JP2017136960A - Vehicle capable of relaxing collision impact - Google Patents

Vehicle capable of relaxing collision impact Download PDF

Info

Publication number
JP2017136960A
JP2017136960A JP2016019290A JP2016019290A JP2017136960A JP 2017136960 A JP2017136960 A JP 2017136960A JP 2016019290 A JP2016019290 A JP 2016019290A JP 2016019290 A JP2016019290 A JP 2016019290A JP 2017136960 A JP2017136960 A JP 2017136960A
Authority
JP
Japan
Prior art keywords
vehicle
collision
wheel
yaw rotation
possibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016019290A
Other languages
Japanese (ja)
Inventor
林 孝士
Takashi Hayashi
孝士 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016019290A priority Critical patent/JP2017136960A/en
Publication of JP2017136960A publication Critical patent/JP2017136960A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To relax comprehensive damage which an own vehicle and an occupant receive due to collision to other object.SOLUTION: The invention is configured to determine possibility of collision of an own vehicle to other object, when it is determined that there is possibility of collision, prompt yaw rotation of the own vehicle, for absorbing a part of collision energy in a collision direction generated due to collision to other object by the yaw rotation of the own vehicle, then disperse acceleration acting the vehicle and an occupant into a linear acceleration in the collision direction and rotation acceleration following to the yaw rotation of the own vehicle which generate no synergy, for relaxing comprehensive damage which the vehicle and the occupant receive due to collision.SELECTED DRAWING: Figure 3

Description

本発明は、他物体への衝突により自車に生ずる衝撃を緩和することに係る。   The present invention relates to mitigating an impact generated in a host vehicle due to a collision with another object.

他物体への自車の衝突が不可避と予測されるとき、該衝突により受ける衝撃に対する緩衝度がなるべく高い部位にて自車を他物体に当接させるよう自車の操舵を自動制御することが、下記の特許文献1に記載されている。   When it is predicted that a collision of the own vehicle with another object is inevitable, the steering of the own vehicle may be automatically controlled so that the own vehicle comes into contact with the other object at a portion where the degree of buffering against the impact received by the collision is as high as possible. Is described in Patent Document 1 below.

特開2005-254923号公報JP 2005-254923 A

他物体への自車の衝突により自車両やその乗員に加わる衝撃は、それが衝突の方向に沿って直線的に作用する場合に最も過酷に作用する。もし衝撃力をその場で多方向に分散させることができれば、個々の衝撃力は弱まり、車両や乗員が受ける総合的損傷を和らげることができると考えられる。そのような衝撃力の多方向への分散の特に有効な一つとして、衝突のエネルギにより自車をヨー回転させることが考えられる。   The impact applied to the host vehicle and its occupant due to the collision of the host vehicle with another object works most severely when it acts linearly along the direction of the collision. If the impact force can be distributed in multiple directions on the spot, the individual impact force will be weakened and the overall damage to the vehicle and passengers can be reduced. One particularly effective way to distribute such impact force in multiple directions is to yaw the vehicle with the energy of the collision.

本発明は、上記の考えに基づき、他物体への衝突により自車両や乗員が蒙る総合的損傷を緩和することを課題としている。   Based on the above idea, an object of the present invention is to alleviate comprehensive damage caused to the own vehicle or a passenger due to a collision with another object.

上記の課題を解決すべく、本発明は、他物体に対する自車の衝突の可能性を判断し、前記可能性があると判断されたとき自車のヨー回転を促すようになっていることを特徴とする車両を提案するものである。   In order to solve the above problems, the present invention determines the possibility of collision of the own vehicle with another object, and prompts the yaw rotation of the own vehicle when it is determined that there is the possibility. A vehicle with a characteristic is proposed.

ただ、促されることにより増大した自車のヨー回転により自車が前記他物体とは別の他物体に衝突することになる虞れもあるので、前記ヨー回転の促しは、それによって自車が前記他物体とは別の他物体に衝突する虞れがないことを確認した上で行われるようになっていてよい。   However, since the own vehicle may collide with another object different from the other object due to the yaw rotation of the own vehicle increased by being prompted, the acceleration of the yaw rotation is thereby It may be performed after confirming that there is no possibility of colliding with another object different from the other object.

上記の如く、車両が、他物体に対する自車の衝突の可能性を判断し、前記可能性があると判断されたとき自車のヨー回転を促すように作られていれば、他物体への衝突により生じた衝突方向の衝撃エネルギの一部を自車のヨー回転により吸収し、車両や乗員に作用する加速度を衝突方向の直線加速度と自車のヨー回転に伴う回転加速度に分散させることにより、衝突方向の直線加速度を低減することができる。この場合、自車両および乗員には、低減された衝突方向の直線加速度に加えて自車のヨー回転に伴う回転加速度が作用するが、両者は互に相乗することのない加速度であり、車両が衝突により受ける総合的損傷を緩和することができ、特に自車のヨー回転の中心近くに位置している乗員が衝突により受ける総合的損傷を大幅に緩和することができる。   As described above, if the vehicle is designed to determine the possibility of a collision of the host vehicle with another object and to promote yaw rotation of the host vehicle when it is determined that there is such a possibility, By absorbing a part of the impact energy in the collision direction caused by the collision by the yaw rotation of the own vehicle and dispersing the acceleration acting on the vehicle and the occupant into the linear acceleration in the collision direction and the rotational acceleration accompanying the yaw rotation of the own vehicle The linear acceleration in the collision direction can be reduced. In this case, in addition to the reduced linear acceleration in the collision direction, the host vehicle and the occupant are subjected to the rotational acceleration associated with the yaw rotation of the host vehicle, but both are accelerations that do not synergize with each other. The total damage caused by the collision can be alleviated, and particularly the total damage received by the passenger who is located near the center of the yaw rotation of the own vehicle can be greatly reduced.

また前記ヨー回転の促しは、それによって自車が前記他物体とは別の他物体に衝突する虞れがないことを確認した上で行われるようになっていれば、促されることにより増大した自車のヨー回転により自車が前記他物体とは別の他物体に衝突することになるような不都合を排除して、衝突により車両および乗員が受ける総合的損傷を緩和することができる。   In addition, the prompting of the yaw rotation is increased by the prompt if it is made after confirming that there is no possibility of the vehicle colliding with another object different from the other object. It is possible to eliminate the inconvenience that the own vehicle collides with another object other than the other object due to the yaw rotation of the own vehicle, and the total damage to the vehicle and the occupant due to the collision can be alleviated.

先行車に自車が追突する過程を例示する概略図である。It is the schematic which illustrates the process in which the own vehicle collides with a preceding vehicle. 車輪の接地点に作用する制駆動力と横力(サイドフォース)の関係および横力が車輪の横滑りにより変化する態様を示すグラフである。It is a graph which shows the aspect which the relationship between the braking / driving force and lateral force (side force) which act on the contact point of a wheel, and the aspect which a lateral force changes with the side slip of a wheel. 本発明による車両衝突への対応制御を示すフローチャートである。It is a flowchart which shows the response | compatibility control to the vehicle collision by this invention. 図3のステップ60の詳細を一つの実施例につて示すフローチャートである。It is a flowchart which shows the detail of step 60 of FIG. 3 about one Example. 図3のステップ60の詳細を他の一つの実施例につて示すフローチャートである。It is a flowchart which shows the detail of step 60 of FIG. 3 about another one Example. 4WD車、4輪駆動力配分車、2輪駆動力配分車において車輪を空転させて滑らせるための車輪の駆動態様を示す図である。It is a figure which shows the drive mode of the wheel for making a wheel slip and slide in a 4WD vehicle, a 4-wheel drive force distribution vehicle, and a 2-wheel drive force distribution vehicle. 図3に示す制御の一部を修正した制御を示すフローチャートである。It is a flowchart which shows the control which corrected a part of control shown in FIG.

今、図1の図(A)に示す如く自車10が先行車20に後方より接近しつつあり、何らかの事情により追突の虞れがある距離まで自車が先行車に近付いたとする。このような場合、運転者の多くは追突を避けるようにハンドルを切るであろうから、自車が更に先行車に近づいたときには、図(B)に示す如く自車10は先行車20に対し横方向に幾分ずれていることが予想される。かかる操舵によって追突が回避されればよいが、操舵による追突の回避が間に合わないときには、自車10は図(C)に示す如くその先端部にて片当りする態様にて先行車20に追突する。事実、多くの追突事故において、追突車は先行車に片当りしている。   Now, as shown in FIG. 1A, it is assumed that the host vehicle 10 is approaching the preceding vehicle 20 from the rear, and the host vehicle approaches the preceding vehicle to a distance that may cause a rear-end collision for some reason. In such a case, many of the drivers will turn the steering wheel so as to avoid the rear-end collision. Therefore, when the own vehicle further approaches the preceding vehicle, the own vehicle 10 is compared with the preceding vehicle 20 as shown in FIG. It is expected that there is some deviation in the lateral direction. The rear-end collision may be avoided by such steering. However, when the rear-end collision by steering cannot be avoided in time, the host vehicle 10 rear-ends the preceding vehicle 20 in a manner that hits the front end as shown in FIG. . In fact, in many rear-end collisions, the rear-end collision car hits the preceding car.

この場合、自車10は、その重心に作用する衝撃の加速度が先行車20への当接部よりずれて作用するので、図(D)に示す如く先行車20との当接部の周りにヨー回転し、現状の車両のままでも衝突による衝撃エネルギの一部は自車のヨー回転により吸収されるが、このとき自車のヨー回転を促す制御が行われれば、衝撃エネルギのより多くの部分を自車のヨー回転により吸収し、自車両や乗員が蒙る損傷をより一層低減することができる。   In this case, the acceleration of the impact acting on the center of gravity of the own vehicle 10 is shifted from the contact portion with the preceding vehicle 20, so that the vehicle 10 is around the contact portion with the preceding vehicle 20 as shown in FIG. Even if the current vehicle is still rotating, a part of the impact energy due to the collision is absorbed by the yaw rotation of the own vehicle, but if the control for promoting the yaw rotation of the own vehicle is performed at this time, more of the impact energy The portion can be absorbed by the yaw rotation of the own vehicle, and damage to the own vehicle and the passenger can be further reduced.

路面上の車輪に作用する力については、周知の通り図2の図(A)に示す如く、路面と車輪の間に作用する力は路面に沿うあらゆる方向について路面と車輪の間の摩擦係数μと車輪に作用する荷重Wの積μWを越えないという定理があり、車輪に掛かる制駆動力Tが増大すれば、車輪により得られる横力(サイドフォース)FはμWの2乗よりTの2乗を差し引いた値の平方根の値に従って減少する。これに更に車輪の横滑りが関与すると、制駆動力Tと横力Fと横滑り角βとは図(B)に示す如く関連する。横滑りに伴う横力の増大は数度ないし10度程度のβmaxにて飽和する。図にて、曲線0−Aoは制駆動力Tが0の場合の横滑り角βと横力Fの間の対応を示す。曲線0−Aは制駆動力TがTaの場合の横滑り角βと横力Fの間の対応を示す。図示の対応より分かる通り、Foβ1、Foβ2はTが0でβがβ1、β2であるときの横力であり、Faβ1、Faβ2はTがTaでβがβ1、β2であるときの横力である。   As is well known, the force acting on the wheel on the road surface is, as shown in FIG. 2A, the force acting between the road surface and the wheel is the coefficient of friction μ between the road surface and the wheel in all directions along the road surface. If the braking / driving force T applied to the wheel increases, the lateral force (side force) F obtained by the wheel becomes 2 of T from the square of μW. Decrease according to the square root of the value minus the power. If a side slip of the wheel is further involved, the braking / driving force T, the side force F, and the side slip angle β are related as shown in FIG. The increase in lateral force due to skidding saturates at βmax of several degrees to 10 degrees. In the figure, a curve 0-Ao shows the correspondence between the side slip angle β and the side force F when the braking / driving force T is zero. A curve 0-A shows the correspondence between the side slip angle β and the side force F when the braking / driving force T is Ta. As can be seen from the correspondence in the figure, Foβ1 and Foβ2 are lateral forces when T is 0 and β is β1 and β2, and Faβ1 and Faβ2 are lateral forces when T is Ta and β is β1 and β2. .

本発明は、車輪の横力が上記の如く制駆動力Tや横滑り角βによって変化することを踏まえて、図1の図(C)や(D)の状態にある自車10のヨー回転を促すものであり、その制御は図3のフローチャートに示す要領にて実行されてよい。   In the present invention, in consideration of the fact that the lateral force of the wheel changes depending on the braking / driving force T and the side slip angle β as described above, the yaw rotation of the host vehicle 10 in the state shown in FIGS. The control may be executed in the manner shown in the flowchart of FIG.

図3に示す制御に於いては、先ずステップ(S)10にて、追突の虞れのある先行車の如き相手方車両の速度、位置、進行方向が推定され、更にステップ20にて、自車両の速度、位置、進行方向が推定される。次いで、ステップ30にて、路面の摩擦係数が推定され、以上に得られたデータに基づき、ステップ40にて、相手方車両に対する自車両の衝突の可能性が演算され、その結果に基づき、ステップ50にて、衝突が不可避であるか否かが判断される。   In the control shown in FIG. 3, first, in step (S) 10, the speed, position, and traveling direction of an opponent vehicle such as a preceding vehicle that may cause a rear-end collision are estimated. The speed, position, and direction of travel are estimated. Next, in step 30, the road surface friction coefficient is estimated. Based on the data obtained above, in step 40, the possibility of collision of the host vehicle with the opponent vehicle is calculated. Based on the result, step 50 is calculated. It is then determined whether or not a collision is inevitable.

ステップ50の答がイエスであるとき、即ち運転者の対応の如何、また相手方車両の動きの如何、またはそれらの両方を勘案しても、衝突は不可避であると判断されたときには、制御はステップ60へ進み、図1の図(C)に示すような状態を想定して、自車両の路面−タイヤ間の摩擦係数を低減し、自車両が図1の図(D)に示す状態或いはそれ以上に大きくヨー回転することを促す制御が行われる。   If the answer to step 50 is yes, that is, if it is determined that a collision is unavoidable regardless of the driver's response, the movement of the opponent's vehicle, or both, the control proceeds to step Proceeding to 60, assuming the state shown in FIG. 1C, the friction coefficient between the road surface and the tire of the host vehicle is reduced, and the host vehicle is in the state shown in FIG. Control for urging the yaw rotation to a greater extent is performed.

一方、ステップ50の答がノーであるとき、即ち運転者の対応次第、または相手方車両の動き次第、またはそれらの両方によって衝突が回避される可能性があると判断されたときには、特に運転者の対応に干渉してそれを乱すようなことのないよう、ステップ60の制御は行わないよう配慮される。   On the other hand, when the answer to step 50 is no, that is, when it is determined that the collision may be avoided depending on the driver's response, the other vehicle's movement, or both, the driver's Care is taken not to control step 60 so as not to interfere with and disturb the response.

図4は、図3のステップ60に於ける自車両の路面−タイヤ間の摩擦係数を低減する摩擦係数低減制御を、自車両が後輪駆動車や前輪駆動車の場合について、一つの実施例として示すフローチャートである。   FIG. 4 shows an example of the friction coefficient reduction control for reducing the friction coefficient between the road surface and the tire of the own vehicle in step 60 of FIG. 3 when the own vehicle is a rear wheel drive vehicle or a front wheel drive vehicle. It is a flowchart shown as.

この場合、先ずステップ601にて、各駆動輪について、その分担荷重に図3のステップ30にて推定された路面の摩擦係数を掛け、それにトルクへの変換係数αを掛けることにより、駆動輪に滑りによる空転を起こさせるトルクTwが推定される。次いで、ステップ602にて、駆動輪の回転数を駆動輪の路面に対する摩擦が静摩擦より動摩擦に変わるに適した回転数にするための目標空転回転数が演算される。続くステップ603においては、各駆動輪についてその回転数が目標空転回転数以下であるか否かが判断され、答がイエスであれば制御はステップ604へ進み、ステップ601にて推定されたTwの値を適当な増分δ1だけ増大させた駆動トルクにて駆動輪が駆動される。一方、答がノーであれば制御はステップ605へ進み、ステップ601にて推定されたTwの値を適当な減分δ2だけ減小させた駆動トルクにて駆動輪が駆動される。いずれにしても、以上のような駆動輪の摩擦係数低減制御が実行されるときには、ステップ606にて非駆動輪のブレーキを解除し、非駆動輪の制動が車両のヨー回転を妨げないようにしておくのがよい。   In this case, first, at step 601, each of the driving wheels is multiplied by the road friction coefficient estimated at step 30 of FIG. A torque Tw that causes slipping due to slippage is estimated. Next, at step 602, a target idling rotational speed is calculated for setting the rotational speed of the driving wheel to a rotational speed suitable for changing the friction with respect to the road surface of the driving wheel from dynamic friction to dynamic friction. In the subsequent step 603, it is determined whether or not the rotational speed of each drive wheel is equal to or less than the target idling rotational speed. If the answer is yes, the control proceeds to step 604 and the Tw estimated in step 601 is reached. The drive wheels are driven with a drive torque whose value is increased by an appropriate increment Δ1. On the other hand, if the answer is no, the control proceeds to step 605, and the drive wheels are driven with a drive torque obtained by reducing the value of Tw estimated in step 601 by an appropriate decrement δ2. In any case, when the drive wheel friction coefficient reduction control is executed as described above, the brake of the non-drive wheel is released in step 606 so that the brake of the non-drive wheel does not hinder the yaw rotation of the vehicle. It is good to keep.

図5は、図3のステップ60に於ける自車両の路面−タイヤ間の摩擦係数を低減する摩擦係数低減制御を、4輪駆動車(4WD車)や駆動力配分車(トルクベクトリング車)の場合について、一つの実施例として示すフローチャートである。   FIG. 5 shows a friction coefficient reduction control for reducing the friction coefficient between the road surface and the tire of the own vehicle in step 60 of FIG. 3, a four-wheel drive vehicle (4WD vehicle) and a driving force distribution vehicle (torque vectoring vehicle). It is a flowchart shown as one Example about the case of.

この場合、ステップ611においては、4輪の各々(n=1, 2, 3, 4)について、その分担荷重に図3のステップ30にて推定された路面の摩擦係数を掛け、それにトルクへの変換係数αnを掛けることにより、各輪に滑りによる空転を起こさせるトルクTwnが推定される。次いで、ステップ612にて、各輪の回転数を各輪の路面に対する摩擦が静摩擦より動摩擦に変わるに適した回転数にするための目標空転回転数が演算される。次いで、ステップ613にて、各輪の回転数が各輪に対する目標空転回転数に制御される。   In this case, in step 611, for each of the four wheels (n = 1, 2, 3, 4), the shared load is multiplied by the road surface friction coefficient estimated in step 30 in FIG. By multiplying the conversion coefficient αn, the torque Twn that causes each wheel to slip by slipping is estimated. Next, at step 612, a target idling rotational speed for calculating the rotational speed of each wheel so that the friction with respect to the road surface of each wheel is changed from static friction to dynamic friction is calculated. Next, at step 613, the rotational speed of each wheel is controlled to the target idling rotational speed for each wheel.

4輪駆動車(4WD車)や駆動力配分車(トルクベクトリング車)では、通常の前進駆動や後進駆動時の駆動態様の他に、各輪の駆動方向を図6に示す如く変えることができる。尚、前輪駆動車または後輪駆動車であっても、駆動力配分車であれば、図6に示す如く変えることができる。車輪を空転化により滑らせて車体のヨー回転を促す制御は、車輪の空転化のための駆動により車両に好ましからざる加速度が加わらないよう、更には、車体にヨー回転方向のモーメントを付与するようにされるべきものであり、図5の車輪空転制御は、図6に示す如き種々の駆動態様を取り入れて行なわれてよい。   In a four-wheel drive vehicle (4WD vehicle) and a driving force distribution vehicle (torque vectoring vehicle), the drive direction of each wheel can be changed as shown in FIG. 6 in addition to the drive mode during normal forward drive and reverse drive. it can. In addition, even if it is a front-wheel drive vehicle or a rear-wheel drive vehicle, if it is a driving force distribution vehicle, it can change as shown in FIG. The control for sliding the wheel by idling to promote the yaw rotation of the vehicle body does not add an undesirable acceleration to the vehicle by the driving for idling the wheel, and further applies a moment in the yaw rotation direction to the vehicle body. The wheel idling control of FIG. 5 may be performed by incorporating various driving modes as shown in FIG.

即ち、4WD車では一対の前輪と一対の後輪とは別々に駆動できるので、図6の図(A)や(B)のように一対の前輪と一対の後輪とが互に反対方向に駆動されれば、車両に新たに加速度を付することなく車輪の空転による滑りを誘発し、車両のヨー回転を促すことができる。また4輪駆動力配分車や2輪駆動力配分車の場合には、図6の図(C)、(D)、(E)に示す如く車輪の空転化のための駆動そのものによっても車両にそれをその重心の周りに回動させるモーメントを付加することができ、本発明による衝突に伴う車両のヨー回転の促しをより的確に実施することができる。   That is, in a 4WD vehicle, the pair of front wheels and the pair of rear wheels can be driven separately, so that the pair of front wheels and the pair of rear wheels are in opposite directions as shown in FIGS. 6 (A) and 6 (B). When driven, it is possible to induce slippage due to idling of the wheels without accelerating the vehicle and to accelerate the yaw rotation of the vehicle. In the case of a four-wheel drive force distribution vehicle or a two-wheel drive force distribution vehicle, as shown in FIGS. 6 (C), (D), and (E), the vehicle is also driven by the drive for idling the wheels. A moment for rotating it around its center of gravity can be added, and it is possible to more accurately implement the yaw rotation of the vehicle accompanying the collision according to the present invention.

図7は、他物体に対する自車の衝突の可能性があると判断されたとき自車のヨー回転を促し、他物体への衝突により生じた衝突方向の衝撃エネルギの一部を衝突方向の衝撃エネルギとは相乗しない自車のヨー回転エネルギに変換して車両および特に乗員が受ける総合的損傷を緩和するとしても、促されることにより増大した自車のヨー回転により自車が前記他物体とは別の他物体に衝突することになる虞れもあることを考慮し、ヨー回転の促しは、それによって自車が別の他物体に衝突する虞れがないことを確認した上で行われるようにすることを組み入れた制御を示すフローチャートである。図7のフローチャートにおいて、図3のフローチャートにおけるステップと同じステップには図3におけると同じステップ番号が付されている。   FIG. 7 urges the yaw rotation of the own vehicle when it is determined that there is a possibility of collision of the own vehicle with another object, and a part of the impact energy in the collision direction caused by the collision with the other object Even if it is converted into yaw rotation energy of the own vehicle that does not synergize with energy to alleviate the total damage that the vehicle and particularly the occupant suffer, the vehicle is different from the other object due to the yaw rotation of the own vehicle increased by being promoted. Considering that there is a possibility of colliding with another object, the yaw rotation is promoted after confirming that there is no possibility that the vehicle will collide with another object. It is a flowchart which shows the control incorporating incorporating. In the flowchart of FIG. 7, the same step numbers as those in FIG. 3 are assigned to the same steps as those in the flowchart of FIG.

この実施例では、ステップ50の答がイエスのときには、制御はステップ51へ進み、ステップ10〜40の演算結果に基づいてステップ60を実行した場合に自車両が上記演算の対象である他物体とは別の他物体に衝突する2次衝突を起こす可能性をチェックする演算が行われ、次いでステップ52にて2次衝突の可能性があるか否かが判断される。この場合、ステップ52の答がノーであり、ステップ60を実行しても2次衝突の虞れがなければ、制御はステップ60へ進み、自車両の路面−タイヤ間の摩擦係数を低減し、自車両がヨー回転することを促す制御が行われるが、ステップ52の答がイエスであれば、ステップ60はバイパスされる。即ち、これは、他物体に対する自車両の衝突の可能性があるとき自車両のヨー回転を促すことにより衝突方向の衝撃エネルギの一部をこれと相乗しない自車両のヨー回転に変換することにより衝突によって車両および特に乗員が受ける総合的損傷を緩和する制御を、促されたヨー回転によって自車両が別の他物体に衝突する虞れのないことを条件として実行する制御である。   In this embodiment, when the answer to step 50 is yes, the control proceeds to step 51, and when the step 60 is executed based on the calculation results of steps 10 to 40, the host vehicle Is checked for the possibility of a secondary collision that collides with another object, and it is then determined in step 52 whether there is a possibility of a secondary collision. In this case, the answer to step 52 is no, and if there is no possibility of a secondary collision even after executing step 60, the control proceeds to step 60 to reduce the coefficient of friction between the road surface and the tire of the host vehicle, Control for prompting the host vehicle to perform yaw rotation is performed, but if the answer to step 52 is yes, step 60 is bypassed. In other words, this is by converting a part of the impact energy in the collision direction into the yaw rotation of the own vehicle that does not synergize with this by prompting the yaw rotation of the own vehicle when there is a possibility of collision of the own vehicle with another object The control is executed to reduce the total damage to the vehicle and particularly to the occupant due to the collision, on condition that there is no possibility that the own vehicle will collide with another object by the urged yaw rotation.

以上に於いては本発明を実施例について詳細に説明したが、かかる実施例について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。   While the invention has been described in detail with reference to embodiments, it will be apparent to those skilled in the art that various modifications can be made to the embodiments within the scope of the invention.

10…自車、20…先行車   10 ... own car, 20 ... preceding car

Claims (1)

他物体に対する自車の衝突の可能性を判断し、前記可能性があると判断されたとき自車のヨー回転を促すようになっていることを特徴とする車両。   A vehicle characterized in that the possibility of a collision of the own vehicle with another object is determined, and the yaw rotation of the own vehicle is urged when it is determined that the possibility exists.
JP2016019290A 2016-02-03 2016-02-03 Vehicle capable of relaxing collision impact Pending JP2017136960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019290A JP2017136960A (en) 2016-02-03 2016-02-03 Vehicle capable of relaxing collision impact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019290A JP2017136960A (en) 2016-02-03 2016-02-03 Vehicle capable of relaxing collision impact

Publications (1)

Publication Number Publication Date
JP2017136960A true JP2017136960A (en) 2017-08-10

Family

ID=59564657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019290A Pending JP2017136960A (en) 2016-02-03 2016-02-03 Vehicle capable of relaxing collision impact

Country Status (1)

Country Link
JP (1) JP2017136960A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258722A (en) * 1997-03-21 1998-09-29 Mazda Motor Corp Attitude controller for vehicle
JP2000095130A (en) * 1998-09-21 2000-04-04 Toyota Motor Corp Vehicle collision control unit
JP2005247046A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Brake control system
JP2006062397A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Device for controlling vehicle behavior when contacting obstacle
JP2006273266A (en) * 2005-03-30 2006-10-12 Denso Corp Occupant protection device
JP2015071362A (en) * 2013-10-03 2015-04-16 トヨタ自動車株式会社 Holding power control device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258722A (en) * 1997-03-21 1998-09-29 Mazda Motor Corp Attitude controller for vehicle
JP2000095130A (en) * 1998-09-21 2000-04-04 Toyota Motor Corp Vehicle collision control unit
JP2005247046A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Brake control system
JP2006062397A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Device for controlling vehicle behavior when contacting obstacle
JP2006273266A (en) * 2005-03-30 2006-10-12 Denso Corp Occupant protection device
JP2015071362A (en) * 2013-10-03 2015-04-16 トヨタ自動車株式会社 Holding power control device for vehicle

Similar Documents

Publication Publication Date Title
US10093308B2 (en) Electronic stability control system for vehicle
CN109070873B (en) Vehicle control device and method
JP6261154B2 (en) Vehicle control method using in-wheel motor
JP6844500B2 (en) Vehicle behavior control device
WO2011136025A1 (en) Device for improving vehicle behavior when steering
US20180162335A1 (en) Method of Controlling Driving of a Vehicle Using an In-Wheel System
WO2019059131A1 (en) Vehicle control device
JP5526983B2 (en) Vehicle steering behavior improvement device
US8600639B2 (en) Yaw rate control with simultaneous maximum deceleration
JP5012351B2 (en) Drive control device
JP2008141875A (en) Running system and drive control device
JP6630386B2 (en) Vehicle control device and vehicle control method
JP5029197B2 (en) Vehicle yaw moment control apparatus and yaw moment control method
JP2017136960A (en) Vehicle capable of relaxing collision impact
CN117677528A (en) Vehicle control device
JP2018154231A (en) Collision alleviation apparatus
JP5347500B2 (en) Vehicle control apparatus and vehicle control method
JP2022057096A (en) Vehicle control device
JP2007230478A (en) Vehicle suppressed with retreating after temporary stopping on uphill
JP5397294B2 (en) Vehicle control device
JP6714351B2 (en) Vehicle control device
JP7380911B2 (en) Vehicle control device
JP7435210B2 (en) Control device for four-wheel drive vehicles
JP6425937B2 (en) Vehicle roll control device
WO2022070732A1 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201