JP2017137270A - Anticancer agent - Google Patents

Anticancer agent Download PDF

Info

Publication number
JP2017137270A
JP2017137270A JP2016020586A JP2016020586A JP2017137270A JP 2017137270 A JP2017137270 A JP 2017137270A JP 2016020586 A JP2016020586 A JP 2016020586A JP 2016020586 A JP2016020586 A JP 2016020586A JP 2017137270 A JP2017137270 A JP 2017137270A
Authority
JP
Japan
Prior art keywords
group
substituent
anticancer agent
cancer cells
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016020586A
Other languages
Japanese (ja)
Other versions
JP6643764B2 (en
Inventor
一夫 桑田
Kazuo Kuwata
一夫 桑田
フェルダウシ アリ
Ferudaushi Ali
フェルダウシ アリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Original Assignee
Gifu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC filed Critical Gifu University NUC
Priority to JP2016020586A priority Critical patent/JP6643764B2/en
Publication of JP2017137270A publication Critical patent/JP2017137270A/en
Application granted granted Critical
Publication of JP6643764B2 publication Critical patent/JP6643764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new anticancer agent which can inhibit the proliferation of cancer cells.SOLUTION: An anticancer agent comprises, as an active ingredient, a piperidine derivative comprising a compound represented by the following chemical formula (1) (where, substituent A is a phenyl group or a naphthyl group, which may be modified with at least one of a halogen element and an alkyl group, and substituent B is an aromatic substituent, which may be modified with an alkyl group), or a pharmaceutically acceptable salt, hydrate, or solvate thereof.SELECTED DRAWING: Figure 2

Description

本発明は、がん細胞の増殖を抑制する抗がん剤に関する。   The present invention relates to an anticancer agent that suppresses the growth of cancer cells.

近年、分子レベルでの発がん機構の解明が進み、発がん機構に密接に関与しているシグナル伝達分子を標的とした、いわゆる分子標的薬剤の開発が盛んに行われている。シグナル伝達分子は、正常細胞では発現がほとんど認められないのに対して、がん細胞では発現が亢進しており、がん細胞の増殖過程において必須の役割を果たしていると言われている。この現象を利用し、シグナル伝達分子と強い相互作用を行う分子標的薬剤を見つけることにより、多くの抗がん剤が開発されてきた(例えば特許文献1)。   In recent years, elucidation of the mechanism of carcinogenesis at the molecular level has progressed, and so-called molecular target drugs targeting signal transduction molecules closely involved in the mechanism of carcinogenesis have been actively developed. Signal transduction molecules are hardly expressed in normal cells, but are highly expressed in cancer cells, and are said to play an essential role in the growth process of cancer cells. Many anticancer agents have been developed by using this phenomenon and finding molecular target drugs that interact strongly with signaling molecules (for example, Patent Document 1).

特開2011−16754JP2011-16754

本発明は、がん細胞の増殖を抑制することができる、新たな抗がん剤を提供することを解決すべき課題としている。   This invention makes it the problem which should be solved to provide the new anticancer agent which can suppress the proliferation of a cancer cell.

Pygopusファミリーは,ヒストンのメチル化修飾部位に特異的に結合したり、ヒストンメチル化酵素と結合してヒストンのメチル化を促したりするタンパク質である。したがって、クロマチン修飾の“読み込み”および“書き込み”を同時に行うタンパク質であり、遺伝子の再生において重要な役割を担っている。その中でもPygopus2(Pygo2)は哺乳動物において機能的に重要な役割を果たしており,その全身性のノックアウトマウスは胎生致死である。またPygo2の発現レベルは正常細胞では低く、がん細胞では高い。これはPygoがβ-cateninを介して腫瘍形成を促進するためである。こうした事実から、本発明者らは、新たな抗がん剤を見出すための分子標的として、クロマチン制御タンパク質であるPygo2を選択し、その結合ポケットに焦点を当て、計算機によるドッキングミュレーションにより多数の化合物の効果を調べた。その結果、Pygo2の結合ポケットに強く結合する、一連のピペリジン誘導体を見出した。そして、さらに、それらのピペリジン誘導体が、がん細胞に対する抗がん作用を示すことを見出し、本発明を完成させるに至った。   The Pygopus family is a protein that specifically binds to histone methylation modification sites or promotes histone methylation by binding to histone methylases. Therefore, it is a protein that simultaneously “reads” and “writes” chromatin modifications, and plays an important role in gene regeneration. Among them, Pygopus2 (Pygo2) plays a functionally important role in mammals, and its systemic knockout mice are embryonic lethal. The expression level of Pygo2 is low in normal cells and high in cancer cells. This is because Pygo promotes tumor formation via β-catenin. Based on these facts, the present inventors selected Pygo2, a chromatin regulatory protein, as a molecular target for finding new anticancer agents, focused on its binding pocket, and a number of computer docking simulations. The effect of the compound was investigated. As a result, we found a series of piperidine derivatives that strongly bind to the binding pocket of Pygo2. Furthermore, the present inventors have found that these piperidine derivatives show an anticancer action against cancer cells, and have completed the present invention.

すなわち、本発明の抗がん剤は、下記化学式(1)で示される化合物(ただし、式中の置換基Aはハロゲン元素、及びアルキル基のいずれか1種以上で修飾されていてもよいフェニル基、又はナフチル基を示し、置換基Bはアルキル基で修飾されていてもよい芳香族置換基を示す。)、又はその薬学上許容される塩、水和物、若しくは溶媒和物からなるピペリジン誘導体を有効成分として含むことを特徴とする。ここで、下記化学式(1)で示される化合物は、この化学式(1)で表現される限りおいて、ラセミ体のみならず光学異性体やその他の各種異性体も含む概念である。   That is, the anticancer agent of the present invention is a compound represented by the following chemical formula (1) (wherein the substituent A is phenyl optionally modified with one or more of a halogen element and an alkyl group). Or a naphthyl group, and the substituent B represents an aromatic substituent which may be modified with an alkyl group.), Or a piperidine comprising a pharmaceutically acceptable salt, hydrate or solvate thereof A derivative is contained as an active ingredient. Here, the compound represented by the following chemical formula (1) is a concept including not only a racemate but also an optical isomer and other various isomers as long as it is represented by this chemical formula (1).

また、前記置換基Aとしては、フェニル基、クロロフェニル基、フルオロフェニル基、トリル基、クロロトリル基、キシリル基、及びナフチル基のいずれかとすることができる。   The substituent A can be any of a phenyl group, a chlorophenyl group, a fluorophenyl group, a tolyl group, a chlorotolyl group, a xylyl group, and a naphthyl group.

さらに、前記置換基Bとしては、フェニル基、アルキルフェニル基、アルコキシフェニル基、ナフチル基、並びに下記構造式(a),(b),(c)及び(d)で示される置換基のいずれかとすることができる。
Further, the substituent B includes a phenyl group, an alkylphenyl group, an alkoxyphenyl group, a naphthyl group, and any one of the substituents represented by the following structural formulas (a), (b), (c), and (d). can do.

本発明において、好ましい抗がん剤は、下記化学式(2)〜(18)のいずれかで示される化合物、又はその薬学上許容される塩、水和物、若しくは溶媒和物を有効成分として含む抗がん剤である。これらの中でも、さらに好ましいのは下記化学式(2)〜(7)、(9)〜(12)及び(17)(さらに、さらに好ましいのは下記化学式(2)、(3)、(5)、(10)、(11)及び(12))のいずれかで示される化合物、又はその薬学上許容される塩、水和物、若しくは溶媒和物を有効成分として含む抗がん剤である。特に化学式(2)で示される化合物は、ヒト由来の肺がん細胞やヒト由来の結腸がん細胞に対して優れた増殖抑制効果を奏しており、肺がんや結腸がんに対する抗がん剤として好適である。

In the present invention, a preferable anticancer agent includes a compound represented by any one of the following chemical formulas (2) to (18), or a pharmaceutically acceptable salt, hydrate, or solvate thereof as an active ingredient. It is an anticancer drug. Among these, the following chemical formulas (2) to (7), (9) to (12) and (17) (more preferably, the following chemical formulas (2), (3), (5), (10), (11) and (12)), or a pharmaceutically acceptable salt, hydrate, or solvate thereof as an active ingredient. In particular, the compound represented by the chemical formula (2) has an excellent growth inhibitory effect on human-derived lung cancer cells and human-derived colon cancer cells, and is suitable as an anticancer agent against lung cancer and colon cancer. is there.

本発明者らが、新たな抗がん剤を見出すための分子標的として選択したPygo2の立体構造を図1に示す。このPygo2において、ヒストンのメチル化修飾を制御しているのはPHD1ドメインであるため、この部位をターゲットとして、計算機によるドッキングミュレーションにより多数の化合物の効果を調べた。計算を行うためのプログラムとしては、ドッキングシミュレーションプログラムであるAutoDock Vina、分子動力学計算プログラムであるAmber、量子化学計算プログラムであるPAICSを実装した、
統合創薬プログラム「NAGARA」を用いた(どちらも岐阜大学人獣感染防御研究センターで開発されたプログラムである(MOLECULAR SCIENCE 5, NP0015 (2011)参照。)。「PAICS」ではフラグメント分子軌道(FMO)法を利用しており、これによりタンパク質のような巨大分子の量子化学計算を行うことができる。また、「NAGARA」では,粗視化モデル計算や分子動力学計算を用いてターゲットの座標を準備し,PAICSを使って量子化学計算を実行するという一連の作業を,それぞれのタスクを繋いでワークフローを構築するという形で,簡便かつ統一的に行うことができる。
The three-dimensional structure of Pygo2 selected by the present inventors as a molecular target for finding a new anticancer agent is shown in FIG. In Pygo2, the methylation modification of histone is controlled by the PHD1 domain, and the effect of a large number of compounds was investigated by computer docking simulation using this site as a target. As a program for performing calculations, AutoDock Vina, a docking simulation program, Amber, a molecular dynamics calculation program, and PAICS, a quantum chemistry calculation program, were implemented.
The integrated drug discovery program “NAGARA” was used (both were developed at Gifu University Research Center for Animal Protection (see MOLECULAR SCIENCE 5, NP0015 (2011)). ) Method, which enables quantum chemistry calculations of macromolecules such as proteins, and “NAGARA” uses coarse-grained model calculations and molecular dynamics calculations to calculate target coordinates. A series of operations of preparing and executing quantum chemical calculations using PAICS can be performed simply and uniformly in the form of building a workflow by connecting each task.

スクリーニングにはin silicoバーチャルリガンドスクリーニングシステムを用いた。検索するリガンドのデータベースとしては、LigandBoxデータベースのAsinexサブセット(データ蓄積量:360,000種類の化合物)を用いた。Pygo2のPHDフィンガードメインを標的とし、2XB1(PDBコード)のC鎖をドッキング部位として選択した。格子のサイズは36 angstrom×35 angstrom×33 angstrom、格子の中心は-17.5、-19.6、6.7とした。Auto Dock Vinaのパラメータは以下のように設定した:exhaustiveness=8、最大結合モード数=20、エネルギーレンジ=4 kcal/mol。その他のパラメータはデフォルト値に設定した。その結果、Pygo2のPHD1ドメインに結合する化合物として、下記の実施例1〜実施例17のピペリジン誘導体が見出された。

In silico virtual ligand screening system was used for screening. As a database of ligands to be searched, the Asinex subset (data accumulation amount: 360,000 kinds of compounds) of the LigandBox database was used. Targeting the PHD finger domain of Pygo2, the C chain of 2XB1 (PDB code) was selected as the docking site. The size of the lattice was 36 angstrom × 35 angstrom × 33 angstrom, and the center of the lattice was −17.5, −19.6, and 6.7. The parameters of Auto Dock Vina were set as follows: exhaustiveness = 8, maximum number of binding modes = 20, energy range = 4 kcal / mol. Other parameters were set to default values. As a result, the following piperidine derivatives of Examples 1 to 17 were found as compounds that bind to the PHD1 domain of Pygo2.

<各ピペリジン誘導体の調製>
実施例1〜実施例17のピペリジン誘導体は、ASINEX社の販売経路によって入手した市販品をそのまま用いた。
<Preparation of each piperidine derivative>
As the piperidine derivatives of Examples 1 to 17, commercially available products obtained by the sales channels of ASINEX were used as they were.

−評 価−
上記実施例1のピペリジン誘導体について、以下に示す「がん細胞を用いた増殖抑制試験」、「正常繊維芽細胞に対する細胞毒試験」及び「ヌードマウスを用いた異種移植試験」を行った。なお、「がん細胞を用いた増殖抑制試験」については、比較例1として「crizotinib」、比較例2として「ICG001」、比較例3として「staurosuporine」の各抗がん剤についても試験を行った。以下、詳述する。
-Evaluation-
The piperidine derivative of Example 1 was subjected to the following “proliferation inhibition test using cancer cells”, “cytotoxicity test against normal fibroblasts”, and “xenotransplantation test using nude mice”. In addition, regarding the “proliferation inhibition test using cancer cells”, tests were also conducted for each anticancer agent of “crizotinib” as Comparative Example 1, “ICG001” as Comparative Example 2, and “staurosuporine” as Comparative Example 3. It was. Details will be described below.

<がん細胞を用いた増殖抑制試験>
ヒト由来の肺がん細胞であるA549細胞を、10%ウシ胎児血清を加えたDulbecco’s modified Eagle’s Medium(DMEM)培地中、37℃、5%CO2条件下で培養した。細胞は96ウェルプレートに播種し24時間前培養した。実施例1及び比較例1〜3(A549細胞では比較例1及び2、HCT116細胞では比較例2及び3)の各化合物を加え、72時間培養後、Cell Counting Kit-8(Dojindo)を用いて細胞数を測定した。ネガティブコントロールとしてDimehtyl sulfoxide(DMSO)を、ポジティブコントロールとしてStaurosporine、Crizotinib、ICG001を使用した。また、IC50についてはGraph Pad Prism 6.0 for windows(Graph Pad Software, Inc., La Jolla, CA., USA)を使用して計算した。
同様の試験をヒト由来の結腸がん細胞であるHCT116細胞についても行った。
<Proliferation inhibition test using cancer cells>
A549 cells, which are human lung cancer cells, were cultured in a Dulbecco's modified Eagle's Medium (DMEM) medium supplemented with 10% fetal bovine serum under conditions of 37 ° C. and 5% CO 2. Cells were seeded in 96-well plates and pre-cultured for 24 hours. Each compound of Example 1 and Comparative Examples 1 to 3 (Comparative Examples 1 and 2 for A549 cells, Comparative Examples 2 and 3 for HCT116 cells) was added, cultured for 72 hours, and then used with Cell Counting Kit-8 (Dojindo). Cell number was measured. Diimehtyl sulfoxide (DMSO) was used as a negative control, and Staurosporine, Crizotinib, and ICG001 were used as positive controls. IC 50 was calculated using Graph Pad Prism 6.0 for windows (Graph Pad Software, Inc., La Jolla, CA., USA).
A similar test was performed on HCT116 cells, which are human-derived colon cancer cells.

その結果、肺がん細胞A549に対する抗がん効果については、図2に示すように、IC50については、市販の抗がん剤である比較例1(crizotinib)では9.664、比較例2(ICG001)では8.031であるのに対し、実施例1では4.868となり、優れた細胞増殖の抑制効果を奏することが分かった。また、結腸がん細胞HCT116に対する抗がん効果についても、図3に示すように、実施例1では2.345、比較例2(ICG001)では3.812、比較例3(staurosporine)では0.01631となり、優れた細胞増殖の抑制効果を奏することが分かった。なお、比較例3(staurosporine)のIC50は0.01631と極めて低い値であるが、IC50以上の濃度においては増殖抑制効果がそれほど増大せず、実施例1のピペリジン誘導体の方が優れていた。 As a result, as shown in FIG. 2, as for the anticancer effect against lung cancer cell A549, as for IC 50 , in Comparative Example 1 (crizotinib), which is a commercially available anticancer agent, in 9.664, in Comparative Example 2 (ICG001) In contrast to 8.031, it was 4.868 in Example 1, indicating that the cell growth was excellently suppressed. In addition, as shown in FIG. 3, the anticancer effect against colon cancer cell HCT116 was 2.345 in Example 1, 3.812 in Comparative Example 2 (ICG001), and 0.01631 in Comparative Example 3 (staurosporine). It has been found that there is an effect of suppressing proliferation. The IC 50 of Comparative Example 3 (staurosporine) is a very low value of 0.01631, but the growth inhibitory effect did not increase so much at a concentration of IC 50 or higher, and the piperidine derivative of Example 1 was superior.

<細胞毒性試験>
実施例1のピペリジン誘導体について正常細胞に対する毒性テストを行うために、線維芽細胞を用いた増殖抑制試験を行った。すなわち、ヒト繊維芽細胞(2F0-C75)を、10%ウシ胎児血清を加えたDMEMで培養した。細胞を96ウェルプレートに播種し80%〜90%コンフルエントになるまで前培養した。ここに実施例1のピペリジン誘導体を加え72時間培養後、Cell Counting Kit-8(Dojindo)を用いて細胞数を測定した。
<Cytotoxicity test>
In order to conduct a toxicity test on normal cells of the piperidine derivative of Example 1, a growth inhibition test using fibroblasts was performed. That is, human fibroblasts (2F0-C75) were cultured in DMEM supplemented with 10% fetal bovine serum. Cells were seeded in 96-well plates and pre-cultured until 80% -90% confluent. The piperidine derivative of Example 1 was added here, and after culturing for 72 hours, the number of cells was measured using Cell Counting Kit-8 (Dojindo).

その結果、図4に示すように、正常繊維芽細胞の増殖を抑制する効果は小さく、毒性は極めて低いことが分かった。このことから、実施例1のピペリジン誘導体の生体に対する安全性は高いことが示唆された。   As a result, as shown in FIG. 4, it was found that the effect of suppressing the growth of normal fibroblasts was small and the toxicity was extremely low. From this, it was suggested that the piperidine derivative of Example 1 is highly safe for living bodies.

<ヌードマウスを用いた異種移植試験>
異種移植試験を行うために、6週齢のメスのBALB/cヌードマウス(日本エスエルシー株式会社)を使用した。マウスの腹側部に肺がん細胞であるA549細胞(又は結腸がん細胞であるHCT116細胞)を接種し、腫瘍体積が平均230 mm3になったところで実施例1のピペリジン誘導体の投与を開始した。投与は1日1回、14日間行った。腫瘍の体積はtumor volume (mm3) = π/6 (length x height x width)として計算した。試験終了時にマウスを安楽殺し、腫瘍を摘出して病理組織標本を作成した。すべての試験は岐阜大学動物実験倫理審査委員会の許可のもとで行った。
また、比較例2(ICG001)についても、同様の異種移植試験を行った。
<Xenotransplantation test using nude mice>
To conduct the xenograft test, 6-week-old female BALB / c nude mice (Japan SLC, Inc.) were used. A549 cells (or HCT116 cells, which are colon cancer cells), which are lung cancer cells, were inoculated into the ventral part of mice, and administration of the piperidine derivative of Example 1 was started when the tumor volume reached an average of 230 mm 3 . Administration was performed once a day for 14 days. Tumor volume was calculated as tumor volume (mm 3 ) = π / 6 (length × height × width). At the end of the study, the mice were euthanized, and the tumors were excised to make histopathological specimens. All tests were conducted with the permission of the Gifu University Animal Experiment Ethics Committee.
Moreover, the similar xenograft test was done also about the comparative example 2 (ICG001).

その結果、肺がん細胞A549を用いた異種移植試験では、図5に示すように、実施例1のピペリジン誘導体を投与した場合には、腫瘍の体積が顕著に小さくなった。これに対して比較例2(ICG001)では、腫瘍の体積は当初は僅かに小さくなったものの、その後はほとんど変化がなかった。また、コントロールでは、腫瘍の体積が徐々に大きくなった。以上の結果から、実施例1のピペリジン誘導体は肺がんに対する抗がん剤として優れた効果を示すことが分かった。   As a result, in the xenograft test using lung cancer cells A549, as shown in FIG. 5, when the piperidine derivative of Example 1 was administered, the tumor volume was significantly reduced. On the other hand, in Comparative Example 2 (ICG001), the tumor volume was slightly smaller at the beginning, but there was little change thereafter. In the control, the tumor volume gradually increased. From the above results, it was found that the piperidine derivative of Example 1 showed an excellent effect as an anticancer agent against lung cancer.

一方、結腸がん細胞HCT116を用いた異種移植試験では、図6に示すように、実施例1のピペリジン誘導体及び比較例1(ICG001)を投与した場合には、腫瘍の体積はほとんど変わらず、結腸がん細胞HCT116の細胞増殖を抑制していることが分かった。これに対して、コントロールでは、腫瘍の体積が徐々に大きくなった。以上の結果から、実施例1のピペリジン誘導体は結腸がんに対する抗がん剤としても、比較例1(ICG001)と同程度の抗がん作用を奏することが示唆された。   On the other hand, in the xenograft test using colon cancer cells HCT116, as shown in FIG. 6, when the piperidine derivative of Example 1 and Comparative Example 1 (ICG001) were administered, the volume of the tumor was hardly changed. It was found that the cell growth of colon cancer cell HCT116 was suppressed. In contrast, in the control, the tumor volume gradually increased. From the above results, it was suggested that the piperidine derivative of Example 1 exhibited the same anticancer activity as Comparative Example 1 (ICG001) as an anticancer agent against colon cancer.

<がん細胞を用いた増殖抑制試験>
実施例2〜17のピペリジン誘導体についても実施例1と同様の方法により、結腸がん細胞HCT116及び肺がん細胞A549を用いた増殖抑制試験を行った。増殖抑制試験の結果から得られたIC50の値を実施例1の場合も含めて表1及び表2に示す。

<Proliferation inhibition test using cancer cells>
The piperidine derivatives of Examples 2 to 17 were subjected to a growth inhibition test using colon cancer cells HCT116 and lung cancer cells A549 by the same method as in Example 1. The values of IC 50 obtained from the results of the growth inhibition test are shown in Tables 1 and 2 including those in Example 1.

上記表1から、実施例1〜17のピペリジン誘導体は結腸がん細胞HTC116に対する増殖抑制効果を奏することが分かった。このなかでも高い増殖抑制効果を示したのは実施例1〜3、5、6、8〜10及び15のピペリジン誘導体であり、特に優れた増殖抑制効果を示したのは実施例1、2、10及び11であり、最も高い増殖抑制効果を示したのは、実施例1のピペリジン誘導体であった。
また、上記表2から、実施例1〜17のピペリジン誘導体は肺がん細胞A549に対する増殖抑制効果も奏することが分かった。このなかでも高い増殖抑制効果を示したのは実施例1、2及び4のピペリジン誘導体であり、特に優れた増殖抑制効果を示したのは実施例1及び実施例4であり、最も高い増殖抑制効果を示したのは、実施例1のピペリジン誘導体であった。
From Table 1 above, it was found that the piperidine derivatives of Examples 1 to 17 exhibited a growth inhibitory effect on colon cancer cells HTC116. Among them, the piperidine derivatives of Examples 1 to 3, 5, 6, 8 to 10 and 15 showed a high growth inhibitory effect, and Examples 1, 2 and 1 showed a particularly excellent growth inhibitory effect. It was the piperidine derivative of Example 1 that showed the highest growth inhibitory effect, which was 10 and 11.
Moreover, from the said Table 2, it turned out that the piperidine derivative of Examples 1-17 also has the growth inhibitory effect with respect to lung cancer cell A549. Among these, the piperidine derivatives of Examples 1, 2 and 4 showed a high growth inhibitory effect, and Examples 1 and 4 showed the most excellent growth inhibitory effect, and the highest growth inhibitory effect. It was the piperidine derivative of Example 1 that showed the effect.

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

分子標的として選択したPygo2の立体構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure of Pygo2 selected as a molecular target. 肺がん細胞A549に対する抗がん効果を示すグラフである。It is a graph which shows the anticancer effect with respect to lung cancer cell A549. 結腸がん細胞HCT116に対する抗がん効果を示すグラフである。It is a graph which shows the anticancer effect with respect to colon cancer cell HCT116. 正常繊維芽細胞に対する実施例1の化合物の細胞毒性を示すグラフである。1 is a graph showing the cytotoxicity of the compound of Example 1 against normal fibroblasts. 肺がん細胞A549のヌードマウスへの異種移植試験の結果を示すグラフである。It is a graph which shows the result of the xenograft test to the nude mouse of the lung cancer cell A549. 結腸がん細胞HCT116のヌードマウスへの異種移植試験の結果を示すグラフである。It is a graph which shows the result of the xenograft test to the nude mouse of colon cancer cell HCT116.

本発明の抗がん剤は、肺がん細胞A549や結腸がん細胞HCT116の増殖を抑制することから、抗がん剤あるいはそのリード化合物として利用できる。   The anticancer agent of the present invention can be used as an anticancer agent or a lead compound thereof because it suppresses the growth of lung cancer cells A549 and colon cancer cells HCT116.

Claims (4)

下記化学式(1)で示される化合物(ただし、式中の置換基Aはハロゲン元素、及びアルキル基のいずれか1種以上で修飾されていてもよいフェニル基、又はナフチル基を示し、置換基Bはアルキル基で修飾されていてもよい芳香族置換基を示す。)、又はその薬学上許容される塩、水和物、若しくは溶媒和物からなるピペリジン誘導体を有効成分として含む抗がん剤。
Compound represented by the following chemical formula (1) (wherein substituent A represents a phenyl group or a naphthyl group which may be modified with one or more of a halogen element and an alkyl group, and substituent B Represents an aromatic substituent which may be modified with an alkyl group.), Or a piperidine derivative comprising a pharmaceutically acceptable salt, hydrate or solvate thereof as an active ingredient.
前記置換基Aはフェニル基、クロロフェニル基、フルオロフェニル基、トリル基、クロロトリル基、キシリル基、及びナフチル基のいずれかである請求項1記載の抗がん剤。   The anticancer agent according to claim 1, wherein the substituent A is any one of a phenyl group, a chlorophenyl group, a fluorophenyl group, a tolyl group, a chlorotolyl group, a xylyl group, and a naphthyl group. 前記置換基Bはフェニル基、アルキルフェニル基、アルコキシフェニル基、ナフチル基、並びに下記構造式(a),(b),(c)及び(d)で示される置換基のいずれかである請求項1又は2に記載の抗がん剤。

The substituent B is any one of a phenyl group, an alkylphenyl group, an alkoxyphenyl group, a naphthyl group, and a substituent represented by the following structural formulas (a), (b), (c) and (d). 1. The anticancer agent according to 1 or 2.

下記化学式(2)〜(18)のいずれかで示される化合物、又はその薬学上許容される塩、水和物、若しくは溶媒和物を有効成分として含む抗がん剤。

An anticancer agent comprising, as an active ingredient, a compound represented by any one of the following chemical formulas (2) to (18), or a pharmaceutically acceptable salt, hydrate, or solvate thereof.

JP2016020586A 2016-02-05 2016-02-05 Anti-cancer agent Expired - Fee Related JP6643764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020586A JP6643764B2 (en) 2016-02-05 2016-02-05 Anti-cancer agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020586A JP6643764B2 (en) 2016-02-05 2016-02-05 Anti-cancer agent

Publications (2)

Publication Number Publication Date
JP2017137270A true JP2017137270A (en) 2017-08-10
JP6643764B2 JP6643764B2 (en) 2020-02-12

Family

ID=59565532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020586A Expired - Fee Related JP6643764B2 (en) 2016-02-05 2016-02-05 Anti-cancer agent

Country Status (1)

Country Link
JP (1) JP6643764B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510073A (en) * 2005-09-27 2009-03-12 ノバルティス アクチエンゲゼルシャフト Carboxyamine compounds and methods of use thereof
JP2011517317A (en) * 2008-02-28 2011-06-02 ライフ テクノロジーズ コーポレーション Fluorescence polarization hERG assay
US20130310389A1 (en) * 2008-01-30 2013-11-21 Cephalon, Inc. Substituted spirocyclic piperidine derivatives as histamine-3 (h3) receptor ligands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510073A (en) * 2005-09-27 2009-03-12 ノバルティス アクチエンゲゼルシャフト Carboxyamine compounds and methods of use thereof
US20130310389A1 (en) * 2008-01-30 2013-11-21 Cephalon, Inc. Substituted spirocyclic piperidine derivatives as histamine-3 (h3) receptor ligands
JP2011517317A (en) * 2008-02-28 2011-06-02 ライフ テクノロジーズ コーポレーション Fluorescence polarization hERG assay

Also Published As

Publication number Publication date
JP6643764B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
Pourdehnad et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers
Furtek et al. Strategies and approaches of targeting STAT3 for cancer treatment
Jiang et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment
Wu et al. Recent developments in the biology and medicinal chemistry of CDK9 inhibitors: an update
Seles et al. Current insights into long non-coding RNAs in renal cell carcinoma
Woll et al. Discovery and optimization of small molecule splicing modifiers of survival motor neuron 2 as a treatment for spinal muscular atrophy
Vassilev p53 Activation by small molecules: application in oncology
Rheault et al. Discovery of dabrafenib: a selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors
Lim Nuclear FAK: a new mode of gene regulation from cellular adhesions
Abraham et al. Mammalian target of rapamycin as a therapeutic target in oncology
Wagner et al. The role of BCL6 in lymphomas and routes to therapy
Elkamhawy et al. The journey of DDR1 and DDR2 kinase inhibitors as rising stars in the fight against cancer
Zhang et al. Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton
EA202190086A1 (en) PCSK9 ANTAGONIST COMPOUNDS
Quesada et al. The molecular biology of soft-tissue sarcomas and current trends in therapy
Qian et al. Discovery of the first potent and selective inhibitor of centromere-associated protein E: GSK923295
Gurrapu et al. Monocarboxylate transporter 1 inhibitors as potential anticancer agents
Yu et al. Discovery of an orally selective inhibitor of signal transducer and activator of transcription 3 using advanced multiple ligand simultaneous docking
PL415078A1 (en) Substituted amino triazoles, suitable as acidic mammalian chitinase inhibitors
Chari et al. The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death
Nieddu et al. Synthesis and antineoplastic evaluation of novel unsymmetrical 1, 3, 4-oxadiazoles
Smith et al. Translation initiation in cancer at a glance
Rahman et al. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer
Yang et al. Targeted therapy against cancer stem cells
WO2020212895A1 (en) Method and apparatus to facilitate the binding of the gap protein to the mutant ras protein by molecular agents to cure ras-mutation related cancers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6643764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees