JP2017138141A - Parkinson disease diagnostic indicator - Google Patents

Parkinson disease diagnostic indicator Download PDF

Info

Publication number
JP2017138141A
JP2017138141A JP2016017794A JP2016017794A JP2017138141A JP 2017138141 A JP2017138141 A JP 2017138141A JP 2016017794 A JP2016017794 A JP 2016017794A JP 2016017794 A JP2016017794 A JP 2016017794A JP 2017138141 A JP2017138141 A JP 2017138141A
Authority
JP
Japan
Prior art keywords
acylcarnitine
group
disease
chain
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017794A
Other languages
Japanese (ja)
Other versions
JP6573394B2 (en
Inventor
信孝 服部
Nobutaka Hattori
信孝 服部
臣二 斉木
Shinji Saiki
臣二 斉木
琢 波田野
Taku Hatano
琢 波田野
一雄 山城
Kazuo Yamashiro
一雄 山城
景一 石川
Keiichi Ishikawa
景一 石川
悠 王子
Yu Oji
悠 王子
聡生 森
Akio Mori
聡生 森
文美 奥住
Ayami Okuzumi
文美 奥住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Priority to JP2016017794A priority Critical patent/JP6573394B2/en
Publication of JP2017138141A publication Critical patent/JP2017138141A/en
Application granted granted Critical
Publication of JP6573394B2 publication Critical patent/JP6573394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy diagnostic marker that can make a differential diagnosis of Parkinson disease in an early stage.SOLUTION: There is provided a method for measuring the concentration of a component selected from middle-chain to long-chain acylcarnitine and a secondary bile acid in a sample derived from a living body to diagnose Parkinson disease.SELECTED DRAWING: None

Description

本発明は、パーキンソン病を早期に診断する方法に関する。   The present invention relates to a method for early diagnosis of Parkinson's disease.

パーキンソン病(Parkinson’s disease:以下PD)は我が国で2番目に多い神経変性疾患で、進行性の運動障害に加え、非運動症状(認知機能低下、精神症状、自律神経症状)などが経年的に進行し、多大な医療・介護負担のため深刻な社会的資産の毀損を招来する。本疾患では、80%程度の症例が明確な遺伝学的背景を持たない「孤発性」症例であるため、ゲノムDNAを用いた遺伝子診断は全症例で有用とはいえない。また頭部MRI検査では病初期から末期まで疾患特異的で鑑別診断価値の高い変化は同定・確立されておらず、他の核医学検査でも心筋MIBGシンチグラフィー(PDに生じる交感神経脱落をノルエピネフリン類似物質MIBGの取り込み低下により評価する方法で中期以降のPD診断に有効とされる)、DAT(ドパミントランスポーター)スキャン(黒質−線条体路の神経変性によるドパミン神経終末低下をモニタリングするため、類縁神経変性疾患鑑別に有用性は明確に確立されていない)など、6万円以上の費用を要する高価な検査が一定の診断効率上昇の効果を認めるのみである。
さらに、パーキンソン病診断手段として、αアドレナリン受容体作動薬含有点眼剤と、ノルアドレナリン再取り込み阻害薬及び/又はノルアドレナリン放出薬含有点眼剤とを用いた診断薬(特許文献1)、神経栄養因子である血液中のNRG1タイプIIIの濃度を測定する方法(特許文献2)、脳脊髄液サンプル中の可溶性α−シヌクレインオリゴマー量を測定する方法(特許文献3)、皮膚ガス又は汗中のベンジルアルコール等の量を測定する方法(特許文献4)が報告されている。
Parkinson's disease (PD) is the second most common neurodegenerative disease in Japan. In addition to progressive movement disorders, non-motor symptoms (cognitive decline, psychiatric symptoms, autonomic symptoms), etc. This will cause serious damage to social assets due to the heavy medical and nursing care burden. In this disease, since about 80% of cases are “spontaneous” cases without a clear genetic background, genetic diagnosis using genomic DNA is not useful in all cases. In addition, changes in disease-specific and high differential diagnostic value have not been identified or established in head MRI examination from the early stage to the end stage of disease, and myocardial MIBG scintigraphy (sympathetic nerve loss occurring in PD is similar to norepinephrine in other nuclear medicine examinations) It is effective for the diagnosis of PD after the middle stage by the method of evaluating by taking down the substance MIBG), DAT (dopamine transporter) scan (to monitor the dopamine nerve terminal decline due to neurodegeneration of nigrostriatal tract, Expensive tests that cost 60,000 yen or more, such as the differentiation of related neurodegenerative diseases, have not been clearly established, but only a certain increase in diagnostic efficiency is recognized.
Further, as a means for diagnosing Parkinson's disease, a diagnostic agent using an α-adrenergic receptor agonist-containing eye drop and a noradrenaline reuptake inhibitor and / or a noradrenaline-releasing agent-containing eye drop (Patent Document 1) is a neurotrophic factor. Methods for measuring the concentration of NRG1 type III in blood (Patent Document 2), methods for measuring the amount of soluble α-synuclein oligomer in cerebrospinal fluid samples (Patent Document 3), benzyl alcohol in skin gas or sweat, etc. A method for measuring the amount (Patent Document 4) has been reported.

特開2005−162693号公報JP 2005-162893 A 特開2013−181823号公報JP2013-181823A 特表2013−504766号公報JP 2013-504766 gazette 特開2015−55620号公報Japanese Patent Laying-Open No. 2015-55620

しかしながら、従来の手段では、症状が進行した後でなければ診断できない、高価な検査が必要である、脳脊髄液をサンプルとする等の問題があり、超早期、早期から鑑別診断可能な簡易診断マーカー(以下、BM)が望まれていた。
従って、本発明の課題は、早期から鑑別診断可能な簡易診断マーカーを提供することにある。
However, conventional methods have problems such as diagnosis that can only be diagnosed after symptom progression, expensive testing is required, and cerebrospinal fluid is used as a sample. A marker (hereinafter referred to as BM) has been desired.
Accordingly, an object of the present invention is to provide a simple diagnostic marker capable of differential diagnosis from an early stage.

そこで本発明者は、測定が容易な血中成分に着目し、血漿代謝産物の網羅的解析を行ったところ、中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の濃度が、PD発症の初期から健常者やアルツハイマー病の患者に比べて大きく変化することから、これらの成分を測定すれば、PDが早期に診断可能となることを見出し、本発明を完成した。   Therefore, the present inventor paid attention to blood components that can be easily measured and conducted a comprehensive analysis of plasma metabolites. As a result, the concentration of a component selected from medium chain to long chain acylcarnitine and secondary bile acids was found to be PD. From the initial stage of the onset, since it changes greatly compared to healthy subjects and Alzheimer's disease patients, it was found that if these components were measured, PD could be diagnosed early, and the present invention was completed.

すなわち、本発明は、次の〔1〕〜〔4〕を提供するものである。   That is, the present invention provides the following [1] to [4].

〔1〕パーキンソン病を診断する目的で、生体由来試料中の中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の濃度を測定する方法。
〔2〕中鎖〜長鎖アシルカルニチンが炭素数12〜20の脂肪族アシルカルニチンである〔1〕記載の方法。
〔3〕さらに前記成分の濃度と、健常者の当該成分の濃度とを対比する工程を含む〔1〕又は〔2〕記載の方法。
〔4〕中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の測定用試薬を含有するパーキンソン病診断薬。
[1] A method of measuring the concentration of a component selected from medium- to long-chain acylcarnitines and secondary bile acids in a biological sample for the purpose of diagnosing Parkinson's disease.
[2] The method according to [1], wherein the medium chain to long chain acylcarnitine is an aliphatic acylcarnitine having 12 to 20 carbon atoms.
[3] The method according to [1] or [2], further comprising a step of comparing the concentration of the component with the concentration of the component of a healthy person.
[4] A diagnostic agent for Parkinson's disease comprising a reagent for measuring a component selected from medium chain to long chain acylcarnitines and secondary bile acids.

本発明方法によれば、血液等の容易に採取できる試料を用いて、前記マーカー濃度を測定するだけで、早期にパーキンソン病をアルツハイマー病等の他の神経変性疾患と区別して診断することができる。病状が進行する前に診断し、的確な治療を行えば、パーキンソン病進行をくいとめることができる。   According to the method of the present invention, Parkinson's disease can be diagnosed early and distinguished from other neurodegenerative diseases such as Alzheimer's disease simply by measuring the marker concentration using a sample that can be easily collected such as blood. . Diagnosing before the disease progresses and providing appropriate treatment can stop Parkinson's disease progression.

代謝化合物群のクラスター解析結果を示す図である。It is a figure which shows the cluster analysis result of a metabolic compound group. アシルカルニチン(AC)主成分の解析結果を示す。The analysis result of an acylcarnitine (AC) main component is shown. アシルカルニチン(AC)と遊離脂肪酸(FA)の代謝概要を示す。An outline of metabolism of acylcarnitine (AC) and free fatty acid (FA) is shown.

本発明は、パーキンソン病を診断する目的で、生体試料中の中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の濃度を測定する方法である。   The present invention is a method for measuring the concentration of a component selected from medium chain to long chain acylcarnitines and secondary bile acids in a biological sample for the purpose of diagnosing Parkinson's disease.

本発明に用いられる生体由来試料としては、前記成分が含まれている試料であればよいが、前記成分は、血液中に存在することが知られている成分であるから、血液が好ましく、血漿がより好ましい。   The biological sample used in the present invention may be a sample containing the above component, but since the component is a component known to exist in blood, blood is preferable, and plasma Is more preferable.

中鎖〜長鎖アシルカルニチンとしては、炭素数12〜20の脂肪族アシルカルニチンが挙げられる。ここで、脂肪族アシル基には、飽和又は不飽和脂肪族アシル基が含まれる。具体的には、炭素数12〜20の飽和又は不飽和脂肪酸由来のアシル基により、ヒドロキシ基がアシル化されたカルニチンが挙げられる。   Examples of the medium chain to long chain acyl carnitine include aliphatic acyl carnitines having 12 to 20 carbon atoms. Here, the aliphatic acyl group includes a saturated or unsaturated aliphatic acyl group. Specific examples include carnitine in which a hydroxy group is acylated with an acyl group derived from a saturated or unsaturated fatty acid having 12 to 20 carbon atoms.

2次胆汁酸としては、デオキシコール酸が挙げられる。   Secondary bile acids include deoxycholic acid.

中鎖〜長鎖アシルカルニチン及び2次胆汁酸の濃度は、例えばキャピラリー電気泳動・質量分析器、液体クロマトグラフィー・質量分析器、質量分析器・質量分析器(タンデム質量分析器)等により測定することができる。   The concentration of medium chain to long chain acylcarnitine and secondary bile acid is measured by, for example, capillary electrophoresis / mass analyzer, liquid chromatography / mass analyzer, mass analyzer / mass analyzer (tandem mass analyzer), etc. be able to.

後記実施例に示すように、PD患者の中鎖〜長鎖アシルカルニチン濃度は、健常者及びアルツハイマー病患者のそれと比較して有意に低下していた。一方、PD患者の短鎖アシル(炭素数4)カルニチン濃度は、健常者のそれに比べて有意に上昇していた。   As shown in Examples described later, the medium- to long-chain acylcarnitine concentrations in PD patients were significantly lower than those in healthy subjects and Alzheimer's disease patients. On the other hand, the concentration of short-chain acyl (carbon number 4) carnitine in PD patients was significantly higher than that in healthy subjects.

中鎖〜長鎖アシルカルニチン濃度は、骨格筋でのミトコンドリア代謝を反映するとされる(UK:CABI;2014:157−170)。肥満度の指標となるBody mass indexは、後記実施例に示すように対照群に比し低値を示したため、PD患者では痩身傾向が強いことが示唆されるが、骨格筋量を正確に反映する骨格筋由来代謝産物の各群間での検討では、クレアチニン、カルニチン、クレアチン、3−メチルヒスチジンについて有意な変化を認めなかった。以上からPD群における中鎖〜長鎖アシルカルニチン濃度の低下は骨格筋量変化によるとは考えられないと判断した。
さらに、PD群でのみ脂肪酸β酸化活性指標がいずれも高値を示した。カルニチン/アシルカルニチン(16:0)比はミトコンドリア外でアシルCoAをアシルカルニチンに変換するcarnitine palmitoyltransferase I(CPT−I)の活性と逆相関し(Diabetes care 2012:35(3):605−611)、同指標が高い場合はCPT−I活性が低下していることを示す。またアシルカルニチン(8:0)/アシルカルニチン(16:0)比は後期脂肪酸・酸化の活性と逆相関し、アシルカルニチン(14:1)/アシルカルニチン(16:0)比は初期脂肪酸・酸化活性(特にインプットの活性)と逆相関する(Obesity 2010:18(9):1695−1700)。上記3比率がいずれもPD群においてのみ高値を示すことから、PDでは同活性が低下していることを示す。また中鎖〜長鎖アシルカルニチン群の一貫した低下傾向が脂肪酸・酸化にて費消される中間材料の減少を示しているにもかかわらず脂肪酸・酸化最終代謝産物に近いアシルカルニチン(4:0)は上昇している所見は、脂肪酸・酸化活性低下と一致する。また、ミトコンドリア脂肪酸・酸化の原材料は血中遊離脂肪酸(fatty acid、以下FA)である。ミトコンドリア脂肪酸・酸化にて分解される炭素数22以下の遊離脂肪酸は概ね上昇傾向にあった。これらからミトコンドリア脂肪酸・酸化機能の低下により、ミトコンドリアにおいて分解されるべき遊離脂肪酸が貯留しているという論理的な解釈が成立すると考えられる。
続いて中鎖〜長鎖アシルカルニチンとPD疾患重症度との相関について検討した。一般的にPD重症度の評価には生活機能評価より構成されるHoehn and Yahr分類が利用される。PD群109例の症例群はI度26名、II度52名、III度21名、IV度9名、V度1名であった。最も重要な点は、H&Y I−III度についてはアシルカルニチン(12:0)、アシルカルニチン(13:1)、アシルカルニチン(14:0)、アシルカルニチン(16:0)、アシルカルニチン(16:1)、アシルカルニチン(18:0)、アシルカルニチン(18:1)、アシルカルニチン(18:2)、アシルカルニチン(20:1)が全て対照群に比し有意差を持って低値を示し、かつ、H&Y I−IV度においてアシルカルニチン(16:0)、アシルカルニチン(18:0)が有意な低値を示したことである。即ち中鎖〜長鎖アシルカルニチン群は疾患重症度との相関は認められないものの、病初期から低下することが明らかとなった。
Medium to long chain acylcarnitine concentrations are believed to reflect mitochondrial metabolism in skeletal muscle (UK: CABI; 2014: 157-170). The body mass index, which is an index of obesity, was lower than the control group as shown in the examples below, suggesting a strong tendency to slim in PD patients, but accurately reflecting skeletal muscle mass In the study between the skeletal muscle-derived metabolites, no significant changes were observed for creatinine, carnitine, creatine, and 3-methylhistidine. From the above, it was judged that the decrease in the medium chain to long chain acylcarnitine concentration in the PD group was not considered to be due to changes in skeletal muscle mass.
Furthermore, the fatty acid β oxidation activity index showed a high value only in the PD group. Carnitine / acylcarnitine (16: 0) ratio is inversely correlated with the activity of carnitine palmtoyltransferase I (CPT-I) which converts acyl CoA to acylcarnitine outside the mitochondria (Diabetes care 2012: 35 (3): 605-611) When the index is high, it indicates that CPT-I activity is decreased. The ratio of acylcarnitine (8: 0) / acylcarnitine (16: 0) is inversely correlated with the activity of late fatty acid / oxidation, and the ratio of acylcarnitine (14: 1) / acylcarnitine (16: 0) is the initial fatty acid / oxidation. It is inversely correlated with activity (especially input activity) (Obesity 2010: 18 (9): 1695-1700). Since all three ratios show high values only in the PD group, it indicates that the same activity is reduced in PD. Acylcarnitine close to fatty acid / oxidized end metabolite (4: 0) despite the consistent downward trend of medium- to long-chain acylcarnitine groups indicating a decrease in intermediate materials consumed by fatty acid / oxidation The finding that is elevated is consistent with a decrease in fatty acid and oxidative activity. The raw material of mitochondrial fatty acid / oxidation is blood free fatty acid (FA). Mitochondrial fatty acids and free fatty acids having 22 or less carbon atoms, which are decomposed by oxidation, generally tended to increase. From these, it is considered that the logical interpretation that free fatty acids to be decomposed are stored in mitochondria due to a decrease in mitochondrial fatty acid / oxidation function.
Subsequently, the correlation between medium chain to long chain acylcarnitine and the severity of PD disease was examined. In general, the Hoehn and Yahr classification composed of life function evaluation is used for evaluation of PD severity. The group of 109 cases in the PD group was I grade 26, II grade 52, III grade 21, IV grade 9 and V grade 1. Most importantly, for H & Y I-III degree, acylcarnitine (12: 0), acylcarnitine (13: 1), acylcarnitine (14: 0), acylcarnitine (16: 0), acylcarnitine (16: 1), acylcarnitine (18: 0), acylcarnitine (18: 1), acylcarnitine (18: 2), and acylcarnitine (20: 1) all show a low value with a significant difference compared to the control group. In addition, acyl carnitine (16: 0) and acyl carnitine (18: 0) showed significantly low values in the H & Y I-IV degree. That is, it was revealed that the medium chain to long chain acylcarnitine group decreased from the early stage of the disease although no correlation with disease severity was observed.

また、PD群で2次胆汁酸であるデオキシコール酸(以下DCA)が上昇(PDD群でも上昇)し、2次胆汁酸にタウリン・グリシン等による結合修飾を受けた4化合物(タウロコール酸(以下TCA)、グリコウルソデオキシコール酸(以下GUDCA)、タウロケノデオキシコール酸(以下TCDCA)、グリコケノデオキシコール酸(以下GCDCA))の低下を認めた。DCAは2次胆汁酸であり、TCDCAやGCDCAの原料となる。TCDCA、GCDCAは腸内細菌Clostridium perfrigensおよびLactobacillus johnsoniiによって産生されることから、PDにおけるDCAおよびTCDCA、GCDCA濃度の変化は腸内細菌巣の変化を示唆しており、2015年に報告されたPD患者の腸内フローラ変化に一致する。同変化はアルツハイマー病群では認められておらず、アルツハイマー病との鑑別診断BMとしての有用性が示唆された。   In addition, deoxycholic acid (hereinafter DCA), which is a secondary bile acid in PD group, is increased (also increased in PDD group), and 4 compounds (taurocholic acid (hereinafter referred to as taurocholic acid (hereinafter referred to as “taurocholic acid”)) that are subjected to binding modification by taurine, glycine or the like. TCA), glycoursodeoxycholic acid (hereinafter GUDCA), taurochenodeoxycholic acid (hereinafter TCDCA), and glycochenodeoxycholic acid (hereinafter GCDCA)) were observed to decrease. DCA is a secondary bile acid and is a raw material for TCDCA and GCDCA. Since TCDCA and GCDCA are produced by the enteric bacteria Clostridium perfrigens and Lactobacillus johnsonii, changes in the concentrations of DCA, TCDCA and GCDCA in PD suggest changes in the intestinal bacterial foci, and a PD patient reported in 2015 Consistent with changes in the intestinal flora. This change was not observed in the Alzheimer's disease group, suggesting its usefulness as a differential diagnosis BM from Alzheimer's disease.

以上のように、被検者の生体試料中の中鎖〜長鎖アシルカルニチン濃度及び/又は2次胆汁酸濃度を、健常者及び/又はアルツハイマー病患者のそれと対比することにより、PDが早期に診断できる。   As described above, by comparing the medium chain to long chain acylcarnitine concentration and / or the secondary bile acid concentration in the biological sample of the subject with that of a healthy subject and / or an Alzheimer's disease, PD can be accelerated. Can be diagnosed.

本発明においては、中鎖〜長鎖アシルカルニチン又は2次胆汁酸濃度は、液体クロマトグラフィー・質量分析器によって測定できることから、これを測定するための試薬は、パーキンソン病診断薬として有用である。   In the present invention, the medium-long chain acylcarnitine or secondary bile acid concentration can be measured by a liquid chromatography / mass spectrometer, so that the reagent for measuring this is useful as a diagnostic agent for Parkinson's disease.

次に実施例を挙げて本発明を詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated in detail.

実施例1
表1に示す患者群(対照群をcontrol、認知症を伴うPD群をPDD、アルツハイマー型認知症群をADと表記する)において、キャピラリー電気泳動・質量分析器、および液体クロマトグラフィー・質量分析器の両装置を用いて、血漿代謝産物の網羅的解析を行い、PD早期診断に資するバイオマーカー同定を試みた。血漿代謝産物は食餌・運動に影響を受けやすいことから、採血前日の21時より絶食(飲水・内服は可能)とし、採血当日は9〜12時に血液採取・血漿抽出を行い、液体窒素中に保存し、抽出後3ヶ月以内に本解析を行った。
Example 1
In the patient groups shown in Table 1 (control group is indicated as control, PD group with dementia is indicated as PDD, and Alzheimer type dementia group is indicated as AD), capillary electrophoresis / mass analyzer, and liquid chromatography / mass analyzer Using these devices, comprehensive analysis of plasma metabolites was performed, and biomarker identification that contributes to early diagnosis of PD was attempted. Since plasma metabolites are susceptible to diet and exercise, fasting (drinking and internal use is possible) from 21:00 on the day before blood collection, blood sampling and plasma extraction are performed at 9-12 o'clock on the day of blood collection, and in liquid nitrogen The analysis was performed within 3 months after extraction.

〔サンプル調整について〕
1)キャピラリー電気泳動・質量分析器用
内部標準物質の濃度が10μMになるように調製した450mLのメタノール溶液に、50μLのヒト血漿を添加して撹拌した。これに500μLのクロロホルムおよび200μLのMilli−Q水を加えて撹拌し、遠心分離(2,300×g,4℃,5分)を行った。遠心分離後、水層を限外ろ過チューブ(ウルトラフリーMC PLHCC,HMT,遠心式フィルターユニット 5kDa)に400μL×1本移し取った。これを遠心(9,100×g,4℃,120分)し、限外ろ過処理を行った。ろ液を乾固させ、再び25μLのMilli−Q水に溶解して測定に供した。
[About sample adjustment]
1) For capillary electrophoresis / mass spectrometer 50 μL of human plasma was added to 450 mL of methanol solution prepared so that the concentration of the internal standard substance was 10 μM and stirred. To this, 500 μL of chloroform and 200 μL of Milli-Q water were added and stirred, followed by centrifugation (2,300 × g, 4 ° C., 5 minutes). After centrifugation, 400 μL × 1 aqueous layer was transferred to an ultrafiltration tube (Ultra Free MC PLHCC, HMT, centrifugal filter unit 5 kDa). This was centrifuged (9,100 × g, 4 ° C., 120 minutes) and subjected to ultrafiltration treatment. The filtrate was dried and dissolved again in 25 μL of Milli-Q water and used for measurement.

2)液体クロマトグラフィー質量分析器用
内部標準物質の濃度が6mMとなるように調製した1,500mLの1%ギ酸−アセトニトリル溶液に、500mLのヒト血漿を添加して撹拌した。その後、遠心分離(2,300×g,4℃,5分)を行い、上清を回収し、固相抽出を用いてリン脂質を除去後、ろ液を回収した。これを乾固させ、200mLの50%イソプロパノール溶液(v/v)に溶解して測定に供した。
〔測定について〕
1)CE−TOFMS 測定
本試験ではカチオンモード、アニオンモードのCE−TOFMS測定を以下に示す条件1−3)で行った。得られたピーク強度、形状から判断して、カチオンモードでの測定には2倍(PD69のみ5倍)、アニオンモードでの測定には5倍に希釈した試料を用いた。
・陽イオン性代謝物質(カチオンモード)
装置
Agilent CE-TOFMS system(Agilent Technologies 社) 6 号機
Capillary : Fused silica capillary i.d. 50 μm × 80 cm
測定条件
Run buffer : Cation Buffer Solution (p/n : H3301-1001)
Rinse buffer : Cation Buffer Solution (p/n : H3301-1001)
Sample injection : Pressure injection 50 mbar, 10 sec
CE voltage : Positive, 27 kV
MS ionization : ESI Positive
MS capillary voltage : 4,000 V
MS scan range : m/z 50-1,000
Sheath liquid : HMT Sheath Liquid (p/n : H3301-1020)
2) For liquid chromatography mass spectrometer 500 mL of human plasma was added to 1,500 mL of 1% formic acid-acetonitrile solution prepared so that the concentration of the internal standard substance was 6 mM and stirred. Thereafter, centrifugation (2,300 × g, 4 ° C., 5 minutes) was performed, the supernatant was recovered, the phospholipid was removed using solid phase extraction, and the filtrate was recovered. This was dried and dissolved in 200 mL of 50% isopropanol solution (v / v) for measurement.
[About measurement]
1) CE-TOFMS measurement In this test, CE-TOFMS measurement in a cation mode and an anion mode was performed under the conditions 1-3) shown below. Judging from the obtained peak intensity and shape, a sample diluted 2 times (5 times for PD69 only) and 5 times for anion mode measurement was used for the measurement in the cation mode.
・ Cationic metabolite (cation mode)
apparatus
Agilent CE-TOFMS system (Agilent Technologies) Unit 6
Capillary: Fused silica capillary id 50 μm × 80 cm
Measurement condition
Run buffer: Cation Buffer Solution (p / n: H3301-1001)
Rinse buffer: Cation Buffer Solution (p / n: H3301-1001)
Sample injection: Pressure injection 50 mbar, 10 sec
CE voltage: Positive, 27 kV
MS ionization: ESI Positive
MS capillary voltage: 4,000 V
MS scan range: m / z 50-1,000
Sheath liquid: HMT Sheath Liquid (p / n: H3301-1020)

・陰イオン性代謝物質(アニオンモード)
装置
Agilent CE-TOFMS system(Agilent Technologies 社) 5 号機
Capillary : Fused silica capillary i.d. 50 μm × 80 cm
測定条件
Run buffer : Anion Buffer Solution (p/n : I3302-1023)
Rinse buffer : Anion Buffer Solution (p/n : I3302-1023)
Sample injection : Pressure injection 50 mbar, 25 sec
CE voltage : Positive, 30 kV
MS ionization : ESI Negative
MS capillary voltage : 3,500 V
MS scan range : m/z 50-1,000
Sheath liquid : HMT Sheath Liquid (p/n : H3301-1020)
・ Anionic metabolites (anion mode)
apparatus
Agilent CE-TOFMS system (Agilent Technologies) Unit 5
Capillary: Fused silica capillary id 50 μm × 80 cm
Measurement condition
Run buffer: Anion Buffer Solution (p / n: I3302-1023)
Rinse buffer: Anion Buffer Solution (p / n: I3302-1023)
Sample injection: Pressure injection 50 mbar, 25 sec
CE voltage: Positive, 30 kV
MS ionization: ESI Negative
MS capillary voltage: 3,500 V
MS scan range: m / z 50-1,000
Sheath liquid: HMT Sheath Liquid (p / n: H3301-1020)

2)LC−TOFMS 測定
本試験では、ポジティブモード、ネガティブモードのLC−TOFMS測定を以下に示す条件で行った。得られたピーク強度から判断して、注入量を1μLとした。
陽イオン性代謝物質(ポジティブモード)
装置
LC system : Agilent 1200 series RRLC system SL(Agilent Technologies 社)
Column : ODS column, 2×50 mm, 2μm
MS system : Agilent LC/MSD TOF(Agilent Technologies 社)4 号機
測定条件
Column temp. : 40℃
Mobile phase : A : H2O / 0.1% HCOOH
Mobile phase : B : Isopropanol: Acetonitrile: H2O (65:30:5) / 0.1% HCOOH, 2mM HCOONH4
Flow rate : 0.3 mL / min
Run time : 20 min
Post time : 6 min
Gradient condition : 0-0.5 min : B 1%, 0.5-13.5 min : B 1-100%, 13.5-20 min : B 100%
MS ionization mode : ESI Positive
MS Nebulizer pressure : 40 psi
MS dry gas flow : 10 L / min
MS dry gas temp : 350℃
MS capillary voltage : 4,000 V
MS scan range : m/z 100-1,700
陰イオン性代謝物質(ネガティブモード)
装置
LC system : Agilent 1200 series RRLC system SL(Agilent Technologies 社)
Column : ODS column, 2×50 mm, 2 μm
MS system : Agilent LC/MSD TOF(Agilent Technologies 社)4 号機
測定条件
Column temp. : 40℃
Mobile phase : A : H2O / 0.1% HCOOH
Mobile phase : B : Isopropanol: Acetonitrile: H2O (65:30:5) / 0.1% HCOOH, 2 mM HCOONH4
Flow rate : 0.3 mL / min
Run time : 20 min
Post time : 6 min
Gradient condition : 0-0.5 min : B 1%, 0.5-13.5 min : B 1-100%, 13.5-20 min : B 100%
MS ionization mode : ESI Negative
MS Nebulizer pressure : 40 psi
MS dry gas flow : 10 L / min
MS dry gas temp : 350℃
MS capillary voltage : 4,000 V
MS scan range : m/z 100-1,700
2) LC-TOFMS measurement In this test, positive mode and negative mode LC-TOFMS measurements were performed under the following conditions. Judging from the obtained peak intensity, the injection volume was 1 μL.
Cationic metabolite (positive mode)
apparatus
LC system: Agilent 1200 series RRLC system SL (Agilent Technologies)
Column: ODS column, 2 × 50 mm, 2μm
MS system: Agilent LC / MSD TOF (Agilent Technologies) Unit 4 measurement conditions
Column temp .: 40 ℃
Mobile phase: A: H 2 O / 0.1% HCOOH
Mobile phase: B: Isopropanol: Acetonitrile: H 2 O (65: 30: 5) / 0.1% HCOOH, 2mM HCOONH 4
Flow rate: 0.3 mL / min
Run time: 20 min
Post time: 6 min
Gradient condition: 0-0.5 min: B 1%, 0.5-13.5 min: B 1-100%, 13.5-20 min: B 100%
MS ionization mode: ESI Positive
MS Nebulizer pressure: 40 psi
MS dry gas flow: 10 L / min
MS dry gas temp: 350 ℃
MS capillary voltage: 4,000 V
MS scan range: m / z 100-1,700
Anionic metabolites (negative mode)
apparatus
LC system: Agilent 1200 series RRLC system SL (Agilent Technologies)
Column: ODS column, 2 × 50 mm, 2 μm
MS system: Agilent LC / MSD TOF (Agilent Technologies) Unit 4 measurement conditions
Column temp .: 40 ℃
Mobile phase: A: H 2 O / 0.1% HCOOH
Mobile phase: B: Isopropanol: Acetonitrile: H2O (65: 30: 5) / 0.1% HCOOH, 2 mM HCOONH 4
Flow rate: 0.3 mL / min
Run time: 20 min
Post time: 6 min
Gradient condition: 0-0.5 min: B 1%, 0.5-13.5 min: B 1-100%, 13.5-20 min: B 100%
MS ionization mode: ESI Negative
MS Nebulizer pressure: 40 psi
MS dry gas flow: 10 L / min
MS dry gas temp: 350 ℃
MS capillary voltage: 4,000 V
MS scan range: m / z 100-1,700

図1は、各疾患群を横軸に、縦軸に代謝産物を配置し、疾患特異的な代謝化合物群の検索を行う「クラスター解析」結果を示す。黒点線で示す領域はPD群で低下傾向を示しており、同領域に含まれるのは図右端に示すように中鎖〜長鎖アシルカルニチン(acylcarnitine、以下AC)が16化合物中15化合物を占めた。本結果を多面的に検証すべく、主成分解析(principle component analysis)を行ったところ、PD群と対照群を効果的に区別できる軸(PC3)を同定し、同軸への貢献度の高い化合物は図右端に示すように15化合物中14化合物を中鎖〜長鎖ACが占めた(図2)。同14化合物全てが先述のクラスター解析で同定されたACに含まれていた。それぞれのAC濃度についてPDと対照群との有意差を検討したところ、表2のように14個のACがPD群で有意に低下し、短鎖のAC(4:0)はコントロール群に比しPD群で有意に上昇していた。   FIG. 1 shows a “cluster analysis” result in which each disease group is arranged on the horizontal axis and metabolites are arranged on the vertical axis to search for disease-specific metabolic compound groups. The region indicated by the black dotted line shows a downward trend in the PD group, and the region contained in the region is medium- to long-chain acylcarnitine (hereinafter AC) occupying 15 compounds out of 16 compounds as shown in the right end of the figure. It was. In order to verify this result from various perspectives, a principal component analysis was performed. As a result, an axis (PC3) capable of effectively distinguishing the PD group from the control group was identified, and a compound having a high contribution to the same axis. As shown in the right end of the figure, 14 of 15 compounds were occupied by medium to long chain AC (FIG. 2). All 14 compounds were included in the AC identified by the cluster analysis described above. When the significant difference between PD and the control group was examined for each AC concentration, as shown in Table 2, 14 ACs were significantly decreased in the PD group, and short chain AC (4: 0) was compared with the control group. However, it was significantly increased in the PD group.

アシルカルニチン群以外に本網羅的解析により、PD群で2次胆汁酸であるdeoxycholic acid(以下DCA)が上昇(PDD群でも上昇)し、2次胆汁酸にタウリン・グリシン等による結合修飾を受けた4化合物(taurocholic acid(以下TCA)、glycoursodeoxycholic acid(以下GUDCA)、taurochenodeoxycholic acid(以下TCDCA)、glycochenodeoxycholic acid(以下GCDCA))の低下を認めた(表3)。DCAは2次胆汁酸であり、TCDCAやGCDCAの原料となる。TCDCA、GCDCAは腸内細菌Clostridium perfrigensおよびLactobacillus johnsoniiによって産生されることから、PDにおけるDCAおよびTCDCA、GCDCA濃度の変化は腸内細菌巣の変化を示唆しており、2015年に報告されたPD患者の腸内フローラ変化に一致する。同変化はAD群では認められておらず、ADとの鑑別診断バイオマーカーとしての有用性が示唆された。   In addition to the acylcarnitine group, this comprehensive analysis revealed that deoxycholic acid (hereinafter DCA), a secondary bile acid, increased in the PD group (also increased in the PDD group), and the secondary bile acid was subjected to binding modification by taurine, glycine, etc. 4 compounds (taurocholic acid (hereinafter TCA), glycoursodeoxycholic acid (hereinafter GUDCA), taurochenotoxicic acid (hereinafter TCDCA), and glycochendodeoxylic acid (hereinafter GCDCA) 3). DCA is a secondary bile acid and is a raw material for TCDCA and GCDCA. Since TCDCA and GCDCA are produced by the enteric bacteria Clostridium perfrigens and Lactobacillus johnsonii, changes in the concentrations of DCA, TCDCA and GCDCA in PD suggest changes in the intestinal bacterial foci, and a PD patient reported in 2015 Consistent with changes in the intestinal flora. This change was not observed in the AD group, suggesting its usefulness as a differential diagnostic biomarker with AD.

中鎖〜長鎖アシルカルニチン群についてのさらなる検討について述べる。中鎖〜長鎖アシルカルニチン群は骨格筋でのミトコンドリア代謝を反映するとされる。肥満度の指標となるBody mass indexは、表1に示すように対照群に比しPD/PDD/ADでも対照群に比し低値を示したため、PD患者では痩身傾向が強いことが示唆されるが、骨格筋量を正確に反映する骨格筋由来代謝産物の各群間での検討では、表4に示すようにクレアチン、カルニチン、クレアチン、3−メチルヒスチジンについて有意な変化を認めなかった。以上からPD群における中鎖〜長鎖アシルカルニチン群の低下は骨格筋量変化によるとは考えられないと判断した。   The further examination about medium chain-long chain acyl carnitine group is described. The medium to long chain acylcarnitine group is considered to reflect mitochondrial metabolism in skeletal muscle. As shown in Table 1, the body mass index, which is an index of obesity, was lower in PD / PDD / AD than in the control group, as compared with the control group. However, as shown in Table 4, no significant changes were observed for creatine, carnitine, creatine, and 3-methylhistidine in the study between each group of skeletal muscle-derived metabolites that accurately reflected skeletal muscle mass. From the above, it was determined that the decrease in the medium chain to long chain acylcarnitine group in the PD group was not considered to be due to changes in skeletal muscle mass.

さらに、表5に示すようにPD群でのみ脂肪酸・酸化活性指標がいずれも高値を示した。同変化を理解する上で、図3に示すミトコンドリア脂肪酸・酸化の知識が不可欠となる。   Furthermore, as shown in Table 5, only in the PD group, the fatty acid / oxidation activity index showed a high value. To understand the change, knowledge of mitochondrial fatty acid and oxidation shown in Fig. 3 is indispensable.

カルニチン/アシルカルニチン(16:0)比はミトコンドリア外でアシルCoAをアシルカルニチンに変換するcarnitine palmitoyltransferase I (CPT−I)の活性と逆相関し、同指標が高い場合はCPT−I活性が低下していることを示す。またアシルカルニチン(8:0)/アシルカルニチン(16:0)比は後期脂肪酸・酸化の活性と逆相関し、アシルカルニチン(14:1)/アシルカルニチン(16:0)比は初期脂肪酸・酸化活性(特にインプットの活性)と逆相関する。上記3比率がいずれもPD群においてのみ高値を示すことから、PDでは同活性が低下していることを示す。また中鎖〜長鎖アシルカルニチン群の一貫した低下傾向が脂肪酸・酸化にて費消される中間材料の減少を示しているにもかかわらず脂肪酸・酸化最終代謝産物に近いアシルカルニチン(4:0)は上昇している所見は、脂肪酸・酸化活性低下と一致する。また、図3概略図に示すようにミトコンドリア脂肪酸・酸化の原材料は血中遊離脂肪酸(fatty acid、以下遊離脂肪酸)である。本網羅的解析では表6のように、ミトコンドリア脂肪酸・酸化にて分解される炭素数22以下の遊離脂肪酸(表6における着色したセル)は概ね上昇傾向にあった。   The carnitine / acylcarnitine (16: 0) ratio is inversely correlated with the activity of carnitine palmtoyltransferase I (CPT-I), which converts acyl CoA to acylcarnitine outside the mitochondria, and when the index is high, CPT-I activity decreases. Indicates that The ratio of acylcarnitine (8: 0) / acylcarnitine (16: 0) is inversely correlated with the activity of late fatty acid / oxidation, and the ratio of acylcarnitine (14: 1) / acylcarnitine (16: 0) is the initial fatty acid / oxidation. Inversely correlated with activity (especially input activity). Since all three ratios show high values only in the PD group, it indicates that the same activity is reduced in PD. Acylcarnitine close to fatty acid / oxidized end metabolite (4: 0) despite the consistent downward trend of medium- to long-chain acylcarnitine groups indicating a decrease in intermediate materials consumed by fatty acid / oxidation The finding that is elevated is consistent with a decrease in fatty acid and oxidative activity. As shown in the schematic diagram of FIG. 3, the raw material for mitochondrial fatty acid / oxidation is blood free fatty acid (hereinafter referred to as free fatty acid). In this comprehensive analysis, as shown in Table 6, mitochondrial fatty acids and free fatty acids having 22 or less carbon atoms decomposed by oxidation (colored cells in Table 6) were generally on an upward trend.

これらからミトコンドリア脂肪酸・酸化機能の低下により、ミトコンドリアにおいて分解されるべき遊離脂肪酸が貯留しているという論理的な解釈が成立すると考えられる。   From these, it is considered that the logical interpretation that free fatty acids to be decomposed are stored in mitochondria due to a decrease in mitochondrial fatty acid / oxidation function.

続いて中鎖〜長鎖アシルカルニチンとPD疾患重症度との相関について検討した。表7に示すように、一般的にPD重症度の評価には生活機能評価より構成されるHoehn and Yahr分類が利用される。   Subsequently, the correlation between medium chain to long chain acylcarnitine and the severity of PD disease was examined. As shown in Table 7, in general, Hoehn and Yahr classification composed of life function evaluation is used for evaluation of PD severity.

PD群109例の症例群に示すようにI度26名、II度52名、III度21名、IV度9名、V度1名であった。最も重要な点は、H&Y I−III度についてはアシルカルニチン(12:0)、アシルカルニチン(13:1)、アシルカルニチン(14:0)、アシルカルニチン(16:0)、アシルカルニチン(16:1)、アシルカルニチン(18:0)、アシルカルニチン(18:1)、アシルカルニチン(18:2)、アシルカルニチン(20:1)が全て対照群に比し有意差を持って低値を示し、かつ、H&Y I−IV度においてアシルカルニチン(16:0)、アシルカルニチン(18:0)が有意な低値を示したことである。即ち中鎖〜長鎖アシルカルニチン群は疾患重症度との相関は認められないものの、病初期から低下することが明らかとなった(表8)。コントロール群に比しPD群にて有意に減少していた上記のアシルカルニチンを判別分析(統計ソフトウェアJMP11, SAS Institute Inc, 2014を使用)にて検討すると、AUC=0.9728,R2=0.5897であり、表8(判別分析)に示すような優れた診断的意義を持つことが示された(表9)。   As shown in the case group of 109 cases in the PD group, there were 26 people with I degree, 52 people with II degree, 21 people with III degree, 9 people with IV degree, and 1 person with V degree. Most importantly, for H & Y I-III degree, acylcarnitine (12: 0), acylcarnitine (13: 1), acylcarnitine (14: 0), acylcarnitine (16: 0), acylcarnitine (16: 1), acylcarnitine (18: 0), acylcarnitine (18: 1), acylcarnitine (18: 2), and acylcarnitine (20: 1) all show a low value with a significant difference compared to the control group. In addition, acylcarnitine (16: 0) and acylcarnitine (18: 0) showed significantly low values in H & Y I-IV degree. That is, it was revealed that the medium chain to long chain acylcarnitine group decreased from the early stage of the disease although no correlation with the disease severity was observed (Table 8). When the above-mentioned acylcarnitine that was significantly decreased in the PD group compared with the control group was examined by discriminant analysis (using statistical software JMP11, SAS Institute Inc, 2014), AUC = 0.9728, R2 = 0. 5897, indicating that it has excellent diagnostic significance as shown in Table 8 (discriminant analysis) (Table 9).

Claims (4)

パーキンソン病を診断する目的で、生体由来試料中の中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の濃度を測定する方法。   A method of measuring the concentration of a component selected from medium- to long-chain acylcarnitines and secondary bile acids in a biological sample for the purpose of diagnosing Parkinson's disease. 中鎖〜長鎖アシルカルニチンが炭素数12〜20の脂肪族アシルカルニチンである請求項1記載の方法。   The method according to claim 1, wherein the medium chain to long chain acylcarnitine is an aliphatic acylcarnitine having 12 to 20 carbon atoms. さらに前記成分の濃度と、健常者の当該成分の濃度とを対比する工程を含む請求項1又は2記載の方法。   Furthermore, the method of Claim 1 or 2 including the process of contrasting the density | concentration of the said component and the density | concentration of the said component of a healthy subject. 中鎖〜長鎖アシルカルニチン及び2次胆汁酸から選ばれる成分の測定用試薬を含有するパーキンソン病診断薬。   A diagnostic agent for Parkinson's disease containing a reagent for measuring a component selected from medium- to long-chain acylcarnitines and secondary bile acids.
JP2016017794A 2016-02-02 2016-02-02 Parkinson's disease diagnostic index Active JP6573394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017794A JP6573394B2 (en) 2016-02-02 2016-02-02 Parkinson's disease diagnostic index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017794A JP6573394B2 (en) 2016-02-02 2016-02-02 Parkinson's disease diagnostic index

Publications (2)

Publication Number Publication Date
JP2017138141A true JP2017138141A (en) 2017-08-10
JP6573394B2 JP6573394B2 (en) 2019-09-11

Family

ID=59564834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017794A Active JP6573394B2 (en) 2016-02-02 2016-02-02 Parkinson's disease diagnostic index

Country Status (1)

Country Link
JP (1) JP6573394B2 (en)

Also Published As

Publication number Publication date
JP6573394B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
Cova et al. Diagnostic biomarkers for Parkinson’s disease at a glance: where are we?
Huan et al. Metabolomics analyses of saliva detect novel biomarkers of Alzheimer’s disease
Mehta et al. Advances in biomarker research in Parkinson’s disease
WO2022206264A1 (en) Method for diagnosing and treating white matter lesion and application
JP2015231392A (en) Metabolic biomarkers for autism
WO2022213746A1 (en) Method for diagnosing and treating white matter lesion, and application of the method
US20230324418A1 (en) Method for diagnosing and treating cognitive impairment and use thereof
Al-Janabi et al. Distinct white matter changes associated with cerebrospinal fluid amyloid-β 1-42 and hypertension
Caramelli et al. Diagnosis of Alzheimer's disease in Brazil: Supplementary exams
Jahng et al. Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer’s disease
Soldan et al. Computerized cognitive tests are associated with biomarkers of Alzheimer’s disease in cognitively normal individuals 10 years prior
JP6569919B2 (en) Biomarkers for dementia with Lewy bodies
Lee et al. Biomarkers with plasma amyloid β and tau protein assayed by immunomagnetic reduction in patients with amnestic mild cognitive impairment and Alzheimer’s disease
CN113624868A (en) Biomarker combination for predicting or evaluating cognitive function of bipolar affective disorder patient and application thereof
CN110853719B (en) Application of ceramide trihexoside d18:0/24
JP6573394B2 (en) Parkinson's disease diagnostic index
Marsili et al. Early recognition and diagnosis of multiple system atrophy: Best practice and emerging concepts
RU2606591C1 (en) Method of early pre-clinical diagnosis of parkinson's disease
WO2020228132A1 (en) Peripheral blood marker for cerebral hemorrhage and use thereof
Tsai et al. GAD65 as a potential marker for cognitive performance in an adult population with prediabetes
CN113030318B (en) Application of plasma short-chain fatty acid as multi-system atrophy diagnosis marker
Rodríguez et al. Neuronal and glial biomarkers research for traumatic brain injury
WO2013080917A1 (en) Objective evaluation method for schizophrenia
EP3707513B1 (en) Method for establishing the presence and progression of neurodegenerative disease
JP6820545B2 (en) How to determine the severity of Parkinson's disease

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6573394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250