囲気中にて1000℃で4時間焼成し、乳鉢で解砕してLiCo1-xMnx2とCa化合物との混合体を得た。
CoとMnの合計量に対し、Mn含有量が5モル%のものを実施例1、8モル%のものを実施例2、11モル%のものを実施例3とした。Ca含有量は、いずれもCoとMnの合計量に対し3モル%である。粉末X線回折法による分析の結果、実施例1〜3に含まれるCa化合物はCa3Co26であった。
Examples 1-3 << Ca content is 3 mol% >>
[Preparation of mixture of LiCo 1-x Mn x O 2 and Ca compound]
A calcium acetate (Ca (CH 3 COO) 2 ) aqueous solution and a mixture of Co and Mn obtained during the preparation of Comparative Examples 1 to 3 were mixed to form a slurry, and the water was evaporated to obtain a mixture of Co, Mn and Ca. Obtained. Ca (CH 3 COO) 2 was weighed so that the Ca content was 3 mol% with respect to the total amount of Co and Mn.
The mixture obtained as described above and lithium carbonate (Li 2 CO 3 ) were mixed by a dry method, then calcined in an air atmosphere at 1000 ° C. for 4 hours, crushed in a mortar, and LiCo 1-x Mn A mixture of x O 2 and a Ca compound was obtained.
Example 1 shows that the Mn content is 5 mol% with respect to the total amount of Co and Mn, Example 2 shows that the content of 8 mol% is Example 2, and Example 3 shows that with 11 mol%. The Ca content is 3 mol% with respect to the total amount of Co and Mn. As a result of analysis by powder X-ray diffractometry, the Ca compound contained in Examples 1 to 3 was Ca 3 Co 2 O 6 .

〔分散《偏在》状態の確認〕
分散《偏在》状態の確認は、走査型電子顕微鏡(SEM)として日本電子株式会社製JSM6700Fを、エネルギー分散型X線分析装置(EDS)として日本電子株式会社製JED2300Fを用いて行った。
正極活物質の、径8〜20μmの範囲内の任意の粒子の、ほぼ二等分した断面を、EDSによって組成マッピングしたところ、Caは、実施例1〜3のいずれも図3(D)のような偏在状態であった。
また、この《偏在》したCaが占める領域の大きさと数を目視により数えたところ、実施例1〜3のいずれも、径1〜5μmの範囲内の粒子は、5〜40個程度であった。
さらに、Coが占める領域と、Mnが占める領域は、いずれも一致していた。
[Confirmation of distributed (unevenly distributed) state]
Confirmation of the dispersed << uneven distribution >> state was performed using JSM6700F manufactured by JEOL Ltd. as a scanning electron microscope (SEM) and JED2300F manufactured by JEOL Ltd. as an energy dispersive X-ray analyzer (EDS).
When the composition of an almost bisected cross section of an arbitrary particle having a diameter of 8 to 20 μm in the positive electrode active material was subjected to composition mapping by EDS, Ca in each of Examples 1 to 3 is shown in FIG. It was the uneven distribution state.
Moreover, when the size and the number of the area occupied by the << unevenly distributed Ca >> were visually counted, all of Examples 1 to 3 had about 5 to 40 particles having a diameter of 1 to 5 μm. .
Furthermore, the region occupied by Co and the region occupied by Mn all coincided.

〔放電容量維持率の評価〕
比較例1〜3および実施例1〜3で得られたものを、正極活物質として使用する以外は参考例1と同様にしてリチウムイオン二次電池を作製した。
参考例1、比較例1〜3、実施例1〜3の各リチウムイオン二次電池について、20℃の雰囲気下、電流密度0.5Cで電圧4.3Vと、4.5Vに充電し、電流密度0.5Cで電圧3.0Vまで放電する操作をそれぞれ100回繰り返した後(100サイクル目)の放電容量維持率(%)を求めた。
図4(A)が充電電圧4.3V、(B)が充電電圧4.5Vの各場合の放電容量維持率を示している。
[Evaluation of discharge capacity maintenance rate]
Lithium ion secondary batteries were produced in the same manner as in Reference Example 1 except that the materials obtained in Comparative Examples 1 to 3 and Examples 1 to 3 were used as the positive electrode active material.
For each of the lithium ion secondary batteries of Reference Example 1, Comparative Examples 1 to 3, and Examples 1 to 3, the battery was charged to a voltage of 4.3 V and 4.5 V at a current density of 0.5 C in an atmosphere of 20 ° C. The discharge capacity maintenance rate (%) after each operation of discharging to a voltage of 3.0 V at a density of 0.5 C was repeated 100 times (100th cycle).
FIG. 4 (A) shows the discharge capacity maintenance rate when the charging voltage is 4.3V and FIG. 4 (B) is the charging voltage of 4.5V.

〔結晶構造の変化の評価〕
比較例1〜3および実施例1〜3で得られた正極活物質について、結晶構造の変化を評価するために、次の要領で粉末X線回折を行った。
充放電サイクルを行う前の正極活物質と、充電電圧4.5Vまでの充放電サイクル試験を100回行った後の電池を解体して取り出した正極活物質について、公益財団法人高輝度光科学研究センター運営の大型放射光施設SPring−8(ビームラインBL19B2、波長λ=0.7Å)を用い、回折角2θ=0°〜70°の範囲で行った。
[Evaluation of changes in crystal structure]
In order to evaluate the change in the crystal structure of the positive electrode active materials obtained in Comparative Examples 1 to 3 and Examples 1 to 3, powder X-ray diffraction was performed as follows.
High-intensity photochemical research on the positive electrode active material before charge / discharge cycle and the positive electrode active material taken out after disassembling the battery after 100 times of charge / discharge cycle test up to 4.5V charge voltage Using a large synchrotron radiation facility SPring-8 (beam line BL19B2, wavelength λ = 0.7 mm) operated by the center, the diffraction angle was 2θ = 0 ° to 70 °.

得られたデータについて、解析プログラムRIETAN-FP(F.Izumi and K.Momma,Solid State Phenom.,130,15−20(2007)参照)により、リートベルト解析を行い、c軸の長さと単位格子の体積を算出した。
充放電を行う前(0(ゼロ)サイクル時)の正極活物質の、リートベルト解析によって算出された“c軸の長さ”に対する、100サイクル試験後の正極活物質の、リートベルト解析によって算出された“c軸の長さ”の割合を、c軸長維持率(%)とした。
同様に、充放電を行う前(0(ゼロ)サイクル時)の正極活物質の、リートベルト解析によって算出された“単位格子の体積”に対する、サイクル試験後の正極活物質の、リートベルト解析によって算出された“単位格子の体積”の割合を、体積維持率(%)とした。
The obtained data is subjected to Rietveld analysis by the analysis program RIETA-FP (see F. Izumi and K. Mamma, Solid State Phenom., 130, 15-20 (2007)), and the c-axis length and unit cell are analyzed. The volume of was calculated.
Calculated by Rietveld analysis of the positive electrode active material after 100 cycles test against the “c-axis length” calculated by Rietveld analysis of the positive electrode active material before charge / discharge (during 0 (zero) cycle) The ratio of the “c-axis length” obtained was defined as the c-axis length maintenance rate (%).
Similarly, by the Rietveld analysis of the positive electrode active material after the cycle test with respect to the “unit cell volume” calculated by the Rietveld analysis of the positive electrode active material before charging / discharging (during 0 (zero) cycle). The calculated ratio of “unit cell volume” was defined as the volume retention rate (%).

図5(A)に、c軸長維持率(%)を、図5(B)に、体積維持率(%)をそれぞれ示す。実施例1〜3は、参考例1や比較例1〜3と比べて、c軸長、体積ともに維持率が100%に近い、すなわち、実施例1〜3の正極活物質は、4.5Vという高い電圧で充電を繰り返しても、結晶構造の変化が小さい(充電電圧4.5V未満の場合、変化がより小さいことは非特許文献1から推測できる)。
以上から、実施例1〜3の正極活物質を正極材料に使用した電池は、サイクル試験において優れた放電容量維持率を示すことが確認できる。
FIG. 5A shows the c-axis length maintenance rate (%), and FIG. 5B shows the volume maintenance rate (%). In Examples 1 to 3, compared with Reference Example 1 and Comparative Examples 1 to 3, both the c-axis length and volume have a maintenance rate close to 100%. That is, the positive electrode active materials of Examples 1 to 3 are 4.5 V. Even when charging is repeated at a high voltage, the change in the crystal structure is small (when the charging voltage is less than 4.5 V, it can be estimated from Non-Patent Document 1 that the change is smaller).
From the above, it can be confirmed that the batteries using the positive electrode active materials of Examples 1 to 3 as the positive electrode material show an excellent discharge capacity retention rate in the cycle test.

比較例4
Co34にMn化合物を付着させなかったこと以外は、実施例1〜3と同様にして、LiCoO2とCa化合物との混合体を得た。
粉末X線回折法による分析の結果、Ca化合物は複数種の混合物であることは判明したが、それらの化合物を粉末X線回折法によっては特定することができなかった。
Comparative Example 4
A mixture of LiCoO 2 and a Ca compound was obtained in the same manner as in Examples 1 to 3, except that no Mn compound was attached to Co 3 O 4 .
As a result of analysis by the powder X-ray diffraction method, it was found that the Ca compound was a mixture of a plurality of types, but these compounds could not be identified by the powder X-ray diffraction method.

比較例5〜7
Mn原料を5μmより大きな粒子を含む二酸化マンガン(MnO2)に、Ca原料を水酸化カルシウム(Ca(OH)2)に、Co34との混合方法を乾式法に変更した以外は、実施例1〜3と同様にしてLiCo1-xMnx2とCa化合物との混合体を得た。
CoとMnの合計量に対しMn含有量が5モル%のものを比較例5、8モル%のものを比較例6、11モル%のものを比較例7とした。
粉末X線回折法による分析の結果、比較例5〜7に含まれるCa化合物はCa3Co26であることが解った。
この混合体について、前記〔分散《偏在》状態の確認〕と同様にして、任意の粒子の断面をEDSによって組成マッピングしたところ、図8(B)及び図8(C)に示すように、Mnは一部に偏在し、Coと固溶していないことが確認された。
また、図8(D)に示すように、Caが占める領域は斑点状になっておらず、実施例と全く異なる形状を成していることが分かる。
Comparative Examples 5-7
Except for changing the mixing method of manganese raw material to manganese dioxide (MnO 2 ) containing particles larger than 5 μm, Ca raw material to calcium hydroxide (Ca (OH) 2 ), and Co 3 O 4 to the dry method. In the same manner as in Examples 1 to 3, a mixture of LiCo 1-x Mn x O 2 and a Ca compound was obtained.
The Mn content of 5 mol% with respect to the total amount of Co and Mn was Comparative Example 5, 8 mol% was Comparative Example 6, and 11 mol% was Comparative Example 7.
As a result of analysis by the powder X-ray diffraction method, it was found that the Ca compound contained in Comparative Examples 5 to 7 was Ca 3 Co 2 O 6 .
About this mixture, when the cross section of an arbitrary particle was subjected to composition mapping by EDS in the same manner as in [Confirmation of dispersion << uneven distribution >> state], as shown in FIGS. 8B and 8C, Mn Was unevenly distributed in part and was not dissolved in Co.
Further, as shown in FIG. 8D, it can be seen that the area occupied by Ca is not spotted, and has a shape completely different from that of the example.

〔放電容量維持率の評価〕
比較例4〜7で得られたものを、正極活物質として使用する以外は参考例1と同様にしてリチウムイオン二次電池を作製し、実施例1〜3と同様にして放電容量維持率の評価を行った。
比較例4〜7のいずれにおいても、100サイクル目の放電容量維持率は、充電電圧が4.5Vの場合、多くて60%程度にしかならず、放電容量が低下し易くなっていることがわかる。
従って、比較例4〜7については結晶構造の変化の評価は行わなかった。
[Evaluation of discharge capacity maintenance rate]
A lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the materials obtained in Comparative Examples 4 to 7 were used as the positive electrode active material. Evaluation was performed.
In any of Comparative Examples 4 to 7, the discharge capacity maintenance rate at the 100th cycle is only about 60% when the charging voltage is 4.5 V, and it can be seen that the discharge capacity tends to decrease.
Therefore, in Comparative Examples 4 to 7, the change in crystal structure was not evaluated.

実施例4
Co:Mnのモル比が99:1に、CoとMnの合計量に対し、Caが1モル%となるようにした以外は実施例1と同様にしてLiCo0.99Mn0.012とCa化合物との混合体を得た。Caの混合モル比が小さいため、粉末X線回折法ではCa化合物を特定することが極めて困難であった。
Example 4
LiCo 0.99 Mn 0.01 O 2 and the Ca compound were the same as in Example 1 except that the molar ratio of Co: Mn was 99: 1 and Ca was 1 mol% based on the total amount of Co and Mn. A mixture of was obtained. Since the mixing molar ratio of Ca is small, it was very difficult to specify the Ca compound by the powder X-ray diffraction method.

実施例5
Co:Mnのモル比が99:1に、CoとMnの合計量に対し、Caが15モル%となるようにした以外は実施例1と同様にしてLiCo0.99Mn0.012とCa化合物との混合体を得た。粉末X線回折法による分析の結果、このCa化合物はCa3Co26とCa9Co1228であった。
Example 5
LiCo 0.99 Mn 0.01 O 2 and the Ca compound were the same as in Example 1 except that the molar ratio of Co: Mn was 99: 1 and Ca was 15 mol% with respect to the total amount of Co and Mn. A mixture of was obtained. As a result of analysis by a powder X-ray diffraction method, the Ca compounds were Ca 3 Co 2 O 6 and Ca 9 Co 12 O 28 .

実施例6
Co:Mnのモル比が80:20に、CoとMnの合計量に対し、Caが1モル%となるようにした以外は実施例1と同様にしてLiCo0.8Mn0.22とCaコバルト複合酸化物との混合体を得た。Caの混合モル比が小さいため、粉末X線回折法ではCa化合物を特定することが極めて困難であった。
Example 6
LiCo 0.8 Mn 0.2 O 2 and Ca cobalt composite as in Example 1 except that the molar ratio of Co: Mn is 80:20 and Ca is 1 mol% with respect to the total amount of Co and Mn. A mixture with the oxide was obtained. Since the mixing molar ratio of Ca is small, it was very difficult to specify the Ca compound by the powder X-ray diffraction method.

実施例7
Co:Mnのモル比が80:20に、CoとMnの合計量に対し、Caが15モル%となるようにした以外は実施例1と同様にしてLiCo0.8Mn0.22とCa化合物との混合体を得た。粉末X線回折法による分析の結果、このCa化合物はCa3Co26であった。
Example 7
LiCo 0.8 Mn 0.2 O 2 and a Ca compound were prepared in the same manner as in Example 1 except that the molar ratio of Co: Mn was 80:20 and Ca was 15 mol% with respect to the total amount of Co and Mn. A mixture of was obtained. As a result of analysis by a powder X-ray diffraction method, this Ca compound was Ca 3 Co 2 O 6 .

実施例4〜7で得られた、Mnが固溶しているLiCo1-xMnx2(0.01<x<0.2)とCa化合物との混合体を正極活物質として使用する以外は、参考例1と同様にしてリチウムイオン二次電池を作製した。
各リチウムイオン二次電池について、測定温度20℃の条件下、0.5Cの電流密度で電圧4.3Vあるいは4.5Vまで充電し、0.5Cの電流密度で電圧3.0Vまで放電する操作を、それぞれ100回繰り返した。
Obtained in Example 4 to 7, Mn uses mixture of LiCo 1-x Mn x O 2 (0.01 <x <0.2) and Ca compounds dissolved as a positive electrode active material A lithium ion secondary battery was produced in the same manner as in Reference Example 1 except for the above.
For each lithium ion secondary battery, an operation of charging to a voltage of 4.3 V or 4.5 V at a current density of 0.5 C under a measurement temperature of 20 ° C. and discharging to a voltage of 3.0 V at a current density of 0.5 C Was repeated 100 times.

〔放電容量維持率の評価〕
充放電を100回繰り返した後(100サイクル目)の放電容量維持率(%)を求めた。
図7(A)が充電電圧4.3V、(B)が充電電圧4.5Vの各場合の放電容量維持率を示しており参考のために参考例1の結果を併せて示している。
[Evaluation of discharge capacity maintenance rate]
The discharge capacity retention rate (%) after charging and discharging 100 times (100th cycle) was determined.
FIG. 7 (A) shows the discharge capacity retention rate in each case where the charging voltage is 4.3V, and FIG. 7 (B) is the charging voltage of 4.5V, and the result of Reference Example 1 is also shown for reference.

本発明の正極活物質は、リチウムイオン二次電池の正極材料として使用することによって、従来のリチウムイオン二次電池に比べて、高い放電容量維持率と長寿命を備えたリチウムイオン二次電池を得ることができる。
よって、本発明の正極活物質によれば、常に高容量を要求されるEV用電源、パソコンや携帯電話用電源、バックアップ電源等をはじめとする公知の各種の用途に用いることが可能である。
By using the positive electrode active material of the present invention as a positive electrode material for a lithium ion secondary battery, a lithium ion secondary battery having a higher discharge capacity retention rate and a longer life than a conventional lithium ion secondary battery can be obtained. Can be obtained.
Therefore, according to the positive electrode active material of the present invention, it can be used for various known applications including a power source for EV, a power source for personal computers and mobile phones, a backup power source and the like that always require a high capacity.

Claims (4)

LiCo1-xMnx2(0.01<x<0.2)とCa化合物との混合体からなり、
Mn含有量が、CoとMnの合計量に対し1〜20モル%
Ca含有量が、CoとMnの合計量に対し1〜15モル%
であることを特徴とするリチウムイオン二次電池用正極活物質。
LiCo 1-x Mn x O 2 (0.01 <x <0.2) and a mixture of Ca compound,
Mn content is 1-20 mol% with respect to the total amount of Co and Mn
Ca content is 1 to 15 mol% with respect to the total amount of Co and Mn.
A positive electrode active material for a lithium ion secondary battery.
LiCo1-xMnx2(0.01<x<0.2)が、Mnが固溶したものであることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein LiCo 1-x Mn x O 2 (0.01 <x <0.2) is a solid solution of Mn.
請求項1または2に記載のリチウムイオン二次電池用正極活物質を使用するリチウムイオン二次電池が、20℃の雰囲気下、電流密度0.5Cで電圧4.3V〜4.5Vまで充電し、電流密度0.5Cで電圧3.0Vまで放電する操作を行った後の放電容量と、同条件で100回充放電を繰り返した後の放電容量との比から求められる容量維持率が、70%以上であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用正極活物質。   A lithium ion secondary battery using the positive electrode active material for a lithium ion secondary battery according to claim 1 or 2 is charged to a voltage of 4.3 V to 4.5 V at a current density of 0.5 C in an atmosphere of 20 ° C. The capacity maintenance ratio obtained from the ratio of the discharge capacity after performing the operation of discharging to a voltage of 3.0 V at a current density of 0.5 C and the discharge capacity after repeating charging and discharging 100 times under the same conditions is 70 % Or more of the positive electrode active material for a lithium ion secondary battery according to claim 1 or 2. リチウムイオン二次電池用正極活物質の粒子の断面を、エネルギー分散型X線分析法により組成マッピングして、Coが占める領域とMnが占める領域が一致し、かつ径1〜10μmの偏在したCaが占める領域が3〜60個存在することを特徴とする請求項1ないし3の何れかに記載のリチウムイオン二次電池用正極活物質。   The cross section of the particles of the positive electrode active material for a lithium ion secondary battery is composition-mapped by energy dispersive X-ray analysis, and the region occupied by Co and the region occupied by Mn coincide with each other and are unevenly distributed with a diameter of 1 to 10 μm. The positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein 3 to 60 regions are occupied.
JP2016017630A 2016-02-02 2016-02-02 Positive electrode active material for lithium ion secondary batteries Active JP6827695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017630A JP6827695B2 (en) 2016-02-02 2016-02-02 Positive electrode active material for lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017630A JP6827695B2 (en) 2016-02-02 2016-02-02 Positive electrode active material for lithium ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2017139077A true JP2017139077A (en) 2017-08-10
JP6827695B2 JP6827695B2 (en) 2021-02-10

Family

ID=59565981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017630A Active JP6827695B2 (en) 2016-02-02 2016-02-02 Positive electrode active material for lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6827695B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329286B2 (en) 2017-12-08 2022-05-10 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode and secondary battery including the same
JP7514113B2 (en) 2020-05-29 2024-07-10 旭化成株式会社 Non-aqueous secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167763A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Lithium secondary battery
JP2001319652A (en) * 2000-05-11 2001-11-16 Sony Corp Positive active material and non-aqueous electrolyte battery, and their manufacturing method
JP2004356034A (en) * 2003-05-30 2004-12-16 Mitsubishi Electric Corp Positive active material and lithium ion secondary battery using it
JP2006173137A (en) * 2006-01-27 2006-06-29 Hitachi Maxell Ltd Lithium secondary battery
WO2009014158A1 (en) * 2007-07-25 2009-01-29 Nippon Chemical Industrial Co., Ltd Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
WO2015047025A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Cathode active material for secondary battery, method for preparing same, and cathode for lithium secondary battery comprising same
JP2016091626A (en) * 2014-10-30 2016-05-23 旭硝子株式会社 Positive electrode active material, method for manufacturing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167763A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Lithium secondary battery
JP2001319652A (en) * 2000-05-11 2001-11-16 Sony Corp Positive active material and non-aqueous electrolyte battery, and their manufacturing method
JP2004356034A (en) * 2003-05-30 2004-12-16 Mitsubishi Electric Corp Positive active material and lithium ion secondary battery using it
JP2006173137A (en) * 2006-01-27 2006-06-29 Hitachi Maxell Ltd Lithium secondary battery
WO2009014158A1 (en) * 2007-07-25 2009-01-29 Nippon Chemical Industrial Co., Ltd Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
JP2009032467A (en) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
WO2015047025A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Cathode active material for secondary battery, method for preparing same, and cathode for lithium secondary battery comprising same
JP2016091626A (en) * 2014-10-30 2016-05-23 旭硝子株式会社 Positive electrode active material, method for manufacturing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329286B2 (en) 2017-12-08 2022-05-10 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode and secondary battery including the same
JP7514113B2 (en) 2020-05-29 2024-07-10 旭化成株式会社 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP6827695B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
Li et al. Fundamental insight into Zr modification of Li-and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study
Islam et al. K+ intercalated V 2 O 5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries
JP6433438B2 (en) Doped sodium manganese oxide cathode material for sodium ion batteries
US10090524B2 (en) Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
TW540182B (en) Positive electrode material and battery using the same
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR20190035716A (en) Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2019186221A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR20160138048A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary cell, method of producing said precursor, positive electrode active material for nonaqueous electrolyte secondary cell, and method for manufacturing said material
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
JP2010092848A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
CN112768645B (en) Method for producing positive electrode active material and method for producing lithium ion battery
KR20140008344A (en) Lithium-manganese-type solid solution positive electrode material
US20220285676A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20050084852A (en) Method for preparing positive electrode active material for lithium secondary cell
CA2976022A1 (en) Positive electrode active substance comprising lithium nickel-cobalt-manganese-based composite transition metal layered oxide for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP7363747B2 (en) Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
KR101338371B1 (en) Manufacturing method of lithium nickel cobalt aluminium composite oxide, lithium nickel cobalt aluminium composite oxide made by the same, lithium secondary battery comprising the same
JP6827695B2 (en) Positive electrode active material for lithium ion secondary batteries
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
KR101634088B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250